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Abstract. Wildfires are increasing in frequency and severity across Europe, which makes accurate wildfire risk estimation

crucial. Wildfire risk is usually estimated using meteorological based fire weather indices such as the Canadian Forest Fire

Weather Index (FWI). By using weather forecasts, the FWI can be predicted for several days and even weeks ahead. Prob-

abilistic ensemble forecasts require verification and calibration in order to provide reliable and accurate forecasts, which are

crucial for informed decision making and an effective emergency response. In this study, we investigate the potential of non-5

homogeneous Gaussian regression (NGR) for statistically calibrating ensemble forecasts of the Canadian Forest Fire Weather

Index. The FWI is calculated using medium range ensemble forecasts from the European Centre for Medium-Range Weather

Forecasts (ECMWF) with lead times up to 15 days over Europe. The method is tested using a 30 day rolling training period and

dividing the European region into three training areas (Northern, Central and Mediterranean Europe). The calibration improves

FWI forecast particularly at shorter lead times up to 84 hours and in regions with elevated FWI values, i.e., areas with a higher10

wildfire risk such as Central and Mediterranean Europe.

1 Introduction

Wildfires in Europe have become increasingly frequent and destructive in the recent decades. The wildfire season of 2023 alone

burnt, according to the European Forest Fire Information System (EFFIS), an area of over 170 thousand hectares in Greece,

killed at least 18 people and forced thousands to leave their homes (Faiola and Labropoulou, 2023). Similar devastating wild-15

fires in 2017 and 2022 burned large areas in Portugal, Spain and Italy. While the Mediterranean region continues to face the

highest occurrence of wildfires, Central and Northern Europe have experienced an increase in extreme temperature events and

heatwaves in recent years (Ibebuchi and Abu, 2023; Rousi et al., 2023; Ionita et al., 2017; Barriopedro et al., 2011). Extended

warm and dry periods raise the fire danger and may cause wildfires in regions that were previously not considered wildfire

hotspots (San-Miguel-Ayanz et al., 2021; De Rigo et al., 2017). Examples are the 2018 heatwave, which caused wildfires in20

Sweden (San-Miguel-Ayanz et al., 2019) and across the United Kingdom (Sibley, 2019) or the wildfire outbreaks in Germany

and the Czech Republic during the summer of 2022 (Skacel et al., 2022).

The rising frequency and severity of wildfires in Europe emphasizes the need for an effective management of forest fire emer-

gencies. The SAFERS (Structured Approaches for Forest fire Emergencies in Resilient Societies, https://safers-project.eu/)

project provides an integrated platform to assist first responders, firefighters, and decision-makers to become more resilient25
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before, during, and after forest fire emergencies. An important component of SAFERS for identifying high wildfire risk areas

are accurate and reliable weather forecasts, ranging from a few days to several weeks. In this paper, we use the Canadian forest

fire weather index (FWI), which is a widely recognized numeric indicator for forest fire risk (Van Wagner, 1987; Di Giuseppe

et al., 2016). The calculation of the FWI only requires four weather parameters and can be calculated using deterministic or

probabilistic weather forecasts. While deterministic forecasts provide a single forecast based on a given set of initial condi-30

tions, probabilistic ensemble forecasts offer a range of possible outcomes by using slightly perturbed initial conditions, giving a

more comprehensive picture of potential weather conditions and providing an estimate of the forecast uncertainty. Probabilistic

ensemble forecasts may require statistical calibration to ensure reliable and accurate forecasts, which are essential for making

informed decisions and effectively allocating resources when responding to wildfires.

Various methods have been developed for calibrating probabilistic ensemble forecasts. Commonly used calibration methods35

include Bayesian model averaging (Raftery et al., 2005), non-homogeneous Gaussian regression (Gneiting et al., 2005), logis-

tic regression (Hamill et al., 2004) and non-parametric ensemble post-processing methods such as rank histogram techniques

(Hamill and Colucci, 1997), quantile regression (Bremnes, 2004) and ensemble dressing approaches (Roulston and Smith,

2003). Non-homogeneous Gaussian regression (NGR) is one of the most commonly used calibration methods and adjusts both

ensemble mean and spread, while still be efficient and easy to implement. It has been proved effective for various weather vari-40

ables like temperature (Hagedorn et al., 2008), precipitation (Hamill et al., 2008) or wind-speed (Thorarinsdottir and Johnson,

2012) and can be applied using a truncated or censored distribution to account for a constraint to non-negative values.

