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Abstract. Wildfires are increasing in frequency and severity across Europe, which makes accurate wildfire risk estima-

tion crucial
::
for

::::::::
decision

::::::
makers

::::
and

:::::::::
emergency

::::::::::
responders. Wildfire risk is usually estimated using meteorological based

:::::::::::::::::
meteorological-based

:
fire weather indices such as the Canadian Forest Fire Weather Index (FWI). By using weather forecasts,

the FWI can be predicted for several days and even weeks ahead. Probabilistic ensemble forecasts require verification and

calibration in order to provide reliable and accurate forecasts, which are crucial for informed decision making and an effective5

emergency response. In this study, we investigate the potential of non-homogeneous Gaussian regression (NGR) for statis-

tically calibrating ensemble forecasts of the Canadian Forest Fire Weather Index
:::
FWI. The FWI is calculated using medium

range ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) with lead times up to

15 days over Europe. The method is tested using a 30 day rolling training period and dividing the European region into three

training areas (Northern, Central and Mediterranean Europe). The calibration improves FWI forecast particularly at shorter10

lead times up to 84 hours and in regions with elevated FWI values, i.e., areas with a higher wildfire risk such as Central and

Mediterranean Europe.

:::
The

:::::
study

:::::::::::
demonstrates

::::
that

:::::
NGR

:::
can

:::
be

::::
used

:::
to

:::::::
improve

:::::::::::
probabilistic

::::
FWI

::::::::
forecasts

::::::::
especially

:::
in

:::
the

::::
time

:::::
range

:::::
most

::::::
critical

::
for

::::::::::
firefighting

:::::::
resource

:::::::::::
management

:::
and

:::::::
thereby

:::::::::
supporting

:::::::
effective

:::::::
wildfire

:::::::
response

:::::::::
strategies.

1 Introduction15

Wildfires in Europe have become increasingly frequent and destructive in the recent decades. The wildfire season of 2023 alone

burnt, according to the European Forest Fire Information System (EFFIS), an area of over 170 thousand hectares in Greece,

killed at least 18 people and forced thousands to leave their homes (Faiola and Labropoulou, 2023). Similar devastating wild-

fires in 2017 and 2022 burned large areas in Portugal, Spain and Italy
::::::::::::::::::::::::::::::::::
(Turco et al., 2019; Rodrigues et al., 2023). While the

Mediterranean region continues to face the highest occurrence of wildfires, Central and Northern Europe have experienced an20

increase in extreme temperature events and heatwaves in recent years (Ibebuchi and Abu, 2023; Rousi et al., 2023; Ionita et al.,

2017; Barriopedro et al., 2011). Extended warm and dry periods raise the fire danger and may cause wildfires in regions that

were previously not considered wildfire hotspots (San-Miguel-Ayanz et al., 2021; De Rigo et al., 2017). Examples are the 2018

heatwave, which caused wildfires in Sweden (San-Miguel-Ayanz et al., 2019) and across the United Kingdom (Sibley, 2019)

or the wildfire outbreaks in Germany and the Czech Republic during the summer of 2022 (Skacel et al., 2022).25
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The rising frequency and severity of wildfires in Europe emphasizes
::::::::
emphasize

:
the need for an effective management of

forest fire emergencies. The SAFERS (Structured Approaches for Forest fire Emergencies in Resilient Societies, https://

safers-project.eu/) project provides an integrated platform to assist first responders, firefighters, and decision-makers to become

more resilient before, during, and after forest fire emergencies. An important component of SAFERS for identifying high wild-

fire risk areas are accurate and reliable weather forecasts, ranging from a few days to several
::
up

::
to

:::
six

:
weeks. In this paper, we30

use the Canadian forest fire weather index (FWI), which is
:::::
Forest

::::
Fire

:::::::
Weather

:::::
Index

:::::
(FWI,

:::::::::::::::::::::::::::::::::::::
Van Wagner (1987); Di Giuseppe et al. (2016)

:
),
:
a widely recognized numeric

::::::::
numerical indicator for forest fire risk(Van Wagner, 1987; Di Giuseppe et al., 2016),

::
to

::::::
derive

:::
fire

:::
risk

:::::
from

:::::::
weather

::::::::
forecasts

::::
with

::
a
::::
lead

::::
time

:::
up

::
to

::::
two

:::::
weeks. The calculation of the FWI only requires four weather

parametersand can be calculated using :
:::::::::::

temperature,
:::::::
relative

::::::::
humidity,

:::::
wind

:::::
speed,

::::
and

:::::::
24-hour

::::::::::
accumulated

::::::::::::
precipitation,

:::::
which

:::
are

:::::
often

:::::::
available

:::::
from deterministic or probabilistic weather forecasts. While deterministic forecasts provide a single35

forecast based on a given set of initial conditions, probabilistic ensemble forecasts offer a range of possible outcomes by using

slightly perturbed initial conditions, giving a more comprehensive picture of potential weather conditions and providing an

estimate of the forecast uncertainty. Probabilistic ensemble forecasts may require statistical calibration to ensure reliable and

accurate forecasts, which are essential for making informed decisions and effectively allocating resources when responding to

wildfires.40

Various methods have been developed for calibrating probabilistic ensemble forecasts. Commonly used calibration methods

include Bayesian model averaging (Raftery et al., 2005), non-homogeneous Gaussian regression (Gneiting et al., 2005), logis-

tic regression (Hamill et al., 2004) and non-parametric ensemble post-processing methods such as rank histogram techniques

(Hamill and Colucci, 1997), quantile regression (Bremnes, 2004) and ensemble dressing approaches (Roulston and Smith,

2003). Non-homogeneous Gaussian regression (NGR) is one of the most commonly used calibration methods and adjusts both45

ensemble mean and spread, while still be
::::
being

:
efficient and easy to implement. It has been proved

:::::
proven

:
effective for various

weather variables like temperature (Hagedorn et al., 2008), precipitation (Hamill et al., 2008) or
:::
and wind-speed (Thorarinsdot-

tir and Johnson, 2012) and can be applied using a truncated or censored distribution to account for a constraint to non-negative

values.

