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Abstract. Protecting lives and livelihoods during volcanic eruptions is the key challenge in volcanology, conducted 14 

primarily by volcano monitoring and emergency management organizations, but complicated by scarce knowledge of how 

communities respond in times of crisis. Social sensing is a rapidly developing practice that can be adapted for volcanology. 16 

Here we use social sensing of Twitter posts to track changes in social action and reaction throughout the 2018 eruption of 

Kīlauea, Island of Hawaiʻi. The volume of relevant posts very rapidly increases in early May, coincident with the beginning 18 

of the eruption; automated sentiment analysis shows a simultaneous shift towards more negative emotions being expressed in 

post text. Substantial negative trends in sentiment are evident in reaction to high-impact events, including the destruction of a 20 

popular residential area and injuries sustained by tourists viewing the eruption. Topics of local Twitter conversation reveal 

societal actions, including sharing of hazard warnings, mitigation actions, and aid announcements. Temporal trends in 22 

societal actions reflect patterns in volcanic activity (e.g., the peak and waning of eruptive activity), civil protection actions 

(e.g., risk mitigation actions and the communication of official warnings), and socioeconomic pressures (e.g., the destruction 24 

of homes). Local tweets detailing eruption damage and disruption display a similar temporal trend to independent estimates 

of the number of buildings in contact with lava. We show how hazard and risk information is discussed and reacted to on 26 

Twitter, which helps inform our understanding of community response actions and aids situational awareness, and outline 

how our approach could be adapted for use in real-time. 28 

1 Introduction 

Volcanic crises can cause significant damage, casualties, and economic loss (Brown et al., 2015; Barclay et al., 2015), 30 

especially as over 800 million people live near volcanoes (<100 km) (Loughlin et al., 2015) and many more depend on them 

for their livelihoods (Brown et al., 2015). During volcanic unrest and eruption, volcano monitoring agencies work closely 32 

with emergency management organisations to assimilate multi-disciplinary data streams and provide hazard updates and 

actionable risk mitigation advice to communities at risk (Jolly and de la Cruz, 2015; Peltier et al., 2021; Bonaccorso et al., 34 

2016; Stovall et al., 2023). Volcanic hazard and risk information are communicated to the public using a variety of media 

types (Stovall et al., 2023; Goldman et al., 2023; Williams and Krippner, 2019; Calabrò et al., 2020; Mani et al., 2024; 36 

Fearnley et al., 2018), but there is currently no large-scale mechanism, and often a lack of resource (financial, time, 

personnel), to track how that information may result in individual- and community-level action (Mani et al., 2024), nor how 38 

that information may influence the emotional state (reaction) of affected populations (Ruiz and Hernández, 2014). 

Consequently, social impacts of volcanic crises can be poorly understood. In particular, the actions and reactions of local 40 

populations may evolve during an eruptive crisis in response to the dynamic nature of volcanic hazards (Hicks and Few, 

2015) and the fluctuating impacts of mitigation and recovery actions (Barclay et al., 2019). These time-dependent changes 42 

could provide useful feedback and information for volcanic monitoring agencies and emergency management organisations 
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(Barclay et al., 2015) but are likely lost when traditionally interviewing subsets of affected individuals once a crisis has 58 

ended (Mani et al., 2024; Goldman et al., 2023; Christie et al., 2015; Naismith et al., 2020; Armijos et al., 2017).  

 60 

Social media posts (text, photos and videos) are often shared in real-time with useful identifying keywords or ‘hashtags’, and 

can provide free, fast, efficient, quantifiable, and valuable information during times of crisis (Guan and Chen, 2014; Yu et 62 

al., 2018; Wadsworth et al., 2022). Social sensing is the systematic analysis of publicly-available social media data to 

observe real-world events (Liu et al., 2015). Emerging social sensing techniques have proven effective for studying a number 64 

of natural hazards across a range of social media networks (e.g., storms (Spruce et al., 2020), floods (Arthur et al., 2018; 

Young et al., 2022), hurricanes (Spence et al., 2015; Wu and Cui, 2018; Guan and Chen, 2014; Zhou et al., 2021), 66 

earthquakes (Steed et al., 2019), heatwaves (Kirilenko et al., 2015)), providing early warnings and qualitative and 

quantitative information. Studies have been conducted to: geospatially detect and locate hazardous events, uncovering 68 

previously unknown hazard extents (Spruce et al., 2020; Arthur et al., 2018; Wu and Cui, 2018; Guan and Chen, 2014); 

investigate topics of discussion (Spruce et al., 2020; Spence et al., 2015; Guan and Chen, 2014) and emotional responses 70 

(Wu and Cui, 2018; Spruce et al., 2020; Giuffrida et al., 2020) that may vary through different temporal stages of a disaster; 

analyse societal impacts (Wu and Cui, 2018; Kryvasheyeu et al., 2016); assess how information spreads through social 72 

networks (Spence et al., 2015); and to conduct rapid damage assessment (Guan and Chen, 2014). Though analyses are 

sparse, with increased damage losses there appears to be greater social media activity (Wu and Cui, 2018; Kryvasheyeu et 74 

al., 2016) and a more negative sentiment expressed in social media content (Wu and Cui, 2018). Social sensing has never 

been systematically applied to a volcanic eruption. Here we aim to test whether social sensing can track and quantify 76 

changes in societal actions and emotional responses during an eruptive crisis, and whether those changes are coincident with 

different stages of the eruption. 78 

 

