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Abstract. Mapping exposure to landslides is necessary to mitigate risk and reduce vulnerability
:::::::
increase

::::::::
resilience. Exposure

maps can be constructed from building databases, akin to seismic risk assessments, but there has been little investigation

of the predictive relationship between building damage
::::
from

:::::::::
landslides

:
and risk to human lifefrom landslides. Our study

investigates this relationship globally and in Nepal (47,213 and 5,664 landslides, respectively). While a correlation exists for

nationwide totals (R2=0.75), it is near zero
::::::::
negligible

:
for individual events (R2=0.025). It is important not to use building5

datasets in isolation for
:
to

::::
not

::::::::
construct landslide exposure maps and disaster planning to avoid unintentionally prioritising

building damage
::::
from

::::::::
building

:::::::
datasets

:::::
alone,

::::
else

::::::::
building

::::::
damage

:::::
may

::
be

::::::::::::
inadvertently

:::::::::
prioritised over human lives

::
in

::::::
disaster

::::::::
planning.

1 Introduction

1.1 Landslides and landslide risk10

Landslides cause thousands of deaths each year across a wide range of geographic environments (Petley, 2012; Kennedy et al.,

2015), and are
::::::::::::
preconditioned

:::
and

:
triggered by a

::::
wide range of anthropogenic (e.g. road cutting) and physical (e.g. earthquakes

and intense rainfall) processes (e.g. van Westen et al., 2006). Landslide disaster risk reduction is therefore a challenging task,

as it requires an understanding of a diverse range of predisposing factors, failure processes, and potential impacts over large

spatial areas.15
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The
::
To

::::
date,

:::
the

:
majority of studies to date focus on landslide hazard or susceptibility, constructed based either on a statis-

tical analysis of past landslide records (Calcaterra et al., 2003), on datasets describing typical landslide predisposing factors

(van Westen et al., 2006; Reichenbach et al., 2018), or some
:
a combination of these two methods. A smaller number of

:::::
Other studies have moved beyond this to evaluate landslide risk, combining hazard, vulnerability, and exposure (Lateltin et al.,

2005; Cruden, 2018; Emberson et al., 2020). Vulnerability is the capacity to prevent, mitigate, or recover following a landslide20

(van Westen et al., 2006)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(van Westen et al., 2006; Alexander, 1986; Chiocchio et al., 1997; Iovine and Parise, 2002; Chen et al., 2020)

, and it is commonly set at a constant value calibrated based on historical damage data or human development indicators (Atkin-

son, 2012). Exposure represents the spatial distribution of at-risk people, buildings, or other infrastructure.

It is instructive to compare the assessment of risk from landslides to
:::::::
landslide

::::
risk

:::::::::
assessment

:::::::::
workflows

::
to

:::::
those

::::
from

:
other

hazards. Seismic
::
For

::::::::
example,

:::
the

::::::::
exposure

:::
and

::::::::::
vulnerability

:::::::::::
components

::
of

::::::
seismic risk maps are commonly constructed from25

datasets of buildings, using fragility curves to assess the vulnerability of different building types
:::::
drawn

:::::
from

:::::::
building

:::::::
datasets

(e.g., Coburn et al., 1992). This approach is justified as most earthquake deaths are directly associated with building collapse,

and is appealing as it can be upscaled to large areas (Coburn et al., 1992; Doocy et al., 2013). Open-source building databases,

such as OpenStreetMap, have recently become available and improved the availability
:::
and

::::::::::
accessibility

:
of this information.

Various studies have considered whether seismic hazard assessments may be directly applied to landslides, or whether an30

analogous approach may enable these building maps to be used as an input for landslide risk models (e.g., Pollock and Wartman,

2020; Jakob et al., 2012). In the case of catastrophe risk models applied by private sector insurance companies, exposure is

commonly composed of an infrastructure map with a specific economic value associated with each property (Sterlacchini

et al., 2007; Atkinson, 2012). However, for building databases to be directly applicable as exposure layers
:::
for

::::::::
landslides, we

must evaluate whether they adequately capture not only the damage from landslides to buildings but also the loss of lifefrom35

landslides.

