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Abstract. Protecting lives and livelihoods during volcanic eruptions is the key challenge in volcanology, conducted 14 

primarily by volcano monitoring and emergency management organizations, but complicated by scarce knowledge of how 

communities respond in times of crisis. Social sensing is a rapidly developing practice that can be adapted for volcanology. 16 

Here we use social sensing of Twitter posts to track changes in social action and reaction throughout the 2018 eruption of 

Kīlauea, Hawai'i. The volume of relevant tweets explodes in early May, coincident with the beginning of the eruption; 18 

automated sentiment analysis shows a simultaneous shift towards more negative emotions. Temporal trends in topics of local 

Twitter conversation reveal societal actions and reflect patterns in volcanic activity, civil protection actions and 20 

socioeconomic pressures. We show how hazard and risk information is discussed and reacted to on Twitter, which helps 

inform our understanding of community response actions and aids situational awareness. 22 

1 Introduction 

Volcanic crises can cause significant damage, casualties and economic loss (Brown et al., 2015; Barclay et al., 2015), 24 

especially as over 800 million people live near volcanoes (Loughlin et al., 2015) and many more depend on them for their 

livelihoods (Brown et al., 2015). During volcanic unrest and eruption volcano monitoring agencies work closely with 26 

emergency management organisations to assimilate multi-disciplinary data streams and provide hazard updates and 

actionable risk mitigation advice to communities at risk (Jolly and de la Cruz, 2015; Peltier et al., 2021; Bonaccorso et al., 28 

2016; Stovall et al., 2023). Volcanic hazard and risk information are communicated to the public using a variety of media 

types (Stovall et al., 2023; Goldman et al., 2023; Williams and Krippner, 2019; Calabrò et al., 2020; Mani et al., 2024; 30 

Fearnley et al., 2018), but there is currently no large-scale mechanism to track how that information may result in individual- 

and community-level action (Mani et al., 2024), nor how that information may influence the emotional state (reaction) of 32 

affected populations. Consequently, social impacts of volcanic crises can be poorly understood. In particular, the actions and 

reactions of local populations may evolve during an eruptive crisis in response to the dynamic nature of volcanic hazards 34 

(Hicks and Few, 2015) and the fluctuating impacts of mitigation and recovery actions (Barclay et al., 2019). These time-

dependent changes could provide useful feedback and information for volcanic monitoring agencies and emergency 36 

management organisations (Barclay et al., 2015) but are likely lost when traditionally interviewing subsets of affected 

individuals once a crisis has ended (Mani et al., 2024; Goldman et al., 2023; Christie et al., 2015; Naismith et al., 2020; 38 

Armijos et al., 2017).  

 40 

Social media posts (text, photos and videos) are often shared in real-time with useful identifying keywords or ‘hashtags’, and 

can provide free, fast, efficient, quantifiable and valuable information during times of crisis (Guan and Chen, 2014; Yu et al., 42 

2018; Wadsworth et al., 2022). Social sensing is the systematic analysis of publicly-available social media data to observe 
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real-world events (Liu et al., 2015). Emerging social sensing techniques have proven effective for studying a number of 44 

natural hazards (e.g., storms (Spruce et al., 2020), floods (Arthur et al., 2018; Young et al., 2022), hurricanes (Spence et al., 

2015; Wu and Cui, 2018; Guan and Chen, 2014; Zhou et al., 2021), earthquakes (Steed et al., 2019), heatwaves (Kirilenko et 46 

al., 2015)), providing early warnings and information from inaccessible locations. Studies have been conducted to: 

geospatially detect and locate hazardous events, uncovering previously unknown hazard extents (Spruce et al., 2020; Arthur 48 

et al., 2018; Wu and Cui, 2018; Guan and Chen, 2014); investigate topics of discussion (Spruce et al., 2020; Spence et al., 

2015; Guan and Chen, 2014) and emotional responses (Wu and Cui, 2018; Spruce et al., 2020; Giuffrida et al., 2020) that 50 

may vary through different temporal stages of a disaster; analyse societal impacts (Wu and Cui, 2018; Kryvasheyeu et al., 

2016); assess how information spreads through social networks (Spence et al., 2015); and to conduct rapid damage 52 

assessment (Guan and Chen, 2014). Though analyses are sparse, there appears to be a strong positive correlation between 

social media activity and damage losses (Wu and Cui, 2018; Kryvasheyeu et al., 2016) as well as a negative correlation 54 

between sentiment expressed in social media content and damage losses (Wu and Cui, 2018). Social sensing has never been 

systematically applied to a volcanic eruption. Here we aim to test whether social sensing can track and quantify changes in 56 

societal actions and emotional responses during an eruptive crisis, and whether those changes are coincident with different 

stages of the eruption. 58 

 

