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Abstract: Developing an effective and reliable integrated drought index is crucial for tracking and 12 

identifying droughts. The study employs game theory to create a spatially variable weight drought 13 

index (GTDI) by combining two single-type indices: the agricultural drought index (SSMI), which 14 

implies drought hazard-bearing conditions, and the meteorological drought index (SPEI), which 15 

implies drought hazard-causing conditions. Also, the entropy theory-based drought index (ETDI) is 16 

introduced to incorporate a spatial comparison to the GTDI to illustrate the rationality of gaming 17 

weight integration. Leaf Area Index (LAI) data is employed to confirm the reliability of the GTDI 18 

in identifying drought by comparing it with the SPEI, SSMI, and ETDI. Furthermore, a comparative 19 

analysis is conducted on the temporal trajectories and spatial evolution of the GTDI-identified 20 

drought to discuss the GTDI’s advancedness in monitoring changes in hazard-causing and bearing 21 
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impacts. Also, the entropy theory-based drought index (ETDI) is introduced to incorporate a spatial 22 

comparison to the GTDI to illustrate the rationality of gaming weight integration, as both entropy 23 

theory and game theory belong to linear combination methods in the development of the integrated 24 

drought index, and entropy theory has been applied in related research. The results showed that the 25 

GTDI has a greatly high correlation with single-type drought indices (SPEI and SSMI), and its 26 

gaming weight integration is more logical and trustworthy than the ETDI. As a result, it outperforms 27 

ETDI, SPEI, and SSMI in recognizing drought spatiotemporally, and is projected to replace single-28 

type drought indices to provide a more accurate picture of actual drought. Additionally, GTDI 29 

exhibits the gaming feature, indicating a distinct benefit in monitoring changes in hazard-causing 30 

and bearing impacts. The case studies show drought events in the Wei River Basin are dominated 31 

by a lack of precipitation. The hazard-causing index SPEI dominates the early stages of a drought 32 

event, whereas the hazard-bearing index SSMI dominates the later stages. This study surely serves 33 

as a helpful reference for the development of integrated drought indices as well as regional drought 34 

prevention and monitoring. 35 

 36 
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1 Introduction 38 

Drought is one of the most widespread and frequent natural hazards, commonly associated with 39 

inadequate rainfall, a deficit in soil moisture, and reduced stream flow (Berg et al., 2018; Zhang et 40 

al., 2022; AghaKouchak et al., 2023). Due to the combined pressures of climate change and human 41 

activities, the intensity of global drought and the area of arid land have expanded dramatically since 42 
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the 21st century (Dai et al., 2013; Huang et al., 2016), severely constraining socio-economic 43 

development and human livelihoods. Moreover, global warming is projected to increase the 44 

frequency and severity of future drought occurrences (Trenberth et al., 2014; Vicente-Serrano et al., 45 

2020). 46 

China, with its complex terrain and diverse climate types, is one of the countries suffering the 47 

most severe drought-related losses worldwide (Dai et al., 2011; Zhang et al., 2021). Drought is 48 

responsible for more than half of the economic losses caused by climatic hazards in China (Wang et 49 

al., 2023). According to the Ministry of Water Resources of China (MWRC, 2022), the average 50 

annual impacted area of crops and grain loss due to drought was 19.51 million hm2 and 15.8 billion 51 

kg, respectively, from 1950 to 2022. The loss has become increasingly severe, particularly after 52 

2006, resulting in direct economic losses of more than US$ 160 billion in China. For example, the 53 

severe drought event that occurred in southern China from autumn 2009 to spring 2010 deprived 54 

almost 21 million people of drinking water, with direct economic losses of nearly US$3 billion 55 

(Yang et al., 2012). Furthermore, the ongoing drought in China may worsen in the future (Leng et 56 

al., 2015; Wang et al., 2018), with drought becoming more frequent, intense, and extended. As a 57 

result, scientifically identifying regional drought risks and clarifying regional drought development 58 

and evolution patterns can assist in actively developing drought mitigation and disaster reduction 59 

strategies, assuring the security of food supply and water use. 60 

Drought is currently categorized into four types based on distinct description objects: 61 

meteorological, agricultural, hydrological, and socioeconomic droughts (Wilhite and Glantz, 1985; 62 

Shah and Mishra, 2020). Despite differing definitions and emphasis, meteorological drought is 63 

always regarded as the root cause of the other three types of drought (Ma et al., 2020). In terms of 64 
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the driving mechanism of drought occurrences, meteorological drought indicates the causative 65 

attribute of drought (Zhang et al., 2023), whereas the other three primarily reflect the state of hazard-66 

bearing entities. Concurrently examining the hazard-causing and hazard-bearing components of 67 

drought is essential for effective estimation and management of drought risk. 68 

Drought is frequently identified using drought indices. The Standardized Precipitation Index 69 

(SPI; Mckee et al., 1993) for meteorological drought, the Standardized Soil Moisture Index (SSMI; 70 

Hao and AghaKouchak, 2013) for agricultural drought, and the Standardized Runoff Index (SRI; 71 

Shukla and Wood, 2008) for hydrological drought are currently the most commonly used drought 72 

indices. These single-type drought indices are primarily used for one-dimensional (type) drought 73 

measurement & evaluation. However, due to the complex causes and wide-ranging impacts of 74 

drought events, a single-type drought index usually cannot fully and effectively reflect the 75 

spatiotemporal development process of drought events (Chang et al., 2016; Wei et al., 2023). As a 76 

result, much effort has been expended in developing comprehensive drought indices, such as the 77 

Palmer Drought Severity Index (PDSI; Palmer, 1965). However, these indices are not very 78 

successful at distinguishing between meteorological and agricultural drought influences and 79 

evaluating changes in regional patterns. Because of this, some works refer to constructing a 80 

composite or integrated drought index in two or more dimensions (Chang et al., 2016; Won et al., 81 