In this study, we investigate the relation between the reported total human loss from landslides (deaths and missing people)

and reported building damage. We investigate this relation both on a global scale and through a specific
:::::::
detailed case study

in Nepal. We consider whether building damage is a reliable proxy
:
-
::::
with

::::::::
predictive

:::::
value

::
-
:
for the total human loss from

landslides, and what the implications of a decoupling between these two key indicators of impacts may be.40

2 Methods

We use a harmonized database of disasters for 89 countries, DesInventar (Sistema de Inventario de Desastres / Disaster In-

ventory System), to investigate the relation between landslide building damage and deaths (Atkinson, 2012; Yamazaki-Honda

et al., 2019; Mazhin et al., 2021). The time period covered by DesInventar varies between countries but is generally
::::::::::
DesInventar

:::::::
includes

:::
data

:
from the mid-20th century to the present, and despite some missing events and incomplete metadata

::::
with

::::::
degree

::
of45

:::::::::::
completeness

:::
and

::::::::
metadata

::::::
varying

::::::
widely

:::::::
between

::::::::
countries.

:::::::::::
Nevertheless, it remains one of the most spatially and temporally

comprehensive global-scale disaster databases (Yamazaki-Honda et al., 2019; Mazhin et al., 2021). Commonly used indicators

for damage are recorded, including the number of buildings destroyed and damaged, the number of lives lost, and the number
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Figure 1. Plot of total human loss against total building damage for nationwide totals (a) and individual landslides (b). Country codes for in

(a) are the standard nomenclatures from the DesInventar database and are included in the Supplemental Information.

declared missing for each disaster (Yamazaki-Honda et al., 2019).
::::
There

::
is
:::::::::
substantial

:::::
work

::
on

:::
the

:::::::
differing

:::::::
degrees

::
of

:::::::
damage

:::
that

::::::::
landslides

::::
can

::
do

::
to

::::::::
buildings

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Alexander, 1986; Chiocchio et al., 1997; Iovine and Parise, 2002; Chen et al., 2020; Del Soldato et al., 2019)50

:
,
:::
but

::::
these

::::::::
datasets

::
do

:::
not

::::::
allow

:::
for

:::
this

:::::
level

::
of

:::::::
detailed

:::::::
analysis

::::
and

:::
we

:::::::
simplify

::::
here

::
to
::

a
::::::
binary

:::::::::::
damaged/not

::::::::
damaged

:::::::::::
classification. For a nationwide case study of Nepal, we supplement the DesInventar event catalogue (which ends in 2013) with

comparable data from the Nepal National Disaster Risk Reduction And Management Authority (from 2014) available through

the Building Information Platform Against Disaster or BIPAD Portal (NDRRMA, 2020).

We begin with a systematic search of all keywords in the DesInventar database to identify words for ‘landslide’ in different55

languages (e.g., ‘deslizamiento de tierra’), spelling errors (e.g., ‘landside’), or different terms for a similar physical process

(e.g., ‘rock slide’). A full list of the keywords used is available in the Supplemental Information. We find a total of 47,213

individual landslides, of which we exclude 25,030 which resulted in neither deaths, missing people, or building damage and

include 22,183 for further analysis which record losses in at least one of those categories (deaths, missing people, and/or

building damage). We regress the total human loss from each landslide (sum of deaths and number of missing persons) against60

the total building damage (sum of buildings destroyed and damaged) for each country with sufficient data (>10 landslides over

the entire record), yielding estimates for a total of 44 countries. For Nepal, we run this workflow on both the DesInventar data

alone and on a merged database comprising both DesInventar and BIPAD data.

We use different metrics to evaluate the power of the predictive variable (total building damage ) towards the dependent

variable (
::::::::
(predictive

::::::::
variable)

:::::::
towards total human loss

:::::::::
(dependent

:::::::
variable): the coefficient of determination (R2), the coef-65

ficient of estimation (CE), reduction of error (RE), and root mean squared error of prediction (RMSEP; Cook et al., 1994).

