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Abstract. Accurate prediction and assessment of extreme flood events are crucial for effective disaster preparedness, response, 

and mitigation strategies. One crucial factor influencing the intensity and magnitude of extreme flood events is precipitation. 

Precipitation patterns, particularly during intense weather phenomena such as hurricanes, can play a significant role in 

triggering widespread flooding over densely populated areas. Traditional flood prediction models typically rely on single 10 

source precipitation data, which may not adequately capture the inherent variability and uncertainty associated with extreme 

events due to certain limitations in precipitation generation framework, availability or both spatial and temporal resolutions. 

Moreover, in coastal regions, the complex interaction between local precipitation, river flows and coastal processes (i.e., storm 

tide) can result in compound flooding and amplify the overall impact and complexity of flooding pattern. This study presents 

an implementation of Global Copula-embedded Bayesian Model Averaging (BMA) (Global Cop-BMA) framework for 15 

improving the accuracy and reliability of extreme flood modelling. The proposed framework integrates a collection of 

precipitation products with different spatiotemporal resolutions to account for uncertainty in forcing data for hydrodynamic 

modelling and generating probabilistic flood inundation maps. The methodology is evaluated over Hurricane Harvey, a 

catastrophic weather event characterized by intense precipitation and compound flooding processes over the city of Houston 

in the state of Texas in 2017. The results show a significant improvement in predictive accuracy compared to those based on 20 

a single precipitation product (e.g., NSE performance of single QPE are in the range of 0.695 to 0.846 while the Cop-BMA 

yields a NSE of 0.858), demonstrating the merits of the Global Cop-BMA approach. Furthermore, the research extends its 

impact by generating probabilistic flood extension maps that account not only for the primary influence of precipitation as a 

flood driver but also for the intricate nature of compound flooding processes in coastal environments. 

1. Introduction 25 

The inherent uncertainty associated with hydrodynamical modelling, exacerbated by the complex and often non-linear 

relationships, presents a challenge to accurately predict extreme flood events (Jafarzadegan et al., 2023). This uncertainty is 

frequently linked to diverse categories of errors encompassing inputs, such as the resolution and availability of topobathymetric 

data (Alipour et al., 2022; Liu and Merwade, 2018; Savage et al., 2016), as well as the quality and precision of boundary 
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conditions derived from hydrological models, other type of hydraulic/hydrodynamic models, or extracted from hydrometric 30 

measurements at monitoring stations (Abbaszadeh et al., 2019, 2022b; Jafarzadegan et al., 2021a, b; Oruc Baci et al., 2023). 

Beyond these factors, additional sources of uncertainty arise from inherent errors within numerical models, including the type 

and dimensions of the model, governing equations, assumptions, simplifications of physical processes, and the construction of 

the computational domain (Bates, 2022; Liu et al., 2019; Teng et al., 2017). 

Bayesian Model Averaging (BMA) has been used in the past two decades as a statistical framework for improving the 35 

reliability of hydrological or meteorological models by quantifying and reducing uncertainties arising from different models 

(e.g., Duan et al., 2007; Han & Coulibaly, 2017; Parrish et al., 2012; Raftery et al., 2005). BMA enables the incorporation of 

multiple model predictions, each possessing its own strengths and limitations, into a unified probabilistic framework. Through 

this process, BMA techniques provide a robust means of generating ensemble predictions that not only capture the inherent 

variability of the system but also account for model uncertainties, parameter uncertainties, and data uncertainties. BMA 40 

applications have expanded into other domains, such as flood inundation models, aiming to achieve more accurate estimation 

of flood extent and water level while accounting for different sources of uncertainty during flood events (Huang & Merwade, 

2023; Liu & Merwade, 2018, 2019; Moftakhari et al., 2017).The main limitation of BMA in hydrological applications, , is the 

use of same marginal distributions in the construction of joint probabilities, and that it is generally assumed that the data and 

the conditional PDF of the data follow a Gaussian distribution. Copula-embedded Bayesian Model Averaging (Cop-BMA) 45 

represents an advancement, distinguishing itself from the traditional BMA formulation, by constructing the joint distribution 

independently of the marginal distributions of the individual variables of analysis (Madadgar et al., 2014). This distinction 

positions Cop-BMA as a more reliable tool for considering uncertainty from the marginal distribution of the analysed data. 