In this article, we investigate whether non-homogeneous Gaussian regression (NGR) can be used to calibrate the Fire Weather50

Index (FWI) derived from medium-range ensemble weather forecasts and assess the extent to which NGR improves the accu-

racy of the FWI predictions. The skill of the calibrated FWI forecast is shown and compared for three European regions.

2 Data and methods

2.1 Fire weather index calculation

A common method for indicating the danger of wildfires is the Canadian Forest Fire Weather Index (FWI) system (Van Wag-55

ner, 1987). Although originally developed for Canadian weather and vegetation, the FWI system is now used in various regions

::::::::::::::::::::::::::::::::::::::
(de Groot et al., 2007; Di Giuseppe et al., 2016). For instance, the European Forest Fire Information System (EFFIS) employs

the FWI to provide information on wildfires in the EU and neighbouring countries (Di Giuseppe et al., 2020). The main
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advantage of the FWI system is its relatively straightforward computation, requiring only
::::
FWI

::::::
system

::::
only

::::::::
requires four

weather parameters and information about the season (time of year) and geographical location as input parameters . The FWI60

:::
and is calculated in two steps.

:
: First, the 2-meter temperature, 2-meter relative humidity, 10-meter wind speed, and 24h ac-

cumulated precipitation at local noon are used to calculate the moisture content of three separate fuel layers. ,
:::
i.e.

::::::::
Drought

::::
Code

:::::
(DC),

::::::::
Drought

::::::::
Moisture

:::::
Code

:::::::
(DMC),

:::
and

::::
Fine

:::::
Fuel

:::::::
Moisture

:::::
Code

::::::::
(FFMC).

:
These fuel layers are characterized by

different depths and fuel consistencies, which result in varying water capacities and drying speeds. The Fine Fuel Moisture

Code (FFMC) represents the moisture content of litter and other fine cured fuels at a nominal depth of 1.2 cm; the Duff Mois-65

ture Code (DMC) indicates the moisture content of loosely compacted layers (nominal depth ∼7 cm); and the Drought Code

(DC) denotes the moisture content of deep, compacted layers in a depth of around 18 cm (Van Wagner, 1987). DMC and DC

respond slower to weather variations compared to the fast-drying fuel represented by the FFMC. Consequently, the effective

day length, which determines the amount of drying that can occur during a given day, must be considered and monthly day

length adjustment factors for DMC and DC are applied based on latitude (Lawson and Armitage, 2008). The fuel moisture70

codes are dependent on previous weather conditions; therefore, the preceding day’s noon values for FFMC, DMC and DC are

necessary for their calculations.

In the second step, FFMC and the 10-meter wind speed are used to model the potential rate of fire spread,
:::
i.e.

::::::
Initial

::::::
Spread

:::::
Index (ISI). DMC and DC are used to calculate the Buildup Index (BUI), a numeric rating of the total amount of fuel available

for combustion which comprises the potential of a surface fire to burn deeper fuel layers (build up) and thus evolve into more75

persistent fires. These fire behaviour indices are then used to calculate the FWI. The FWI values are always non-negative, with

low numbers indicating low fire weather danger and high values indicating high fire weather danger. The FWI is often classified

into danger classesand values
:
,
::::
with

::::::
values

:::::
below

:::
11

:::::::::
considered

::::
low

:::
and

:::::
those above 50 are considered extreme

:::::::
classified

:::
as

:::::::
extreme,

::::::::
according

::
to
:::
the

::::::
EFFIS

:::
fire

::::::
danger

::::::
classes

::::::::::::
(EFFIS, 2020). However, those levels can vary depending on local condi-

tions (e.g., vegetation types). Consequently, what is considered a low or extreme FWI in one region may not be equivalent in80

another. A more comprehensive description of the FWI system can be found in Van Wagner (1987) and Lawson and Armitage

(2008). For this study, we implemented the calculation of the Canadian Forest Fire Weather Index (FWI) using Python pro-

gramming language, following the source code provided by Wang et al. (2015), with modifications to utilize gridded input data.

2.2 Forecast and observation data85

In this study, we use ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) to cal-

culate ensemble forecasts of the FWI. ECMWF medium-range ensemble forecasts consists of 50-members, initialized twice a

day at 0000 and 1200 UTC and provide forecasts up to 360 hours (15 days). The forecasts are derived from the TIGGE archive

(Bougeault et al., 2010), which provides operational medium-range ensemble forecast data for non-commercial research pur-

poses. The data is accessible through the ECMWF API1. The temporal resolution of the ensemble forecast data used in this90

paper is 6h for all lead times and the spatial resolution is 0.5° (∼50 km
::
in

::::::
Central

::::::
Europe). We use only the forecasts initialized

1https://apps.ecmwf.int/datasets/data/tigge/, last access: 06/02/2024
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at 0000 UTC. Although available forecasts cover the whole globe, our focus is on the European region from 25°N to 72°N and

25°W to 39.80°E and we specifically use forecasts from the years 2021 to 2023.