We focus our analyses on the 2018 lower East Rift Zone (LERZ) eruption of Kīlauea (Fig. 1) due to its long duration (May – 80 

August 2018) and substantial socioeconomic (i.e., affecting economic and social wellbeing) impacts (Meredith et al., 2022; 

Houghton et al., 2021; Williams et al., 2020). The LERZ eruption was preceded in March and April 2018 by rapidly rising 82 

pressure in the Kīlauea magmatic system, evidenced by inflation around the Pu'u'ō'ō vent and rising levels in the 

Halema'uma'u lava lake (Neal et al., 2019; Anderson et al., 2019; Patrick et al., 2020). Eventually, the Pu'u'ō'ō crater 84 

collapsed on April 30th prompting magma to migrate eastwards downrift through dykes into the LERZ and causing elevated 

felt seismicity and surface deformation (including ground cracks) in the Puna District (Neal et al., 2019; Anderson et al., 86 

2019). On May 1st the United States Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) issued a Volcanic 

Activity Notice (VAN) highlighting the possibility of a new eruption within the LERZ (Stovall et al., 2023). The eruption 88 

began on May 3rd (Fig. 1) with a fissure opening in the Leilani Estates subdivision, erupting basaltic lava flows. A total of 24 

fissures opened during the eruption and were sequentially numbered, with fissure 8 being the most productive (Gansecki et 90 

al., 2019). Lava flows first reached the coast on May 19th, entering the sea and producing laze (lava haze consisting of steam, 
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hydrochloric acid, and tiny glass shards), while a later segment of the flow reached the sea on June 3rd. Major lava effusion 104 

ended on August 4th.  

 106 
Figure 1: Overview of the 2018 Kilauea LERZ eruption. (a) Map of the eruption with key locations highlighted alongside the 
temporal evolution of the lava flow extent and the spatial distribution of tephra deposits from Fissure 8. (b) Timeline of the 108 

eruption. The grey background indicates the period where the ground-based alert level was at ‘warning’ and the colour of the 
points reflects the aviation colour code. VAN = volcanic activity notice. 110 

 

Simultaneous to the LERZ fissure activity, the summit reservoir feeding the LERZ eruption sequentially deflated, initially 112 

producing summit explosions driven by rock fall into the lowering lava lake (Neal et al., 2019). As further deflation 

continued, the Halema'uma'u crater widened, and larger ash-plume-producing collapse explosions progressed into a series of 114 

regular caldera collapse events (Anderson et al., 2019). The successive caldera collapses were associated with felt ~M5 
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earthquakes, additional lower magnitude seismicity (>~700 events per day with M≤4), and production of ash plumes (Neal et 120 

al., 2019). The largest earthquake related to the volcanic activity measured M6.9 on May 4th, believed to have been initiated 

by the dyke intrusion into the LERZ (Neal et al., 2019).  122 

 

The lava flows covered 32.4 km2 of the Puna District of Kīlauea’s LERZ (Fig. 1), destroying 1839 structures and damaging a 124 

further 90 (Meredith et al., 2022). Damage to buildings extended beyond the lava flow margins as a result of fire, thermal 

effects and the impact of volcanic gases and tephra (Meredith et al., 2022). Between May 2018 and April 2019, the estimated 126 

total economic cost of the eruption was ~$1 billion, alongside the loss of 2950 jobs (County of Hawaiʻi, 2020); the tourism 

and agriculture sectors were amongst the most severely impacted, and the closure of the Hawaiʻi Volcanoes National Park is 128 

thought to have cost ~$99 million alone (County of Hawaiʻi, 2020). An estimated 5,563 people were permanently or 

temporarily displaced by the eruption, 2668 of whom were served mandatory evacuation orders (Kim et al., 2019). Amongst 130 

the impacted regions were differences in how eruption information was perceived regarding trust and credibility of the 

messenger(s) (Goldman et al., 2023). For example, in the LERZ where the impacts were felt most severely, surveyed 132 

residents reported placing more trust in “community messengers” whose information was mostly shared through social 

media (Goldman et al., 2023). Social media was also used extensively by the USGS HVO, increasing two-way dialogue and 134 

the speed and reach of official communications (Goldman et al., 2024); it was deemed vital for the dynamic, rapidly-

evolving situations for which they needed to provide updates (Stovall et al., 2023). The proliferation of social media usage 136 

during this eruption makes it an ideal case for exploring the application of social sensing in a novel volcanological context to 

detect and monitor social activity and emotional response. 138 

2 Methods 

We use data from the social media platform, Twitter, in this social sensing study due to the availability of these data when 140 

conducting our analyses. We note that Twitter has rebranded as “X”, but we will use the term Twitter (and tweets) in this 

publication, as that was its name in 2018. Twitter is an online micro-blogging social media service allowing users to post 142 

updates (called ‘tweets’) limited to 280 characters (including emoji). Tweets can be accompanied by multimedia content 

(e.g., photos or videos), and often contain ‘hashtags’ (indicated by a #) that link all tweets containing the same hashtag and 144 

allow users to follow specific topics. Twitter is one of the world’s most popular social networks, with over 300 million users 

in 2018 rising to 415 million in 2023 (Degenhard, 2023), and is often used to share updates and information about events 146 

more rapidly than traditional media sources (Wu and Cui, 2018).  