We focus our analyses on the 2018 Lower East Rift Zone (LERZ) eruption of Kīlauea volcano (Fig. 1), Hawai'i, due to its 60 

long duration (May – August 2018) and substantial socioeconomic impacts (Meredith et al., 2022; Houghton et al., 2021; 

Williams et al., 2020). The LERZ eruption was preceded in March and April 2018 by rapidly rising pressure in the Kīlauea 62 

magmatic system, evidenced by inflation around the Pu'u'ō'ō vent and rising levels in the Halema'uma'u lava lake (Neal et 

al., 2019; Anderson et al., 2019; Patrick et al., 2020). Eventually, the Pu'u'ō'ō crater collapsed on April 30th prompting 64 

magma to migrate eastwards downrift through dykes into the LERZ and causing elevated felt seismicity and surface 

deformation (including ground cracks) in the Puna district (Neal et al., 2019; Anderson et al., 2019). On May 1st the 66 

Hawaiian Volcano Observatory (HVO) issued a Volcanic Activity Notice (VAN) highlighting the possibility of a new 

eruption within the LERZ (Stovall et al., 2023). The eruption began on May 3rd (Fig. 1) with a fissure opening in the Leilani 68 

Estates subdivision, erupting basaltic lava flows. A total of 24 fissures opened during the eruption and were sequentially 

numbered, with fissure 8 being the most productive (Gansecki et al., 2019). Lava flows first reached the coast on May 19th, 70 

entering the sea and producing laze, while a later segment of the flow reached the sea on June 3rd. Major lava effusion ended 

on August 4th.  72 
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Figure 1: Overview of the 2018 Kilauea LERZ eruption. (a) Map of the eruption with key locations highlighted alongside the 74 
temporal evolution of the lava flow extent and the spatial distribution of tephra deposits from Fissure 8. (b) Timeline of the 

eruption. The grey background indicates the period where the ground-based warning level was at ‘watch’ and the colour of the 76 
points reflects the aviation warning colour code. VAN = volcanic activity notice. 

 78 

Simultaneous to the LERZ fissure activity, the summit reservoir feeding the LERZ eruption sequentially deflated, initially 

producing summit explosions driven by rock fall into the lowering lava lake. As further deflation continued, the 80 

Halema'uma'u crater widened, and larger ash-plume-producing collapse explosions progressed into a series of regular caldera 

collapse events (Anderson et al., 2019). The successive caldera collapses were associated with felt ~M5 earthquakes, 82 

significant additional lower magnitude seismicity, and production of ash plumes (Neal et al., 2019). The largest earthquake 
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related to the volcanic activity measured M6.9 on May 4th, believed to have been initiated by the dyke intrusion into the 84 

LERZ (Neal et al., 2019).  

 86 

The lava flows covered 32.4 km2 of the Puna distract of Kīlauea’s LERZ (Fig. 1), destroying 1839 structures and damaging a 

further 90 (Meredith et al., 2022). Damage to buildings extended beyond the lava flow margins as a result of fire, thermal 88 

effects and the impact of volcanic gases and tephra (Meredith et al., 2022). Between May 2018 and April 2019 the estimated 

total economic cost of the eruption was ~$1 billion, alongside the loss of 2950 jobs (County of Hawaiʻi, 2020); the tourism 90 

and agriculture sectors were amongst the most severely impacted, and the closure of the Hawai'i Volcanoes National Park is 

thought to have cost ~$99 million alone (County of Hawaiʻi, 2020). An estimated 5,563 people were permanently or 92 

temporarily displaced by the eruption, 2668 of whom were served mandatory evacuation orders (Kim et al., 2019). Amongst 

the impacted regions were differences in how eruption information was perceived regarding trust and credibility of the 94 

messenger(s) (Goldman et al., 2023). For example, in the LERZ where the impacts were felt most severely, surveyed 

residents reported placing more trust in “community messengers” whose information was mostly shared through social 96 

media (Goldman et al., 2023). Social media was also used extensively by the USGS HVO, increasing two-way dialogue and 

the speed and reach of official communications; it was deemed vital for the dynamic, rapidly-evolving situations for which 98 

they needed to provide updates (Stovall et al., 2023). The proliferation of social media usage during this eruption makes it an 

ideal case for exploring the application of social sensing in a novel volcanological context to detect and monitor social 100 

activity and emotional response. 