The CE, RE, RMSEP, and relative RMSEP specifically test whether or not building damage can meaningfully be used as a

3



:::::::::
meaningful

:
predictor for human damagein predictive models. We adopt the formulae of Cook et al. (1994) to calculate the CE

and RE, using bootstrapping to separate the data into ‘validation’ and ‘calibration’ datasets, randomly sampled (with repeti-

tion, both to the same size as the original dataset) 100 times to calculate the mean and standard deviation for the CE and RE70

metrics. We calculate the RMSEP and relative RMSEP from the same bootstrapped datasets. To better contextualise the results

for landslides
:::::::::::
contextualise

:::
the

::::::::
landslide

::::::
results, we repeat the above analysis for several other disasters in the DesInventar

database: floods, volcanic eruptions, earthquakes, and storms(shown in the Supplemental Information).

3 Results

3.1 Global analysis75

On a global scale, total human loss and
::::::::
positively

::::::::
correlates

::::
with total building damage from landslidesare positively correlated.

The goodness of fit of a linear regression line is high .
::::

The
:::::
linear

:::
fit

::
is

:::::
good

:
when considering the nationwide averages

(R2=0.75, F-score=112, n=44, Figure 1a), but is very low when disaggregating
::::::::
negligible

:::::
when

::::::::::::
disaggregating

::
to

:
individual

events (R2=0.03, F-score=1250, n=22,183 Figure 1b). The F-score confirms that the relationship between the two variables is

statistically significant, despite the poor correlation. This poor goodness of fit remains when considering individual landslides80

for each of the 44 countries with >10 events, with a median R2 of 0.0247 (interquartile range 0.0041, 0.1017) and relative

RMSEP of 590% (interquartile range 276%, 1195%). The
:::
For

:::::::::
individual

::::::
nations,

:::
the

:
coefficient of estimation (median -0.22,

interquartile range -4.14, -0.049) and reduction of error (median -0.049, interquartile range -0.18, 0.00) calculated for individual

nations are also negative.

3.2 Case study: Nepal85

In Nepal, an equally poor goodness of fit is clear
:
fit

::
is
::::::::
apparent for the combined DesInventar and BIPAD disaster inventories

(Figure 2a). The regression of total human loss against total building damage in this dataset of 3,206 landslides in Nepal has

an R2 of 0.0023 and an relative RMSEP of 1279 ± 197%. The coefficient of estimation (0.0023 ± 0.0031) and reduction of

error (0.0028 ± 0.0032) are positive but statistically indistinguishable from zero, indicating little to no predictive value. In

simple terms, events causing the highest human loss commonly are not significantly associated with those which cause the90

most building damage, and events destroying the most buildings are not always the deadliest.

3.3
::::::::::

Comparison
::::
with

:::::
other

::::::::
disasters

:::
We

:::::
repeat

:::
the

:::::
same

::::::
analysis

:::::
with

:::::::
different

:::::::
disasters

:::::
from

:::
the

::::::::::
DesInventar

::::::::
database.

:::::
Some,

::::
such

:::
as

:::::
floods

:::
and

::::::::::
avalanches,

::::
also

::::
have

:
a
:::::
weak

::::::::::
relationship

:::::::
between

::::
total

::::::
human

::::
loss

:::
and

::::
total

:::::::
building

::::::::
damage.

:::::::::
Conversely,

:::::
other

::::::::
disasters

::::
such

::
as

::::::::
tsunamis

::
(n

:
=
::::::
2,126;

:::::
Figure

::::
3b)

:::
and

::::::::::
earthquakes

::
(n

::
=

::::::
19,180;

::::::
Figure

:::
3c)

::::::
exhibit

:
a
::::::
strong

:::
link

:::::::
between

::::
high

:::::
total

:::::::
building

::::::
damage

::::
and

::::
high95

::::
total

::::::
human

::::
loss,

::::
with

:::
the

:::::::
greatest

::::::
human

:::
loss

:::::::::::
concentrated

::
in

:::
the

::::::
events

:::
that

::::
also

:::::::
affected

:::
the

:::::
most

:::::::::
properties.