2.1 Twitter Data Collection 148 

Our data collection centres around the 2018 LERZ eruption of Kīlauea. Twitter provides an application programming 

interface (API) that can be used to access and download Twitter data in real-time, or for historical events. At the time of data 150 
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collection in May 2020, the free version of the API could not be used to access past (‘historic’) tweets, so a paid service was 156 

used to collect our data via the trackmyhashtag.com analytics tool. Later in 2020, the use of the academic API was extended 

to allow free access to historical tweets. However, the free use of the academic API was discontinued in May 2023 following 158 

a change of Twitter ownership in October 2022, and is now administered within a premium paid business service beyond the 

scope of most academic research projects (Calma, 2023). Government and public-owned services have retained free access 160 

to the API for posting public utility alerts, and there is hope this will be extended to downloading tweet data, free usage of 

the API for monitoring severe events, and a possibly reduced rate for academic access.  162 

 

Our data were collected using a “Kilauea” search term for all English language historical tweets, excluding retweets, 164 

between 01-Jan-2018 and 01-Dec-2018 to cover the pre-eruption, eruption, and post-eruption period. The search term is 

case-insensitive, but does not include spelling with kahakō (i.e., Kīlauea). Data were collected in JavaScript Object Notation 166 

(JSON) format for 163,438 tweets. The JSON file contains the tweet text, as well as a number of metadata fields (e.g., 

username, user location, geotag, tweet time and date, unique identifier); we do not attempt to infer any extra (and uncertain) 168 

demographic information (e.g., McCormick et al., 2017) to avoid data misclassification and privacy complications. The 

following analyses and investigation are consistent with the Twitter terms of service. We acknowledge the possibility that 170 

some tweets posted around the time of the eruption might have been deleted prior to our data collection, and therefore we 

may be missing some potentially insightful data.  172 

2.2 Data Filtering 

 174 

Following data collection, several steps were taken to first remove irrelevant data and then to narrow the focus of the data to 

a greater proportion of human insight. The following filters are described in the order in which they were applied. 176 

• Machine learning relevance filter. A sample of 5,748 tweets were manually classified as relevant or irrelevant by 

a team of five human coders who also performed inter-coder reliability checks. Similar splits of training and test 178 

data have been successfully used in other natural hazard social sensing studies (Young et al., 2021, 2022; Spruce et 

al., 2020, 2021). To be classified as relevant, the tweet needed to be related to the eruption of Kīlauea. The labelled 180 

tweets were used as training data for a machine learning classifier; 70% were used for training and the remaining 

30% were used for validation. A comparison of test data accuracy is shown in Table 1 for various machine learning 182 

models, where the F1 score represents the precision and recall, and therefore the reliability, of the model. The 

convolutional neural network yielded the highest accuracy on the test data and was consequently selected for use 184 

and applied to the full dataset; 89% of the full dataset (142,877 tweets) passed the relevance filter (Fig. A1). 

• Source filter. Tweet metadata include a source attribute that identifies whether the tweet originated from Twitter or 186 

an external source such as Facebook, Instagram, or a news website. Tweets from external sources are often 
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automated and do not provide a human insight into the event, and therefore only tweets that were directly posted on 

Twitter were kept for this analysis. 194 

• Username filter. A manual inspection of the dataset’s 100 most active tweeting accounts showed that many were 

news accounts or automated volcano tracking/update accounts. As these often do not provide human insight into the 196 

event it is common to remove them (Young et al., 2021). A list of words commonly found in unwanted Twitter 

account names was created, and if any of these words were found in a tweet username, the tweet was removed. The 198 

list of words contained the following: 'news', 'daily', 'press', 'post', 'times', 'bbc', 'story', 'network', 'gazette', 

'independent', 'stories', 'thesun', 'nation', 'media', 'guide', 'reuter', 'econom', 'radio', 'weather', 'climate', 'trending', 200 

'volcan', 'hawaii', 'lava', 'magma', 'mantle', 'kilauea', 'environ', 'nature', 'physic', 'science', 'quake'.  

• Duplicate filter. Duplicate tweets were identified and removed from the dataset to ensure high data quality. The 202 

three main causes of duplication were: (i) duplicates arising during data collection; (ii) identical content shared 

across users, often copied and pasted from external sources; and (iii) user error or bots posting the same content 204 

multiple times. 

The results of the filtering stages are shown in Fig. A1, where parallel trends in data volume are evident throughout 2018. 206 

 
Table 1: Test data accuracy for machine learning models applied for relevance classifier. 208 

Model Accuracy F1 Score 

Support Vector Machine 0.86 0.92 

Logistic Regression 0.86 0.92 

Multinomial Naïve Bayes 0.85 0.91 

Random Forest 0.86 0.92 

Convolutional Neural Network 0.89 0.94 

 

2.3 Location Inference 210 

Location information is important for determining the spatial variation of eruption responses and can be obtained from 

Twitter users who enable geotagging or manually tag a location, providing either specific coordinates or a "bounding box" (a 212 

set area within which the location falls). Typically, however, only 2% of tweets include such location information in their 

metadata (Laylavi et al., 2016), which can greatly limit geospatial analysis. Location inference techniques can address this 214 

limitation and accurately locate tweets while maintaining a high volume of data. We applied the location inference method 

of Arthur et al. (2018) to our filtered relevant tweets. This approach uses multiple tweet indicators, including: locations in 216 
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tweet text and user description; the user-entered location field; the manually tagged place attribute; and GPS coordinates of 

geotagged tweets. By overlaying the indicators present, the most probable location for the tweet is returned. 220 

2.4 Sentiment Analysis 

Sentiment analysis is a natural language processing technique that quantifies emotions in text. VADER (Valence Aware 222 