For the FWI calculation, we derive initial values for FFMC, DMC, and DC from ERA5 reanalysis data (Hersbach et al., 2020)

to account for preceding conditions at forecast initialization. The initial values are determined using the climatological
:::::
mean95

from 40 years of historical data (1980-2019) for each day of the year, using a
:::::::
centered 15-day rolling mean centered on each

day. ERA5 reanalysis data can be retrieved from the C3S Climate Data Store (CDS) (Hersbach et al., 2017).

For calibration and verification purposes, we use ECMWF high-resolution
::::::::::
deterministic

:
forecasts initialized at 0000 UTC

:
,

:::::
which

:::
are

::::::::
available

::::
from

:::::::::
ECMWF’s

:::::::::::::
Meteorological

:::::::
Archival

::::
and

:::::::
Retrieval

:::::::
System

:::::::
(MARS2). ECMWF high-resolution fore-

casts have a spatial resolution of 0.1° (∼9 km) and a temporal resolution of 1 hour and can therefore give a more accurate picture100

of the actual weather conditions than medium-range ensemble forecasts with a coarser resolution. The FWI values calculated

using ECMWF high-resolution forecasts with the shortest lead time to the local noon with corresponding 24h precipitation act

as substitute for actual observations and are hereafter called analysis. Ideally,
::::::
Ideally,

:::
the

:
FWI forecasts would be verified using

FWI values calculated using
::::
from surface observations of the relevant weather parametersas

:
,
::::
since

:
the FWI cannot be observed

directly
::::::
directly

::::::::
observed. However, measurement stations that provide continuous observations of all necessary weather pa-105

rameters are sparse and only yield point-wise verification. Furthermore, for an operational calibration of the FWI, observation

data needs to be available rapidly .
:::::
would

:::::
need

::
to

:::
be

::::::
rapidly

::::::::
available.

:::
We

::::::::
therefore

::::
use

:::
the

::::
FWI

:::::::::
calculated

:::::
using

::::::::
ECMWF

::::::::::::
high-resolution

::::::::
forecasts

::::
with

:::
the

:::::::
shortest

::::
lead

::::
time

::
to
:::
the

:::::
local

:::::
noon

::::
with

::::::::::::
corresponding

:::
24h

:::::::::::
precipitation

::
as
:::::::::

substitute
:::
for

:::::
actual

:::::::::::
observations.

:::::
These

::::
FWI

::::::
values

:::
are

:::::::
hereafter

::::::
called

:::::::
analysis.

To determine if the analysis is suitable to be used as observation substitute, we check
:::::::
checked their agreement with actual110

observation based values, which is shown in Fig
:::
Figs. 1 and 2. We use observations available from the Finnish Meteorological

Institute’s observation database for the years 2021–2023. Figure 1a shows the stations, for which it is possible to calculate the

FWI for more than 200 consecutive days in addition to the reference areas which are introduced in Chapter 3. In total 682 sta-

tions can be used. The time series of three example stations are shown in Fig.1a,b,c
::::
1b-d. The FWI analysis is shown in orange

while the FWI calculated from observations is shown by the black dashed line. Overall, there is good correlation
:::::::::
agreement115

between the forecasted and observed FWI values. However, especially for high FWI values, the FWI derived from forecasted

weather parameters tends to underestimate the values compared to those derived from observations. This is particularly evident

during the summer months of 2022 and 2023 in Meiningen, Germany (Fig.
:
1c) and Chrysoupoli, Greece (Fig. 1d).

Figure 2a
::
2a

::::::
shows overlapping histograms of the density distribution of the FWI analysis (orange) and FWI calculated from

observations (grey) for all stations shown in Fig.
:
1a and every time step. The distributions show a high frequency of

:::
very

:
low120

values (FWI < 1), and when plotted on a logarithmic x-scale, a bimodal structure becomes evident with a separation at an FWI

value of 1. This bi-modality results from a necessary restriction imposed on the FWI calculation (Eq. 30a,b in Wang et al. (2015)

or Eq.40
:
.
::
40 in Van Wagner (1987)). Figure 2b again displays the density distribution of FWI values, but focuses on FWI values

greater than 1, as these are generally more relevant for assessing wildfire danger. For higher FWI values , the forecast-derived

FWI underestimates those calculated from observations, while for lower FWI values, it tends to overestimate
::::
very

:::
low

::::::
values125

2https://apps.ecmwf.int/mars-catalogue/,
:::
last

:::::
access:

::::::::
11/09/2024
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::::
(FWI

::
<
::
1)

::::
can

::
be

::::::::::
disregarded

:::::
when

::::::::
assessing

:::::
wild

:::
fire

::::::
danger.

::::
The

:::::::
analysis

:::::
tends

::
to

:::::::::::
overestimate

::::
FWI

::::::
values

::::::
below

:
6
::::
and

:::::::::::
underestimate

::::::
values

:::::
above

::
6.
::::::::

Notably,
:::::
these

::::::
higher

:::::
values

:::::
(FWI

::
>
:::
10)

:::
are

::::
the

::::
most

:::::::
relevant

:::
for

::::::::
assessing

:::::::
wildfire

::::::
danger.