2 Methods 102 

We use Twitter data in this social sensing study. We note that Twitter has rebranded as “X”, but we will use the term Twitter 

(and tweets) in this publication, as that was its name in 2018. Twitter is an online micro-blogging social media service 104 

allowing users to post updates (called ‘tweets’) limited to 280 characters (including emoji). Tweets can be accompanied by 

multimedia content (e.g., photos or videos), and often contain ‘hashtags’ (indicated by a #) that link all tweets containing the 106 

same hashtag and allow users to follow specific topics. Twitter is one of the world’s most popular social networks, with over 

300 million users in 2018 rising to 415 million in 2023 (Degenhard, 2023), and is often used to share updates and 108 

information about events more rapidly than traditional media sources (Wu and Cui, 2018).  

2.1 Twitter Data Collection 110 

Our data collection centres around the 2018 LERZ eruption of Kīlauea. Twitter provides an application programming 

interface (API) that can be used to access and download Twitter data in real-time, or for historic events. At the time of data 112 

collection in May 2020, the free version of the API could not be used to access past (‘historic’) tweets, so a paid service was 

used to collect our data via the trackmyhashtag.com analytics tool. Later in 2020, the use of the academic API was extended 114 
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to allow free access to historic tweets. However, the free use of the academic API was discontinued in May 2023 following a 

change of Twitter ownership in October 2022, and is now administered within a premium paid business service beyond the 116 

scope of most academic research projects (Calma, 2023). Government and public-owned services have retained free access 

to the API for posting public utility alerts, and there is hope this will be extended to downloading tweet data, free usage of 118 

the API for monitoring severe events, and a possibly reduced rate for academic access.  

 120 

Our data was collected using a “Kilauea” search term for all English language historic tweets, excluding retweets, between 

01-Jan-2018 and 01-Dec-2018 to cover the pre-eruption, eruption, and post-eruption period. Data were collected in 122 

JavaScript Object Notation (JSON) format for 163,438 tweets. The JSON file contains the tweet text, as well as a number of 

metadata fields (e.g., username, user location, geotag, tweet time and date, unique identifier). The following analyses and 124 

investigation are consistent with the Twitter terms of service. We acknowledge the possibility that some tweets posted 

around the time of the eruption might have been deleted prior to our data collection, and therefore we may be missing some 126 

potentially insightful data points.  

2.2 Data Filtering 128 

 

Following data collection, several steps were taken to first remove irrelevant data and then to narrow the focus of the data to 130 

a greater proportion of human insight. The following filters are described in the order in which they were applied. 

• Machine learning relevance filter. A sample of 5,748 tweets were manually classified as relevant or irrelevant. To 132 

be classified as relevant the tweet needed to be related to the eruption of Kīlauea. The labelled tweets were used as 

training data for a machine learning classifier; 70% were used for training and the remaining 30% were used for 134 

validation. A comparison of test data accuracy is shown in Table 1 for various machine learning models. The 

convolutional neural network yielded the highest accuracy on the test data and was consequently selected for use 136 

and applied to the full dataset. 89% of the full dataset (142,877 tweets) passed the relevance filter (Fig. A1). 

• Source removal. Tweet metadata includes a source attribute that identifies whether the tweet originated from 138 

Twitter or an external source such as Facebook, Instagram, or a news website. Tweets from external sources are 

often automated and do not provide a human insight into the event, and therefore only tweets that were directly 140 

posted on Twitter were kept for this analysis. 

• Username removal. A manual inspection of the dataset’s 100 most active tweeting accounts showed that many 142 

were news accounts or automated volcano tracking/update accounts. As these often do not provide human insight 

into the event it is common to remove them (Young et al., 2021). A list of words commonly found in unwanted 144 

Twitter account names was created and if any of these words were found in a tweet username, the tweet was 

removed. The list of words contained the following: 'news', 'daily', 'press', 'post', 'times', 'bbc', 'story', 'network', 146 

https://doi.org/10.5194/nhess-2024-3
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



7 
 

'gazette', 'independent', 'stories', 'thesun', 'nation', 'media', 'guide', 'reuter', 'econom', 'radio', 'weather', 'climate', 

'trending', 'volcan', 'hawaii', 'lava', 'magma', 'mantle', 'kilauea', 'environ', 'nature', 'physic', 'science', 'quake'.  148 

• Duplicate removal. Duplicate tweets were identified and removed from the dataset to ensure high data quality. The 

three main causes of duplication were: (i) duplicates arising during data collection; (ii) identical content shared 150 

across users, often copied and pasted from external sources; and (iii) user error or bots posting the same content 

multiple times. 152 

The results of the filtering stages are shown in Fig. A1 where parallel trends in data volume are evident throughout 2018. 