:::
For

::::::::
lightning
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Figure 2. (a) Plot of human loss against total building damage for individual landslides in Nepal. (b) Histogram of total building damage in

individual landslides for Nepal, with colours corresponding to associated total human loss. A strong correlation between building damage

and human loss would result in a progressive left-to-right colour gradient and limited variation within each column. Instead, note that human

loss within each column is highly variable.

::::::
strikes,

:::
we

:::
find

:::
the

:::::::
inverse

:::::
result,

::::
with

:::
the

::::::
highest

:::::
total

::::::
human

:::
loss

::
in
::::::
events

::::::::
affecting

:::
the

::::
least

::::::::
properties

:::
(n

:
=
::::::
6,604,

::::::
Figure

:::
3d).

:

4 Discussions

For landslides, the
:::
The correlation between human loss and the number of affected buildings is moderate

::::
from

:::::::::
landlsides

::
is100

::::
good

:
in national averages, but poor when disaggregated into

::::::::
negligible

:::::
when

::::::::::::
disaggregated

::
to individual events. Both human

loss and total building damage follow long-tailed distributions, with most damage being accounted for by a small number of

events. However, in the case of landslides, we find a poor correspondence between the events causing high levels of human

loss and high levels of building damage. A comparison with other disasters shows higher correlation between these extremes

for other disaster types, such as earthquakes and tsunamis(Supplemental figure S1). Averaging the impacts of multiple events,105

either as temporal averages (total damage per year) or geographic averages (total damage per country) can mask this lack

of correlation for individual events by cumulating both high-death, low-building damage events and low-death high-building

damage events.

Both the databases used
:::
All

::::::::
databases

:
provide an imperfect and biased record of the impacts of disasters. Disasters will only

be recorded if they are large or damaging enough to be noteworthy, and the size of inventories varies drastically between the110

89 countries included in the DesInventar database (Yamazaki-Honda et al., 2019). Additionally, the number of deaths, missing

people, and buildings damaged may be either overestimated or underestimated for events that are recorded, and the accuracy of
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these estimates will vary spatially and temporally (Yamazaki-Honda et al., 2019; Mazhin et al., 2021). Our study design partly

mitigates these limitations, as we investigate per-disaster damage instead of the total number of events, or total damage. Even

though the data sets are incomplete, we can still make inferences about the relation between total human loss and total building115

damage from the events that were recorded. A comparison between landslides and other disasters provides a further test, as

the relation between building damage and human loss varies for different disasters. This relation is expected to be strong for

earthquakes, where a large proportion of human loss is directly caused by building collapse (Coburn et al., 1992; Doocy et al.,

2013), and particularly weak for lightning where buildings may shield inhabitants from damage. Both of these expectations are

supported by the DesInventar database (Supplemental Figure S1).120

The
:::
Our finding that damage to properties and human loss are poorly related is consistent with the complex and geograph-

ically dispersed nature of landslides and our current understanding of their links to human mortality.
:::::::
Different

:::::::
impacts

::::
may

:::::
indeed

:::
be

::::::::
expected

:::::::::
depending

::
on

::::::::
landslide

:::::
type:

:::
for

::::::::
instance,

::::
large

:::::::::
landslides

::::
with

:::::
clear

:::::::
warning

:::::
signs

::::
may

:::::::
damage

:::::
many

:::::::
buildings

:::::::
without

::::
loss

:::
of

:::
life,

::::::
while

:::::
small

:::::::
rockfalls

:::::
may

:::::
cause

:::::
many

:::::::
fatalities

:::::::
without

:::::::::
damaging

::::
any

::::::::
buildings.

:::::::::
Similarly,

:::::::
landslide

:::::
early

:::::::
warning

:::::::
systems

::::
may

::::::
enable

::::::::
effective

::::::::::
evacuations

::
in
:::::

some
:::::

parts
::
of

::::
the

:::::
world,

::::::::::
preventing

:::::::
fatalities

:::
but

::::
not125

:::::::
building

:::::::
damage.