One contributing factor is the different spatial resolution of the data sources. The analysis uses gridded data with a resolution

of 0.1° (approximately 9 km in Central Europe), whereas weather observations are local measurements. However, in general

there is a fairly good positive correlation of FWI analysis and FWI calculated from observations. Figure 2c shows the his-130

togram of the linear correlation coefficient of stations that observe FWI values greater than 1, the mean correlation coefficient

is 0.72. Low correlation coefficients are mainly caused by differences between analysis and observation in mountainous ar-

eas, such as Austria, Switzerland, Romania, and Norway, as indicated by the
:::::
yellow

::::
and

:::
red

:
coloured markers in the station

map (Fig. 1a). This is due to the difficulty in
:::::
These

::::::::::
differences

:::::
result

::::
from

:::
the

::::::::
difficulty

::
of

:
capturing the complex terrain and

its small-scale weather phenomena with
:::
the

:
relatively coarse resolution (∼9km

:::::::::::
approximately

::
9
:::
km) of the forecast model.135

Because there is a fairly good correlation of observation and analysis,
:::::::
Notably,

::::
53%

:::
of

:::
the

::::::::
available

:::::::
stations

:::
are

:::::::
situated

::
in

::::
these

::::::::::::::
aforementioned

::::::::
countries,

:::::
while

::::::::
relatively

::::
few

:::::::
stations

:::
are

::::::
located

:::
in

:::::::
southern

:::::::
Europe

:::::
where

:::::
high

::::
FWI

::::::
values

:::
are

:::::::
typically

::::::::
expected.

::::
This

::::::
uneven

::::::::::
distribution

::
of

:::::::::
observation

:::::::
stations

::::
may

:::::::
influence

:::
the

::::::
overall

:::::::::
correlation

::::::::::
assessment.

:::::::::
Moreover,

:::
this

:::::::::::
demonstrates

:::
the

:::::::::
challenges

::
of

:::::
using

:::::::::::
observations

:::
for

::::::::::
verification

:::
and

:::::::::
calibration

::::
over

:::::
larger

:::::
study

::::::::
domains.

::::
The

::::::
spatial

:::::::::
distribution

:::
of

:::::::
available

::::
data

::::::
across

:::
the

:::::
entire

::::
area

::::
and

:::
the

:::::::::::::::
representativeness

:::
of

:::::::::
point-wise

::::::::::
observations

:::
for

::::::
larger

:::::::
regions,140

:::::::::
particularly

::
in

::::::::
complex

::::::
terrain,

:::::
must

::
be

::::::::::
considered.

:::::
Given

:::
the

::::::::
generally

:::::
good

:::::::::
correlation

:::::::
between

:::::::::::
observations

:::
and

::::::::
analysis,

::::::
despite

:::
the

:::::::::::::
underestimation

::
of

:::::
larger

:::::
FWI

::::::
values, we will use the forecasted FWI with short lead time (analysis) derived from

ECMWF high-resolution forecasts as observation to compare with the FWI forecasts derived from ECMWF medium-range

ensemble forecasts
:
a
:::::
proxy

:::
for

:::::::::::
observations

::
in

:::
the

::::::::::
subsequent

::::::::::
evaluations,

:::::::
ensuring

:::
the

::::::::
complete

::::::
spatial

::::::::
coverage

::::::
across

:::
the

:::::
entire

::::::
domain.145

2.3 Calibration and verification methods

2.3.1 Non-homogeneous Gaussian regression

For statistical post-processing the medium-range FWI forecasts, we apply the non-homogeneous Gaussian regression (NGR),

which was originally proposed and employed for surface temperature and sea level pressure by Gneiting et al. (2005). This

method was extended to non-negative weather variables (wind speed) by Thorarinsdottir and Gneiting (2010). The FWI is by150

definition non-negative and for the calibration of the FWI forecasts we assume that the FWI observations y follow a truncated

normal distribution with cut-off at zero:

y ∼N 0(µ,σ2). (1)

The location and scale parameter are given by:

µkl = al + blenskl,

log(σkl) = cl + dl log(sdkl),
(2)155
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Figure 1. (a) Map of study area with modified AR6-WGI reference regions (Iturbide et al., 2020) shaded in grey (NEU=Northern Europe,

WCE=West and Central Europe, EUMED=European Mediterranean). The location of observation stations for which the FWI can be cal-

culated for at least 200 consecutive days are presented by dots with the colour representing the correlation coefficient (see. Fig.
:
2c) for

each station. Example stations
::
(b

:
–
::
d)

:
are marked with green triangles. (b) Example of FWI time series calculated from observations (black

dashed) and forecast analysis (orange) for a station
::
(b) in NEU (Seinäjoki, Finland); (c) for WCE (Meiningen, Germany) and (d) EUMED

(Chrysoupoli, Greece).

with enskl being the ensemble mean and sdkl being the standard deviation of the 50 ensemble members for each location k

and lead time l. al–dl are regression coefficients. The logarithmic link log(sdkl) is used to assure positive values for the scale

parameter σkl.