 154 
Table 1: Test data accuracy for machine learning models applied for relevance classifier. 

Model Accuracy F1 Score 

Support Vector Machine 0.86 0.92 

Logistic Regression 0.86 0.92 

Multinomial Naïve Bayes 0.85 0.91 

Random Forest 0.86 0.92 

Convolutional Neural Network 0.89 0.94 

 156 

2.3 Location Inference 

Location information is important for determining the spatial variation of eruption responses and can be obtained from 158 

Twitter users who enable geotagging or manually tag a location, providing either specific coordinates or a "bounding box" (a 

set area within which the location falls). Typically, however, only 2% of tweets include such location information in their 160 

metadata (Laylavi et al., 2016), which can greatly limit geospatial analysis. Location inference techniques can address this 

limitation and accurately locate tweets while maintaining a high volume of data. We applied the location inference method 162 

of Arthur et al. (2018) to our filtered relevant tweets. This approach uses multiple tweet indicators, including: locations in 

tweet text and user description; the user-entered location field; the manually tagged place attribute; and GPS coordinates of 164 

geotagged tweets. By overlaying the indicators present, the most probable location for the tweet is returned. 

2.4 Sentiment Analysis 166 

Sentiment analysis is a natural language processing technique that quantifies emotions in text. VADER (Valence Aware 

Dictionary and sEntiment Reasoner) is a commonly used sentiment analysis model, optimised for short-form social media 168 

data, making it suitable for our task. VADER works by assessing the sentiment of text based on a predefined 
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dictionary/lexicon of words, each manually assigned a sentiment score. These scores range from negative (-1) to positive 170 

(+1), reflecting the emotional tone of the words. The model considers not only individual words but also the context, 

including the use of intensifiers, negations, and punctuation. We applied VADER via the vaderSentiment Python package to 172 

the tweet text to calculate the overall sentiment score for each filtered relevant tweet. 

2.5 Content Analysis 174 

Filtered relevant tweets that had a geographic origin within Hawai'i were manually analysed and placed into one of five 

categories. The categories were determined after five independent human coders inspected subsamples of the full data set, 176 

and comprised:  

• Observation: tweet contains, or links to, a description, photo or video of eruptive phenomena. 178 

• Warning: tweet contains, or links to, official or unofficial warnings of the eruption. 

• Support and concern: tweet contains, or links to, messages of support and/or concern for impacted individuals or 180 

communities. 

• Damage and disruption: tweet contains, or links to, accounts of damage and/or disruption caused by the eruption. 182 

• Other: tweets that are related to the eruption but do not fit into any of the previous categories. 

The categorization of 4583 tweets was performed manually by the lead author. Prior to this, the five human coders 184 

performed inter-coder reliability checks to ensure the category descriptions and tweet assignments into categories were self-

consistent across the five coders. Iterations between category descriptions and the number of categories improved the Fleiss 186 

Kappa agreement score from an initial 67% to 87%, which was deemed sufficient to progress with the final categorisation of 

tweets. Tweet text, and any included links or multimedia content were used to assign a category. 188 

 

In addition to categorising the relevant Hawaiian tweets into one of the five categories, these tweets were also given a 190 

manual binary tag of being either related or unrelated to professional news. In this case, related to professional news meant a 

news agency or professional journalist posted the tweet, or the tweet contained a link to a professional online news article. 192 

 

Finally, URLs within filtered relevant tweets were extracted from the tweet metadata. URLs in tweets are usually shortened 194 

to minimise their impact on the character limit. Many URLs were shortened using bit.ly, and the bitly API was used to 

expand them. For the remaining shortened URLs, a script using selenium was used to fully load the URLs, before scraping 196 

and returning the true domain. 
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3 Results 198 

3.1 Event Timeseries 

Our initial dataset contains 163,438 tweets. The number of tweets per day explodes in early May, coincident with the onset 200 

of unrest and beginning of the eruption, then slowly tails off with a return to near-background levels in late August (Fig. 2), 

potentially due to a declining interest in the eruption and decreasing eruption impacts. From the full dataset, 89% of the data 202 

(142,877 tweets) passed the relevance filter, and 68% of the relevant tweets (96,965 tweets) were able to be assigned to an 

individual location; temporal trends in relevant and located tweets are parallel to that of the full dataset (Fig. 2, Fig. A1). The 204 

relevant tweets are related to volcanic hazards and impacts of the eruption, as well as observations and civil protection 

activities, while the irrelevant tweets contain a mixture of automated tweets, and tweets about the volcano and national park 206 

but not the eruption (Fig. 2) An initial peak in tweet volume at the beginning of the eruption is followed by later peaks that 

can be related to specific hazardous phenomena (e.g., the highest ash plume, the first lava ocean entry) or eruption impacts 208 

(e.g., tourists getting injured on a boat trip).  