With the advancements in computational modelling, novel tools have emerged to optimize and enhance outcomes while 

incorporating new variables into the analysis. The incorporation of precipitation data directly into hydrodynamic models via 50 

Rain-on-grid (RoG) functionality stands among the innovative features that is gaining recognition by hydrodynamic modelers 

by allowing the incorporation of spatiotemporally varied precipitation data into the computational domain. Among various 

hydrodynamic models, the Hydrologic Engineering Center's River Analysis System (HEC-RAS) developed by the United 

States Army Corps of Engineers (USACE, 2022). It has the capability to simulate flooding conditions allows in both 1D and 

2D. Although some investigations have explored the integration of RoG into the HEC-RAS 2D hydrodynamic model and 55 

assessed its performance (Costabile et al., 2020; David and Schmalz, 2021; Zeiger and Hubbart, 2021), a significant gap 

remains in comprehensively exploring the utility of RoG in result evaluation, comparisons with analogous computational 

models, and the analysis of uncertainties generated from its incorporation as a boundary condition. Currently, multiple regional 

and global precipitation data and products are available, exhibiting a wide range of spatial and temporal resolutions. These 

valuable data assets offer the opportunity to enhance the accuracy of hydrodynamic flood modelling to higher levels of detail, 60 

although, incorporating this type of information introduces an additional layer of uncertainty, prompting the need to account 

for these variations to enhance the accuracy of estimating both the extent and depth of flooding. 
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Comparisons of various precipitation products have been integral in the assessment of Quantitative Precipitation Estimation 

(QPE) techniques, particularly within the context of precipitation generation and its subsequent impacts. These evaluations 

encompass an array of data sources, such as observations from satellites, ground-based gauges, radar measurements, reanalysis 65 

products, and combinations thereof, all contributing to the nuanced understanding of precipitation patterns (e.g., Gavahi et al., 

2023; Nelson et al., 2016; Wootten & Boyles, 2014). In addition to these comparisons, studies have researched the details of 

QPE techniques and products during extreme hydrometeorological events. The case of Hurricane Harvey serves as a prime 

example (Brauer et al., 2020; Gao et al., 2021; Habibi et al., 2021; Omranian et al., 2018). This event exhibited the importance 

of accurate precipitation estimation, given its critical role in extreme flooding. However, the differences between observed and 70 

derived precipitation values emphasize the presence of inherent errors and biases within precipitation products. Consequently, 

relying solely on one dataset for QPE could potentially lead to an incomplete representation of the complex conditions 

encountered during such extreme events (Gavahi et al., 2023). 

The impact of Hurricane Harvey was deeply felt along the Texas coastline. It brought with it an approximate accumulated 

precipitation of over 1500 mm in the vicinity of Beaumont, TX, and resulted in estimated losses of 125 billion dollars based 75 

on the 2017 Consumer Price Index (Blake and Zelinsky, 2018) Given the significance of this hurricane and the widespread 

damage it caused across the state of Texas, considerable efforts have been undertaken to model and quantify the extent and 

depths of the flooding it generated. Various approaches, including numerical hydrodynamic models (Huang et al., 2021; 

Jafarzadegan et al., 2021a; Muñoz et al., 2022; Noh et al., 2019; Saksena et al., 2020; Sebastian et al., 2021; Stephens et al., 

2022; Valle-Levinson et al., 2020; Wing et al., 2019), as well as combinations of different methodologies or type of models 80 

have been employed (Chen et al., 2021, 2022; Dullo et al., 2021). 

By combining hydrodynamic modelling results driven with different precipitation datasets, Bayesian multi-modelling 

techniques have the potential to account for uncertainties in precipitation products and enhance the flood inundation mapping 

skills. This article presents an approach that incorporates both deterministic and probabilistic methods in the study of Hurricane 

Harvey event. On the deterministic front, the numerical results of the HEC-RAS 2D 6.3.1 hydrodynamic model, incorporating 85 

RoG, are evaluated to best describe the hydrodynamic behaviour of rivers, coastal and floodplain processes with a 

computationally affordable model. In parallel, a probabilistic approach is employed to use eight distinct precipitation products 

as forcing data to the hydrodynamic model to estimate an ensemble of flood extent and water depth in response to this 

hurricane-induced flood event. The deterministic approach provides a single representation of flood extents and depths based 

on predefined inputs and parameters, offering a clear understanding of potential inundation scenario evaluated. However, it 90 

fails to adequately capture the uncertainty associated with flood modelling, potentially leading to underestimation or 

overestimation of flood extents in other scenarios considering highly sensitive input parameters, which can impact the accuracy 

of results (Di Baldassarre et al., 2010; Bates et al., 2004). 

 

Probabilistic flood inundation mapping incorporates probabilistic techniques to assess and quantify uncertainty, providing a 95 

more comprehensive understanding of the range of potential flood outcomes and associated risks. It allows the integration of 
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different datasets and input values, accommodating a wider range of initial and boundary conditions, and improving the 

robustness of flood predictions (Merwade et al., 2008; Di Baldassarre et al., 2010). Often this approach requires conducting 

numerous simulations to assess parameter uncertainty, leading to a substantial consumption of computational resources. 