The regression coefficients al–dl are estimated by minimizing the average continuous ranked probability score (CRPS, Hers-

bach (2000)) from training data. The training data is defined using a specific training area and a 30-day rolling window160

preceding the forecast as training period. As training areas, we use here climatic reference regions, defined by the sixth IPCC

Assessment Report (AR6-WGI (Iturbide et al., 2020)), which divide the European domain into Northern Europe (NEU), West

and Central Europe (WCE), and the Mediterranean (MED). In this study, however, we use only the European part north of the

Mediterranean Sea, referred to hereafter
:::::::
hereafter

:::::::
referred

::
to

:
as the European Mediterranean (EUMED). The reference regions

are marked grey in Fig.1(a)
:::
1a. The calibration can also be performed over smaller geographical areas, e.g., individual coun-165

tries. Training periods of different length
:::::::
windows

::::
from

:::
15

::
to

:::
40

::::
days

:
were tested, as shorter training periods allow a faster

adaptation to seasonal differences. On the other hand, longer periods provide more data, thereby reducing statistical variability.

Training windows from 15 to 40 days were examined and only
::::
Only

:
minor differences in the calibration performance were

found when using big training areas
:
, as in this example. When using smaller geographical training areas, however, a training

period of 30 days seemed to most suitable (see Supplementary Figure
:::
Fig. S1).

::::::::
Therefore,

:::
we

:::::
chose

::
a

::::::
30-day

:::::::
window

:::
for

:::
our170

:::::::
analysis. We adopt here a regional approach, pooling training data from all grid points within the training area to derive a single

set of calibration coefficients (al–dl) specific to each lead time for the given forecast. The initial forecast time step (T+12h)

is excluded from calibration, as these forecasts are used as observation. The obtained coefficients are then used to calibrate

6



Figure 2. (a) Density plot of the FWI calculated from observation data (grey) and from FWI analysis (orange) for all the stations shown in

Fig. 1a. (b) Same as in (a) but only showing FWI values greater than 1. (c) Frequency (count) of the correlation coefficient of FWI high-

resolution analysis and FWI calculated using observation data for FWI values greater than 1.
:::
The

::::::
vertical

:::
line

:::::
marks

:::
the

::::
mean

:::::::::
correlation

::::::::
coefficient.

the forecast at the respective lead time in the selected training area. Fitting of the regression model and prediction of location

and scale parameters of the predicated distribution is done using the R-package crch, which provides censored regression with175

conditional heteroscedasticity (Messner et al., 2016) and uses the Broyden–Fletcher–Goldfarb–Shanno algorithm (Nocedal and

Wright, 2006) to minimize the CRPS.

2.3.2 Verification metrics

The aim of forecast calibration is to correct forecast errors deriving from both structural deficiencies in the dynamical models

and forecast sensitivity to uncertain initial conditions (Wilks and Vannitsem, 2018). To evaluate the predictive performance of180

calibrated forecasts compared to the raw forecasts, we are using several verification metrics
:::
the

::::::::::
spread-skill

::::::::::
relationship,

:::::
mean

::::
error,

::::
and

:::
the

:::::::::
Continuous

:::::::
Ranked

:::::::::
Probability

:::::
Skill

:::::
Score

::::::::
(CRPSS),

:
which are shortly introduced hereafter.

A common method to evaluate the forecast reliability of probabilistic forecasts is the comparison of ensemble spread and skill.

The
::::::::
assessment

:::
of

::
the

::::::::::
spread-skill

::::::::::
relationship

:::::::::::::
(Weigel, 2011).

::
A

:::::::::
frequently

::::
used

:::::::
measure

:::
for

:::
the skill of an ensemble forecast
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is often defined in terms of the root mean square error (RMSE) of the ensemble mean, calculated as185

RMSE =

vuut 1

n

nX

i=1

(Fi −Oi)2, (3)

where Fi and Oi are the predicted and observed value, respectively, at time step i of n forecasts. The ensemble spread is

calculated using
:
as

:
the square root of the average ensemble variance,

::::::
where

:::
the

::::::
average

:::::::::
ensemble

:::::::
variance

::
is

:::
the

:::::
mean

::
of

:::
the

::::::::
variances

::
of

::
all

::::::::
ensemble

::::::::
members

:
(Fortin et al., 2014). In a well calibrated forecast model, the ensemble spread should be on

average equal to the RMSE. The ensemble forecast is considered underdispersive if the spread is smaller than the skill
::::::
RMSE190

and overdispersive otherwise.

The bias of the forecast can be accessed by simply evaluating the difference between the average forecast Fi and average

observation Oi, which is defined as the mean error (ME):

ME =− 1

N

1

n
:

nX

i=1

(Fi −Oi). (4)

While the spread-skill relationship and ME are deterministic scores and applied to the ensemble forecast mean, the Continuous195

Ranked Probability Score (CRPS, Eq. (5)
:
5) allows a probabilistic assessment (Hersbach, 2000). The CRPS compares the

whole distribution of ensemble members, represented as cumulative distribution function, with the observation:

CRPS(P,xa) =

∞Z

−∞

[FFc(x)−FO(x)]
2dx, (5)

where FFc(x) and FO(x) are the cumulative distribution functions of the forecast and the observation, respectively. The CRPS

is negatively oriented, which means smaller values indicate a better performance of the ensemble forecast. In this study, we200

assume a truncated Gaussian distribution of the FWI forecasts and apply the truncated Gaussian form of the CRPS for raw

and calibrated ensemble forecasts. The skill of the calibrated forecast with respect to a reference forecast can be accessed by

calculating the Continuous Ranked Probability Skill Score (CRPSS), defined as:

CRPSS = 1− CRPScal

CRPSref
. (6)

where CRPScal and CRPSref denote the CRPS of the calibrated and reference forecast, respectively. Positive values indicate a205

higher skill of the calibrated forecast, while negative values indicate a lower skill of the calibrated forecast with respect to the

raw forecast.