::::
The

::::
exact

::::::
causes

::
of

::::
this

::::::::::
discrepancy,

::::::::
including

::::::::
different

:::::::
landslide

:::::::::
processes,

:::::::
effective

:::::::::
mitigation

:::::::::
strategies,

:::
and

:::::::
spatially

:::::::::::
concentrated

:::::::
exposure

::::
and

:::::::::::
vulnerability,

:::
are

::::
likely

::
to
::::
vary

::::::
widely

::::::
across

:::
the

:::::
world

:::
and

:::::
within

::::
this

::::::
dataset.

:
Pollock

and Wartman (2020) showed the importance of demographic, situational, and particularly behavioural factors in determining

landslide morbidity, arguing that the relationship between building damage and morbidity is therefore complex. A low cor-

relation has previously been noted between landslide-related deaths and the economic cost of landslides (Hilker et al., 2009;130

Kennedy et al., 2015), although this study was limited to Switzerland alone. Creating an accurate risk map relies on a combi-

nation of two components: a map of the spatial distribution of the hazard, and a measure of the exposure to this hazard. This

exposure layer will depend on the objective of the risk map; for instance, insurance disaster risk maps will often be based on

infrastructure value maps. In the case of landslides, our results show that building maps or databases – for example, MSBuild-

ings or OpenStreetMap – are an inadequate proxy for the total human loss from landslides, and should not be relied upon solely135

to estimate risk to human lives from landsliding.

Our results show that landslide disaster mitigation strategies using risk maps constructed from infrastructure assets or build-

ing datasets may implicitly prioritise monitoring or mitigation of high-building damage events instead of high total human loss

events. This raises ethical and practical issues and is generally at odds with the primary objective of disaster risk reduction pro-

grams. Two different and complementary approaches stand out to improve our understanding and representation of human loss140

from landsliding. The first involves building a detailed understanding of local conditions through consultations and interviews,

and the second involves large-scale (and ideally dynamic) population or exposure modelling. Both methods fall outside of the

traditional remit of landslide science, and highlight the need for cross-disciplinary
:::::::::::::
transdisciplinary

:
collaboration for effective

landslide risk reduction.

Improving our understanding of disaster risk involves examining local risk perceptions, daily routine variations, and miti-145

gation strategies. Local risk perceptions and actions may explain the low correlation between human casualties and building

damage, either due to effective evacuation strategies reducing exposure or inadvertent actions increasing exposure (Pollock
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and Wartman, 2020). Additionally, considering local perspectives may reveal effective risk-reduction strategies and increase

community involvement in mitigation efforts. The factors contributing to the low correlation between human casualties and

the number of affected buildings are likely to vary across the 89 represented countries in the DesInventar database. Conduct-150

ing informal and semi-structured interviews with local residents could help shed light on why building damage might exceed

fatalities in certain landslides and vice versa within specific regions.

On a larger scale, population density and dynamic exposure maps offer an alternative perspective, albeit with some limita-

tions. These population density maps often have low spatial resolution or rely on building data for interpolation (Lloyd et al.,

2017). Additionally, static population density maps fail to capture substantial transient changes in population density occurring155

on a daily, seasonal, or interannual basis. In scenarios such as landslide risk assessment, where evacuation may be impracti-

cal and vulnerability is high (Kennedy et al., 2015), dynamic exposure becomes a critical element of risk-to-life modelling.

Innovative modelling approaches, such as agent-based models (e.g. Zayn et al., 2020), have the potential to account for spa-

tiotemporal population movements across different timescales. However, these methods are relatively untested in the context

of disaster risk reduction, presenting an open science challenge in need of further development.160

5 Conclusions

This study has revealed
:::::
shows a complex relationship between building damage and human loss in

::::
from landslides. We find

that, despite moderate correlation for national averages, the two are poorly correlated
::::::::::
uncorrelated in individual events at both a

global scale and in Nepal specifically. Therefore, building damage from landslides is not an effective predictor of the number of

fatalities from the same event. Comparative analysis with other disasters highlights the contrasts between them, with a stronger165

link between building damage and human loss present for earthquakes and tsunamis, but not for other geohazards such as floods,

avalanches, or lightning strikes. There is a need to develop exposure layers beyond simple building databases, encompassing

localized insights into risk factors and dynamic population models, to improve mitigation of the deadliest landslides.
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