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Abstract. The initial condition for the simulation of a seismically-induced tsunami for a rapid, assumed instantaneous, vertical

seafloor displacement is given by the Kajiura low-pass filter integral. This work proposes a new efficient and accurate approach

for its numerical evaluation, valid when the sea floor
::::::
seafloor

:
displacement is discretized as a set of rectangular contributions

:::
over

::
a
:::::::
variable

::::::::::
bathymetry. We compare several truncated quadrature formulae, selecting the optimal one. We verify that we

can satisfactorily approximate
:::
The

::::::::::::
reconstruction

::
of the initial sea level perturbation as a linear combination of those induced5

by the elementary sea floor displacements . The methodology
:::::::::::
pre-computed

:::::::::
elementary

:::
sea

::::::
surface

::::::::::::
displacements

:
is tested on

the tsunamigenic Kuril earthquake doublet - a megathrust and an outer-rise - occurred in the Central Kuril Islands in late 2006

and early 2007. We also confirm the importance of the horizontal contribution to the tsunami generation and we consider a

simple model of the inelastic deformation of the wedge, on a realistic bathymetry. The proposed approach results accurate and

fast enough to be considered relevant for practical applications, and a tool is provided to create tsunami unit source databases10

for a given
:
.
::
A

:::
tool

::
to

:::::
build

:
a
:::::::
tsunami

::::::
source

:::::::
database

:::
for

:
a
:::::::
specific region of interest .

:
is

::::::::
provided.

1 Introduction

The generation of a seismotectonic tsunami occurs when the equilibrium of the water column is perturbed by the seafloor

deformation induced by an earthquake. Seismic and oceanic acoustic waves are radiated from the source and contribute to the

total wave field, as evidenced by the records of bottom pressure sensors (Abrahams et al., 2023). Models which solve for the15

full bidirectional coupling between the seafloor and the ocean have been developed (e.g. Maeda and Furumura 2013; Lotto

and Dunham 2015). An approximate two-stage procedure has also been proposed, which solves the tsunami excitation as

the result of a time-dependent seafloor displacement in a compressible ocean, and then propagates the wave train through an

incompressible one (Saito et al., 2019). Seismic and oceanic acoustic wavesare driven by the elasticity of the medium and

travel, on average, two orders of magnitude faster than tsunamis, which are moved by gravity (Saito, 2019). This fact leaves20

room to decouple seismic contributions from tsunami waves, in the sense that it is reasonable to assume this time window
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as too short to convert seismic energy into fluid potential energy (Pedersen, 2001; Nosov and Kolesov, 2007). Hence, the
:::
By

::::::::
neglecting

:::::::
acoustic

::::::
waves,

:::
the

:
excitation of a tsunami can be described with the linear potential theory for an incompressible

and irrotational fluid, perturbed by a bottom dislocation significantly smaller than the sea depth (Saito, 2013, 2019). In this

framework, the velocity of fluid displacement is expressed in terms of a scalar potential satisfying the time-dependent Laplace25

problem (Lamb, 1945; Stoker, 1958; Landau and Lifshitz, 1987). Analytic solutions for the sea surface height distribution have

been derived both in
:::
the time and Fourier domain

:::::::
domains, sometimes benchmarked against laboratory experiments (Hammack,

1973; Comer, 1984; Dutykh et al., 2006; Dutykh and Dias, 2007; Saito, 2013; Levin and Nosov, 2009). A numerical solution to

the full Laplacian problem has also been proposed (Nosov and Kolesov, 2009; Rabinovich et al., 2008). It has been discussed

that these solutions may be necessary for earthquakes characterized by steep dip angle or prolonged source duration (Kajiura,30

1970; Kervella et al., 2007; Saito and Furumura, 2009; Madden et al., 2020).

However, if the events, like ordinary megathrust earthquakes are often assumed to do, take place within a sufficiently brief

time frame (compared to the tsunami propagation scale), the
:
A
:::::
rapid

:::::::
enough

::::::
vertical

:
seafloor deformation can be treated as

instantaneous (Abrahams et al., 2023; Nosov and Kolesov, 2011). For relatively long-wave displacements, the initial condi-

tion for modeling tsunami propagation is then typically obtained by copying the static permanent vertical coseismic defor-35

mation of the seafloor at the free surface. The contribution of the horizontal component to the coseismic deformation can

also be important in the presence of steep slopes in the bathymetry (Iwasaki, 1982; Tanioka and Satake, 1996), or in shallow

earthquakes resulting in an additional uplift in the accretionary prism (Seno, 2000; Tanioka and Seno, 2001). Some approaches

impose a delta function as the bottom velocity (Levin and Nosov, 2009; Saito, 2017) or transfer to the sea-level the last frame

of a time-dependent earthquake rupture simulation (Saito, 2019; Abrahams et al., 2023). The linear potential theory generally40

yields a sea surface perturbation that does not coincide with the coseismic seafloor displacement (Ward, 2003; Kajiura, 1963; Saito, 2013)

. Kajiura (1963) demonstrated analytically that, in the hypothesis of an instantaneously displaced flat bathymetry, the sea sur-

face perturbation can be formally expressed in terms of a Green’s function. In this expression, the waves characterised by

kH >> 1
:::::::
kH ≫ 1

:
are progressively more damped by a factor 1

cosh(kH) , where k is the wavenumber and H is the sea depth.

These findings hold significance for numerical modeling of the linear generation process, highlighting the need to filter out45

high frequency spectral components to prevent the introduction of non-physical artifacts. Filtering of the short wavelengths be-

comes crucial when modeling real events whose lateral rupture extent is comparable to the ocean depth or in cases of residual

deformation characterized by small scale heterogeneities along the horizontal direction (Nosov and Kolesov, 2011);
:::::::::
otherwise,

non-physical short waves would result in an overestimation of the initial condition and thus of the
::
be

:::::::
mapped

::::
onto

:::
the

:
ensuing

tsunami. A widely used method involves the application of the "
:
a
:::::::
Fourier

::::::::::::
decomposition

::::::::
approach

::
to

:::
the

:::
the

:::::::
solution

:::
of

:::
the50

Kajiura-type " filter. The initial condition for simulating tsunamis is thus obtained through Fourier integration of the coseismic

deformation, divided by the damping term 1
cosh(kH) . In this approach , H represents the average depth within the region

affected by coseismic deformation. The validity of such assumption is elucidated in the work of Abrahams et al. (2023). In Eq.

(39), the authors examine a "transfer function" in the Fourier domain, which establish the response of the free surface (system

output) when an arbitrary instantaneously moving ocean floor (system input) occurs. While the
::::
filter.

:::::::::::
Additionally,

:::
the

:
Kajiura55

filter can be applied to a displacement of virtually any shape, Davies and Griffin (2018) explain
:
.
::::::::::::::::::::::
Davies and Griffin (2018)
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::::::::
explained that the initial static condition resulting from the instantaneous and simultaneous displacement of different subfaults

can be obtained through a linear combination of elementary contributions, each represented by a Green’s function. These unit

contributions pertain to discrete portions of the area of interest, taking into account variable sea-depth along the domain, which

must be approximated as constant for each of the subfaults. This is a relatively cheap solution than the full implementation60

of the three dimensional Laplace problem whose degree of approximation with respect to a fully variable sea depth should be

tested. On the other hand, Nosov and Kolesov (2011) introduced a specific analytical
:
.
::::::::
Similarly,

:::::::::::::::::::::::
Nosov and Kolesov (2011)

:::::::::
introduced

:::
the

::::::::
"Laplace

:::::::::
smoothing

:::::::::
algorithm"

:
solution to the 3D Laplace problem . This solution also assumes

::
for

:
an in-

stantaneously displaced flat seafloor within a rectangular region. Due to the fast decay of such solution , the free surface

perturbation becomes negligible at the distanceof 4H . This allows
::::::
(within

::
a

:::::
∼ 4H

::::::::
distance)

:
the initial condition for the65

coseismic displacement to
:::::::
tsunami

::::::::::
propagation

:::
can

:
be approximated by linear combination of elementary contributions.

The authors developed a "Laplace smoothing algorithm" and discussed that this procedure is valid for a constant bathymetry,

but the
:::
The

:
approximation still holds reasonably if the bathymetry varies smoothly within a short distance (∼ 4H) from the

source (a similar argument likely applies also for the combination of subfaults as proposed by Davies and Griffin, 2018).

Nosov and Sementsov (2014) subsequently demonstrated its accuracy by comparing it with the case of variable bathymetry.70

::
for

::
a

::::::
varying

::::::::::
bathymetry

::::::::::::::::::::::::
(Nosov and Sementsov, 2014)

:
.
:::::
These

:::
are

::::::::
relatively

:::::
cheap

:::::::
solutions

:::::::::
compared

:::
the

:::
full

:::::::::::::
implementation

::
of

:::
the

::::
three

::::::::::
dimensional

:::::::
Laplace

:::::::
problem

::::::
whose

::::::
degree

::
of

::::::::::::
approximation

:::
has

:::::
been

:::::
tested

::
by

::::::::::::::::::::::::
Sementsov and Nosov (2023)

:
.

However, even with these simplifying assumptions, the numerical integration of the model and the application of the com-

plete algorithm get
::
for

:
a
:::::::
realistic

::::
case

::::
may

::::::
require

:
long execution times, both because of the extension of the integral support

in the Fourier domain and of the desired resolution in the spatial domain, which may lead from ten
::::::
because

::
it
::::
may

:::::::
involve75

::::
from

::::
tens of hundreds to tens of millions of elementary initial conditions to be evaluated and superposed. The reliability of

the solution and the computational time needed strongly depend on the quadrature method adopted to deal numerically with

such a model. This reasoning leaves room to
::
A

:::
fast

:::
and

::::::::
accurate

::::::::
algorithm

:::
for

:::
the

:::::::
tsunami

:::::::::
generation

:
is
:::::::::
potentially

:::::::::
important

::
for

:::::::::::
applications

:::::
which

::::::
require

::
to
::::::::

estimate
:::
the

:::::::
tsunami

::::::
hazard

:::
for

:::::::::
operational

::::::::
purposes

:::
like

:::::::
coastal

::::::::
long-term

::::
and

:::::::::
evacuation

:::::::
planning

::::::::::::::::::::::::::::::::::
(Gibbons et al., 2020; Tonini et al., 2021),

:::
but

::::
also

:::
for

::::::
source

::::::::
inversion

::::::
studies

::::::::::::::::::
(Romano et al., 2014).