2020; Wei et al., 2023), employing both linear and nonlinear combination approaches.  82 

The copula function is commonly employed in the nonlinear approach. Won et al. (2020) 83 

proposed a copula-based joint drought index (CJDI) by combining the SPI and the evaporative 84 

demand drought index (EDDI); Wei et al. (2023) used the copula function to connect precipitation, 85 

NDVI, and runoff and then constructed the standardized comprehensive drought index (SCDI), 86 
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which had been applied to drought assessment in China's Yangtze River Basin. It should be noted 87 

that copula functions are possibly reliant on the assumption that samples follow a specific 88 

probability density function (Zhang et al., 2019). However, due to the complicated interactions 89 

between the atmosphere, vegetation, soil, and groundwater, the drought does not generally meet it. 90 

If the copula function is used to estimate drought quantiles, significant biases may be introduced, 91 

affecting the reliability of the copula-based integrated drought indices (Huang et al., 2015).  92 

An integrated drought index can also be generated by linearly mixing single-type drought 93 

indices, such as the entropy weight method (Huang et al., 2015) and the principal component 94 

analysis method (Liu et al., 2019). In the relevant research, it is highly emphasized that the weighting 95 

of different types of drought indices is critical since it has a significant impact on the reliability of 96 

drought monitoring results (Liu et al., 2019; Wei et al., 2023). Furthermore, it has been revealed that 97 

the impacts of different factors on drought (Blauhut et al., 2016; Zhang et al., 2022), such as hazard-98 

causing and hazard-bearing, are changing spatially and game-playing, necessitating the 99 

development of effective linear combination methods for measuring their spatial heterogeneity in 100 

contribution to drought. Therefore, game theory is suggested for the integration of drought indices 101 

because it can comprehensively consider the opinions of each party to achieve a distribution pattern 102 

that satisfies each participant (Lai et al., 2015; Jato-Espino and Ruiz-Puente, 2021), which is 103 

superior to the entropy weight method in weight allocation, and its calculation process is simpler 104 

than copula functions. It has been widely applied in water resources management (Madani, 2010; 105 

Khorshidi et al., 2019; Batabyal and Beladi, 2021). 106 

This study proposes a game theory-based drought index (GTDI), which integrates the 107 

meteorological drought index SPEI, implying hazard-causing impact, and the agricultural drought 108 
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index SSMI, implying hazard-bearing impact, through the game theory method. The structure of 109 

this study is as follows: Section 2 introduces the research topic and data source. Section 3 describes 110 

the SPEI, SSMI, GTDI, and ETDI (entropy theory-based drought index) calculation procedures, as 111 

well as the verification and analysis methodologies. Section 4 investigates the evolutionary features 112 

of GTDI, examines its rationality of integrated weight in comparison to ETDI, and validates its 113 

usefulness in identifying drought occurrences using Leaf Area Index (LAI) data. Furthermore, the 114 

impact of hazard-causing and bearing indices on GTDI's spatiotemporal evolution is explored 115 

through the synergistic analysis of GTDI, SPEI, and SSMI. Finally, Section 5 highlights the study's 116 

significant findings. 117 

2 Study area and data 118 

2.1 Study area 119 

The Wei River is the largest tributary of the Yellow River, with a drainage area of 134,800 km2 (Fig. 120 

1). It rises to the north of Niaoshu Mountain in Gansu Province, about 33.5°–37.5°N latitude and 121 

103.5°–110.5°E longitude, and runs primarily through Shaanxi, Gansu, and Ningxia provinces. The 122 

Wei River Basin (WRB) is high in the west and low in the east, with a geographical elevation ranging 123 

from 322 to 3777 meters. The WRB has a continental monsoon climate with large seasonal 124 

fluctuations, with average annual temperatures and precipitation ranging from 7.8 to 13.5°C and 125 

500 to 800 mm, respectively (Zhang et al., 2022). Precipitation in the WRB accounts for over 60% 126 

of the total annual amount, and its spatial distribution shows a steady decrease from southeast to 127 

northwest. Furthermore, evaporation is significant in the WRB, with annual water surface 128 

evaporation ranging from 660 to 1600 mm. As a result of its specific climate characteristics, the 129 
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WRB is a typical place for drought research. 130 

131 

Figure 1. A map of the Wei River Basin. Subfigures (a) shows the geographical location of the Wei 132 

River Basin in China, (b) displays the spatial distribution of elevation (Zhang, 2021) in the Wei 133 

River Basin, (c) and (d) demonstrate the annual precipitation and temperature (Peng et al., 2019) of 134 

the WRB. 135 

2.2 Data source 136 

The data used in this study comprises: (1) DEM data (Zhang, 2021) with a grid size of 30 m; (2) 137 

monthly precipitation and temperature dataset (Peng et al., 2019) from 1950 to 2020 with a grid size 138 

of 1 km; (3) GLDAS_NOAH025_3H_2.0 and GLDAS_NOAH025_3H_2.1’s soil moisture dataset 139 

for 0 to 10 cm of soil surface layer, with a spatial resolution of 0.25° and data period from 1950 to 140 
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2020; (4) GLOBMAP leaf area index dataset (Version 3) with a period of 1981 to 2019 and a spatial 141 

resolution of 0.08° (Liu et al., 2012). Additionally, in order to facilitate calculation and analysis, 142 

precipitation, air temperature, soil moisture, and leaf area index (LAI) data were all resampled to 143 

the same spatial resolution of 0.125° using the bilinear interpolation method in this study. The data 144 

source is shown in Table 1. 145 

Table 1. Data source. 146 

Name Source 

DEM data http://www.ncdc.ac.cn/ 

Precipitation dataset http://www.geodata.cn/ 

Temperature dataset http://www.geodata.cn/ 

Soil moisture dataset https://disc.gsfc.nasa.gov/datasets/ 

LAI dataset https://www.resdc.cn/ 

3 Methodology 147 

3.1 Calculation of single-type drought indices 148 

3.1.1 SPEI 149 

The Standardized Precipitation Evapotranspiration Index (SPEI) was first introduced by Vicente 150 