Dictionary and sEntiment Reasoner) is a commonly used sentiment analysis model, optimised for short-form social media 

data, and is lightweight and transparent in how it operates making it ideal for our task (e.g., Young et al., 2022; Spruce et al., 224 

2020; Goldman et al., 2024; Valdez et al., 2020). VADER works by assessing the sentiment of text based on a predefined 

dictionary/lexicon of words, each manually assigned a sentiment score (Hutto and Gilbert, 2014). These scores range from 226 

negative (-1) to positive (+1), reflecting the emotional tone of the words. The model considers not only individual words but 

also the context, including the use of intensifiers, negations, punctuation, emoticons, and slang (Hutto and Gilbert, 2014). 228 

We applied VADER via the vaderSentiment Python package to the tweet text to calculate the overall sentiment score for 

each filtered relevant tweet. There is potential for misinterpretation of some tweet text to introduce errors into the sentiment 230 

analysis, but with a big data approach these potential errors average out; consequently VADER has been successfully applied 

in previous state-of-the-art social sensing studies (e.g., Young et al., 2022; Spruce et al., 2020; Arthur et al., 2018; Valdez et 232 

al., 2020; Goldman et al., 2024). 

2.5 Content Analysis 234 

Filtered relevant tweets that had a geographic origin within the State of Hawaiʻi (referred to henceforth as Hawaiian tweets) 

were manually analysed and placed into one of five categories. The categories were determined after five independent 236 

human coders inspected subsamples of the full dataset, and comprised:  

• Observation: tweet contains, or links to, a description, photo or video of eruptive phenomena. 238 

• Warning: tweet contains, or links to, official or unofficial warnings of the eruption. 

• Support and concern: tweet contains, or links to, messages of support and/or concern for impacted individuals or 240 

communities. 

• Damage and disruption: tweet contains, or links to, accounts of damage and/or disruption caused by the eruption. 242 

• Other: tweets that are related to the eruption but do not fit into any of the previous categories. 

The categorization of 4583 tweets was performed manually by the lead author. Prior to this, the five human coders 244 

performed inter-coder reliability checks (O’Connor and Joffe, 2020) to ensure the category descriptions and tweet 

assignments into categories were self-consistent across the five coders. Iterations between category descriptions and the 246 

number of categories improved the Fleiss Kappa agreement score from an initial 67% (“good”) to 87% (“very good”) 

(Altman, 1999; Landis and Koch, 1977), which was deemed sufficient to progress with the final categorisation of tweets. 248 

Tweet text, and any included links or multimedia content, were used to assign a category. Where tweets could have crossed 
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multiple categories, they were assigned to the category they were deemed to represent most strongly in order to simplify the 254 

data analysis. Future work may wish to expand on this approach by allowing tweets to fit one or more categories 

simultaneously. 256 

 

In addition to categorising the relevant Hawaiian tweets into one of the five categories, these tweets were also given a 258 

manual binary tag of being either related or unrelated to professional news. In this case, related to professional news meant a 

news agency or professional journalist posted the tweet, or the tweet contained a link to a professional online news article. 260 

 

Finally, URLs within filtered relevant tweets were extracted from the tweet metadata. URLs in tweets are usually shortened 262 

to minimise their impact on the character limit. Many URLs were shortened using bit.ly, and the bitly API was used to 

expand them. For the remaining shortened URLs, a script using selenium was used to fully load the URLs, before scraping 264 

and returning the true domain. 

3 Results 266 

3.1 Event Timeseries 

Our initial dataset contains 163,438 tweets. The number of tweets per day explodes in early May, coincident with the onset 268 

of unrest and beginning of the eruption, then slowly tails off with a return to near-background levels in late August (Fig. 2), 

potentially due to a declining interest in the eruption and decreasing eruption impacts. From the full dataset, 89% of the data 270 

(142,877 tweets) passed the relevance filter, and 68% of the relevant tweets (96,965 tweets) were able to be assigned to an 

individual location; temporal trends in relevant and located tweets are parallel to that of the full dataset (Fig. 2, Fig. A1). The 272 

relevant tweets are related to volcanic hazards and impacts of the eruption, as well as observations and civil protection 

activities, while the irrelevant tweets contain a mixture of automated tweets, and tweets about the volcano and national park 274 

but not the eruption (Fig. 2) An initial peak in tweet volume at the beginning of the eruption is followed by later peaks that 

can be related to specific hazardous phenomena (e.g., the highest ash plume, the first lava ocean entry) or eruption impacts 276 

(e.g., tourists getting injured on a boat trip).  

 278 
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Figure 2: Twitter dataset timeseries and relevancy. (a) Timeseries of full Twitter dataset (green), and the subsets that were deemed 280 

relevant (orange) and able to be assigned to a location (blue), for all of 2018. (b) Same as a but for the eruption period only. In a 
and b the grey background indicates the period where the ground-based alert level was at ‘warning’. (c) Wordcloud of most 282 

common bigrams (a pair of consecutive written units) for all relevant tweets (maximum = ‘lava_flow’ where n=3947, minimum = 
‘footage_show’ where n=2). (d) Wordcloud of most common bigrams for all irrelevant tweets (maximum = ‘liked_video’ where 284 

n=222, minimum = ‘leilani_estate’ where n=1). Larger bigrams in the wordclouds indicate a greater degree of occurrence. 