::
In

::::
both

::::::
cases,80

::::
there

::
is

::
a

::::
need

:::
for

:::::::::
simulating

:::::::::::
numerically

:
a
:::::::::
significant

:::::::
number

::
of

:::::::
tsunami

:::::::::
scenarios,

::::::
which

:::::
makes

::::
the

::::::::::
containment

:::
of

:::
the

:::::::::::
computational

::::
cost

:::::::::
associated

::::
with

::::
each

::
of

:::::
them

:
a
::::::::
practical

::::::::
necessity.

::::
Here,

:::
we

::::
aim

::
to

:::::::
reducing

:::
the

::::::::::::
computational

::::
time

::::::
needed

:::
by

::
the

::::::::::
application

::
of

::
an

:::::::
optimal

:::::::::
quadrature

:::::::
method.

:::
We build from

scratch an alternative implementation of the algorithm, which is the topic of this study
::::::::::::::::::::::
Nosov and Kolesov (2011)

::::::::
algorithm

::
for

::::
the

::::::::
treatment

::
of
:::

an
::::::::::::

instantaneous
:::::::
vertical

:::::::
seafloor

::::::::::
deformation

:::::
over

:
a
::::::::

variable
::::::::::
bathymetry.

:::::::::::
Considering

::::
also

:::
that

::::
the85

::::::::::
contribution

::
of

:::
the

:::::::::
horizontal

::::::::::
component

:::
to

:::
the

::::::::
coseismic

:::::::::::
deformation

::::
can

::
be

:::::::::
important

::
in
::::

the
:::::::
presence

:::
of

:::::
steep

::::::
slopes

::
in

:::
the

::::::::::
bathymetry

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Iwasaki, 1982; Tanioka and Satake, 1996; Dutykh et al., 2012),

:::
or

::
in

:::::::
shallow

::::::::::
earthquakes

::::::::
resulting

::
in

:::
an

::::::::
additional

:::::
uplift

::
in

:::
the

::::::::::
accretionary

:::::
prism

:::::::::::::::::::::::::::::::
(Seno, 2000; Tanioka and Seno, 2001)

:
,
:::
we

::::::
include

:::
and

:::::::::::
demonstrate

:::
the

::::::::
treatment

::
of

::::
both

::::::::
horizontal

:::
and

:::::::
vertical

:::::::::::
contributions

:::
for

:::::::
different

:::::::::
subduction

:::::
zone

::::::::::
earthquakes,

::::::::::
particularly

::
in

:::
the

:::::::
presence

::
of

:::
the

:::::::
oceanic

:::::
trench

:::::
slope

:::
and

:::
the

::::::::::
accretionary

::::::
wedge.90
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The paper is structured a
::
as follows: first, for simplicity, we tackle the problem in one dimension (Section 3). We inves-

tigate the convergence of the integral, defining the analytical error when truncating its domain. We then identify the optimal

quadrature formula in terms of efficiency and accuracy. Moving to the two dimensional case, we describe a tool based on the

idea of a pre-computed database of filtered unit
::::::
unitary

:
initial conditions. Such conditions, functions of the local sea depth,

can be linearly combined to obtain a discretization of any sea floor
:::::::::
reconstruct

:::
any

:::::::
seafloor

:
displacement (Section 4). Finally,95

to validate our approach, we test our algorithm on the Central Kuril earthquake doublet, a megathrust and an outer-rise event,

occurred in late 2006 and early 2007 (Section 5), comparing our results with other studies addressing a similar problem (Nosov

and Kolesov, 2011, 2009; Rabinovich et al., 2008).

2 Unit tsunamigenic source: numerical solution in one dimension
:::::::
Tsunami

::::::::::
generation

::::::::
problem

:::
for

:
a
:::::
static

::::
and

::::::::::::
instantaneous

:::::::
seafloor

:::::::::::
deformation100

:::
The

:::::::::::
deformation

::
of

:::
the

:::::::
seafloor

:::::::
induced

:::
by

::
an

:::::::::
earthquake

::
is
::::::::::

transmitted
:::::::
through

:::
the

:::::
water

:::::::
column,

:::::::
causing

:::
the

:::
sea

:::::::
surface

::::::::::
perturbation,

::::::
which

::
is

:::
the

::::::::
initiation

::
of

::
a
:::::::
tsunami.

:::::
Here,

:::
we

:::::::
assume

::::
that

:::
the

:::::::::
amplitude

::
of

:::
the

:::::::
seafloor

:::::::::::
deformation

::
is

:::::
much

::::::
smaller

::::
than

:::
the

:::::
water

::::::
depth.

::
If

:::
the

::::
flow

::
is
::::::::::

irrotational
::::
(i.e.,

:::::
lacks

:::::::::
vorticity),

:::
the

:::::::
velocity

::::::::::
v(x,y,z, t)

::
of

:::::
each

::::
fluid

:::::::
particle

:::
can

::
be

:::::::::
expressed

::
as

::::
the

:::::::
gradient

::
of

::
a
:::::
scalar

:::::::
velocity

::::::::
potential

::::::::::
ϕ(x,y,z, t).

::::::
Given

:::
the

:::::::::
additional

::::::::
constraint

::::
that

:::
the

:::::
fluid

::
is

::::::::::::
incompressible

:::
and

::::::::
therefore

:::
has

::::
zero

:::::::::
divergence,

:::
the

:::::
scalar

:::::::
velocity

:::::::
potential

:::::
must

:::::
fulfill

::
the

:::::::
Laplace

:::::::
equation

::::::::::::::::
∇2ϕ(x,y,z, t) = 0.105

:::::::
Tsunami

:::::::::
generation

::
is

::::
then

::::::::
described

::
by

:::::::::
specifying

:::::::
suitable

::::::::
boundary

::::::::
conditions

:::
for

::
ϕ

::
at

::
the

:::
top

::::
and

::::::
bottom

::
of

:::
the

:::
sea

:::::
layer.

::
In

:::
this

:::::::
context,

:::
we

:::::::
assume

:::
the

:::
sea

:::::
depth

:::
H0:::::::

remains
::::::::

constant,
::::::
which

::::::
implies

::::
that

:::
the

::::
unit

::::::
vector

::::::
normal

::
to

:::
the

:::
sea

:::::::
bottom

:::::
aligns

::::
with

:::
the

::::::
ẑ-axis.

::
If

:::
the

:::
sea

:::::::
bottom

::::::::::
deformation

::
is

:::::
rapid

::::::
enough

::
it

:::
can

:::
be

::::::::
modelled

:::::::::::
instantaneous

::::
and

:::
the

::::::::
resulting

:::
sea

::::::
surface

::::::::::
deformation

:::
can

:::
be

:::::::::
considered

:::::
static.

:
110

:::::
Under

::::
these

::::::::::
conditions,

::::::
tsunami

:::::::::
generation

::
is

:::::::::
formalized

::
in

:::::
terms

::
of

:::
the

::::
static

::::::::
Laplacian

::::::::
problem

:::::::::::::::::::::::::::
(Nosov and Kolesov, 2009, 2011)

:
:

∇2Φ(x,y,z)
::::::::::

= 0
:::

(1)

Φ(x,y,z)
∣∣∣
z=0

:::::::::::

= 0
:::

(2)

∂Φ(x,y,z)

∂z

∣∣∣
z=H0

::::::::::::::

= η0(x,y)
::::::::

(3)115

:::::
where

::
Φ

::
is
::::::::

obtained
:::
by

:::::::::
integrating

::
ϕ
::::
over

::::
the

:::
sea

::::::
bottom

:::::::::::
deformation

:::::
time.

:::
We

:::::
refer

::
to

::
Φ
:::

as
:::
the

:::::
scalar

::::::::::::
displacement

:::::::
potential.

::::::::
Equation

:::
(2)

::::::::
indicates

:::
that

:::
the

:::
sea

:::::::
surface

:
is
::

at
::::
rest.

:::::::
Finally,

:::
Eq.

:::
(3)

::::::
defines

:::
the

:::::
static

::::::::::
deformation

::
of
:::
the

:::::::
seafloor

:::
η0

::
as

:::
the

::::::
tsunami

:::::::
source.

:::
The

:::
2D

:::
sea

::::::
surface

:::::::::::
deformation

:
is
:::::::::
expressed

::
in

:::::
terms

::
of

:::
the

::::::
vertical

:::::::::
variations

::
of

::
Φ:

:

4



ξ0(x,y) =
∂Φ(x,y,z)

∂z

∣∣∣
z=0

:::::::::::::::::::::

(4)120

::
In

::
an

:::::::::
equivalent

:::::::
manner,

:::
the

:::
1D

:::
sea

::::::
surface

:::::
height

::::::::::
distribution

::
is

:::::
given

:::
by:

ξ0(x) =
∂Φ(x,z)

∂z

∣∣∣
z=0

::::::::::::::::::

(5)

3
::::::::::::
Discretization

::
of

::
a

:::::::::::
tsunamigenic

::::::
source

::::
into

::::::::::
elementary

:::::::::::::
contributions:

:::::::::
numerical

:::::::
solution

::
in

::::
one

:::::::::
dimension

:::
Any

:::::::
seafloor

::::::::::::
displacement

:::
can

:::
be

:::::::::
discretized

::::
into

:::::::::::
"elementary"

:::::::::::::
displacements

::
in

::::
each

::::
cell

::
of

:::
the

::::::::::
calculation

:::::::
domain.

::::
For

::::::::
simplicity

::
in

::::::::
graphical

:::::::::::::
representation,

:::
Fig.