 210 

 
Figure 2: Twitter data set timeseries and relevancy. (a) Timeseries of full Twitter data set (green), and the subsets that were 212 

deemed relevant (orange) and able to be assigned to a location (blue), for all of 2018. (b) Same as a but for the eruption period 
only. In a and b the grey background indicates the period where the ground-based warning level was at ‘watch’. (c) Wordcloud of 214 
most common bigrams for all relevant tweets. (d) Wordcloud of most common bigrams for all irrelevant tweets. Larger bigrams in 

the wordclouds indicate a greater degree of occurrence. 216 

 

A high percentage of relevant tweets (89%) contrasts with many social sensing studies of other natural hazards, for example 218 

~1-44% for floods (Arthur et al., 2018; de Bruijn et al., 2019), 3-5% for UK storms (Spruce et al., 2020), 11% for worldwide 
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high-impact rainfall events (Spruce et al., 2021), and 19-27% for global heatwaves (Young et al., 2021). These findings may 220 

suggest that volcanic eruption discourse on Twitter is more unique when compared to general posts, and that further 

volcano-focussed social sensing studies could possibly benefit from such high relevancy by minimising the collection of 222 

irrelevant data. However, such a high percentage of relevant data may also be a result of a very specific initial data search 

term (“Kilauea”), and may not be repeated for volcano name search terms that have cross-over to other topics of 224 

conversation (e.g., Mount Baker, Three Sisters, White Island), or for impact-based initial search terms that are also used 

outside of volcanic eruptions (e.g., buried, covered, inundated). A similar finding has been reported for storm names, where 226 

the percentage of relevant tweets was much higher for a storm named ‘Ophelia’ (an uncommon name) compared to a storm 

named ‘Brian’ (a more common name). Within the relevant Kīlauea data, the clear peaks in data volume correlating with 228 

high-impact events highlight the strong public interest in such processes, justifying and enabling the use of social sensing to 

extract additional clues about social actions and reactions, for the eruption in question but also for future eruptions that have, 230 

or could have, significant socioeconomic impacts.  

3.2 Sentiment Analysis 232 

By examining only relevant filtered tweets, the automated sentiment analysis shows subtle temporal changes in expressed 

emotions through 2018 (Fig. 3). Sentiment scores range from negative (-1) to positive (+1) reflecting the emotional tone of 234 

the words. Prior to the eruption, the mean sentiment value is 0.19, matching an expected trend towards positive sentiment in 

general language (Dodds et al., 2015), but due to the very low data volume there is a low degree of confidence. During the 236 

eruption the mean sentiment score decreases to 0.00, indicating a greater degree of more negative emotions being expressed 

in the tweet text. After the eruption, the mean sentiment through to the end of 2018 increases to 0.08, but also with a low 238 

confidence from a low data volume. The equivalent values for Hawai'i-specific relevant tweets for the same time periods are: 

0.21, 0.02, and 0.05 (Fig. 3), indicating a similar magnitude decrease in sentiment during the eruption, but a smaller post-240 

eruption recovery, potentially due to prolonged eruption impacts and post-event trauma. The temporal patterns between the 

Hawai'i-specific data and that of all geographic regions are similar. Within the eruption period there is an initial sharp 242 

decrease in sentiment reflecting the personal shock and upset caused by the early impacts, as well as increased media 

attention and circulation of news articles on Twitter. The next two most negative periods in the sentiment timeseries can be 244 

temporally correlated to noteworthy damage or impacts: the destruction of the residential area Vacationland and the injuries 

sustained by tourists on a boat trip (Fig. 3). There is generally no correlation between the more positive peaks in the 246 

sentiment timeseries’ and the eruption. 