In this article, we investigate whether non-homogeneous Gaussian regression (NGR) can be used to calibrate the Fire Weather

Index (FWI) derived from medium-range ensemble weather forecasts and assess the extent to which NGR improves the accu-

racy of the FWI predictions. The skill of the calibrated FWI forecast is shown and compared for three European regions.45

2 Data and methods

2.1 Fire weather index calculation

A common method for indicating the danger of wildfires is the Canadian Forest Fire Weather Index (FWI) system (Van Wagner,

1987). Although originally developed for Canadian weather and vegetation, the FWI system is now used in various regions. For

instance, the European Forest Fire Information System (EFFIS) employs the FWI to provide information on wildfires in the EU50

and neighbouring countries (Di Giuseppe et al., 2020). The main advantage of the FWI system is its relatively straightforward

computation, requiring only four weather parameters and information about the season (time of year) and geographical location

as input parameters.

The FWI is calculated in two steps. First, the 2-meter temperature, 2-meter relative humidity, 10-meter wind speed, and 24h

accumulated precipitation at local noon are used to calculate the moisture content of three separate fuel layers. These fuel55

layers are characterized by different depths and fuel consistencies, which result in varying water capacities and drying speeds.

The Fine Fuel Moisture Code (FFMC) represents the moisture content of litter and other fine cured fuels at a nominal depth

of 1.2 cm; the Duff Moisture Code (DMC) indicates the moisture content of loosely compacted layers (nominal depth ∼7 cm);
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and the Drought Code (DC) denotes the moisture content of deep, compacted layers in a depth of around 18 cm (Van Wagner,

1987). DMC and DC respond slower to weather variations compared to the fast-drying fuel represented by the FFMC. Conse-60

quently, the effective day length, which determines the amount of drying that can occur during a given day, must be considered

and monthly day length adjustment factors for DMC and DC are applied based on latitude (Lawson and Armitage, 2008). The

fuel moisture codes are dependent on previous weather conditions; therefore, the preceding day’s noon values for FFMC, DMC

and DC are necessary for their calculations.

In the second step, FFMC and the 10-meter wind speed are used to model the potential rate of fire spread (ISI). DMC and DC65

are used to calculate the Buildup Index (BUI), a numeric rating of the total amount of fuel available for combustion which

comprises the potential of a surface fire to burn deeper fuel layers (build up) and thus evolve into more persistent fires. These

fire behaviour indices are then used to calculate the FWI. The FWI values are always non-negative, with low numbers indi-

cating low fire weather danger and high values indicating high fire weather danger. The FWI is often classified into danger

classes and values above 50 are considered extreme. However, those levels can vary depending on local conditions (e.g., vege-70

tation types). Consequently, what is considered a low or extreme FWI in one region may not be equivalent in another. A more

comprehensive description of the FWI system can be found in Van Wagner (1987) and Lawson and Armitage (2008). For this

study, we implemented the calculation of the Canadian Forest Fire Weather Index (FWI) using Python programming language,

following the source code provided by Wang et al. (2015), with modifications to utilize gridded input data.

75

2.2 Forecast and observation data

In this study, we use ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) to cal-

culate ensemble forecasts of the FWI. ECMWF medium-range ensemble forecasts consists of 50-members, initialized twice a

day at 0000 and 1200 UTC and provide forecasts up to 360 hours (15 days). The forecasts are derived from the TIGGE archive

(Bougeault et al., 2010), which provides operational medium-range ensemble forecast data for non-commercial research pur-80

poses. The data is accessible through the ECMWF API1. The temporal resolution of the ensemble forecast data used in this

paper is 6h for all lead times and the spatial resolution is 0.5° (∼50 km). We use only the forecasts initialized at 0000 UTC.

Although available forecasts cover the whole globe, our focus is on the European region from 25°N to 72°N and 25°W to

39.80°E and we specifically use forecasts from the years 2021 to 2023.

For the FWI calculation, we derive initial values for FFMC, DMC, and DC from ERA5 reanalysis data (Hersbach et al., 2020)85

to account for preceding conditions at forecast initialization. The initial values are determined using the climatological from

40 years of historical data (1980-2019) for each day of the year, using a 15-day rolling mean centered on each day. ERA5

reanalysis data can be retrieved from the C3S Climate Data Store (CDS) (Hersbach et al., 2017).