::
1
::::::
shows

::::
only

:::
the

:::::::::
elementary

:::::::::::
displacement

:::
in

:
a
:::::
single

::::
cell

::::
over

:
a
::::

flat
::::::::::
bathymetry,125

::::::::::
representing

:
a
:::::
short

::::
track

:::
D

::
on

:::
the

:::::::
seafloor.

::
In

:::
the

::::
next

::::::::
sections,

:::
the

:::::::
problem

:::
will

:::
be

::::::::::
generalized

::
to

:::
2D,

::::::::::
considering

:
a
:::::::
generic

:::::::::::
displacement

::
on

:
a
:::::::
variable

::::::::::
bathymetry

::
as

:
a
::::::
linear

::::::::::
combination

::
of

:::::
these

:::::::::
elementary

:::::::::::::
displacements.

::::::::
Formally,

::
let

:::
R

::::::
denote

:::
the

:::
set

:::
of

:::
real

::::::::
numbers.

:
We consider a domain D ⊂Rof real numbers

:
,
:::::
being

::
D

::
a
:::::
track

:::
on

:::
the

::::::
seafloor. D is partitioned into Nc sub-intervals {ci}Nc

i=1 of constant length a ∈R and x ∈D is a point in this domain. We may

think of the domain D as a track in an ocean basin, whose points represent geographic coordinates, in which both bathymetry130

and coseismic seafloor deformation are defined (Fig. 1).

Within each cell ci, the sea surface height distribution (which we call also perturbation in the following) due to an instanta-

neous, uniform sea bottom displacement ηi0 , is represented by a box-car function obtained as the difference of two Heaviside

functionsas:

ηi0 =Bi
0

[
θ(x+ a)− θ(x− a)

]
(6)135

:::::
where

:::
Bi

0::
is

:::
the

:::::::::
amplitude

::
of

:::
ηi0.

::::::::
Equation

:::
(6)

::
is

::::
used

::
to
:::::::

exploit
::
an

:::::::::
analytical

:::::::
solution

::
to

:::
Eq.

::::
(3). The corresponding sea

surface perturbation
:::::
height

:::::::::
distribution

::::::
(which

:::
we

::::
call

:::
also

:::::::::::
perturbation

::
in

:::
the

:::::::::
following) is given by (Nosov and Sementsov,

2014):

ξi0(x) =
2Bi

0

π

∞∫
0

cos(mx)sin(ma)

mcosh(mHi
0)

cos(mx)sin(ma)

mcosh(mHi
0)

::::::::::::::

dm (7)

where Bi
0 is the amplitude of ηi0 and Hi

0 the sea-depth in ci. Equation (7) is valid for a flat bathymetry Hi
0. However, Nosov140

and Sementsov (2014) demonstrated its validity also for an arbitrary sloping bathymetry.

The variable of integration m represents the spatial wavenumber and quantifies the number of oscillations of the integrand

function in the domain of integration. The term F (k,H0) =
1

cosh(mHi
0)

5



x

z

ξ0

η0

D

H0

B0

a

Figure 1. Schematic diagram of the problem in one dimension. The
:::
(flat)

:
domain D is partitioned into cells of equal length a. In each cell,

B0 is the amplitude of the coseismic deformation η0, modeled as the difference of two Heaviside functions. In the figure, only an upward

displacement in several adjacent cells with a constant water depth H0 is sketched together with its effect ξ0 at the sea surface. In reality,

faulting would displace several cells either upward or downward in a more complex manner, and the water depth H0 varies from place to

place.

:::
The

::::
term

:::::::::::::::::::
F (k,H0) =

1
cosh(mHi

0)
appearing in Eq. (7) is a "Kajiura-type" filter, which tends toward zero as mHi

0 >> 1
::::::::
mHi

0 ≫ 1,

indicating that small wavelengths (λ <<Hi
0:::::::
λ≪Hi

0) are effectively attenuated. The free surface perturbation ξi0 is also smooth,145

as it is derived analytically from the Laplacian problem
::::
(1-3). Each cell ci is associated to what we will call, from now on, the

Local Extended Domain (LED):

lie =
(
− 4Hi

0 −
a

2
, 4Hi

0 +
a

2

)
(8)

whose extension depends on the sea depth. The initial condition given by Eq. (7) is solved numerically in every point xp ∈ lie.

For all the points outside the LED (8), the free-surface perturbation vanishes asymptotically (Nosov and Kolesov, 2011).150

The unit initial conditions ξi0 generated by the bottom deformation within each segment ci must be later combined to obtain

the final sea surface perturbation (the tsunami initial condition) over the total domain D. In this section, we examine a unit cell

6



ci within the domain D, where the deformed seafloor (6) perturbs the free surface as in Eq. (7). For simplicity, we temporarily

exclude the superscript i when considering only one cell.

To solve the integral numerically, we follow these steps:155

1. Restrict the wavenumbers involved in the integration to a limited subset [0,U ], where U is determined through tolerance

tests for various parameterizations of the model (7);

2. Identify the optimal quadrature method by comparing different solutions in terms of accuracy and computational effi-

ciency.

More detailed informations are provided in
::::::
Section

:
1
:::
of the Supplementary Materials.160

3.1 Corner wavenumber for truncation

We seek for upper-limiting the integration interval to a finite value of U enabling us to solve the integration only for a reduced

subset of wave numbers. Equation (7) can be restated as:

ξ0(x) =
2B0

π

(
aϵ+O(ϵ3)+

U∫
ϵ

cos(mx)sin(ma)

mcosh(mH0)

cos(mx)sin(ma)

mcosh(mH0)
::::::::::::::

dm+ o(e−
UH0

2 )

)
(9)

This is relevant to save computational time and to determine which wavelengths should be filtered out when transferring165

the sea bottom deformation to the sea surface level. We consider the cell size s ∈ {15,30,60}, where the units are given in

arc-seconds (hereafter referred to as arc-sec). This set of values is commonly adopted when modeling tsunamis. We then take

a set of incremental discrete values for the local depth d ∈ {1 km,2 km, . . . ,8 km}. Each pair (s,d) is associated to a LED (8)

and to a free surface height distribution ξ̂s,d0 (7).

:::
Due

::
to
:::
the

:::::::
product

::
of

::
a

:::::
cosine

::::
and

:
a
::::
sine,

:::::::::
oscillating

::
at

:::
two

:::::::
distinct

:::::::::::
characteristic

::::::::::
frequencies,

:::
the

::::::::
integrand

:::::::
function

::
in
::::

Eq.170

::
(9)

:::::::
exhibits

:::::::::
significant

:::::::::::
oscillations,

::::::
calling

:::
for

:::
the

:::
use

::
of

:::
an

:::::::
adaptive

:::::::::
composite

:::::::
formula

:::
for

:::
its

:::::::::::
computation.

::::
The

::::
goal

::
of

::
a

::::::::
composite

::::::::
adaptive

::::::
formula

::
is
:::
to

::::::::
optimally

:::::::
partition

:::
the

:::::::
support

:::
into

::::::::::::
sub-intervals,

::::::
whose

::::::
number

::::
and

:::::
length

::
is
:::::::::::
dynamically

::::::
selected

:::
by

:::
the

:::::::::
algorithm.

::::
The

::::::::::
sub-interval

:::::
length

:::::::::
decreases

::
in

:::::
those

::::::
portion

::
of

:::
the

:::::::
support

:::::::
domain

:::::
where

::
it

::
is

::::
hard

::
to

:::
get

::
a

::::
good

::::::::
accuracy,

::::
and

::::::::
increases

:::::::::
otherwise.

:::::::::
Numerical

:::::::::
integration

::
is

::::
then

::::::::
executed

::
in

::::
each

::::::::::
sub-interval

:::
of

:::
the

:::::::
support,

::::
and

:::
the

::::
final

::::
result

::
is
::::::::
obtained

::
by

::::::::
summing

:::
the

:::::::::::
contributions

::
of

:::
the

:::::::
solution

::::::
within

::::
each

::::::::::
sub-interval.

:
175

We employ a Global Adaptive Quadrature (Shampine, 2008), hereafter identified by the acronym GAQ, as the reference solu-

tion for each of the 3×24 combinations of parameters s and d. For
:::
The

:::::
GAQ

::::::::
algorithm

::
is

:
a
:::::::::
vectorized

::::::
routine

:::
that

::::::::::::
automatically

:::::::::
determines

:::
the

::::::
number

:::
of

::::::::::
sub-intervals

:::
for

:::::::
integral

::::::
support

::::::
based

::
on

:::::::::::
user-defined

:::::::
absolute

:::
and

:::::::
relative

:::::::::
tolerances,

::::
both

:::
set

::
to

:::
10-8

:::
for

::::
our

:::::::::::
experiments.

:::::
Given

::::
that

:::
the

:::::::
integral

:::::::
support

::
in
::::

Eq.
:::
(7)

::
is
:::::::
infinite,

:::
the

:::::
GAQ

:::::::::
algorithm

::::::::
performs

:::
an

::::::::
algebraic

::::::::::::
transformation

::
to

::::::
convert

:::
Eq.

:::
(7)

::::
into

::
an

:::::::::
equivalent

::::::
integral

:::
on

:
a
:::::
finite

:::::::
interval,

::::::
though

:::
this

::::::
process

::
is
:::
not

::::::
visible

::
to

:::
the

::::
user.

:::
To180

::::
apply

::::
this

:::::::::::::
transformation,

:::
the

::::::::
integrand

::::
must

::::
have

:::::
weak

::::::::::
singularities

::
at

:::
the

:::::
finite

:::::::
endpoint

::::
and

:::::
decay

::::::
rapidly

::
at

::::::
infinity.

::::::
These

::::::::
conditions

:::
are

:::::::
verified

::
in

::::::
Section

:::
1.1

:::
of

:::
the

::::::::::::
Supplementary

:::::::::
Materials.
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Figure 2. To identify the wavenumbers that play a substantial role in transferring seafloor deformation to the sea surface, we assess the toler-

ance by solving Eq. (9) with varying upper limits in the support of the integral. Additionally, we consider different model parameterizations,

such as cell size and sea depth.