3 Results

In this section, we present results of post-processing FWI forecasts of the years 2021 to 2023 by applying the introduced

calibration
::::
NGR

:
method. We use here the AR6-WGI reference regions

:
,
:::::
NEU,

:::::
WCE

:::
and

::::::::
EUMED,

:
introduced in Sec. 2.3.1 and210

shown in Fig.1(a)
:::
1a.
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The main fire season in Europe is typically from May until October but varies strongly in length and intensity across regions,

e.g. the fire season starts later and is shorter in Northern Europe compared to Southern Europe (San-Miguel-Ayanz et al.,

2012). For the calibration verification
:
, we therefore only focus on forecasts during the months May to October, when the FWI

is considerable high in all regions .
:
is
:::::::::::
substantially

:::::
higher

:::::::::
compared

::
to

:::::::::
off-season

::::::
months

::::
(see

:::
Fig.

::::::
1b-d).215

Figure 3 shows the spread-skill relationship for the raw (black) and calibrated (orange) FWI forecast averaged over the grid-

points within the three study areas NEU (left), WCE (middle) and EUMED (right) and the wildfire season (May to October).

Monthly averages can be found in the Supplementary material, Fig
:::
Figs. S4 - S6. The RMSE of the climatology, shown by the

solid blue line, is calculated similarly to the forecast RMSE. However, it uses the climatology derived from 40 years of ERA5

reanalysis data (see Sec.2.2) for each day of the year instead of using the forecast. Both calibrated as well as raw forecast220

:::::::
forecasts

:
have a smaller RMSE compared to the climatology which indicates a general skill of the FWI forecasts compared to

the climatology even at longer lead times. For raw and calibrated forecasts the spread (dashed line) is constantly smaller than

the skill of the ensemble mean (as measured by RMSE ,
::::::
RMSE

:
(solid line). This implies that the forecast is underdispersive

and lacks spread. However, after calibration the ensemble spread is closer to the RMSE, which indicates that the reliability of

the forecast is improved. The calibration also decreases the RMSE
::::::::
improves

:::::::
forecast

::::::::
accuracy,

::
as

::::::::
indicated

::
by

:::
the

:::::::::
decreased225

::::::
RMSE, especially during the first forecast days, which means the accuracy of the forecast is improved. In Northern Europe, the

RMSE of the calibrated forecast is slightly above the RMSE of the raw forecast after 7 days (180 hours
:
(7

::::
days) of forecast,

whereas the skill
:::::
RMSE

:
of raw and calibrated forecast in Central and Mediterranean Europe is similar for forecasts longer than

9 days (228 hours ) and 12 days (
::
(9

:::::
days)

:::
and

:
300 hours

:::
(12

::::
days), respectively. The FWI forecast in Northern Europe lacks

skill for lead times longer than
:::
180

:::::
hours

::
(7 days

:
) and calibration based on 30-day rolling window fails to improve and even230

worsens the forecast. This finding could be explained by the rather small FWI values and large relative uncertainty in NEU ,

unlike FWI values in
:
in

:::::
NEU

::::
and

:::
the

:::::
lower

:::::::::
variability

::
of

::::::
values

::
in

:::
this

::::::
region

:::::::::
compared

::
to WCE and EUMED (not shown

here
:::
see

::::
Figs.

:::
S2

:::
and

:::
S3). The applied calibration appears to be more effective for higher FWI values and shows limitations for

smaller FWI valuesclose to 0.
:
,
:::
i.e.,

::::::
values

:
<
:::
10.

:
This also explains the regional differences and the better calibration results in

the more southern, fire prone regions with generally higher FWI values compared to Northern Europe, where FWI values are235

often very small.

The mean error (ME) averaged over the three subregions and the fire weather season is shown in Fig. 4. Uncalibrated

forecasts have a negative bias for all lead times, indicating that the forecasted FWI values are consistently lower than the

observed values. In Northern Europe the mean error before calibration is around -0.6 for all lead times. In Middle and Southern

Europe the mean error is more negative but increasing with lead time. The improvement of the mean error is especially240

contributed to forecasts in the months with high FWI, July and August for WCE
::::
(Fig.

::::
S8) and June to September in EUMED ,

which can be seen in the monthly averaged mean error in Supplementary Figures S7 to S9
::::
(Fig.

:::
S9). After calibration the ME

is considerably improved. Best results seem to be achieved in the Mediterranean region, where the mean error after calibration

is around zero. In Northern and Central Europe, the bias is slightly positive after calibration especially for longer lead times,

ranging from less than 0.1 to 0.4.245
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Figure 3. Spread and RMSE for raw and calibrated FWI forecasts averaged over the region of interest: (a) Northern Europe (NEU), (b) West

& Central Europe (WCE), (c) European Mediterranean (EUMED) and fire season (May-October). The RMSE of the climatology for the

respective region is additionally provided.

Figure 4. Mean Error for the raw and calibrated FWI forecasts averaged over the fire season (May-October) and the respective region: (a)

Northern Europe (NEU), (b) Western & Central Europe (WCE), (c) European Mediterranean (EUMED).
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Figure 5. Continuous ranked probability skill score (CRPSS) for the calibrated forecasts against raw forecasts averaged over the fire season

(May-October) and the respective region: (a) Northern Europe (NEU), (b) Western & Central Europe (WCE), (c) European Mediterranean

(EUMED).