Serrano et al. in 2010. As a meteorological drought index, SPEI primarily characterizes the hazard-151 

causing attribute of drought (Zhang et al., 2023). On the basis of the Standardized Precipitation 152 

Index (SPI), SPEI takes potential evapotranspiration (PET) into account and demonstrates superior 153 

effectiveness and applicability (Labudová et al., 2017; Li et al., 2020; Tan et al., 2023). The 154 

Thornthwaite method, which can better reflect the potential surface evapotranspiration, is employed 155 

to calculate PET in this paper. As is well known, drought indices on different time scales can reflect 156 

the dry and wet conditions of the study area during different periods. The 3-month drought index 157 
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can reflect short- and medium-term dry and wet conditions and is more sensitive to seasonal drought, 158 

which helps us identify and analyze seasonal drought in the Wei River Basin. Therefore, we 159 

calculated the SPEI series over a three-month timescale in this study. The detailed calculation 160 

method of the SPEI can be found in Supplement S1. 161 

3.1.2 SSMI 162 

Drought can have a direct impact on the growth state of hazard-bearing bodies such as crops (Zhang 163 

et al., 2023), making agricultural drought hazard-bearing. The Standardized Soil Moisture Index 164 

(SSMI) is one of the most effective indices for predicting agricultural drought (Hao et al., 2013), 165 

and its calculation method is comparable to that of the SPI (Xu et al., 2021; You et al., 2022). 166 

Meanwhile, it was revealed that the log-logistic probability distribution function with three 167 

parameters was better suited to soil moisture data series than the original gamma probability 168 

distribution function (Oertel et al., 2018). As a result, in this study, we employed the calculation 169 

method proposed by Oertel et al. for the agricultural drought index SSMI, with a three-month time 170 

scale, just like the SPEI. And the calculation method of the SSMI is detailed in Supplement S2. 171 

3.2 Construction of integrated drought indices 172 

In this study, two integrated drought indices, the GTDI and ETDI, are built utilizing game theory 173 

and the entropy weight method for index weight allocation, respectively, and both combine the SPEI 174 

and SSMI. The ETDI serves as a comparison to the GTDI in this study, and Supplement S3 175 

introduces the calculation process of the ETDI. 176 

As a subset of optimality modeling, game theory (GT) investigates the interacting outcomes of 177 

resource conflicts and cooperation between two or more entities (Lai et al., 2015). It attempts an 178 
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optimal allocation approach that maximizes the interests of each participant through mathematical 179 

analysis (Jato-Espino and Ruiz-Puente, 2021). Currently, GT has been widely applied in the fields 180 

of hydrology and water resources, such as water price equilibrium (Batabyal and Beladi, 2021), 181 

reservoir scheduling policy (Khorshidi et al., 2019), and subjective/objective weighting issues (Liu 182 

et al., 2020). In this study, the hazard-causing index (SPEI) and the hazard-bearing index (SSMI) 183 

are regarded as two opponents in the game. Through confrontation, the GT technique gets the ideal 184 

weight allocation for both sides and then uses this to produce the integrated drought index (GTDI) 185 

at each grid point. The following are the methods for creating GTDI using game theory: 186 

Step 1: A possible weight set is combined by SPEI and SSMI in the form of an arbitrary linear 187 

combination as follows: 188 

,( , 0)T T
spei spei ssmi ssmi spei ssmiV V V       (1) 

where V is a possible combined vector, Vspei & Vssmi are the weight vectors of SPEI and SSMI, and 189 

αspei & αssmi are the weight coefficients. 190 

Step 2: Minimize the deviation between V and Vk using the following formula: 191 

2
Min ,( , )kV V k spei ssmi   (2) 

Step 3: According to the differentiation property of the matrix, transform formula (2) into a 192 

first-order system of linear equations: 193 

T T T
speispei spei spei ssmi spei spei

T T T
ssmissmi spei ssmi ssmi ssmi ssmi

V V V V V V

V V V V V V




    
    

      
 (3) 

Step 4: Solve the weight coefficients αspei and αssmi in equation (3) and normalize them. 194 

 
 

*

*

spei spei spei ssmi

ssmi ssmi spei ssmi

   

   

  


 
 (4) 

Step 5: Calculate GTDI: 195 
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* *T T
gtdi spei spei ssmi ssmiV V V    (5) 

where Vgtdi is the combined vector of GTDI, α* 
spei and α* 

ssmi are the normalized weight coefficients of 196 

SPEI and SSMI, respectively. 197 

3.3 Classification criteria for drought 198 

Table 2. Drought classification criteria for the SPEI, SSMI, GTDI and ETDI (Huang et al., 2023). 199 

Grade Classification Values 

1 No drought -0.5< Index 

2 Mild drought -1.0< Index ≤ -0.5 

3 Moderate drought -1.5< Index ≤ -1.0 

4 Severe drought -2.0< Index ≤ -1.5 

5 Extreme drought Index ≤ -2.0 

The calculating approach of SSMI in this study is comparable to that of SPEI, while GTDI and 200 

ETDI are built on SSMI and SPEI. As a result, as indicated in Table 2, the SSMI, GTDI, and ETDI 201 

use the same grading criteria as the SPEI. 202 

3.4 Reliability verification 203 

3.4.1 Evaluation of correlation 204 

A correlation analysis of the integrated drought index with two single-type drought indices is 205 

necessary to assess the consistency of indicators before and after coupling. Thus, the Pearson's 206 

correlation coefficients (PCC) (Panda et al., 2018) between GTDI/ETDI with SPEI and SSMI are 207 

calculated for each grid (Eq. 6), and their correlation in different locations is explored. Table 3 shows 208 

the correlation levels and corresponding absolute value range of PCC. 209 

  
   