:::
The

:::::::::
truncation

::::
error

:::::::::
o(e−

UH0
2 )

::
in

:::
Eq.

:::
(9)

:::::::
suggests

::::
that

:::
the

:::::
upper

::::
limit

::
U

::::::
should

:::
be

::::
given

::
in
:::::
terms

:::
of

:::
the

::::::::
sea-depth

:::
H0,

::::
and

::
in

::::::::
particular

:::::
being

::::::::
inversely

::::::::::
proportional

::
to

::
it.

:::::::::
Therefore,

:::
for

:
each depth value d, we then consider a range of possible upper

limitsuj,d =
j
d , where j ∈ {0.5,1,1.5, . . . ,5} for the support of the integral as in Eq. (9). ,

::::::
where

::::
each

:::::::
element

::
is

::::::
defined

:::
as185

::::::::
Uj,d =

j
d ,

::::
with

::::::::::::::::::
j ∈ {0.5,1,1.5, . . . ,5}.

:
Each of the 3×24×10 combinations of cell size s, water depth d and integral UL (upper

limit ) uj,d:::::
upper

::::
limit

:::::
(UL)

::::
Uj,d:

is associated to a sea height distribution ξs,j,d0 within a truncated support, according to Eq.

(9), which is solved numerically making use of GAQ as before
:::::
within

:
a
::::::::
truncated

:::::::
support

:::::::
[ϵ,Uj,d]. For each j, the results of

the truncated integration are compared to the reference solutions in terms of Maximum Absolute Error (MAE):

eMAE
::::

s,d,j =maxx

∣∣∣ξs,d,j0 (x)− ξ̂s,d0 (x)
∣∣∣190

:::::
which

:::
sets

:::
the

:::::::
absolute

::::::::
tolerance

:::::
when

::::::::::::
reconstructing

:::
the

:::::
initial

:::
sea

::::::
surface

::::::
profile

:::::
using

:
a
::::::
limited

:::::::
subsets

::
of

::::::::::::
wavenumbers.

8



The upper limit for the support of the integral in Eq. (9) can be defined depending on the desired tolerance level for a specific

cell size. It can be seen from Fig. 2 that, given uj,d::::
Uj,d, tolerance generally increases when considering longer cells and

shallower water, with some exceptions (see for instance the third graph corresponding to a cell size of 60 arc-sec). However,195

for all the cell sizes and given a depth value, the tolerance decreases if uj,d ::::
Uj,d increases, as it can be expected from the

theoretical error. For all the combination of parameters, the maximum tolerances are less than 50 %
:::
cm and approach zero for

uj,d ≥ 3
d:::::::
Uj,d ≥ 3

d . However, if the support of the integral contains few wavenumbers, the tails of its numerical solution may

not be stable
:::
(see

:::::::
Section

:::::
1.1.1

::
in

:::::::::::::
Supplementary

:::::::::
Materials). To avoid this problem, we finally set the upper bound of the

integral to be used in Eq. (9) as U = 5
H0

, for all the possible values of H0, which is aligned with the convergence condition200

requiring U > 2
H0

.
::
In

:::::::::
particular,

:::::::
choosing

:::::::
U = 5

H0:::::
gives

:
a
:::::::::
truncation

::::
error

:::::::::
o(e−

UH0
2 )

::
in

:::
Eq.

:::
(9)

::
of

:::
the

:::::
order

::
of

:::
0.5

:::
%,

:::::
which

::
is

:::::::::
considered

::::::::
sufficient

::
for

::::::::
practical

:::::::::::
applications. The direct consequence is that all the wavelengths λ < H0

5 will be filtered out

in transferring seafloor deformation to the sea surface.

3.2 Optimal quadrature method for numerically solving the integral

::
In

:::
this

:::::::
section,

:::
we

:::::::
develop

::
an

::::::::
adaptive

::::::
scheme

:::::
from

:::::::
scratch,

::::::::
optimized

:::
for

::::::::
handling

:::
the

::::::::
integrand

:::::::
function

:::
in

:::
Eq.

::::
(9).

::::
This205

:::::::
involves

:::::::::::
automatically

::::::::::
determining

:::
the

:::::::
number

::
of

:::::::::::
sub-intervals

:::
for

:::
the

:::::::
integral

::::::
support

:::::::::::
transparently

:::
for

:::
the

::::
user

::::
and

::::::
testing

:::
two

::::::::
different

:::::::::
quadrature

::::::::
formulas

::
to

:::::::
identify

:::
the

:::::
most

:::::::
accurate

::::
and

:::::::
efficient

::::
one.

::::::
While

:::
we

:::::::::
introduce

::
in

::::
this

::::::
section

::::
two

:::::::
different

:::::::::
quadrature

::::::::
formulae,

:::
we

::::::
exploit

:::
the

::::::
results

::::::::
discussed

::
in

:::
the

:::::::
previous

:::::::
Section

:::
3.1,

:::::::
U = 5

H0:::::
using

:::
the

:::::
GAQ

:::
and

:::
we

:::
set

:::::::
ϵ= 10-9.

:

Since both sine and cosine cannot be greater than one, Eq. (9) can be re-stated in a more convenient scaled version:210

ξ0(xp)≃ U
2B0

π

(
aϵ

U
+

1∫
m= ϵ

U

cos(mUxp)sin(mUa)

mUcosh(mUH0)

cos(mUxp)sin(mUa)

mU cosh(mUH0)
::::::::::::::::::

dm

)
(10)

for each point xp in the LED (8) of the cell. From Section (3.1), U = 5
H0

and we set ϵ= 10-9. It is important to emphasize that

the integration domain,
[
ϵ
U ,1

]
, does not align with the spatial domain (8). The former is associated with the wavenumber and

expresses the physical wavelengths considered when modeling the sea surface after an instantaneous earthquake,
[
H0

5 ,109].
The latter represents the discretization of the seafloor displacement into cells of equal length a. Equation (10) is an approx-215

imation of the seabed deformation to the sea surface within a single cell, whose influence extends to all neighboring cells

within a distance of |4H0| from the center. It should be recalled that the approximation is valid when both the bathymetry and

coseismic displacement vary slowly within such a radius. The integrand function in
::
In Eq. (10)exhibits significant oscillations,

calling for the use of an adaptive composite formula for quadrature computation. The goal of a composite adaptive formula is

to optimally partition the support intervals, with the algorithm dynamically selecting the number of sub-intervals. Numerical220

integration is then executed in each sub-interval of the support, and the final result is obtained by summing the contributions of

the solution within each sub-interval. In Eq. (10), the partitioning of the ,
:::
the

:::::::
number

::
of

:::::::::::
sub-partions

::
for

:::
the

:
integral support

should be determined based on the
::::::
number

::
of

::::::::::
oscillations

::
of

:::
the

::::
term

:::::::::::::::::::::::::::::::
g(mK,x,a) = cos(mKx)sin(mKa)

::
at

:::
the

:
numerator

of the integrand function, denoted as g(mK,x,a) = cos(mKx)sin(mKa). This function represents .
::::
The

:::::::
function

:
g
::
is
::::::
highly

9



:::::::::
oscillatory,

:::::::
because

:
it
::
is the product of a cosine and a sine,

:::
each

:
oscillating at two distinct characteristic frequencies, depending225

on the point
:
.
::::::::::
Specifically,

:::
the

:::::::::
individual

:::::::::
frequencies

:::
are

:::::::::
w1 =

Uxp

2π :::
for

:::
the

::::::
cosine

:::
and

::::::::
w2 =

Ua
2π:::

for
:::
the

::::
sine,

::::::
where xp and

::
is

::
the

::::::
spatial

:::::
point

::
in

:::
the

::::
LED

:::
(8)

::::::
where

:::
the

::::::
integral

::::
(10)

::
is

::::::::
evaluated

:::
and

::
a
::
is the cell lengtha. Achieving this requires dividing

the integral support into a number of points regulated
:
.
:::::::::
Therefore,

:::
the

:::::::
number

::
(or

::::::::::
frequency)

::
of

:::::::::
oscillations

:::
of

:
g
::
is

:::::::::
controlled

by the maximum frequency of oscillation
:::::::
between

:::
w1 :::

and
:::
w2,

::::
and

:
is
:::::::
defined

::
by:

wmax = Umaxmax
:::

(xp

2π
,
a

2π

)
(11)230

Integration is a loop over the points xp in LED (8). At each iteration, the free surface deformation is found by solving

::::::::
According

:::
to

:::
the

:::::::
Nyquist

::::::::
theorem,

:::
the

:::::::
function

::
g
::::
can

::
be

:::::::::
accurately

::::::::::::
reconstructed

:::::::
without

:::
any

::::
loss

:::
of

::::::::::
information

::
if

::
it

::
is

:::::::
sampled

::
at

:
a
::::::::
frequency

::::
that

::
is

::
at

::::
least

:::::
twice

::
the

:::::::
highest

::::::::
frequency

::
of

:::
the

::::::::
function.

:::::::::
Therefore,

::::::
2wmax:

,
::::
with

:::::
wmax:::::::

defined
::
as

::
in

Eq. (10) into a number

Nm =max
[
2wmax,Ns

]
235

of partitions
:::
11)

::::
gives

:::
the

:::::::::
minimum

::::::
number

:
of

::::::::::
sub-intervals

:::
for

:::
the

::::::
support

::
of

:
the integral support, according to the Nyquist

theorem. The variable
::
in

:::
Eq.

:::::
(10).

::::::::
However,

::
if

:::::
wmax::

is
:::

to
:::::
small,

:::
the

:::::::::
resolution

:::::
might

:::
be

:::
not

::::::
enough

:::
to

::::::::
accurately

::::::::
describe

::::
some

:::::::
portions

::
of

:::
the

:::::::::
integration

:::::::
domain.

:::
To

:::
best

::::::::
represent

:::
the

::::::::
integrand

::
in

:::
Eq.