For calibration and verification purposes, we use ECMWF high-resolution forecasts initialized at 0000 UTC. ECMWF high-

resolution forecasts have a spatial resolution of 0.1° (∼9 km) and a temporal resolution of 1 hour and can therefore give a more90

accurate picture of the actual weather conditions than medium-range ensemble forecasts with a coarser resolution. The FWI

1https://apps.ecmwf.int/datasets/data/tigge/, last access: 06/02/2024
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values calculated using ECMWF high-resolution forecasts with the shortest lead time to the local noon with corresponding 24h

precipitation act as substitute for actual observations and are hereafter called analysis. Ideally, FWI forecasts would be verified

using FWI values calculated using surface observations of the relevant weather parameters as the FWI cannot be observed

directly. However, measurement stations that provide continuous observations of all necessary weather parameters are sparse95

and only yield point-wise verification. Furthermore, for an operational calibration of the FWI, observation data needs to be

available rapidly.

To determine if the analysis is suitable to be used as observation substitute, we check their agreement with actual observation

based values, which is shown in Fig. 1 and 2. We use observations available from the Finnish Meteorological Institute’s obser-

vation database for the years 2021–2023. Figure 1a shows the stations, for which it is possible to calculate the FWI for more100

than 200 consecutive days in addition to the reference areas which are introduced in Chapter 3. In total 682 stations can be

used. The time series of three example stations are shown in Fig.1a,b,c. The FWI analysis is shown in orange while the FWI

calculated from observations is shown by the black dashed line. Overall, there is good correlation between the forecasted and

observed FWI values. However, especially for high FWI values, the FWI derived from forecasted weather parameters tends to

underestimate the values compared to those derived from observations. This is particularly evident during the summer months105

of 2022 and 2023 in Meiningen, Germany (Fig.1c) and Chrysoupoli, Greece (Fig.1d).

Figure 2a overlapping histograms of the density distribution of the FWI analysis (orange) and FWI calculated from observa-

tions (grey) for all stations shown in Fig.1a and every time step. The distributions show a high frequency of low values (FWI

< 1), and when plotted on a logarithmic x-scale, a bimodal structure becomes evident with a separation at an FWI value of 1.

This bi-modality results from a necessary restriction imposed on the FWI calculation (Eq. 30a,b in Wang et al. (2015) or Eq.40110

in Van Wagner (1987)). Figure 2b again displays the density distribution of FWI values, but focuses on FWI values greater than

1, as these are generally more relevant for assessing wildfire danger. For higher FWI values, the forecast-derived FWI underes-

timates those calculated from observations, while for lower FWI values, it tends to overestimate. One contributing factor is the

different spatial resolution of the data sources. The analysis uses gridded data with a resolution of 0.1° (approximately 9 km

in Central Europe), whereas weather observations are local measurements. However, in general there is a fairly good positive115

correlation of FWI analysis and FWI calculated from observations. Figure 2c shows the histogram of the linear correlation

coefficient of stations that observe FWI values greater than 1, the mean correlation coefficient is 0.72. Low correlation coeffi-

cients are mainly caused by differences between analysis and observation in mountainous areas, such as Austria, Switzerland,

Romania, and Norway, as indicated by the coloured markers in the station map (Fig. 1a). This is due to the difficulty in captur-

ing the complex terrain and its small-scale weather phenomena with relatively coarse resolution (∼9km) of the forecast model.120

Because there is a fairly good correlation of observation and analysis, we will use the forecasted FWI with short lead time

(analysis) derived from ECMWF high-resolution forecasts as observation to compare with the FWI forecasts derived from

ECMWF medium-range ensemble forecasts.
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Figure 1. (a) Map of study area with modified AR6-WGI reference regions (Iturbide et al., 2020) shaded in grey (NEU=Northern Europe,

WCE=West and Central Europe, EUMED=European Mediterranean). The location of observation stations for which the FWI can be cal-

culated for at least 200 consecutive days are presented by dots with the colour representing the correlation coefficient (see. Fig.2) for each

station. Example stations are marked with green triangles. (b) Example of FWI time series calculated from observations (black dashed) and

forecast analysis (orange) for a station in NEU (Seinäjoki, Finland); (c) for WCE (Meiningen, Germany) and (d) EUMED (Chrysoupoli,

Greece).