1
, 2 2

1 1

n

i ii
x y

n n

i ii i

x x y y
PCC

x x y y



 

 


 



 
 (6) 
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where n denotes the sample size; xi and yi are data samples of x and y, respectively; x and y  are 210 

arithmetic average of x and y, respectively. 211 

Table 3. The absolute value range of PCC and correlation levels (Yang and He, 2022). 212 

Correlation levels Absolute values of PCC 

Greatly low or none [0, 0.2] 

Low (0.2, 0.4] 

Moderate (0.4, 0.6] 

High (0.6, 0.8] 

Greatly high (0.8, 1.0] 

3.4.2 Efficacy verification in identifying drought 213 

Because surface vegetation is highly sensitive to soil moisture (Li et al., 2022), drought usually leads 214 

to a decrease in vegetation Leaf Area Index (LAI; Fang et al., 2019; Bock et al., 2023). In light of 215 

this, LAI data are used to evaluate the drought recognition capabilities of various indices to further 216 

validate their dependability. The leaf area index dataset used is the GLOBMAP leaf area index 217 

product (https://www.resdc.cn/). 218 

 219 

Figure 2. The plot graphs of the Leaf Area Index (LAI) in the Wei River Basin with an interannual 220 

trend spanning from 1981 to 2019 (a) and the average monthly allocation from 1981 to 1999 (b). 221 

Significant disparities in LAI trends can be identified in the WRB around 1999, as illustrated 222 

in Fig. 2(a). Prior to 1999, the average annual growth rate of LAI was only 0.21/a, but it skyrocketed 223 

to 1.93/a after 1999, owing mostly to "Grain for Green" (Li et al., 2019; Tian et al., 2022). In order 224 
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to mitigate the potential inaccuracy resulting from the regional LAI trend change, we selected the 225 

validation years of 1981 to 1999, during which the growth trend was relatively weak. Also, LAI in 226 

the WRB rises significantly from March to August, falls fast from September to November, and then 227 

remains low from December to January of the following year (Fig. 2b). It can be discovered that 228 

LAI's trend change in autumn and winter is the result of vegetation's natural growth cycle, resulting 229 

in a reduced sensitivity of LAI to soil moisture and further failing to identify drought. As a result, 230 

the autumn and winter months (September to January) should also be excluded from the validation 231 

period. 232 

In summary, LAI raster data from March to August (spring and summer) of the period from 233 

1981 to 1999 were selected to verify the drought identification efficacy of drought indices. 234 

Meanwhile, the image from the mid-month of each month is regarded as the representative data of 235 

the month. If the occurrence of drought has been discovered, it can be determined by comparing the 236 

mean values of the LAI during arid months with non-arid months. The specific process is as follows: 237 
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 (8) 

where Md,i and Mn,i represent the average values of the LAI in the i-th grid during arid and non-arid 238 

months, respectively; m and n are the number of arid and non-arid months, respectively; Ii,j and Ii,l 239 

represent the value of the LAI of the i-th grid during the j-th arid month and the l-th non-arid month, 240 

respectively; Ri represents the drought recognition performance of the drought index in the i-th grid, 241 

with a value of 1 indicating fine and 0 indicating poor. 242 
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3.5 Analysis methods for drought characteristics 243 

3.5.1 Mann-Kendall test 244 

The Mann-Kendall (M-K) test is a non-parametric statistical test method with a simple 245 

computational process (Yue and Wang, 2002). It has been extensively utilized for the analysis of 246 

hydrological and meteorological sequences (Zhang et al., 2021; Agbo et al., 2023). In this study, the 247 

M-K test method is used to perform trend testing on the drought index sequences, and the calculation 248 

principle can be referred to Cai et al. (2022). 249 

3.5.2 Drought identification 250 

Drought is often identified by two factors: the drought index threshold and the drought area 251 

threshold. In this study, we used -1 as the drought index threshold, which is compatible with current 252 

research (Deng et al., 2021; Feng et al., 2023), and 1.6% as the area threshold (Wang et al., 2011). 253 

Furthermore, a spatiotemporal continuity technique is used to detect drought occurrences, with 254 

specific procedures available in Deng et al. (2021). Briefly, as long as the drought index value at a 255 

grid point is lower than the drought index threshold of -1, we determine it as a drought grid point. 256 

When the total area of drought grid points in a certain month exceeds the drought area threshold, 257 

we determine that month as a drought month. Furthermore, when multiple consecutive months are 258 

determined to be drought months, if the overlapping area of drought areas in space between two 259 

adjacent consecutive drought months exceeds the drought area threshold, we determine that these 260 

two months belong to the same drought event, otherwise, they belong to different drought events. 261 
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3.5.3 Spatiotemporal characteristics of drought 262 

The spatiotemporal characteristics of drought mostly manifest in variables such as drought intensity, 263 

drought area, drought duration, and drought centroid (Wen et al., 2020). Based on the current 264 

research methods for studying the spatiotemporal characteristics of drought, we divided the 265 

variables representing drought characteristics into two scales: grid point and monthly, in order to 266 

systematically analyze and describe the drought characteristics of the WRB. 267 

(1) Grid point’s drought characteristic variable 268 

The drought intensity Si of the grid point is calculated by: 269 

0i iS S I   (9) 

where Ii is the value of the i-th drought grid point; S0 is the threshold of the drought index. 270 

(2) Monthly drought characteristic variables 271 

The monthly drought characteristic variables consist of the monthly drought intensity Sam, the 272 

monthly drought area Aam, and the monthly drought centroid (Xam, Yam), as shown in Table 4. 273 

Table 4. Monthly drought characteristic variables. 274 

Variables Formula Notes Number 

Monthly drought 

intensity Sam 1

1 k

am ii
S S

k 
   

Where k is the number of drought 

grids; Si is the intensity value of the 

i-th drought grid. 