::::
(10),

:::
the

:::::::
number

::
of

:::::::::::
sub-intervals

::
for

:::
the

:::::::
integral

::::::
support

:::
is

:::::
given

:::
by:

Nm =max
[
2wmax,Ns

]
::::::::::::::::::::

(12)240

:::::
where

:
Ns is the minimum number of sub-supports needed

:
is
:::

an
::::::
integer

::::
that

::
is
::::::::::
sufficiently

::::
high

:
to properly capture the

sinusoidal cycles
::
all

:::
the

:::::::::
oscillations

:::
of

:
g. This number is assessed by trial and errors over a large number of different model

parametrizations as Ns = 20.
::
At

::::
each

:::::
point

:::
xp ::

in
:::
the

::::
LED

::::
(8),

:::
Eq.

::::
(10)

::
is

::::::
solved

:::::
within

:::::
each

::
of

:::
the

::::
Nm ::::::::::

sub-intervals
:::

of
:::
the

::::::
support

::::::

[
ϵ
U ,1

]
.
::::
The

::::
value

:::
of

::
the

::::
free

::::::
surface

::::::::::
perturbation

::
at
:::
xp ::

is
:::::
found

::
by

::::::::::
aggregating

:::
the

::::::::
individual

::::::
results

::::
from

::
a
:::::::::
quadrature

::::::
formula

::::::
within

::::
each

:::::::::::
sub-interval. Two different quadrature methods are

:::
here

:
compared:245

1. The Gauss-Legendre quadrature with three points (justified by the harmonic nature of the analytical solution to the

problem (10), hereafter called GLQ
:::::::
(Section

:::
2.1

::
of

:::
the

::::::::::::
Supplementary

:::::::::
materials);

2. The Filon-type quadrature, which is well known to be efficient in case of highly oscillating integrands (Filon, 1930;

Iserles, 2004). We will refer to it as FQ .
::::::
(Section

:::
2.2

:::
of

:::
the

::::::::::::
Supplementary

:::::::::
materials).

:

The above-mentioned methodologies are adapted by following Eq. (11) to (12). All the details are presented in the Supplementary250

Materials. The deformed free-surface ξ0 is found for three different cell sizes (15 arc-sec, 30 arc-sec, 60 arc-sec) and for eight

10



Figure 3. The efficiency of the different adaptive quadrature formulas
::::::::::::
Gauss-Legendre

:
(GLQ

:
),

:::
Filon

::
(FQ),

:::
and

:::::
Global

:::::::
Adaptive

::
(GAQ) is

illustrated in the histograms. For each cell size, the computation time, averaged across the eight depth values, is shown.

depth values, ranging from 1 km to 8 km every 1 km. Results are checked against the reference solution (GAQ) as in Section

(3.1)
::
3.1. We compare the algorithms in terms of their efficiency (execution time) and accuracy. The efficiency is measured

considering the average execution time of three runs. The accuracy is provided as Root Mean Squared Error (RMSE), averaged

over all the considered sea-depths.255

We find that the RMSE between the various numerical solutions are comparable: 3.45 ×10-4 for 15 arc-sec, 4.81 ×10-4 for

30 arc-sec and 4.64 ×10-4 for 60 arc-sec. The practical difference between the two algorithms lies in the execution time, which

is roughly one order of magnitude faster for GLQ than for adapted FQ (Fig. 3).
:::
For

::::::::::
comparison,

:::
the

::::::::
execution

::::
time

:::
for

:::::
GAQ

::
is

:::::
0.319

::::::
seconds

:::
for

:::
15

::::::::::
arc-seconds,

:::::
0.331

:::::::
seconds

:::
for

:::
30

::::::::::
arc-seconds,

::::
and

:::::
0.357

:::::::
seconds

:::
for

::
60

:::::::::::
arc-seconds,

:::::
which

::
is
:::::::
slightly

:::
less

::::
than

:::
FQ

:::
and

:::::
about

:::
an

:::::
order

::
of

:::::::::
magnitude

::::
more

::::
than

::::::
GLQ.

::::
Note,

::::::::
however,

::::
that

:::
the

::::
GAQ

::::
and

:::::
Filon

:::::::
routines

::::
used

::::
here

:::
are260

::
the

:::::::
Matlab

::::
ones,

:::::
hence

::::
they

:::
are

::::::::
probably

::::::
already

:::::
more

::::::::
optimised

::::
than

:::
the

:::::
GLQ

::::::
routine

:::
we

:::::::::
developed.

::::
Our

::::::::
preferred

:::::
solver

::
is

:::
then

:::
the

:::::
GLQ.

:

4 The 2D case
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:::
The

:::::::::
integration

:::::
limit

::
U

::::
and

:::
the

::::::
optimal

::::::::::
quadrature

::::::
method

::::::
(GLQ)

:::
for

:::
the

:::
2D

::::
case

::::
are

::::::
chosen

:::::
based

:::
on

:::
the

::::
tests

:::
for

:::
1D.

:::
In

::::::
Section

::::
3.2,

:::
we

:::::::
establish

::::
that

::::
this

::::::::
algorithm

::
is
::::

the
::::
most

:::::::
efficient

:::
for

:::::::::
accurately

:::::::::::::
approximating

:::
the

::::::::::
deformation

:::
of

:::
the

::::
free265

::::::
surface.

::::::
These

:::::
results

::::
can

::
be

::::::::
extended

::
to

:::
the

:::
2D

:::
case

::::
due

::
to

:::::::::
symmetry.

In 2D, the domain D ⊂R2 is discretized into a finite number Nx
c x Ny

c of cells
{
cij
}

having constant area a×b, being a the

extension along x̂, and b the one along ŷ. The subscripts i and j refer to the nodes in the grid along x̂ and ŷ respectively. The

pair of coordinates (x,y) ∈D is a point in the domain. Within each cell cij , the instantaneous, uniform bottom displacement,

is again modeled as the difference of two Heaviside functions as (Nosov and Kolesov, 2011):270

ηij0 (x,y) =Bij
0 [θ(x+ a)− θ(x− a)][θ(y+ b)− θ(y− b)] (13)

The sea surface perturbation given by Eq. (16) in Nosov and Kolesov (2011), can be re-stated directly as approximately

given by:

ξij0 (x,y)≃ U2 4B
ij
0

π2

(
abϵ

U2
+O(ϵ4)+

1∫
ϵ
U

1∫
ϵ
U

cos(Umx)sin(Uma)cos(Uny)sin(Unb)

mnU2cosh(kHij
0 )

cos(Umx)sin(Uma)cos(Uny)sin(Unb)

mnU2 cosh(kHij
0 )

:::::::::::::::::::::::::::::::::

dmdn

)
(14)

where Bij
0 is the residual bottom deformation and Hij

0 is the water depth, taken as positive downward, in the cell cij . The275

variables of integration m and n represent the spatial wave numbers along x̂ and ŷ, respectively. The variable k =
√
m2 +n2

is the modulus of the wave vector. The value of ϵ= 10−9 and U = 5

Hij
0

are set according to the analysis presented in Section

(3.1).

:::
3.1.

:
In two dimensions, the LED is defined by a rectangular area surrounding the cell (Fig. 4) in the Cartesian plane:

pmin =−4Hij
0 −maxmax

:::
(
a

2
,
b

2
) (15)280

pmax = 4Hij
0 +maxmax

:::
(
a

2
,
b

2
) (16)

lxe = pmin, pmin +∆x, pmin +2∆x, . . . , pmax −∆x, pmax (17)

lye = pmin, pmin +∆y, pmin +2∆y, . . . , pmax −∆y, pmax (18)

Numerical solutions for Eq. (14) are computed at each point (xp,yp) within Eq. (15), using Gauss-Legendre quadrature

::::
GLQ

:
with four points. In Section (3.2), we establish that this algorithm is the most efficient for accurately approximating the285

deformation of the free surface. The numerical scheme for its extension to the 2D case can be found in the Supplementary

Materials.
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Figure 4. (Left) A single cell is shown, together with the associated LED. The depth of the water is 3 km in scale. (Right) Two cells and their

associated LEDs are shown. The sea depths are, to scale, 1.5 km for the blue cell and 3 km for the orange cell. The unit contributions to the

total perturbation of the free surface will be superimposed at the intersection of the two LEDs.

4.1 Physical Interpretation

Two experiments, detailed in Fig. 5, are conducted in both 1D and 2D. The amplitude of the sea-floor deformation is kept

constant at B0 = 1 m in both cases. In the 1D scenario, H0 is initially set to 4 km, with varying cell sizes of 450 m, 900 m,290

and 1800 m (approximately 15, 30, and 60 arc-sec, respectively). We then explore the case where the Heaviside function (6)

encompasses typical wavelengths of coseismic deformation. To establish reasonable orders of magnitude, these wavelengths

are set as equivalent to a= w cos(δ), representing the projection of a fault width w onto the horizontal plane through the dip

angle δ. Specifically, we consider a dip δ = 15° for a fault plane having width w = 11 km and δ ∈ {20°,45°} for the one with

w = 27 km, roughly corresponding to moment magnitudes of Mw = 6 and Mw = 7, according to the scaling relations presented295

in Strasser et al. (2010). The initial sea surface height is evaluated through Eq. (10) for each cell length. Figure 5a shows that

the smoothing effect increases as the source size decreases, leading to a progressively lower amplitude and narrower width.