 248 
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Figure 3: Daily sentiment analysis timeseries. (a) Automated sentiment analysis values for all relevant filtered tweets. (b) Same as a 250 
but only for tweets assigned to a location within Hawai'i. In a and b the grey background highlights the period where the ground-

based warning level was at ‘watch’, and positive values reflect more positive emotions (and vice versa). The red lines mark the 252 
mean values for the pre-eruption, syn-eruption and post-eruption periods, and the shaded error bars are the 95% confidence 

intervals. 254 

 

Combining the outputs of tweet location inference and sentiment analysis allows us to investigate geospatial patterns in 256 

sentiment. When considering all geographic regions that can be assigned at least one geo-located tweet, there is no 

correlation between mean sentiment and distance from the eruption (Fig. 4). By filtering that same analysis to regions with at 258 

least 100 geo-located tweets, producing more reliable averages, reveals a weak negative correlation between mean sentiment 

and distance from the eruption (Fig. 4). Perhaps non-intuitively, tweets originating from Hawai'i are amongst the most 260 

positive, especially for regions with more than 30 geo-located tweets, driven largely by messages of hope and support (Fig. 

4c). Hawaiian tweets with negative sentiment detail localised detrimental impacts of the eruption. Through grouping of 262 

tweets originating outside Hawai'i, those with a negative sentiment reveal a trend towards more dramatized and/or 

sensationalised accounts of the eruption (perhaps a result of international media reporting (Calabrò et al., 2020)), while the 264 

positive sentiment tweets praise the apparent ‘beauty’ of the eruption, alongside a smaller proportion of messages of hope 

and support (Fig. 4).  266 
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 268 
Figure 4: Geospatial sentiment analysis. (a) Mean sentiment for all global regions with at least one tweet. (b) Same as a but with at 
least 100 tweets. (c-f) Bigram wordclouds for Hawai'i or non- Hawai'i from grouped positive or negative sentiment scored tweets. 270 

Larger bigrams in the wordclouds indicate a greater degree of occurrence. 

 272 

3.3 Content Analysis 

Manual classification of relevant, filtered, Hawaiian tweets into one of five categories shows contrasting temporal patterns 274 

(Fig. 5). Warning-related tweets first increase prior to the eruption and coincident with the USGS VAN released on May 1st. 

Later peaks in warning-related tweets correlate to a later USGS VAN warning about the potential for summit explosions and 276 

a change in the aviation colour code to red. These results indicate that a section of the public is not only noticing the official 
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warnings, but also taking the time and effort to spread them within their social networks. Observation-based tweets 278 

expectedly show a peak at the beginning of the eruption, reflecting the initial intrigue of witnessing the event and sharing 

updates about areas impacted. A later, similar-sized peak in observation-based tweets records updates about the highest ash 280 

plume generated during the eruption, highlighting elevated levels of interest caused by the paroxysm. Tweets categorised as 

relating to messages of support and concern also peak at the beginning of the eruption, and during the explosion producing 282 

the highest ash plume with specific messages around mitigation actions and advice on dealing with the ash. A later peak of 

tweets expressing support in mid-June correlates to the FEMA (Federal Emergency Management Agency) approval of 284 

emergency disaster assistance, corresponding with the prospect of aid. Damage and disruption tweets show peaks in the early 

stages of the eruption related to the prolonged destruction of structures by the lava flows, as well as a single peak that can be 286 

correlated to the closure of the Hawai'i Volcanoes National Park. A minor peak in damage and disruption tweets occurs later 

coincident with a M5.6 earthquake and a news article reporting on the destruction of homes. Remaining tweets were 288 

categorised as “Other” and have a temporal trend that broadly mirrors observation-based tweets, which can be explained by a 

likely parallel pattern in eruption interest caused by the initiation and evolution of eruptive activity.  290 

 

https://doi.org/10.5194/nhess-2024-3
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



14 
 

 292 
Figure 5: Temporal content analysis for Hawaiian tweets. (a-e) Timeseries of daily tweet counts across 5 categories: observation, 
warning, support and concern, damage and disruption, and other. (f) Cumulative counts of tweet categories, using the same data 294 

as a-d. (g) Relative cumulative counts of tweet categories (observation, warning, support and concern, damage and disruption) 
compared against the relative number of buildings in contact with the lava and the area of lava flow inundation. All datasets are 296 

normalised to the same time-period. Lava flow and building damage data are from Meredith et al. (2022). In a-f the grey 
background highlights the period where the ground-based warning level was at ‘watch’. 298 

 

Contrasting temporal trends in the categorised tweets are also evident when examining their cumulative totals through time 300 

(Fig. 5f). Warning-based tweets roughly plateau in mid-May, while observation tweets increase throughout the eruption 

period albeit with a lower rate after mid-June. Comparing the cumulative pattern of damage and disruption tweets with an 302 

independent field-based damage assessment (Meredith et al., 2022) shows a correlation with the number of buildings in 
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contact with the lava; both begin to level-off in early June (Fig. 5g). Support and concern tweets also level-off in early-to-304 

mid June, which is possibly all reflecting a change from channel-based lava emplacement to predominantly breakouts and 

overflows, which occurred after the second lava ocean entry on June 3rd, and drastically reduced the rate at which the lava 306 

flow was impacting built structures. Observation tweets more closely follow the temporal pattern of lava flow area (Fig. 5g), 

plateauing in early-August as the eruption ended. Favourable correlations between our social sensing data and independent 308 

field-based data provides an initial level of qualitative verification for our analyses.  