(10) 

Monthly drought 

area Aam/104km2 amA kA  
Where A is the spatial range of a 

single grid, and its unit is 104 km2. 
(11) 

Monthly drought 

centroid (Xam, Yam) 

1 1

1 1

k k

am i i ii i

k k

am i i ii i

X S x S

Y S y S

 

 

 




 
 

 

Where Si is the drought intensity 

value of the i-th drought grid, and 

xi and yi are the longitude and 

latitude coordinates of the i-th 

drought grid, respectively. 

(12) 
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4 Results and Discussion 275 

4.1 Evolutionary characteristics of integrated drought index GTDI 276 

Using the game theory method, the monthly GTDI of the WRB was calculated based on SPEI and 277 

SSMI. Meanwhile, considering the WRB's seasonal characteristics, GTDI sequences from May, 278 

August, November, and February of the next year were chosen to represent the drought conditions 279 

of spring, summer, autumn, and winter, respectively. 280 

Fig. 3(a) demonstrates the temporal evolution characteristics of the monthly GTDI in the WRB 281 

from 1950 to 2020. Therein, the linear tendency rate of GTDI is -0.024/10a, illustrating that the 282 

drought in the WRB is aggravating, which is also mentioned in Wang et al. (2020). Particularly since 283 

the 1990s, the frequency of moderate and severe drought months and their average drought intensity 284 

have increased by 5.1% (from 34.1% to 39.2%) and 0.043 (from 0.242 to 0.285), respectively. In 285 

terms of seasonal change, drought in the WRB showed an increasing trend in spring, summer, and 286 

autumn (Fig. 3b-d). In the eastern half of the WRB, the significantly aggravated area of spring 287 

drought accounts for 29.98% of the overall basin, while most places in summer and autumn show a 288 

non-significant aggravation in drought severity. Winter is an exception, as most areas experience a 289 

reduction in drought, especially in the eastern and northern regions of the WRB (Fig. 3e). 290 
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 291 

Figure 3. Temporal evolution characteristics of integrated drought in the Wei River Basin from 1950 292 

to 2020 (a), and spatial distribution of drought trends in different seasons (b-e). The symbol “**” 293 

donates the change is significant, and the percentage means the area proportion of different trend 294 

types. 295 

4.2 Reliability verification of the GTDI 296 

4.2.1 The evaluation of correlation 297 

Table 5 illustrates the grid proportions of different correlation levels between the integrated drought 298 

indices (GTDI and ETDI) and the single-type drought indices (SPEI and SSMI), whereas Fig. 5 299 

depicts the spatial distribution of their correlation coefficients in different seasons.  300 
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Table 5. Grid proportions of integrated drought indices (GTDI, ETDI) and single-type drought 301 

indices (SPEI, SSMI) at different correlation levels. 302 

Correlation levels 
GTDI vs. SPEI GTDI vs. SSMI 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

Greatly high 100% 100% 100% 100% 100% 100% 100% 54.8% 

High 0 0 0 0 0 0 0 45.2% 

Correlation levels 
ETDI vs. SPEI ETDI vs. SSMI 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

Greatly high 83.6% 89.5% 88.4% 66.2% 89.7% 95.6% 98.2% 68.3% 

High 16.4% 10.5% 11.6% 33.3% 10.3% 4.4% 1.8% 25.8% 

Moderate 0 0 0 0.5% 0 0 0 5.4% 

Low 0 0 0 0 0 0 0 0.5% 

 303 

Figure 4. Spatial distribution of correlation coefficients in different seasons. The color bar on the 304 

right denotes the Pearson's correlation coefficients. 305 

As shown in Table 5 and Fig. 4, the correlation between GTDI and SPEI or SSMI in the entire 306 

WRB is quite significant, and the correlation coefficients (PCC) are close to 1 in spring, summer, 307 

and autumn, but slightly lower in winter (Fig. 4a-h). The correlation coefficients in the western and 308 

northern areas of the WRB are lower in winter (Fig. 4d, h, l, p), but the minimal correlation 309 
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coefficients between GTDI and SPEI or SSMI are still above 0.83 and 0.67, respectively (Fig. 4d, 310 

h). It is worth noting that GTDI and SPEI have a greatly high correlation across the WRB over all 311 

four seasons, whereas 45.2% of locations only have a good correlation between GTDI and SSMI in 312 

winter (Table 5). As a result, the correlation between GTDI and SPEI is stronger than that of SSMI, 313 

especially during the winter season. 314 

The graph also shows that the integrated drought index (ETDI) demonstrates spatially opposite 315 

correlations with SPEI and SSMI. For instance, in the southeastern area of the Wei River Basin, 316 

there is the worst association between ETDI and SPEI, but the correlation between ETDI and SSMI 317 

is the strongest (Fig. 4i-p). Similar to GTDI, the correlation between ETDI and SPEI or SSMI is 318 

slightly higher in spring, summer, and autumn than in winter. However, as compared to GTDI, the 319 

geographical variability of the correlation coefficients between ETDI and SPEI or SSMI is more 320 

pronounced in the same season (Fig. 4). As seen in winter (Fig. 4p), the highest correlation 321 

coefficient between ETDI and SSMI is approximately 1, while the lowest value is around 0.34. In 322 

terms of grid proportions at various levels of correlation, the correlations between ETDI and SPEI 323 

or SSMI do not achieve a greatly high level in certain regions over the four seasons (Table 5), 324 

resulting in its performance falling short compared to GTDI. 325 

Overall, GTDI exhibits superior performance to ETDI, particularly in terms of the homogeneity 326 

of the spatial distribution of correlation coefficients, indicating that the integrated drought index 327 