Figure 2. (a) Density plot of the FWI calculated from observation data (grey) and from FWI analysis (orange) for all the stations shown

in Fig.1a. (b) Same as in (a) but only showing FWI values greater than 1. (c) Frequency (count) of the correlation coefficient of FWI high-

resolution analysis and FWI calculated using observation data for FWI values greater than 1.
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2.3 Calibration and verification methods

2.3.1 Non-homogeneous Gaussian regression125

For statistical post-processing the medium-range FWI forecasts, we apply the non-homogeneous Gaussian regression (NGR),

which was originally proposed and employed for surface temperature and sea level pressure by Gneiting et al. (2005). This

method was extended to non-negative weather variables (wind speed) by Thorarinsdottir and Gneiting (2010). The FWI is by

definition non-negative and for the calibration of the FWI forecasts we assume that the FWI observations y follow a truncated

normal distribution with cut-off at zero:130

y ∼N 0(µ,σ2). (1)

The location and scale parameter are given by:

µkl = al + blenskl,

log(σkl) = cl + dl log(sdkl),
(2)

with enskl being the ensemble mean and sdkl being the standard deviation of the 50 ensemble members for each location k

and lead time l. al–dl are regression coefficients. The logarithmic link log(sdkl) is used to assure positive values for the scale135

parameter σkl.

The regression coefficients al–dl are estimated by minimizing the average continuous ranked probability score (CRPS, Hers-

bach (2000)) from training data. The training data is defined using a specific training area and a 30-day rolling window

preceding the forecast as training period. As training areas, we use here climatic reference regions, defined by the sixth IPCC

Assessment Report (AR6-WGI (Iturbide et al., 2020)), which divide the European domain into Northern Europe (NEU), West140

and Central Europe (WCE), and the Mediterranean (MED). In this study, however, we use only the European part north of the

Mediterranean Sea, referred to hereafter as the European Mediterranean (EUMED). The reference regions are marked grey in

Fig.1(a). The calibration can also be performed over smaller geographical areas, e.g., individual countries. Training periods of

different length were tested, as shorter training periods allow a faster adaptation to seasonal differences. On the other hand,

longer periods provide more data, thereby reducing statistical variability. Training windows from 15 to 40 days were examined145

and only minor differences in the calibration performance were found when using big training areas as in this example. When

using smaller geographical training areas, however, a training period of 30 days seemed to most suitable (see Supplementary

Figure S1). We adopt here a regional approach, pooling training data from all grid points within the training area to derive

a single set of calibration coefficients (al–dl) specific to each lead time for the given forecast. The initial forecast time step

(T+12h) is excluded from calibration, as these forecasts are used as observation. The obtained coefficients are then used to150

calibrate the forecast at the respective lead time in the selected training area. Fitting of the regression model and prediction of

location and scale parameters of the predicated distribution is done using the R-package crch, which provides censored regres-

sion with conditional heteroscedasticity (Messner et al., 2016) and uses the Broyden–Fletcher–Goldfarb–Shanno algorithm

(Nocedal and Wright, 2006) to minimize the CRPS.
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2.3.2 Verification metrics155

The aim of forecast calibration is to correct forecast errors deriving from both structural deficiencies in the dynamical models

and forecast sensitivity to uncertain initial conditions (Wilks and Vannitsem, 2018). To evaluate the predictive performance

of calibrated forecasts compared to the raw forecasts, we are using several verification metrics which are shortly introduced

hereafter.

A common method to evaluate the forecast reliability of probabilistic forecasts is the comparison of ensemble spread and160

skill. The skill of an ensemble forecast is often defined in terms of the root mean square error (RMSE) of the ensemble mean,

calculated as

RMSE =

vuut 1

n

nX

i=1

(Fi −Oi)2, (3)

where Fi and Oi are the predicted and observed value, respectively, at time step i of n forecasts. The ensemble spread is

calculated using the square root of the average ensemble variance (Fortin et al., 2014). In a well calibrated forecast model, the165

ensemble spread should be on average equal to the RMSE. The ensemble forecast is considered underdispersive if the spread

is smaller than the skill and overdispersive otherwise.