Sources whose extents are much shorter than the sea depth (15 arc-sec, 30 arc-sec and 60 arc-min) are unable to efficiently

uplift the water column. Doubling the source size relative to the sea depth, as in the case of a≃ 11 km, results in an elevation

essentially reproducing the unfiltered bottom deformation at the surface, with a maximum of +0.98 m. If the source length is300

more than four times the local water depth, which is the case of a≃ 19 km and a≃ 27 km, the maximum crest of the water

height matches that at the sea-bottom, and filtering affects only the corner of the boxcar. The experiment is replicated for the

2D case, where the values for a are equivalent to those employed in the 1D scenario, and b is set at half of the corresponding

a values. In Fig. 5b, a segment of the free-surface disturbance along the x̂ axis is depicted, corresponding to the blue line in

the top panel of Fig. 5. Simultaneously, Fig. 5c illustrates the profiles acquired along the ŷ axis, mirroring the scenario of the305

magenta plane. The behavior of the model (Eq. 14) aligns with the 1D scenarios for the tested source sizes: a broader extension

of the Heaviside function describing coseismic deformation (Eq. 13) results in a less pronounced smoothing effect on the free

13



surface deformation. Nevertheless, in the 2D case, the maximum free surface elevation values obtained are slightly lower than

those in the 1D case: +0.01 m for a= 450 m and b= 225 m, +0.03 m for a= 900 m and b= 450 m, +0.1 m for a= 1800 m

and b= 900 m, +0.83 m for a≃ 11 km and b≃ 5 km, +0.97 m for a≃ 19 km and b≃ 10 km and +0.99 m for a≃ 26 km and310

b≃ 13 km. Figure 5d illustrates the scenario where the 1D unit source length is held constant at a=≃ 11 km as before, with

varying depths of 1 km, 4 km and 8 km respectively, corresponding to the average depths of the Mediterranean Sea, the Pacific

Ocean, and trench axes in subduction zones. As the sea depth increases, the sea surface uplift diminishes, accompanied by an

expansion in the width of the water height distribution. For H0 = 1 km, the bottom deformation is almost perfectly replicated

on the surface in both shape and elevation. With H0 = 4 km, the uplift reaches a maximum of +0.98 m, and the deformation315

shape is smoothed. When the sea-depth is 8 km, the peak is +0.84 m, and the elevation is redistributed over the tails. A similar

trend is observed in Fig. 5e and in Fig.5f, representing two sections of a 2D free-surface perturbation along x̂ and ŷ axes,

respectively. For H0 = 1 km, results align with the 1D case. The maximum crest is reduced to +0.83 m for H0 = 4 km, and

to +0.5 m for H0 = 8 km, indicating that the lateral extension of the coseismic deformation plays a crucial role with varying

sea-depths. The findings indicate that the damping level of the 2D filter is closely related to the ratio of wavelengths in the x̂320

and ŷ directions. Specifically, the shorter the deformation is in one direction, the more the smoothing will be pronounced in the

other direction. In the Supplementary Materials, we provide a comparison between the scenarios presented in this section and

the outcomes derived from the application of a Kajiura-type filter with different parameterizations of the coseismic deformation

and sea-depth values. Additionally, we present the 2D shapes of the free-surface perturbations corresponding to the 1D sections

depicted in Fig. 5 (b,c,e,f).325

4.2 How to construct a local database of unit smoothed initial conditions for tsunami propagation

The mathematical model proposed by Nosov and Kolesov (2011), along with its equivalent scaled version presented in Eq.

(14), is fully characterized by three parameters: the sizes a and b of the rectangular cells by which the domain under study

has been discretized and the water depth Hij
0 within each cell cij . We note that the amplitude Bij

0 of the bottom deformation

(Eq. 13) serves in Eq. (14) as a multiplicative constant outside the integral. This observation suggests that Eq. (14) can be330

independently solved for each cij ∈D. Individual solutions can be derived depending solely on the water depth Hij
0 inside the

cell and the linear dimensions a,b of the cell itself. Without loss of generality, we can set Bij
0 = 1 within each cell.

The results, each representing a scaled, filtered free surface deformation, can be stored in a repository to be used as a database

of unit sources which can be linearly combined to approximate the tsunami initial condition due to any sea bottom deformation

(Fig. 4). Assuming sea depth as constant within a cell, Eq. (14) is an analytical solution to the Laplace equation
:::::::
problem

::
in

:::
Eq.335

:::::
(1)-(4)

:
for the scalar potential of fluid velocity

::::::::::
displacement. Since the Laplace operator is linear, the superposition principle

allows to linearly combine elementary contributions. We designed
:::::
design

:
an algorithm, from now on identified by the acronym

LST (Laplacian Smoothing Tool).

A pseudo-code of the LST algorithm, along with its 1D version, is provided in the Supplementary Materials. The LST Bash

and Python scripts are also provided (see Code and data availability).340
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1D Case. 2D Case (section along x̂). 2D Case (section along ŷ).

1D Case. 2D Case (section along x̂). 2D Case (section along ŷ).

Figure 5. The problem in two dimensions is illustrated in the upper panel. Considering a rectangle of length a and width b, the
:::
The

:
coseismic

deformation η0 ,
:
is
:
modelled as described in Eq. (13),is defined with

::::
given

:
a
:::::
length

::
a,

:
a
::::
width

:
b
:::
and

:
an amplitude B0 = 1 m. This deformation

leads to the uplift of the sea surface, causing the perturbation ξ0. Panels (a) and (b) show the 1D perturbations of the free surface, obtained by

solving Eq. (10), considering a constant sea depth and a constant cell length, respectively. Panels (b), (c), (e) and (f) show profiles extracted

from equivalent 2D cases, evaluated through Eq. (14), along two perpendicular planes (shown in the top panel).
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5 Test on real events

5.1 The tsunamigenic earthquakes in Central Kuril Islands

In the late 2006 and early 2007, two large earthquakes occurred near the Kuril Trench (Fig. 6). Both the events triggered tsunami

waves that spread across the Pacific Ocean and were detected by numerous DART buoys, tide gauges, and bottom pressure

sensors in the far-field. There were no coastal stations in the near-field, but they were located at least 500 km away from the345

source (Fujii and Satake, 2008; Rabinovich et al., 2008; Tanioka et al., 2008; Nosov and Kolesov, 2009, 2011). The November

15, 2006 had a a moment magnitude of 8.3 (CMT) and its hypocenter was located at the interface between the subducting

Pacific and the Okhotsk Plates, at coordinates 46.592 °N, 153.266 °E (USGS). A second earthquake followed approximately

two months later, on January 13, 2007. The earthquake was an outer-rise with a normal fault mechanism. The CMT algorithm

estimated a moment magnitude Mw = 8.1. The hypocenter was situated along a high-angle fault, beneath the trench slope, at350

coordinates 46.243 °N, 154.524 °E (USGS).

We consider here for both events the slip distributions on planar faults published in Lay et al. (2009) (Fig. 6). The slip model

for the 2006 event is based on the inversion of teleseismic P-waves. The slip model for the 2007 event relies on the inversion of

teleseismic P and SH waves. Two different potential fault plane orientations have been identified, one northwest dipping and

the other one southeast dipping. The data did not allow to conclusively determine a preferred plane, leading to the consideration355

of both orientations.
::::::::
According

:::
to

::::::::::::::
Lay et al. (2009),

:::
the

:::::
2006

:::::
event

:::::::
ruptured

::
at

:
a
:::::

very
::::::
shallow

::::::
depth.

:::
As

:::
for

:::
the

::::
2007

::::::
event,

::
the

:::::
exact

:::::::
position

::
of

:::
the

::::
slip

::
in

::::::
relation

:::
to

:::
the

:::::::::
bathymetry

::
is

:::::::::
uncertain.

::::::::
However,

:::
for

::::
both

::::::
events,

::::
there

::
is

:::
no

:::::::
evidence

::::
that

:::
the

::::::
rupture

::::::
reached

:::
the

::::::::
seafloor.

For the three slip models, we compute the three-dimensional coseismic deformation resulting from each subfault in which

the fault plane is partitioned as a vector η0 = (η0x,η0y,η0z), where η0x and η0y denote deformations in the horizontal direc-360

tions, modeled as in Eq. (13), while η0z represents the vertical component. Subsequently, these individual contributions are

aggregated to form the total sea-floor
:::::::
seafloor deformation.

For all the three fault plane geometries, we consider two different models to test the LST algorithm.

The first one is η0z ,
:::::::
obtained

:::::::::
combining the vertical components of the coseismic deformation produced by each subfault

(Fig. 6). The second one, η0z + η0x
∂H0

dx + η0y
∂H0

dy , accounts for the impact of the horizontal movement of a sloping bottom365

combined with the vertical component. The horizontal movement, particularly on steep slopes, such as that of the Kuril Trench,

has been identified as a significant factor in generating seismotectonic tsunamis (Iwasaki, 1982; Tanioka and Satake, 1996;

Tanioka and Seno, 2001). Following the notation in Tanioka and Seno (2001), the latter is identified hereafter as Model A and

is equivalent to Eq. (2) in Tanioka and Satake (1996).

Only for the 2006 megathrust event, we consider also the Model B proposed in Tanioka and Seno (2001), which is a proxy for370

the inelastic dislocation of the sediments within the accretionary wedge, due to the movement of the corresponding backstop.

This model is given by η0z +(η0x
∂H0

dx +η0y
∂H0

dy ) h
w , with h and w representing the height of the backstop and the width of the

sediments in the wedge, respectively. For Model B, specific values are chosen, such as h= 8 km and w = 20 km, which are to

be taken as orders of magnitude derived from the structural and tectonic sections presented in Qiu and Barbot (2022).