GTDI constructed in this study has more reliable consistency with single-type drought indices (SPEI 328 

and SSMI). 329 
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4.2.2 Comparison of the integrated weight of GTDI and ETDI 330 

To contrast the weight allocation of SPEI and SSMI in creating the integrated drought indices GTDI 331 

and ETDI, the spatial distribution of their weight ratios (SPEI/SSMI) in the WRB is plotted, as 332 

shown in Fig. 5. 333 

 334 

Figure 5. Comparison of the integrated weights of GTDI and ETDI. Subfigures (a) and (c) 335 

demonstrate the spatial distribution of weight ratio (SPEI/SSMI) in the construction process of 336 

GTDI and ETDI, respectively, and (b) is a spatial distribution map of the average annual 337 

precipitation in the Wei River Basin. 338 

The GTDI, an integrated drought index constructed using the game theory method, exhibits a 339 

spatial distribution of the weight ratio (SPEI/SSMI) that gradually decreases from northwest to 340 

southeast (Fig. 5a). Furthermore, the weight ratio in GTDI ranges from 1.02 to 1.18, showing a 341 

substantially balanced weight allocation between the hazard-causing index (SPEI) and the hazard-342 

bearing index (SSMI). Meanwhile, the weight ratio of SPEI to SSMI is closer to 1 in places with 343 

greater precipitation (Fig. 5a-b). It is noteworthy that the change in weight ratio (SPEI/SSMI) in 344 

GTDI closely resembles the spatial distribution pattern of the average annual precipitation in the 345 

WRB, as evidenced by a correlation coefficient of -0.88, indicating a significant negative 346 

relationship. 347 

The entropy theory-based drought index (ETDI), on the other hand, does not show a distinct 348 
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spatial distribution pattern for the weight ratio of SPEI to SSMI. Its weight ratio fluctuates greatly 349 

between locations, ranging from 0.22 to 5.95 (Fig. 5c), implying that entropy theory fails to establish 350 

a consistently stable allocation of weights in the integrated drought index ETDI development 351 

process. Furthermore, the weight ratio (SPEI/SSMI) in ETDI has a low relationship with annual 352 

average precipitation, as evidenced by a correlation coefficient of only -0.04. 353 

As a consequence of comparing GTDI and ETDI, it was discovered that the game theory 354 

approach gives an integrated weight geographic distribution compatible with the precipitation-355 

dominated natural drought pattern, which is essentially congruent with the drought generation 356 

mechanism in this basin. As a result, it is thought that the weighting of SPEI and SSMI in GTDI is 357 

more reasonable and reliable. 358 

4.2.3 The efficacy verification in identifying drought 359 

To further investigate the reliability of the integrated drought index GTDI, the Leaf Area Index (LAI) 360 

data is used to assess its efficacy in identifying drought, and the drought recognition performance 361 

of the GTDI is evaluated by Eq. 8 and presented in Fig. 6. To compare, Fig. 7 depicts the spatial 362 

distribution of efficacy in recognizing drought using the ETDI, SPEI, and SSMI, and Table 6 363 

provides a statistical list exhibiting the efficacy ratios of four drought indices in different validation 364 

months. 365 

Table 6. The efficacy ratios of four drought indices in different validation months 366 

Drought indices March April May June July August 

GTDI 78.6% 84.1% 90.4% 71.8% 87.5% 76.3% 

ETDI 48.4% 49.6% 50.7% 50.5% 49.2% 48.6% 

SPEI 50.1% 49.5% 50.6% 49.4% 48.4% 48.8% 

SSMI 49.1% 50.4% 52.8% 49.9% 49.5% 48.9% 



22 

 

 367 

Figure 6. The spatial distribution of GTDI's efficacy in identifying drought in the Wei River Basin. 368 

Subfigures (a)-(f) depict the findings from March to August, and (g) displays a satellite image of the 369 

Wei River Basin. "Fine" means that the drought index accurately captured the occurrence of drought, 370 

while "Poor" means that the drought index did not capture the occurrence of drought. 371 

 372 

Figure 7. The spatial distribution of efficacy in identifying drought of the ETDI, SPEI and SSMI. 373 

"Fine" means that the drought index accurately captured the occurrence of drought, while "Poor" 374 

means that the drought index did not capture the occurrence of drought. 375 

During the validation period from March to August, GTDI performs well in recognizing 376 

drought (Fig. 6), particularly in May, when it captures 90.28% of the drought in the WRB (Table 6). 377 

GTDI, on the other hand, performs relatively badly in June (Fig. 6d) and August (Fig. 6f), only with 378 

71.8% and 76.3% of effective recognition grid points, respectively (Table 6). In conjunction with 379 

Fig. 6(g), it is discovered that the grid points with poor performance in June and August are 380 
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concentrated in the forest area, which is the dark green area in the WRB's northeast hinterland. As 381 

is widely known, forests have more access to deeper soil moisture than farming land and grassland 382 

(Xu et al., 2018; Bai et al., 2023), resulting in forests having higher drought tolerance than other 383 

terrestrial vegetation types (Jiang et al., 2020; Chen et al., 2022). However, the soil moisture data 384 

used in this study are only 0 to 10cm of soil surface layer, which could explain why GTDI's drought 385 

diagnosis ability in the forest region is skewed. Even with the defect in forest regions, GTDI has 386 

exhibited strong drought monitoring capabilities in the WRB, and can effectively capture the 387 

occurrence of drought. 388 

In contrast to GTDI, the effectiveness of drought detection by ETDI, SPEI, and SSMI is 389 

geographically random and chaotic, as illustrated in Fig. 7. Furthermore, in all validation months, 390 