The bias of the forecast can be accessed by simply evaluating the difference between the average forecast Fi and average

observation Oi, which is defined as the mean error (ME):

ME =− 1

N

nX

i=1

(Fi −Oi). (4)170

While the spread-skill relationship and ME are deterministic scores and applied to the ensemble forecast mean, the Continuous

Ranked Probability Score (CRPS, Eq. (5)) allows a probabilistic assessment (Hersbach, 2000). The CRPS compares the whole

distribution of ensemble members, represented as cumulative distribution function, with the observation:

CRPS(P,xa) =

∞Z

−∞

[FFc(x)−FO(x)]
2dx, (5)

where FFc(x) and FO(x) are the cumulative distribution functions of the forecast and the observation, respectively. The CRPS175

is negatively oriented, which means smaller values indicate a better performance of the ensemble forecast. In this study, we

assume a truncated Gaussian distribution of the FWI forecasts and apply the truncated Gaussian form of the CRPS for raw

and calibrated ensemble forecasts. The skill of the calibrated forecast with respect to a reference forecast can be accessed by

calculating the Continuous Ranked Probability Skill Score (CRPSS), defined as:

CRPSS = 1− CRPScal

CRPSref
. (6)180

where CRPScal and CRPSref denote the CRPS of the calibrated and reference forecast, respectively. Positive values indicate a

higher skill of the calibrated forecast, while negative values indicate a lower skill of the calibrated forecast with respect to the

raw forecast.
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3 Results

In this section, we present results of post-processing FWI forecasts of the years 2021 to 2023 by applying the introduced185

calibration method. We use here the AR6-WGI reference regions introduced in Sec.2.3.1 and shown in Fig.1(a).

The main fire season in Europe is typically from May until October but varies strongly in length and intensity across regions,

e.g. the fire season starts later and is shorter in Northern Europe compared to Southern Europe (San-Miguel-Ayanz et al.,

2012). For the calibration verification we therefore only focus on forecasts during the months May to October, when the FWI

is considerable high in all regions.190

Figure 3 shows the spread-skill relationship for the raw (black) and calibrated (orange) FWI forecast averaged over the grid-

points within the three study areas NEU (left), WCE (middle) and EUMED (right) and the wildfire season (May to October).

Monthly averages can be found in the Supplementary material, Fig. S2 - S4. The RMSE of the climatology, shown by the

solid blue line, is calculated similarly to the forecast RMSE. However, it uses the climatology derived from 40 years of ERA5

reanalysis data (see Sec.2.2) for each day of the year instead of using the forecast. Both calibrated as well as raw forecast have195

a smaller RMSE compared to the climatology which indicates a general skill of the FWI forecasts compared to the climatology

even at longer lead times. For raw and calibrated forecasts the spread (dashed line) is constantly smaller than the skill of the

ensemble mean (as measured by RMSE, solid line). This implies that the forecast is underdispersive and lacks spread. However,

after calibration the ensemble spread is closer to the RMSE, which indicates that the reliability of the forecast is improved.

The calibration also decreases the RMSE especially during the first forecast days, which means the accuracy of the forecast200

is improved. In Northern Europe, the RMSE of the calibrated forecast is slightly above the RMSE of the raw forecast after 7

days (180 hours) of forecast, whereas the skill of raw and calibrated forecast in Central and Mediterranean Europe is similar

for forecasts longer than 9 days (228 hours) and 12 days (300 hours), respectively. The FWI forecast in Northern Europe lacks

skill for lead times longer than 7 days and calibration based on 30-day rolling window fails to improve and even worsens the

forecast. This finding could be explained by the rather small FWI values and large relative uncertainty in NEU, unlike FWI205

values in WCE and EUMED (not shown here). The applied calibration appears to be more effective for higher FWI values

and shows limitations for smaller FWI values close to 0. This also explains the regional differences and the better calibration

results in the more southern, fire prone regions with generally higher FWI values compared to Northern Europe, where FWI

values are often very small.

The mean error (ME) averaged over the three subregions and the fire weather season is shown in Fig. 4. Uncalibrated210

forecasts have a negative bias for all lead times, indicating that the forecasted FWI values are consistently lower than the

observed values. In Northern Europe the mean error before calibration is around -0.6 for all lead times. In Middle and Southern

Europe the mean error is more negative but increasing with lead time. The improvement of the mean error is especially

contributed to forecasts in the months with high FWI, July and August for WCE and June to September in EUMED, which

can be seen in the monthly averaged mean error in Supplementary Figures S5 to S7. After calibration the ME is considerably215

improved. Best results seem to be achieved in the Mediterranean region, where the mean error after calibration is around zero.
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Figure 3. Spread and RMSE for raw and calibrated FWI forecasts averaged over the region of interest: (a) Northern Europe (NEU), (b) West

& Central Europe (WCE), (c) European Mediterranean (EUMED) and fire season (May-October). The RMSE of the climatology for the

respective region is additionally provided.