Figure 5 shows the CRPSS with raw forecasts as reference. In all three regions
:
, the CRPSS is positive for the first 3 days

(84 hours
::
(3

::::
days) of the forecastwhich suggests ,

::::::::::
suggesting an improvement of the FWI forecast after calibration for short

lead times up to 84 hours. The
::::::::
However,

:::
the

:
lead time up to which the calibration is improving the forecasts varies with

region. In NEU,
:
the calibration actually worsens the calibration after 5 days (

:::
skill

::
of
::::

the
::::::
forecast

:::::
after 132 hours

::
(5

::::
days) of

forecast , while in WCE and EUMEDthe
:::::::
indicated

:::
by

:
a
:::::::
negative

:::::::
median

::::::
CRPSS.

:::
In

:::::
WCE,

:::
the

::::::
median

:::::::
CRPSS

:
is
::::::::
negative

::::
after250

:::
204

:::::
hours

::
(8

::::::
days),

:::
also

:::::::::
indicating

:
a
:::::::
decline

::
in

::::
skill

:::
for

:::::
longer

::::
lead

::::::
times.

::
In

::::::::
EUMED,

::::::::
however,

:::
the

::::::
median

:::::::
CRPSS

:::::::
remains

::::::
positive

:::
for

:::
all

::::
lead

:::::
times.

:::::
After

::::
276

:::::
hours

:::
(11

:::::
days),

:::
the

:::::::
median

::::::
CRPSS

::::::::::
approaches

::::
zero,

:::::::::
indicating

::::
that

::::::
beyond

::::
this

:::::
point,

::
the

:
calibrated forecast has no skill compared to the raw forecastafter 7 (180 hours) and 11 days (276 hours), respectively. This

is probably caused by the small .
::::
The

::::::::
declining

::::
skill

::
in
:::::

NEU
::::
and

:::::
WCE

::
is

:::::
likely

::::
due

::
to

:::::
lower

:
FWI values in NEU and for

longer lead times
::::
these

:::::::
regions

::::
(see

::::
Figs.

:::
S2

::::
and

:::
S3). For low FWI valuesclose to 0, the calibration is not effective. These255

regional differences are furthermore illustrated in the maps shown in Fig. 6, where the CRPSS averaged over the fire season

(May-October) is given.
:
,
::::::::::
particularly

::::
those

::::::
below

:::
10,

:::
the

:::::::::
calibration

::::::::
becomes

::::
less

::::::::
effective. With increasing lead time

:
, the

skill worsens especially in mountainous areas in Scandinavia and the Alps, which are also the regions with generally low

values
::
and

::
in
::::::::::::::::
Atlantic-influenced

:::::::
regions,

::::
e.g.,

::::::::
northwest

:::::
Spain

::::
and

:::
the

::::::
United

::::::::
Kingdom

:::
(see

::::
Fig.

:::
6).

::
In

::::
these

:::::::
regions

:::
the

::::
FWI

:
is
::::::::
generally

::::
low throughout the fire season .

::::
(see

:::
Fig.

::::
S2).

:
260
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Figure 6. Continuous ranked probability skill score (CRPSS) with the raw forecast as reference averaged over the fire season (May-October)

for different lead times.

4 Discussion and conclusion

We investigated whether non-homogeneous Gaussian regression (NGR) can be used to calibrate fire weather index (FWI) fore-

casts based on medium range
::::::::::::
medium-range ensemble weather forecasts by the European Centre for Medium-Range Weather

Forecasts ensemble forecasts (ECMWF). To estimate the calibration coefficients of the NGR, we employ a truncated Gaus-

sian distribution with
:
a cut-off at zero and use forecast and observation pairs of the last 30 days preceding the forecast. We265

::::
NGR

::
is

::
a

::::
well

:::::::::
established

::::
and

:::::::
effective

:::::::
method

::
for

::::::::::
calibrating

::::::::::
probabilistic

::::::::
forecasts

:::
and

::::::::
provides

::::
good

::::::
results

:::::::::
compared

::
to

::::
other

:::::::::
calibration

::::::::::
approaches,

::::
such

::
as

::::
bias

::::::::
correction

::::::::::::::
(Cannon, 2018)

:
or
:::::::::
correcting

:::
the

::::::::
individual

:::::
input

::::::::::
parameters,

::
as

::::::::
described

::
by

::::::::::::::::::
Worsnop et al. (2021).

::::::
While

::::::::
correcting

:::::::::
individual

:::::
input

:::::::::
parameters

:::
can

:::
be

::::::::
beneficial,

::
it
:::::::
requires

:::::::
different

:::::::
models

:::
for

::::
each

:::::::
variable,

:::::::::
demanding

::::::
careful

::::::::::
verification

:::
and

:::::
access

::
to
::::::
quality

:::::::::
controlled

:::::::::::
observational

::::
data

::::
over

:::
the

:::::
whole

:::::
study

::::::
region.

::::::
Instead

::
of

:::::::
observed

:::::::
weather

::::::::::
parameters,

:::
we

:
used ECMWF high-resolution weather forecasts with the shortest possible lead time to270

calculate the FWIanalysis and used these as .
::::
The

::::
FWI

::::::
values

::::
from

:::::
these

::::::::
forecasts

:::
are

:::::::
referred

::
to

:::
as

:::
the

::::
FWI

:::::::
analysis

::::
and

::
are

:::::
used

::
as

::
a substitute for observations. Although the FWI analysis seems to

::::::
slightly

:
underestimate the FWI slightly

::
in

:::
the

12



::::
range

:::::::::
associated

::::
with

:::::::
elevated

:::
fire

::::::
danger

:::::
(FWI

::
>

:::
10), a good correlation is observed.