16

https://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT5/form?itype=ymd&yr=2006&mo=11&day=15&oyr=2006&omo=11&oday=15&jyr=1976&jday=1&ojyr=1976&ojday=1&otype=nd&nday=1&lmw=8.3&umw=8.3&lms=0&ums=10&lmb=0&umb=10&llat=-90&ulat=90&llon=-180&ulon=180&lhd=0&uhd=1000&lts=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0
https://earthquake.usgs.gov/earthquakes/map/?currentFeatureId=usp000exfn&extent=-89.61433,-270&extent=89.60957,630&range=search&timeZone=utc&settings=true&search=%7B%22name%22:%22Search%20Results%22,%22params%22:%7B%22starttime%22:%222006-11-15%2000:00:00%22,%22endtime%22:%222006-11-15%20%2023:59:59%22,%22minmagnitude%22:8.3,%22maxmagnitude%22:8.3,%22orderby%22:%22time%22%7D%7D
https://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT5/form?itype=ymd&yr=2007&mo=01&day=13&oyr=2007&omo=01&oday=13&jyr=1976&jday=1&ojyr=1976&ojday=1&otype=nd&nday=1&lmw=8.1&umw=8.1&lms=0&ums=10&lmb=0&umb=10&llat=-90&ulat=90&llon=-180&ulon=180&lhd=0&uhd=1000&lts=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0
https://earthquake.usgs.gov/earthquakes/map/?currentFeatureId=usp000f2ab&extent=-89.61433,-382.5&extent=89.60957,742.5&range=search&timeZone=utc&search=%7B%22name%22:%22Search%20Results%22,%22params%22:%7B%22starttime%22:%222007-01-13%2000:00:00%22,%22endtime%22:%222007-01-13%2023:59:59%22,%22minmagnitude%22:8.1,%22maxmagnitude%22:8.1,%22orderby%22:%22time%22%7D%7D


152°E 154°E 156°E
44°N

46°N

48°N

2006

(a)

152°E 154°E 156°E

2007 (NW)

(b)

152°E 154°E 156°E

2007 (SE)

−10000 −8000 −6000 −4000 −2000 0

Bathymetry

m

(c)

Figure 6. The fault planes (Lay et al., 2009) and contour lines depicting vertical coseismic deformations (with a 0.25 m interval) for seismic

events in the Central Kuril Islands during late 2006 and early 2007 are presented. These deformations are calculated using the Okada (1985)

algorithm. In the case of the outer-rise event (early 2007), two distinct slip models are taken into account, as shown in panels (b) and (c).

Additionally, the epicenters of the earthquakes, sourced from the USGS catalogue, are marked for reference.

A single database of smoothed unit sources, spanning from 152 °E to 157 °E in longitude and from 44 °N to 49 ° N in375

latitude, is constructed and encompasses 300 × 299 smoothed source elevation values, as detailed in Section (4)
:
4. For this

application, we use the bathymetry model SRTM30+ (Becker et al., 2009) down-sampled at 1 arc-min.

The results for the 2006 event are illustrated in Fig. 7. The sea bottom deformation induced by the vertical component (Fig.

6a) spans from a maximum subsidence of -0.81 m to a maximum uplift of +2.80 m (Fig. 7a).

The output from LST yields an elevation of +2.66 m and a subsidence of -0.77 m (Fig. 7d). The magnitudes are, in modulus,380

slightly higher than those reported by Nosov and Kolesov in 2011 (+2.55 m upwelling and -0.58 m downwelling) but signifi-

cantly higher than the results obtained by Rabinovich et al. (2008) using a 3D implementation of the Laplace problem for the

same case (+1.9 m uplift). These discrepancies in the final water height may be attributed to the different slip and bathymetric

models used. The horizontal component substantially displaces the seafloor. In the unfiltered Model A, a peak elevation of
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Figure 7. Results for the tsunamigenic earthquake occurred on November 15, 2006. The first column depicts the sea-surface distribution

arising from a vertical bottom movement. The last two columns present the results obtained with the contribution of the horizontal bottom

displacement according to Model A and Model B in Tanioka and Seno (2001). Panel (a) depicts the transect AB where 1D profiles for all the

six models have been considered. Panels (g), (h) and (i) show how the simple differences between the unfiltered and filtered initial conditions

are spatially distributed.
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Figure 8. The transect AB under consideration is depicted in Fig. 7a. The upper panel illustrates the bathymetric profile. In (a), the profiles

are derived from the initial conditions shown in Fig. 7 (a, d, g), taking into account only the vertical component. In (b), the profiles are

obtained from the initial conditions in Fig. 7 (d, e, h), incorporating the influence of the horizontal component through Model A. Lastly, in

(c), the profiles are extracted from the initial conditions in Fig. 7 (c, f, i), considering the effect of the horizontal component through Model

B.

+5.64 m and a downwelling of -1.80 m are observed in the deformation field obtained through the traditional approach (Fig.385

7b). The application of LST results in a maximum upward movement of +5.37 m and a minimum downfall of -1.70 m (Fig.

7e). The deformation computed through Model B shows a systematically lower maximum crest than in Model A. In projecting

the horizontal deformation onto the vertical plane, the deformation extent in Model B is regulated by the ratio between the

backstop height (h) and the width of the accretionary wedge (w), expressed as h
w . Depending on the relative values of the two

parameters, particularly when w is significantly higher than h, as in this case, this ratio may lead to a damping effect on the390

contribution from the horizontal component of deformation. The maximum unfiltered uplift for Model B amounts to +3.90

m, lowered to +3.73 m by LST, while the maximum unfiltered depression measures -1.19 m, reduced to -1.12 m when our

algorithm is applied (Fig. 7, panels c and f). The last row of Fig. 7 ) depicts the spatial distributions of differences between

the unfiltered and the filtered sea surface height, for all the three considered models. Major differences are concentrated in the

proximity of the land, in very shallow waters and towards the Trench side (see Fig. 7 for visualizing the bathymetric changes).395

For the vertical component η0z , the maximum differences in uplift and subsidence reach 0.94 m and 0.31 m, respectively (Fig.
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7g). For Model A, a significant maximum variation of 1.85 m in elevation and of 0.61 m in depression is observed (Fig. 7h).

Similarly, for Model B, the maximum deviation for the positive deformation is 1.30 m and, for the negative one, 0.42 m. The

LST appears thus to smooth about three-times more the uplifted sea surface than the subsided one for this event. Figure 8
::
in

::::
uplift

::::
and

:::::::::
subsidence

:::
are

::::::::
observed

::
in

:::::
deep

::::::
waters

::::::
towards

::::
the

::::::
trench,

::::::::::
consistently

::::
with

:::
the

::::::::
synthetic

:::::
cases

::::::
shown

::
in

::::
Fig.

::
5.400

:::
The

:::
sea

:::::
depth

::
in

:::
the

::::
area

::::::::
interested

::
by

:::
the

::::
high

::::::::::::
wavenumbers

:::::::
damping

::::::
ranges

::
in

:::
fact

:::::
from

:
3
:::
km

::
to

::
7

:::
km,

::
as

::
it

:::
can

::
be

::::
seen

:::::
from

:::
Fig.

::
6.

:::::::
Another

::::::
insight

::
is
::::::::
provided

:::
by

:::
Fig.

:::
8,

:::::
which

:
shows the 1D profiles along the transect AB depicted Fig. 7a for all the

nine models. However, it is interesting to note that all the three unfiltered profiles (resulting from the vertical-only coseismic

deformation, Model A and Model B) exhibit the three distinct peaks, that are smoothed by the filtering process, resulting in a

single pronounced peak.405

For the 2007 event, we use only the vertical component (Fig. 6b and Fig. 6c) and the Model A (vertical and projection of

the horizontal), as the earthquake occurred in the oceanic crust, relatively far from the sedimentary wedge. The outcomes for

the northwest dipping fault plane are depicted in Fig. 9 and in Fig. 10. The sea surface perturbation resulting from the vertical

component of the seafloor deformation exhibits a maximum of +0.57 m and a minimum of -5.06 m (Fig. 9a). The application

of our LST algorithm yields a positive elevation of +0.29 m and a negative peak of -2.42 m (Fig. 9c), which is less than half410

the value obtained by translating the seabed deformation to the surface. The filtering effects become more pronounced when

considering all three-dimensional components of displacement with Model A, reducing the maximum uplift from +1.13 m to

+0.56 m and increasing the maximum depression from -10.15 m to -4.86 m (Fig. 9, panels b and d). The northwest-oriented

fault plane, as adopted by Nosov and Kolesov (2011) with a different slip distribution, results in different numerical values, but

their application of the Laplace smoothing algorithm’s produces almost identical results to those of the LST one, consistently415

halving the maximum trough. As for the previous case, we
:::
We show the spatial differences between the unfiltered and the

filtered sea surface perturbation in the last row of Fig. 9. Considering vertical-only coseismic deformation, the maximum

smoothing in free-surface uplift measures 0.93 m, while that in free-surface subsidence is 2.88 m. When Model A is taken into

account, these values are approximately doubled. In particular, the greatest difference observed in uplift is 1.86 m, while in

subsidence it is 5.76 m. For this particular event, the smoothing is about three times greater in subsidence than in the uplift and420

is focused
::
As

:::
for

:::
the

:::::
2006

::::
case,

:::
the

:::::::::
smoothing

::
is
:::::::
focused

:::::
along

:::
the

::::::
trench,

::::
and

::
is

:::::
more

::::::::::
pronounced in the proximity of the

deepest zones of the Trench (see Fig. 6 ).
:::
for

:::::::::
comparison

::::
and

::::
Fig.

:::
10).

:

Findings for the southeast dipping fault plane are presented in Fig. 11 and in Fig. 12.

When replicating the ocean’s bottom deformation caused by the vertical component at sea level (Fig. 6), the negative peak

reaches -1.74 m. Through our approach (LST), this value is heightened to -1.44 m. The positive crest is reduced from +0.47425

m to +0.31 m (Fig. 11, panels a and c). When the horizontal component is taken into account with Model A, the top height is

lessen 0.08 m and the maximum depression 0.32 m (Fig. 11f). The maximum difference for the vertical uplift is 0.83 m, while

the one for the vertical subsidence is 0.11 m (Fig. 11e). Minor maximum deviations are observed for Model A: 0.28 m for the

positive deformation and 0.46 m for the negative deformation (Fig. 11f).
::
d). So, for the southeast dipping scenarios, the effect

of the filter is quite pronounced on the stronger and shorter-wavelength trough only, which is about two times greater than for430
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Figure 9. Results for the tsunamigenic earthquake occurred on January 13, 2007. The fault plane is northwest dipping. Panel (a) depicts the

transect AB where 1D profiles for all models have been considered. Panels (e) and (f) show the spatial distributions of the simple differences

between the unfiltered and filtered initial conditions. 21
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Figure 10. The picture refers to the 2007 event in case of a source oriented to the northwest. The transect AB considered is the one depicted

in Fig. 9a. The upper panel illustrates the bathymetric profile along it. (a) The profiles are taken from the initial conditions in Figure 9 (a, c,

e), considering only the vertical component. (b) The profiles are taken from the initial conditions in Figure 9 (b, d, f), considering the effect

of the horizontal component through Model A.

the crest. The smoothing effect is more significant for the vertical component, particularly affecting two lobes of deformation

positioned on the deep areas of the trench as it can be seen in Fig. (11ef) and in Fig. (6c).