ETDI, SPEI, and SSMI only provide efficacy ratios of around 50%, indicating a lack of significant 391 

usefulness in identifying drought (Table 6). As a result, when compared to ETDI, SPEI, and SSMI, 392 

it is clear that GTDI provides significant advantages in the field of drought monitoring. To 393 

summarize, GTDI does not simply combine the hazard-causing index (SPEI) and the hazard-bearing 394 

index (SSMI) as ETDI, but it can indeed capture drought occurrence in most areas, addressing the 395 

issue of single-type drought indices’ insufficient responsiveness to actual drought events. 396 

4.3 Comparison of temporal trajectories of drought identified by 397 

GTDI, SPEI, and SSMI 398 

The drought identification trajectories of the integrated drought index (GTDI), single-type drought 399 

indices (SPEI and SSMI) during the study period are depicted in Fig. 8. Out of the 850 months 400 

spanning from March 1950 to December 2020, merely 345 months are devoid of any drought, 401 
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accounting for approximately 40.6% of the total, which contradicts our common understanding of 402 

drought incidents. Among the 505 dry months, 409 months experience agricultural drought (SSMI, 403 

48.1%), 356 months experience meteorological drought (SPEI, 41.9%), and 260 months (30.6%) 404 

experience both simultaneously. GTDI identifies just 308 arid months (36.2%) out of 850 months, 405 

which is lower than SSMI and SPEI. According to the data presented above, agricultural drought 406 

has been the most common occurrence in the WRB over the last 70 years, followed by 407 

meteorological drought, with GTDI identifying the fewest number of drought months. 408 

 409 

Figure 8. Comparison of the SPEI, SSMI and GTDI in temporal drought trajectories. "SPEI-SSMI" 410 

means that it is recognized as a drought month by SPEI and SSMI simultaneously, and the meanings 411 
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of other drought types are similar to that. 412 

Out of the GTDI-identified drought months, the proportion of meteorological drought 413 

occurring alone is 6.5%, and the proportion of agricultural drought occurring alone is 15.9%, 414 

possibly due to high temperatures, while the proportion of meteorological drought and agricultural 415 

drought occurring simultaneously is up to 77.6%. Thus, it is clear that GTDI is closely related to the 416 

hazard-causing index (SPEI) and the hazard-bearing index (SSMI) and is caused by both in most 417 

cases. It corresponds to the general public's understanding of drought incidents. Furthermore, 418 

because it is calculated by weighting SPEI and SSMI, GTDI has an advantage in depicting the 419 

temporal gaming evolution of SPEI and SSMI. From the perspective of seasonal distribution, 420 

meteorological drought occurs most commonly in the summer and autumn, with a frequency of 421 

more than 40%, but less frequently in the winter and spring. At the same time, agricultural drought 422 

(SSMI) occurs at a frequency of over 45% in all seasons, with a very similar frequency in four 423 

seasons. The seasonal allocation mode of drought identified by GTDI is similar to that of SPEI, with 424 

the similarity being that it occurs more frequently in summer and autumn than in winter and spring. 425 

However, the frequency of drought determined by SPEI is slightly higher than that determined by 426 

GTDI in each season. 427 

The above explanation suggests that using SPEI, SSMI, and GTDI for monthly-scale drought 428 

identification may result in various drought trajectories. Meanwhile, the GTDI is a hybrid of the 429 

hazard-causing index (SPEI) and the hazard-bearing index (SSMI), as it has a higher overlap with 430 

SSMI in drought trajectory, implying changes in the hazard-bearing body during the dry period, 431 

while being closer to SPEI in drought seasonal allocation, responding to the fluctuation of hazard-432 

causing factors. When paired with the GTDI index reliability analysis in Section 4.2, it is concluded 433 
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that the occurrence of drought events in the Wei River Basin is still dominated by precipitation 434 

deficiency, as the region is located in a dry location with low rainfall. 435 

4.4 Comparison of spatial evolution of drought events identified by 436 

GTDI, SPEI, and SSMI 437 

To explore the spatial development process of drought occurrences recognized by GTDI, SPEI, and 438 

SSMI while eliminating the randomness of a single event, we selected three drought events that 439 

lasted for a duration of 5 months for spatial evolution analysis. Fig. 9 shows the spatial evolution 440 

processes of three drought events identified by GTDI, SPEI, and SSMI, spanning from June to 441 

October 1982, from March to July 2000, and from September 2018 to January 2019, respectively. 442 

Table 7 shows the drought intensity and the percentage of drought area for each month of the three 443 

drought events. 444 

Table 7. Comparison of SPEI, SSMI and GTDI in drought intensity and percentage of drought area 445 

during three drought events 446 

Drought 

events 
Year-month 

Drought intensity Percentage of drought area 

SPEI GTDI SSMI SPEI GTDI SSMI 

1982 

1982-6 0.47 0.31 0.28 100% 85.9% 55.7% 

1982-7 0.77 0.66 0.55 63.2% 67.0% 81.5% 

1982-8 0.52 0.57 0.71 42.5% 49.3% 58.5% 

1982-9 0.17 0.22 0.37 15.0% 23.3% 35.9% 

1982-10 0.15 0.13 0.22 17.4% 14.1% 22.4% 

2000 

2000-3 0.49 0.32 0.29 74.1% 61.2% 32.3% 

2000-4 0.82 0.66 0.58 98.2% 92.7% 79.3% 

2000-5 1.29 1.17 1.03 100% 100% 100% 

2000-6 0.18 0.21 0.31 38.4% 50.1% 54.3% 

2000-7 0.76 0.41 0.11 87.0% 66.6% 15.5% 

2018 

2018-9 0.23  0.10  0.33  35.9% 5.3% 3.0% 

2018-10 0.55  0.41  0.46  65.6% 34.2% 21.0% 

2018-11 0.20  0.31  0.55  46.5% 32.4% 28.7% 

2018-12 0.22  0.27  0.46  43.3% 31.0% 27.5% 
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2019-1 0.11  0.06  0.22  5.3% 1.8% 7.5% 