:::::::
Utilizing

:::::::::::
observations

:::::
would

::::
have

:::::
been

:::::::
possible,

:::
but

::::::
would

::::
have

:::::::
required

::::::
careful

:::::::::::
consideration

::
of

:::
the

:::::::
quality,

:::::::::
availability

::::
and

::::::::::::
representativity

:::
of

:::
the

:::::::::
observation

:::::
data.

::::::::::
Specifically,

::::
wind

::::
and

::::::::::
precipitation

:::::::::::
observations

:::::
might

:::
not

::
be

:::
of

:::::::
sufficient

:::::::
quality

:
at
:::
all

:::::::
stations,

:::
and

:::::
point

:::::::::::
observations

:::::
might275

:::
not

::::::::
accurately

::::::::
represent

:::::
larger

:::::
areas.

:::
To

::::::
ensure

:
a
:::::::::
consistent

:::::::
coverage

:::
of

:::
the

:::::
entire

:::::
study

:::
area

::::
and

::::
time

::::::
period

::
we

:::::
chose

:::
to

:::
use

::
the

:::::
FWI

:::::::
analysis

::
for

:::::::::
calibration

::::
and

:::::::::
verification

:::::::
instead

::
of

:::::::::::
observations.

FWI forecasts using medium range ensemble weather forecasts perform generally quite well when compared to the analysis.

However, calibration improves the forecasts especially at short lead times up to 84 hours
::
(3

::::
days). In the Mediterranean region

and Central Europe an improvement of FWI forecast with respect to the FWI analysis is also apparent for longer lead times up280

to 8 to 10 days, respectively. This is likely caused by the generally higher values in those regions and is
::::::
(shown

::
in
:::::
Figs.

::
S2

::::
and

:::
S3),

::::
and

:::::
further

:
supported by the monthly averaged metrics in the appendix

:::::
(Figs.

::::::
S7-S9), which show a stronger improvement

caused by the calibration in the months with high FWI values. Hence, it can be concluded that the calibration performs better

for higher FWI values
::::
(FWI

::
>
:::
10), as indicated by the better performance during the summer months in West and Central

Europe and in the European Mediterranean. However, the calibration method shows limitations for low FWI values
::::
(FWI

::
<285

:::
10), which could be observed in the NEU reference region and especially for longer lead times. Although it would be ideal for

the method to
:::::
ideally

:::
the

::::::
method

::::::
would perform effectively across the entire range of FWI values, it is generally more critical

that it demonstrates a good
::
its performance at higher FWI values , where the potential fire dangeris more significant. While

long-range forecasts
:
is
::::::::
generally

:::::
more

:::::::
critical,

::
as

:::::
higher

::::::
values

:::
are

:::::::::
associated

::::
with

::::::
greater

:::
fire

:::::::
danger.

::::::::
Forecasts of potential

fire danger are valuable, short-range forecasts , especially
::
for

::::::::
extended

::::::
periods

::::
(1-2

::::::
weeks)

:::
are

::::::::
valuable;

::::::::
however,

:::::::::
short-term290

:::::::
forecasts

:
for the first 1-3 days , are usually more critical for firefighting resource management.

::
To

::::::
further

::::::::
improve

:::
the

:::::::::
presented

:::::::::
calibration

:::::::
method

:::
for

:::
fire

::::::::
weather

:::::
index

::::::::
forecasts,

::
it
::::::

could
::
be

::::::
tested

::
if

:::::::::
calibration

:::
of

::::::::
individual

::::::::::
components

::
of

:::
the

::::
FWI

::::::
system

::::
(e.g.

::::::
FFMC,

:::::
DMC

::::
and

:::
DC)

::::::
would

:::::::
improve

::::::
overall

::::
skill

::
of

:::
the

:::::::
forecast.

:::::::::::
Furthermore,

::::
more

::::::::
advanced

::::::
models

:::::
using

:::::::::
additional

:::::::::
predictors,

:::
e.g.

::::::::
elevation

::
or

:::::::
land-use,

:::::
could

:::::::
improve

:::
the

:::::::::
calibration

:::
but

:::::
were

:::
not

:::::
tested

::::
here.295

Reliable and accurate
::::::::::
probabilistic

:
forecasts, particularly when the fire risk is high and over the short-term time frame, are

crucial for decision-makers and emergency responders to effectively coordinate resources. The improvement of FWI forecasts

using the presented calibration method improves the ability to anticipate fire danger, ultimately supporting better response

management and shows that a relatively simple method can provide good results compared to more complex approaches, e.g.,

bias correction (Cannon, 2018) or the correction of the input parameters instead of the FWI as in Worsnop et al. (2021). When300

correcting the individual input parameters, different models need to be applied for the individual variables, which require

careful verification and access to quality controlled observation over the whole study region. To further improve the presented

calibration method for fire weather index forecasts, it could be tested if calibration of individual components of the FWI system

e.g. FFMC, DMC and DC would improve overall skill of the forecast. Furthermore, more advanced models using additional

predictors, e.g. elevation or land-use, could improve the calibration but were not tested here..305
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