 286 

A high percentage of relevant tweets (89%) contrasts with many social sensing studies of other natural hazards, for example 

~1-44% for floods (Arthur et al., 2018; de Bruijn et al., 2019), 3-5% for UK storms (Spruce et al., 2020), 11% for worldwide 288 

high-impact rainfall events (Spruce et al., 2021), and 19-27% for global heatwaves (Young et al., 2021). These findings may 

suggest that volcanic eruption discourse on Twitter is more unique when compared to general posts, and that further 290 

volcano-focussed social sensing studies could possibly benefit from such high relevancy by minimising the collection of 

irrelevant data. However, such a high percentage of relevant data may also be a result of a very specific initial data search 292 

term (“Kilauea”), and may not be repeated for volcano name search terms that have cross-over to other topics of 

conversation (e.g., Mount Baker, Three Sisters, White Island), or for impact-based initial search terms that are also used 294 

outside of volcanic eruptions (e.g., buried, covered, inundated). A similar finding has been reported for storm names, where 

the percentage of relevant tweets was much higher for a storm named ‘Ophelia’ (an uncommon name) compared to a storm 296 

named ‘Brian’ (a more common name) (Spruce et al., 2020). Within the relevant Kīlauea data, the clear peaks in data volume 

correlating with high-impact events highlight the strong public interest in such processes, justifying and enabling the use of 298 

social sensing to extract additional clues about social actions and reactions, for the eruption in question but also for future 

eruptions that have, or could have, significant socioeconomic impacts.  300 
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3.2 Sentiment Analysis 306 

By examining only relevant filtered tweets, the automated sentiment analysis shows subtle temporal changes in expressed 

emotions through 2018 (Fig. 3). Sentiment scores range from negative (-1) to positive (+1) reflecting the emotional tone of 308 

the words (Hutto and Gilbert, 2014). Prior to the eruption, the mean sentiment value is 0.19, matching an expected trend 

towards positive sentiment in general language (Dodds et al., 2015), but due to the very low data volume there is a low 310 

degree of confidence. During the eruption the mean sentiment score decreases to 0.00, indicating a greater degree of more 

negative emotions being expressed in the tweet text. After the eruption, the mean sentiment through to the end of 2018 312 

increases to 0.08, but also with a low confidence from a low data volume. The equivalent values for Hawaiʻi-specific 

relevant tweets for the same time periods are: 0.21, 0.02, and 0.05 (Fig. 3), indicating a similar magnitude decrease in 314 

sentiment during the eruption, but a smaller post-eruption recovery, potentially due to prolonged eruption impacts (e.g., 

County of Hawaiʻi, 2020) and post-event trauma. The temporal patterns between the Hawaiʻi-specific data and that of all 316 

geographic regions are similar. Within the eruption period there is an initial sharp decrease in sentiment reflecting the 

personal shock and upset caused by the early impacts, as well as increased media attention and circulation of news articles 318 

on Twitter. The next two most negative periods in the sentiment timeseries can be temporally correlated to noteworthy 

damage (i.e., socioeconomic pressure) or impacts: the destruction of the residential area Vacationland and the injuries 320 

sustained by tourists on a boat trip, respectively (Fig. 3). There are generally no identified correlations between the more 

positive peaks in the sentiment timeseries’ and the eruption, or social and political interventions related to the eruption. 322 
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Figure 3: Daily sentiment analysis timeseries. (a) Automated sentiment analysis values for all relevant filtered tweets. (b) Same as a 
but only for tweets assigned to a location within Hawaiʻi. In a and b the grey background highlights the period where the ground-330 
based alert level was at ‘warning’, and positive values reflect more positive emotions (and vice versa). The horizontal purple lines 

mark the mean values for the pre-eruption, syn-eruption and post-eruption periods, and the shaded error bars are the 95% 332 
confidence intervals. 

 334 

Combining the outputs of tweet location inference and sentiment analysis allows us to investigate geospatial patterns in 

sentiment. When considering all geographic regions that can be assigned at least one geo-located tweet, there is no 336 

correlation between mean sentiment and distance from the eruption (Fig. 4). Filtering that same analysis to regions with at 

least 100 geo-located tweets, producing more reliable averages, reveals a weak negative correlation between mean sentiment 338 

and distance from the eruption (Fig. 4). Perhaps non-intuitively, tweets originating from the State of Hawaiʻi are amongst the 

most positive, especially for regions with more than 30 geo-located tweets, driven largely by messages of hope and support 340 

(Fig. 4c). Hawaiian tweets with negative sentiment detail localised detrimental impacts of the eruption that would have likely 

driven socioeconomic pressures, such as loss of homes, damage to property, and closure of the national park (Fig. 4d). 342 

Through grouping of tweets originating outside the State of Hawaiʻi, those with a negative sentiment reveal a trend towards 

more dramatized and/or sensationalised accounts of the eruption (perhaps a result of international media reporting (Calabrò 344 

et al., 2020)), while the positive sentiment tweets praise the apparent ‘beauty’ of the eruption, alongside a smaller proportion 

of messages of hope and support (Fig. 4).  346 
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Figure 4: Geospatial sentiment analysis. (a) Mean sentiment for all global regions with at least one tweet. (b) Same as a but with at 356 
least 100 tweets. (c-f) Bigram wordclouds for Hawaiʻi or non- Hawaiʻi from grouped positive (0 – 1) or negative (-1 – 0) sentiment 

scored tweets. Larger bigrams in the wordclouds indicate a greater relative degree of occurrence, i.e., large bigrams contain words 358 
which are more common in positive tweets but uncommon in negative tweets (or vice versa). 