 310 

Our content analysis of the relevant, Hawaiian tweets also highlighted a high proportion were related to professional news; 

either tweets from professional journalists or tweets containing links to news articles. The proportion of news-related tweets 312 

reached ~50% in the early stages of the eruption, before fluctuating back to ~20-30% by the end of the eruption (Fig. A2). In 

addition to sharing of news articles, the tweets also contained URLs (web addresses) for other online media (Table 2). For 314 

those Hawaiian tweets, YouTube was the top-shared web domain, followed by the USGS volcanoes webpage, and then 

mostly local news outlets. A complementary examination of relevant non-Hawaiian tweets also showed a high degree of 316 

URL sharing, with YouTube similarly the top-shared web domain, but then followed by primarily international news outlets. 

Together, these findings suggest that news agencies / journalists can strongly influence information shared on social media 318 

during an eruptive crisis. 

  320 
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 322 
Table 2: Shared URL counts from relevant tweets, grouped by geographic region and inclusion/exclusion of duplicate Tweets. 

In
cl

ud
in

g 
du

pl
ic

at
e 

Tw
ee

ts
 

Location Rank Website URL’s Count Location Rank Website URL’s Count 

Hawai'i 

tweets 

1 youtube.com 366 

Non-

Hawai'i 

tweets 

1 youtube.com 3421 

2 volcanoes.usgs.gov 345 2 cnn.com 1077 

3 staradvertiser.com 301 3 bbc.co.uk 732 

4 facebook.com 279 4 apple.news 658 

5 hawaiinewsnow.com 177 5 cbsnews.com 647 

6 society6.com 82 6 cnn.it 608 

7 khon2.com 63 7 facebook.com 608 

8 bigislandvideonews.com 55 8 thegaurdian.com 484 

9 cbsnews.com 38 9 a.msn.com 471 

10 instagram.com 35 10 volcanoes.usgs.gov 455 

Ex
cl

ud
in

g 
du

pl
ic

at
e 

Tw
ee

ts
 

Location Rank Website Count Location Rank Website Count 

Hawai'i 

tweets 

1 volcanoes.usgs.gov 341 

Non-

Hawai'i 

tweets 

1 youtube.com 2296 

2 youtube.com 322 2 facebook.com 576 

3 staradvertiser.com 277 3 cnn.com 497 

4 facebook.com 274 4 volcanoes.usgs.gov 438 

5 hawaiinewsnow.com 155 5 cbsnews.com 367 

6 khon2.com 57 6 volcanic-eruption.com 285 

7 bigislandvideonews.com 49 7 apple.news 271 

8 society6.com 46 8 express.co.uk 270 

9 cbsnews.com 37 9 hawaiinewsnow.com 230 

10 instagram.com 34 10 bbc.co.uk 230 

 324 

 

4 Discussion 326 

Social sensing of tweets during the 2018 LERZ Kīlauea eruption has demonstrated temporal variation in social reaction 

(sentiment analysis) and action (content analysis) during the crisis, with syn-eruption changes in each that reflect patterns in 328 
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volcanic activity, civil protection actions and socioeconomic pressures. A decrease in mean tweet sentiment during the 

eruption, and especially in response to particular high-impact events, if taken as a proxy for mental health (Valdez et al., 330 

2020; Aebi et al., 2021), implies the eruption had an adverse effect on the wellbeing of individuals. However, given the 

anonymised big data approach of the analysis there is no guarantee those individuals most affected, for example losing 332 

property or livelihoods, contributed to the data collection. Given the strong media influence, and prevalent sharing of URLs, 

it is also possible that some of the negative shift in the recorded sentiment was driven by news headlines (e.g., Fig. 4f). 334 

Regardless, within the uncertainty there is still a clear message highlighted by the Hawaiian tweets with a negative sentiment 

that detail localised eruption impacts and a harmful effect on societal mood.  336 

 