In Northern and Central Europe, the bias is slightly positive after calibration especially for longer lead times, ranging from less

than 0.1 to 0.4.

Figure 5 shows the CRPSS with raw forecasts as reference. In all three regions the CRPSS is positive for the first 3 days

(84 hours) of the forecast which suggests an improvement of the FWI forecast after calibration for short lead times up to 84220

hours. The lead time up to which the calibration is improving the forecasts varies with region. In NEU the calibration actually

worsens the calibration after 5 days (132 hours) of forecast, while in WCE and EUMED the calibrated forecast has no skill

compared to the raw forecast after 7 (180 hours) and 11 days (276 hours), respectively. This is probably caused by the small

FWI values in NEU and for longer lead times. For low FWI values close to 0, the calibration is not effective.

These regional differences are furthermore illustrated in the maps shown in Fig. 6, where the CRPSS averaged over the fire225

season (May-October) is given. With increasing lead time the skill worsens especially in mountainous areas in Scandinavia

and the Alps, which are also the regions with generally low values throughout the fire season.

4 Discussion and conclusion

We investigated whether non-homogeneous Gaussian regression (NGR) can be used to calibrate fire weather index (FWI)230

forecasts based on medium range ensemble weather forecasts by the European Centre for Medium-Range Weather Forecasts
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Figure 4. Mean Error for the raw and calibrated FWI forecasts averaged over the fire season (May-October) and the respective region: (a)

Northern Europe (NEU), (b) Western & Central Europe (WCE), (c) European Mediterranean (EUMED).

Figure 5. Continuous ranked probability skill score (CRPSS) for the calibrated forecasts against raw forecasts averaged over the fire season

(May-October) and the respective region: (a) Northern Europe (NEU), (b) Western & Central Europe (WCE), (c) European Mediterranean

(EUMED).
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Figure 6. Continuous ranked probability skill score (CRPSS) with the raw forecast as reference averaged over the fire season (May-October)

for different lead times.

ensemble forecasts (ECMWF). To estimate the calibration coefficients of the NGR, we employ a truncated Gaussian distribu-

tion with cut-off at zero and use forecast and observation pairs of the last 30 days preceding the forecast. We used ECMWF

high-resolution weather forecasts with the shortest possible lead time to calculate the FWI analysis and used these as substitute

for observations. Although the FWI analysis seems to underestimate the FWI slightly, a good correlation is observed.235

FWI forecasts using medium range ensemble weather forecasts perform generally quite well when compared to the analysis.

However, calibration improves the forecasts especially at short lead times up to 84 hours. In the Mediterranean region and

Central Europe an improvement of FWI forecast with respect to the FWI analysis is also apparent for longer lead times up

to 8 to 10 days, respectively. This is likely caused by the generally higher values in those regions and is supported by the

monthly averaged metrics in the appendix, which show a stronger improvement caused by the calibration in the months with240

high FWI values. Hence, it can be concluded that the calibration performs better for higher FWI values, as indicated by the

better performance during the summer months in West and Central Europe and in the European Mediterranean. However, the

calibration method shows limitations for low FWI values, which could be observed in the NEU reference region and especially

for longer lead times. Although it would be ideal for the method to perform effectively across the entire range of FWI values, it
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is generally more critical that it demonstrates a good performance at higher FWI values, where the potential fire danger is more245

significant. While long-range forecasts of potential fire danger are valuable, short-range forecasts, especially for the first 1-3

days, are usually more critical for firefighting resource management. Reliable and accurate forecasts, particularly when the fire

risk is high and over the short-term time frame, are crucial for decision-makers and emergency responders to effectively coor-

dinate resources. The improvement of FWI forecasts using the presented calibration method improves the ability to anticipate

fire danger, ultimately supporting better response management and shows that a relatively simple method can provide good250

results compared to more complex approaches, e.g., bias correction (Cannon, 2018) or the correction of the input parameters

instead of the FWI as in Worsnop et al. (2021). When correcting the individual input parameters, different models need to be

applied for the individual variables, which require careful verification and access to quality controlled observation over the

whole study region. To further improve the presented calibration method for fire weather index forecasts, it could be tested if

calibration of individual components of the FWI system e.g. FFMC, DMC and DC would improve overall skill of the forecast.255

Furthermore, more advanced models using additional predictors, e.g. elevation or land-use, could improve the calibration but

were not tested here.
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