 360 

3.3 Content Analysis 

Manual classification of relevant, filtered, Hawaiian tweets into one of five categories shows contrasting temporal patterns 362 

(Fig. 5). Warning-related tweets first increase prior to the eruption and coincident with the USGS VAN released on May 1st. 
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Later peaks in warning-related tweets correlate to a subsequent USGS VAN warning about the potential for summit 

explosions (May 9th) and a change in the aviation colour code to red (May 15th) (Fig. 5b). These results indicate that a section 368 

of the public is not only noticing the official warnings, but also taking the time and effort to spread them within their social 

networks. Evidence of community response action in the sharing of warnings (Fig. 5b) is concurrent with the timing of 370 

hazard warning communications (Fig. 1b). 

 372 

Observation-based tweets expectedly show a peak at the beginning of the eruption, reflecting the initial intrigue of 

witnessing the event and sharing updates about areas impacted. A later, similar-sized peak in observation-based tweets 374 

records updates about the highest ash plume generated during the eruption, highlighting elevated levels of interest in this 

significant event (Neal et al., 2019). Tweets categorised as relating to messages of support and concern also peak at the 376 

beginning of the eruption, and during the explosion producing the highest ash plume with specific messages around sharing 

official risk reduction mitigation actions and advice on dealing with the ash. A later peak of tweets expressing support in 378 

mid-June correlates to the FEMA (Federal Emergency Management Agency) approval of emergency disaster assistance, 

corresponding with the prospect of aid. Damage and disruption tweets highlight socioeconomic pressures (Fig. 5d) and show 380 

peaks in the early stages of the eruption related to the prolonged destruction of structures by the lava flows, as well as a 

single peak that can be correlated to the closure of the Hawaiʻi Volcanoes National Park. A minor peak in damage and 382 

disruption tweets occurs later, coincident with a M5.6 summit earthquake and news articles reporting on the destruction of 

homes in the LERZ (e.g., The Guardian, 2018). Remaining tweets were categorised as “Other” and have a temporal trend 384 

that broadly mirrors observation-based tweets, which can be explained by a likely parallel pattern in eruption interest caused 

by the initiation and evolution of eruptive activity.  386 
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Figure 5: Temporal content analysis for Hawaiian tweets. (a-e) Timeseries of daily tweet counts across 5 categories: observation, 394 
warning, support and concern, damage and disruption, and other. The earliest syn-eruption peaks correlate with the start of the 
eruption. (f) Cumulative counts of tweet categories, using the same data as a-d. (g) Relative cumulative counts of tweet categories 396 

(observation, warning, support and concern, damage and disruption) compared against the relative number of buildings in contact 
with the lava and the area of lava flow inundation. All datasets are normalised to the same time period (May 3 – Aug 7), and the 398 

thin black line indicates June 3rd. Lava flow and building data are from Meredith et al. (2022). In a-f the grey background 
highlights the period where the ground-based alert level was at ‘warning’. 400 

 

Contrasting temporal trends in the categorised tweets are also evident when examining their cumulative totals through time 402 

(Fig. 5f). Warning-based tweets roughly plateau in mid-May, while observation tweets increase throughout the eruption 

period albeit with a lower rate after mid-June. Comparing the cumulative pattern of damage and disruption tweets with an 404 
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independent field-based damage assessment (Meredith et al., 2022) shows a correlation with the number of buildings in 410 

contact with the lava (Pearson’s linear correlation coefficient, r = 0.97); both begin to level-off in early June (Fig. 5g). 

Support and concern tweets also level-off in early-to-mid June, which is possibly all reflecting a change from channel-based 412 

lava emplacement to predominantly breakouts and overflows, which occurred after the second lava ocean entry on June 3rd, 

and drastically reduced the rate at which the lava flow was impacting built structures (Neal et al., 2019; Meredith et al., 414 

2022). Observation tweets closely follow the temporal pattern of lava flow area (Fig. 5g, and r = 0.96), plateauing in early 

August as the eruption ended. Favourable correlations between our social sensing data and independent field-based data 416 

confirm coincident temporal syn-eruption changes between the volcanic activity and social actions and provides an initial 

level of qualitative verification for our analyses.  418 

 

Our content analysis of the relevant, Hawaiian tweets also highlighted a high proportion of these were related to professional 420 

news; either tweets from professional journalists or tweets containing links to news articles. The proportion of news-related 

tweets reached ~50% in the early stages of the eruption, before fluctuating back to ~20-30% by the end of the eruption (Fig. 422 

A2). In addition to sharing of news articles, the tweets also contained URLs (web addresses) for other online media (Table 

2). For those Hawaiian tweets, YouTube was the top-shared web domain, followed by the USGS Volcanoes webpage, and 424 

then mostly local news outlets. A complementary examination of relevant non-Hawaiian tweets also showed a high degree of 

URL sharing, with YouTube similarly the top-shared web domain, but then followed by primarily international news outlets. 426 

Together, these findings suggest that news agencies / journalists can strongly influence information shared on social media 

during an eruptive crisis. 428 
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 434 
Table 2: Shared URL counts from relevant tweets, grouped by geographic region and inclusion/exclusion of duplicate Tweets. 