From the perspective of hazard and risk communication, evidence of social action around sharing warnings in the lead up 338 

and early stages of the eruption, and sharing mitigation actions later during the eruption, is a positive outcome for volcano 

monitoring and emergency management organizations. Trust is a key issue in risk perception and hazard communication, 340 

and receiving crisis management advice shared by a friend, family member, or social network connection may lend more 

credibility to the information and increase its chances of uptake (Barclay et al., 2015; Christie et al., 2015; Goldman et al., 342 

2023). It has already been shown, for example, that social media based “community messengers” were sharing very highly-

trusted information during the 2018 LERZ eruption (Goldman et al., 2023). Our analyses lend further weight to this finding, 344 

and suggest that leveraging established social networks is likely a very productive route in future volcanic hazard and risk 

communication (Williams and Krippner, 2019), at Kīlauea and volcanoes worldwide.  346 

 

Observation-based tweets, and tweets detailing damage and destruction, were greater in number than tweets about warnings 348 

or support and concern (Fig. 5). The former two categories link to suggestions of using crowd-sourced observations of 

volcanic eruptions for scientific use (Wadsworth et al., 2022), but the addition of a social sensing based approach would not 350 

require any participant to ‘opt-in’ and could be automated with programmed social media data scraping algorithms, 

potentially drastically increasing the volume of acquired data. However, care would also need to be taken to ensure only data 352 

with sufficient metadata for the intended task (e.g., time, location) was used.  

 354 

In a forward-looking sense, automating the collection and selected analysis of social sensing data (from various social media 

platforms) in real-time could provide crucial insight during times of crisis for volcano monitoring, disaster management, and 356 

civil protection decision makers. Real-time social sensing could be used, for example, to improve situational awareness at 

volcanoes worldwide where social media usage is prevalent, or to track the spread of misinformation (Williams and 358 

Krippner, 2019). The potentially very low collection of irrelevant data within online volcanic conversation (Fig. 2) may 

facilitate this approach. There are also opportunities to examine sentiment and content in finer detail if improved geolocation 360 

information can be made available or inferred, as well as to compare the insights provided by different languages and social 

media networks or messaging applications. Access to social media will also play a role, with volcanic eruptions in regions 362 
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with poor access likely to produce a smaller ‘signal’ than similar eruptions in areas with good access. It will be important to 

ensure that external coverage and conversation of eruptions does not bias our understanding of events, given their larger data 364 

volume compared to local data input and the demonstrated influence of international media outlets. In this regard, using 

social sensing in parallel with traditional structured interviews of affected individuals will allow further verification and 366 

quality control of the social sensing approach, and allow researchers and practitioners to benefit from the respective 

advantages of both methodologies.  368 

5 Conclusions 

Social sensing of Twitter posts can track changes in social action and reaction throughout the 2018 eruption of Kīlauea, 370 

Hawai'i, through analyses of tweet frequency, sentiment, geolocation, and content. The volume of relevant tweets very 

rapidly increases in early May, corresponding to the beginning of the eruption; tweet frequency then generally declines to 372 

background levels over the course of the eruption with the exceptions of notable peaks in daily Tweet frequency in response 

to high-impact events. Automated sentiment analysis shows a shift towards more negative scores from the eruption onset, 374 

which indicates more negative emotions being expressed in the posts during the eruption. Time-dependent changes in topics 

of Hawai'i-specific Twitter conversations reflect patterns in volcanic activity, civil protection actions, and socioeconomic 376 

pressures. We find evidence of social action around sharing official warnings in the eruption’s lead up and early stages and 

sharing official mitigation actions later during the eruption. Such evidence is a positive outcome for volcano monitoring and 378 

emergency management organizations that are responsible for the official messaging. Tweets detailing damage and 

disruption follow a similar temporal trend to the rate of lava flow field expansion and building damage. Our work generally 380 

shows how hazard and risk information is discussed and reacted to on Twitter, which informs our understanding of 

community response actions and the efficacy of warnings and other official risk reduction communications. Social sensing 382 

shows great promise for further development and application in volcanology; we show the potential for real-time social 

sensing analyses to aid in situational awareness for risk-reduction professionals during volcanic crises. 384 

Appendices 

Appendix A 386 
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 388 
Figure A1: Change in tweet data count at different stages of filtering. The grey background indicates the period where the ground-
based warning level was at ‘watch’. 390 

 

 392 
Figure A2: Daily proportion of tweets classified as related to professional news outlets (orange), or not (green). The grey 
background indicates the period where the ground-based warning level was at ‘watch’. 394 

Code Availability 

The Python code for analysing the Twitter data is stored on a GitHub repository; access is private and can be obtained by 396 

contacting authors RA or HW. 
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