 447 

Figure 9. Comparison of SPEI, SSMI and GTDI in the spatial evolution of three drought events. 448 

The black circle donates the monthly drought centroid. 449 

Taking the 1982 drought event as an example, the meteorological drought emerges initially, 450 

followed by a steady decrease in its impact areas (Fig. 9c). However, the overall drought intensity 451 

increases and subsequently decreases (Table 7), and the drought centroid migrates from the WRB's 452 
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center to the northwest. It is worth noting that concurrent agricultural drought lags behind 453 

meteorological drought. When comparing the drought geographic evolution processes identified by 454 

SSMI and SPEI (Fig. 9b-c), the lag period is approximately one month, which is similarly observed 455 

in the other two drought events (Fig. 9d-i). For the entire spatial evolution process of a drought event 456 

identified by GTDI, it is clear that its spatial pattern is the result of a compromise of SPEI and SSMI, 457 

including the migration path of the drought centroid (Fig. 9a-c), the evolution process of drought 458 

area percentage, and drought intensity (Table 7). 459 

From March to July 2000, the WRB experienced a fully covered drought event (Fig. 9d-f), 460 

which began with a meteorological drought. The fusion description of SPEI and SSMI produced by 461 

GTDI during this event, which incorporates the spatial evolution trends of SPEI and SSMI to 462 

evaluate the current drought status at each grid point, may be observed. The value of GTDI 463 

consistently falls between SPEI and SSMI, regardless of whether it is evaluated by the drought area 464 

ratio, drought intensity, or drought centroid. 465 

The 2018 drought event is the mildest of the three, but it most fully depicts the process of a 466 

drought event from emergence to spread to eventual extinction (Fig. 9g-i). In the early stages of this 467 

drought event, as of October 2018, the meteorological drought in the southeastern part of the WRB 468 

was the most severe, whilst the agricultural drought was relatively negligible. In this case, the spatial 469 

drought pattern determined by GTDI was closer to the development of hazard-causing index SPEI. 470 

However, during the later stages of the drought event, the situation reverses and the spatial evolution 471 

of drought begins to be dominated by the hazard-bearing index SSMI, illustrating GTDI possesses 472 

more realistic and intelligent feature in drought identification. This also demonstrates the 473 

importance of including game theory in this study, which has a distinct benefit in monitoring 474 
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changes in hazard-causing and bearing impacts. 475 

Based on the foregoing, it is worth noting that the GTDI-identified spatial drought process 476 

combines the evolutionary features of hazard-causing and bearing indices (SPEI and SSMI). 477 

Merging SPEI and SSMI via their game relationship, rather than simply putting them together, 478 

makes GTDI a superior technique to represent the spatial and temporal evolution of droughts. 479 

Furthermore, it has been discovered that the GTDI exhibits the gaming feature of the drought 480 

hazard-causing and bearing index. This is evidenced by the fact that the hazard-causing index SPEI 481 

primarily drives the early stages of drought events in the WRB, while the hazard-bearing index 482 

SSMI primarily drives the later stages. 483 

5 Conclusions 484 

This study integrated the SPEI (meteorological index and drought hazard-causing index) and SSMI 485 

(agricultural index and drought hazard-bearing index) to propose a game theory-based drought index 486 

(GTDI). The integration performance and weight allocation of the GTDI were demonstrated by 487 

evaluating the correlations with SPEI and SSMI, and comparing the integrated weight to the ETDI 488 

(entropy theory-based drought index); the reliability of the GTDI was confirmed by the Leaf Area 489 

Index (LAI) data; and the advancedness of the GTDI was examined by contrasting the temporal 490 

trajectories and spatial evolution characteristics of GTDI, SPEI, and SSMI. The following are the 491 

primary conclusions: 492 

The single-type drought indices (SPEI and SSMI) and the integrated drought index (GTDI) 493 

exhibit dependable spatial consistency. The entropy theory-based drought index ETDI performs 494 

worse than the GTDI, particularly when it comes to the regional distribution of correlation 495 
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coefficient homogeneity. Specially, the game theory technique provides an integrated weight 496 

geographic distribution in the integrated index GTDI that is consistent with the precipitation-497 

dominated natural drought pattern, as there is a strong negative spatial relationship between the 498 

weight ratio of SPEI to SSMI and the average annual precipitation in the Wei River Basin. The ETDI, 499 

on the other hand, has a very weak connection with the annual mean precipitation. This indicates 500 

that the GTDI's weight allocation of SPEI and SSMI is more logical and trustworthy. 501 

The GTDI has superior efficacy for identifying drought when compared to the ETDI, SPEI, 502 

and SSMI, as the GTDI efficiently captures drought with an efficacy ratio of over 70% in all 503 

validation months, whereas the ETDI, SPEI, and SSMI catch it with an efficacy ratio of 504 

approximately 50%. Thus, GTDI is expected to replace single-type drought indices to provide a 505 

more accurate portrayal of actual drought.  506 

The GTDI merges SPEI and SSMI via their game relationship rather than simply putting them 507 

together, making it a superior technique to represent the spatial and temporal evolution of droughts. 508 

Specially, it has a higher overlap with SSMI in drought trajectory, implying changes in the hazard-509 

bearing body during the dry period, while being closer to SPEI in drought seasonal allocation, 510 

responding to the fluctuation of hazard-causing factors. 511 

Additionally, it has been discovered that GTDI exhibits the gaming feature of the drought 512 

hazard-causing and bearing index, having a distinct benefit in monitoring changes in their impacts. 513 

The hazard-causing index SPEI dominates the early stages of a drought event, whereas the hazard-514 

bearing index SSMI dominates the later stages. 515 

 516 

 517 
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