In
cl

ud
in

g 
du

pl
ic

at
e 

Tw
ee

ts
 

Location Rank Website URL’s Count Location Rank Website URL’s Count 

Hawaiʻi 

tweets 

1 youtube.com 366 

Non-Hawaiʻi 

tweets 

1 youtube.com 3421 

2 volcanoes.usgs.gov 345 2 cnn.com 1077 

3 staradvertiser.com 301 3 bbc.co.uk 732 

4 facebook.com 279 4 apple.news 658 

5 hawaiinewsnow.com 177 5 cbsnews.com 647 

6 society6.com 82 6 cnn.it 608 

7 khon2.com 63 7 facebook.com 608 

8 bigislandvideonews.com 55 8 thegaurdian.com 484 

9 cbsnews.com 38 9 a.msn.com 471 

10 instagram.com 35 10 volcanoes.usgs.gov 455 

Ex
cl

ud
in

g 
du

pl
ic

at
e 

Tw
ee

ts
 

Location Rank Website Count Location Rank Website Count 

Hawaiʻi 

tweets 

1 volcanoes.usgs.gov 341 

Non-Hawaiʻi 

tweets 

1 youtube.com 2296 

2 youtube.com 322 2 facebook.com 576 

3 staradvertiser.com 277 3 cnn.com 497 

4 facebook.com 274 4 volcanoes.usgs.gov 438 

5 hawaiinewsnow.com 155 5 cbsnews.com 367 

6 khon2.com 57 6 volcanic-eruption.com 285 

7 bigislandvideonews.com 49 7 apple.news 271 

8 society6.com 46 8 express.co.uk 270 

9 cbsnews.com 37 9 hawaiinewsnow.com 230 

10 instagram.com 34 10 bbc.co.uk 230 

 436 

 

4 Discussion 438 

Social sensing of tweets during the 2018 LERZ Kīlauea eruption has demonstrated temporal variation in social reaction 

(sentiment analysis) and action (content analysis) during the crisis, with syn-eruption changes in each that reflect patterns in 440 
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volcanic activity, civil protection actions, and socioeconomic pressures. We present and discuss our data in a purely 

observational driven context without reference to particular social science theories. Exploring how our results could support, 446 

challenge, or develop current social science theories may be a fruitful avenue for future research.  

 448 

A decrease in mean tweet sentiment is observed during the eruption, and especially in response to particular high-impact 

events, at global and Hawaiʻi -specific spatial scales. It has been suggested that big data from social media, including 450 

sentiment analyses, can be used to monitor mental health in response to crises (Valdez et al., 2020; Aebi et al., 2021), which 

could imply that the decreases seen in tweet sentiment here are recording adverse effects on the wellbeing of individuals 452 

caused by the eruption. However, given the anonymised big data approach of the analysis, there is no guarantee those 

individuals most affected, for example, losing property or livelihoods, contributed to the data collection, and there is no 454 

automated way to distinguish between tweets from residents or tourists in data originating geographically in Hawaiʻi. Given 

the strong media influence, and prevalent sharing of URLs, it is also possible that some of the negative shift in the recorded 456 

sentiment was driven by news headlines with sensationalised reporting (e.g., Fig. 4f) (Goldman et al., 2023). Regardless, 

within the uncertainty in the Hawaiian tweets with a negative sentiment, there is still a clear message highlighting localised 458 

eruption impacts and a harmful effect on societal mood. Simultaneously, there was widespread sharing of messages of 

support and concern, which included the word ‘Pele’ as a highly used term (e.g., Fig 4c). Pele refers to the Hawaiian volcano 460 

deity and highlights a link to local cultural beliefs and values in a region with an indigenous population. Though it was 

beyond our current scope, exploration of cultural themes, and other qualitative analyses of the tweet content, could provide 462 

further useful information for local authorities to help guide their hazard and risk communication (e.g., Graham et al., 2024).  

 464 

Official communication of hazard and risk information is a key part of hazard management, and for our study of the 2018 

LERZ Kīlauea eruption, included warnings of possible hazards, advice for responding to hazards (particularly ash), and 466 

emergency response assistance announcements. In our analyses, we show evidence for responses within the community to 

such information, including sharing warnings in the lead up and early stages of the eruption (e.g., Fig 5b), and sharing 468 

mitigation actions later during the eruption (e.g., Fig 5c). The sharing of hazard and risk information across individuals’ 

social networks is a positive outcome for volcano monitoring and emergency management organizations demonstrating that 470 

their communications are effective with regards to being seen, acknowledged, and passed on. Trust is a key issue in risk 

perception and hazard communication, and receiving crisis management advice shared by a friend, family member, or social 472 

network connection may lend more credibility to the information and increase its chances of uptake (Barclay et al., 2015; 

Christie et al., 2015; Goldman et al., 2023). It has already been shown, for example, that social media based “community 474 

messengers” were sharing very highly-trusted information during the 2018 LERZ eruption (Goldman et al., 2023). Our 

analyses lend further weight to this finding by showing that Twitter posts were used to share warnings, advice, and 476 

observations of the eruption to social networks (Fig 5), and suggest that leveraging established social networks is likely a 
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very productive route in future volcanic hazard and risk communication (Williams and Krippner, 2019), at Kīlauea and 498 

volcanoes worldwide.  