5.2 Discussion

In Sections (5.1)
::::::
Section

:::
5.1, we investigate events belonging to two major categories of earthquakes, both occurred in the

Central Kuril Islands: a megathrust, the 2006 event, and an outer-rise event, represented by the 2007 event. The low-pass435

filtering effect of the water column appears to be less pronounced for the megathrust, as a result of the flatter dip of the

subduction zone with respect to that of the crustal faults considered, which results in longer wavelengths. However, such

filtering effect is not negligible, as it can be observed when looking at the Mean Relative Percentage Difference (MRPD)

between the LST outputs and the unfiltered free surface deformation for all the nine
:::::
seven models. To evaluate the MRPD, the

unfiltered free surface deformation ξunf0 is obtained by copying the coseismic deformation at the free surface, while subtracting440

the offset due to a positive topographic elevation. In this way, only the perturbation of the water column is considered. The

MRPD is then simply computed as:
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Figure 11. Results for the tsunamigenic earthquake occurred on January 13, 2007. The fault plane is southeast dipping. Panel (a) depicts the

transect AB where 1D profiles for all models have been considered. Panels (e) and (f) show the spatial distributions of the simple differences

between the unfiltered and filtered initial conditions.
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Figure 12. The picture refers the 2007 event in case of a source oriented to the southeast. The transect considered is the one depicted in Fig.

11a. Similarly to the Fig. 10, The upper panel illustrates the bathymetric profile along it. (a) The profiles are taken from the initial conditions

in Figure 9 (a, c, e), considering only the vertical component. (b) The profiles are taken from the initial conditions in Figure 9 (b, d, f),

considering the effect of the horizontal component through Model A.

̂eMRPD = 100×mean

(∣∣∣∣∣ξLST
0 − ξunf0

ξunf0

∣∣∣∣∣
)

(19)

where ξLST
0 is the initial free surface obtained through LST. For the 2006 megathrust in Central Kurils Islands, MRPD is

16.71 % for the vertical component, 21.80 % for Model A and 17.01 % for Model B. The maximum differences between445

the unfiltered and filtered sea surface height distributions are roughly three times greater in uplift than in subsidence for this

earthquake (third row in Fig. 7).

In contrast, the tsunami initial heights are substantially smoothed in the case of the outer-rise 2007 event. For the north-

dipping scenarios, the MRPD measured 33.03 % when a vertical-only coseismic deformation is considered, and 46.05 % when

Model A is taken into account. For the south-east dipping cases, such values are reduced to 16.24 % and 30.92 %, respectively.450

When considering the maximum spatial differences between the unfiltered and filtered initial conditions, they tend to be roughly

three times greater in subsidence than in uplift for all the north-west dipping models. For the south-east cases, such differences

are generally greater in subsidence than in uplift, but doubled only for Model A. The areas of coseismic deformations following
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the megathrust event are in shallower waters if compared to those interested by the outer-rise. The average water depth is ∼2

km - 3 km for the 2006 event, while it amounts to ∼7 km when looking at the 2007 event. Deeper sea depth implies more455

significantly smoothing of the free surface perturbation. Furthermore, the seafloor deformations associated with the megathrust

have much greater length scales than those of the outer-rise (as it can be seen qualitatively in Fig. 6). The same reasoning can

be applied to the 2007 event. Despite the similar source area, the two fault planes here considered are different in terms of both

direction and value of the dip angle. According to Lay et al. (2009), the southeast-dipping plane exhibits a dip of 59°, while

the northwest-dipping plane has a dip of 47°, resulting in different extents of the coseismic deformation. When considering the460

southeast dipping fault plane, longer wavelengths can be qualitatively observed compared to the opposite dipping model (see

Fig. 6b and Fig. 6c). Smaller wavenumbers should be smoothed in this case due to a broader seafloor deformation, contrasting

with the opposite-dipping fault plane where more than half of the deformation is attenuated. We note that for large wavelengths

and relatively shallow depths (less than 1 km), there might be no need to account for a smoothing effect on the initial condition

(see Fig. ??
:
5).465

For all the examined events, the horizontal movement of the sloping bottom significantly contributes to the perturbation

of the free surface from the equilibrium position. However, we also demonstrate, for example in the case of the 2006 shock,

that the initial condition is sensitive to how this horizontal contribution is modeled. In particular, Model A leads to an initial

condition where both the maximum uplift and subsidence are more than twice the original unfiltered sea surface deformation.

Considering the inelastic component of the coseismic deformation (Model B) would lead to a different outcome, that depend470

on the size of the accretionary wedge. In general, the LST show a systematic tendency to smooth more the free surface

perturbation originated by Model A, for all the scenarios considered. Furthermore, the filtering is more pronounced on the

uplift or subsidence, depending on the mechanism of the triggering seismic event.

The LST algorithm is designed for practical applications. Its primary advantage is that it allows the construction of a local

database where, depending on the true sea depth, the scaled, smoothed tsunami unit initial conditions are stored to be later used.475

These unit solutions can be linearly combined, by weighting each of them based on the corresponding coseismic deformation

following an event. An example is the database for the Central Kuril Islands, consisting of 89,700 cells. Such database has

been created in 2h and 10
::
59

:
min using 6 CPU nodes dual-20-core Intel(R) Xeon(R) Gold 6248 clocked at 2.50 GHz. The

execution time required to solve each cell varies with the local sea depth, but it ranges from ∼ 1 s to ∼ 1 min, accounting that

no inner parallelization is allowed. The linear recombination has been solved in ∼ 9 min, using a single core Intel(R) Core(TM)480

i7-10510U CPU clocked at 1.80 GHz. The spatial resolution used is 1 arc-min, and it is noted that higher resolutions might

lead to increased computational time
:
a
:::::
factor

:::
∼

:
4
::
of

:::::::::::::::
increase/decrease

::
of

:::
the

::::::::
execution

:::::
time

:
is
::::::::

obtained
::
by

:::::::::::::::
doubling/halving

::
the

::::
grid

:::::::::
resolution. The term "local database" means that the solution depends on the coordinates and local bathymetry of the

region. There are plans to distribute it as a service in the future, offering a set of unit solutions based on the corner coordinates

of the region of interest. To further enhance efficiency, some proposed ideas include:485

1. Since the model’s dependence on resolution and water depth is discussed in Section (4)
:
4, a general database could

be constructed considering typical cell dimensions and incremental bathymetric values. This database could then be

matched to geographic coordinates by applying latitude correction and binning sea-depth
::
sea

:::::
depth

:
values;
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2. The tool could be redesigned to eliminate the need for database construction, potentially parallelizing it to leverage GPU

architectures.490

6 Conclusions

To enhance the computational efficiency and the applicability of the Laplacian Smoothing Algorithm proposed by Nosov and

Kolesov (2011), we adopt a strategy informed by numerical analysis. This involves constructing a database of unit initial

conditions tailored for tsunami simulations. These sources undergo high-frequency content filtering. Initially addressing the

problem in one dimension, we explore the convergence of the integral describing the water height distribution at the sea-surface.495

Our findings reveal that only wavenumbers less than 5
H , with H denoting the flat bathymetry within the cell, are necessary to

avoid artifacts when modeling tsunami generation in classic linear potential theory. We conduct a comprehensive comparison

of various numerical quadratures against reference analytic-numeric solutions, evaluating efficiency and accuracy. The model

is an analytical solution to the 3D Laplace equation for the fluid velocity potential, which is linear if the sea-bottom does

not undergo significant variations within a radius of few wavelengths. Leveraging this linearity and the fact that sea-bottom500

deformation is linear with respect to the slip, we construct a database of elementary initial conditions. Each entry is scaled by

the corresponding bottom displacement.Thus, the methodology allows for considering an arbitrary bottom topography. This

database is then applied to nine different models to obtain the sea surface height distribution following the megathrust and outer-

rise events near the Central Kuril Islands in late 2006 and early 2007. We consider the contribution of the vertical component

and the impact of horizontal movement of the bottom, highlighting the significance of the latter in earthquakes near steep slopes.505

Additionally, we demonstrate the sensitivity of the chosen model for representing horizontal components, contingent on the

affected area. We observe that the smoothing effect of the water column is particularly evident when considering the horizontal

component, and it is relatively less pronounced in cases of shallow megathrust events, where wavelengths significantly exceed

the water depth compared to crustal earthquakes. Despite this, even for interplate earthquakes, the smoothing effect cannot be

considered negligible, as it results in approximately a 20 % decrease in the sea-height spatial distribution. We also observe that510

in general such smoothing effect is more pronounced on the uplifted or subsided free-surface, depending on the mechanism

of the seismic event and on its position relative to the coast. In the future, a possible development could involve considering

the case of a time-dependent rupture and assessing its impact on the free-surface deformation. The proposed approach, as well

as its applicability to any seafloor displacement and variable bottom topography, may be relevant for practical applications. A

further enhancement of its computation performances through HPC architectures could allow the methodology to be used for515

those studies that require a huge number of simulations, such as long-term probabilistic tsunami hazard assessment (PTHA),

and for real-time applications, where the tsunami forecasting needs to be addressed quickly and with the highest possible

accuracy. A further step will be that of studying the sensitivity of the model with respect to different wavelengths and to assess

the consequent impact on the inundation.
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Appendix A: Acronyms

– LED : Local Extended Domain

– GAQ: Global Adaptive Quadrature

– GLQ: (Adapted) Gauss-Legendre Quadrature525

– FQ: (Adapted) Filon Quadrature

– RMSE: Root Mean Squared Error

– LST: Laplacian Smoothing Tool

– MRPD: Mean Relative Percentage Error
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