 500 

Observation-based tweets, and tweets detailing damage and destruction, were greater in number than tweets about warnings 

or support and concern (Fig. 5). The former two categories link to suggestions of using crowd-sourced observations of 502 

volcanic eruptions for scientific use (Wadsworth et al., 2022), but crowd-sourcing is resource-intensive and often requires 

participants to opt-in, which could reduce uptake. However, the addition of a social sensing based approach would not 504 

require any participant to opt-in and could be automated with programmed social media data scraping algorithms, potentially 

drastically increasing the volume of acquired data.  506 

 

Automating the collection and selected analysis of social sensing data (from various social media platforms) in real-time 508 

(e.g., Middleton et al., 2014; Zhou et al., 2021) could provide crucial insight during times of crisis for volcano monitoring, 

disaster management, and civil protection decision-makers. While we collected and analysed historical Twitter data, similar 510 

data scraping approaches could be established to download Tweets meeting a particular search requirement (e.g., 

keyword(s)) in real-time, and subsequently rapidly processed in real-time using pre-established analysis algorithms (like 512 

those developed and presented here). At volcanoes worldwide where social media usage is prevalent, real-time social sensing 

would improve situational awareness. For example, content analysis of tweet text could gauge community response to 514 

hazards, warnings, and mitigation actions; image and video analysis could enhance eruption observations; and content and 

network analysis could help track the spread of misinformation (Williams and Krippner, 2019; Goldman et al., 2024; Kim 516 

and Hastak, 2018). A real-time approach could be facilitated by the potential collection of high relevancy data in online 

volcanic conversation (e.g., Fig. 2), but, focussing on Twitter (or X) would likely require academic and/or governmental 518 

access to their API to be made more accessible and economically viable (Calma, 2023). There are also opportunities to 

examine sentiment and content in finer detail if improved geolocation information are available, and to compare the insights 520 

provided by different languages and social media networks / messaging applications, which may have more accessible data 

than the current Twitter / X restrictions. Compared to traditional qualitative interview approaches, social sensing is likely to 522 

be able to ‘survey’ a much larger number of people, but to a lower degree of certainty and detail. However, the main strength 

of social sensing, over interviews, in long-lasting hazards like volcanic eruptions could be its ability to track time-dependent 524 

changes on daily (or even shorter) timescales (e.g., Figs. 2, 3 and 5).  

 526 

In any future use of volcano social sensing, access to social media will play a role, with volcanic eruptions in regions with 

poor access likely to produce a smaller social sensing ‘signal’ than similar eruptions and impacts in areas with good access. 528 

Consideration will also need to be given to the different social media networks in use and the typical demographics of people 

using each one. For our study based on Twitter data, we likely only capture a subset of the U.S. population; studies suggest 530 

that 24% of all U.S. adults used Twitter in 2018, with notable variation in usage rates for the highest education level attained 
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by a user (e.g., high school vs. college) and different age ranges (Smith and Anderson, 2018). Therefore, our results may be 566 

limited to the typical user-base of Twitter in 2018, and insights may vary for other social media platforms that may capture a 

different demographic profile (e.g., Ruan et al., 2022; Young et al., 2022). Comparing social sensing results for the same 568 

volcanic eruption across different social media networks could provide further insights into how hazard and risk information 

is received, and the actions and reactions it provokes. When using social sensing to assess eruption impacts, it will also be 570 

important to ensure that external coverage and conversation of eruptions does not bias our understanding of events, given 

their larger data volume compared to local data input and the demonstrated influence of international media outlets. In this 572 

regard, using social sensing in parallel with traditional structured interviews of affected individuals, where accurate 

demographic information can also be collected, will allow further verification and quality control of the social sensing 574 

approach (e.g., Creswell, 2009), and allow researchers and practitioners to benefit from the respective advantages of both 

methodologies.  576 

5 Conclusions 

Social sensing of Twitter posts can track changes in social action and reaction throughout the 2018 eruption of Kīlauea, 578 

Hawaiʻi, through analyses of tweet frequency, sentiment, geolocation, and content. The volume of relevant tweets rapidly 

increased in early May, corresponding to the beginning of the eruption; tweet frequency then generally declined to 580 

background levels over the course of the eruption, with the exceptions of notable peaks in daily Tweet frequency in response 

to high-impact events. Automated sentiment analysis shows a shift towards more negative scores from the eruption onset, 582 

which indicates more negative emotions being expressed in the posts during the eruption. Time-dependent changes in topics 

of Hawaiʻi-specific Twitter conversations reflect patterns in volcanic activity, civil protection actions, and socioeconomic 584 

pressures. We find evidence of social action around sharing official warnings in the eruption’s lead up and early stages and 

sharing official mitigation actions later during the eruption. Such evidence is a positive outcome for volcano monitoring and 586 

emergency management organizations that are responsible for the official messaging. Tweets detailing damage and 

disruption follow a similar temporal trend to the rate of lava flow field expansion and building damage. Our work generally 588 

shows how hazard and risk information (including warnings of possible hazards, advice for responding to hazards 

(particularly ash), and emergency response assistance announcements) is discussed and reacted to on Twitter, which informs 590 

our understanding of community response actions and the efficacy of warnings and other official risk reduction 

communications. Social sensing shows promise for further development and application in volcanology if wider social media 592 

platforms can be leveraged for data; we show the potential for real-time social sensing analyses to aid in situational 

awareness for risk-reduction professionals during volcanic crises. 594 
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Appendices 602 

Appendix A 

 604 

 
Figure A1: Change in tweet data count at different stages of filtering. The grey background indicates the period where the ground-606 
based alert level was at ‘warning’. 

 608 

 
Figure A2: Daily proportion of tweets classified as related to professional news outlets (orange), or not (green). The grey 610 
background indicates the period where the ground-based alert level was at ‘warning’. 
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Code Availability 618 

The Python code for analysing the Twitter data is stored on a GitHub repository; access is private and can be obtained by 

contacting authors RA or HW. 620 
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