Consequently, there is a preference for utilizing models that make substantial flow assumptions to conduct these simulations 100 

more efficiently and reduce computational cost. 

Overall, this study aims to 1) investigate the impacts of different precipitation data in the simulation of extreme floods, such 

as hurricane Harvey using HEC-RAS 2D and 2) quantify the uncertainties associated with different precipitation products by 

generating probabilistic flood inundation maps using the Global Copula Bayesian (Global Cop-BMA) multi-modelling 

technique.  105 

2. Methods 

The methodology employed in this study centers on numerical hydraulic modelling and the assessment of flood extent and 

water elevation using the Global Copula Bayesian (Global Cop-BMA) multi-modelling technique. Fig. 1 represents the main 

steps required for the implementation of the proposed methodology. First, the HEC-RAS 2D hydrodynamic model is set up, 

incorporating data such as roughness, boundary conditions (discharges, water levels, and precipitation), and terrain. In this 110 

step, the HEC-RAS 2D model is driven with different precipitation products to generate a collection of flood inundation maps. 

Second, the Cop-BMA technique is employed to combine the flood maps and produce a single probabilistic flood inundation 

map that accounts for the uncertainties associated with different precipitation products.  
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Figure 1. Flowchart generated of the proposed methodology for probabilistic flood inundation mapping. 115 

 

2.1 Hydrodynamic Modelling 

Flood extent and depth maps are typically obtained by performing 1D or 2D hydrodynamic modelling that numerically solves 

the Saint-Venant or Shallow Water Equations respectively. Each of these models possesses its own advantages and limitations 

in terms of computational complexity, assumptions of flow nature, practicality, accuracy, and precision (Bates, 2022; Teng et 120 

al., 2017). Among these options, 2D models offer a notable compromise, enabling flood modelling with a satisfactory level of 

detail while maintaining a manageable computational cost compared to their 3D counterparts. Furthermore, as compared to 
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1D models, they facilitate the calculation of water levels across floodplains in a more intricate and physically plausible manner 

over complex geometries. 

While a variety of 2D models, both open-source and commercially licensed exist, the current study utilizes the HEC-RAS 2D 125 

model version 6.3.1. This choice is motivated by HR2D's open accessibility and significant improvements, such as the 

integration of subgrid concepts for mesh refinement and the incorporation of Shallow Water Equations (SWE). These 

enhancements mark a distinct advancement over previous versions, making HR2D a suitable candidate for flood modelling. 

Notably, it surpasses its predecessors, which were employed in studies involving Hurricane Harvey's impact on the city of 

Houston (Garcia et al., 2020; Jiang et al., 2023; Scotti et al., 2020). 130 

The hydrodynamic model setup is based on three primary inputs: the terrain, the roughness associated with land cover and 

land use types, and the boundary conditions or external forcings (typically discharge and/or water levels). Recent advancements 

in model capabilities have enabled the integration of additional boundary conditions within the computational domain. This 

integration enhances the physical representation of the system which results in more accuracy and reduces the reliance on other 

types of models, such as hydrological models. In numerous flooding scenarios, precipitation plays a key role as a substantial 135 

portion of this flood driver transforms into direct runoff leading to flood inundation. This phenomenon is typically referred to 

as the pluvial impact of flooding and is particularly evident in events like Hurricane Harvey (Saksena et al., 2020). Hence, the 

RoG functionality within HR2D emerges as a pivotal feature to be incorporated into the methodology.  

2.2 Copula Bayesian Multi-Modelling Approach 

Among different multi-modelling approaches, Bayesian Model Averaging (BMA) has been widely used for combining 140 

multiple model predictions and producing more reliable results that account for the uncertainty of each model. BMA produces 

a predictive probability distribution function (PDF) of a variable, water surface elevation in this case, which is the weighted 

average of the PDFs associated with each model prediction. The weights reflect the prediction skill of different models. By 

considering the performance of all independent 𝑘𝑘 model predictions [𝑀𝑀1,𝑀𝑀2, …𝑀𝑀𝑘𝑘], BMA eliminates the need to select a 

single "best" model, thereby providing a more robust prediction (Madadgar and Moradkhani, 2014). The law of total 145 

probability is used to calculate the distribution of target (predicted) variable 𝑦𝑦 using both observed data and model predictions. 

Considering the dynamic nature of these models, the time component is integrated in the law of total probability as expressed 

in equation 1: 

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑀𝑀1
𝑡𝑡 ,𝑀𝑀2

𝑡𝑡 , … ,𝑀𝑀𝑘𝑘
𝑡𝑡 ,𝑌𝑌) =  ∑ 𝑝𝑝(𝑀𝑀𝑖𝑖

𝑡𝑡|𝑌𝑌)  ∙ 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖
𝑡𝑡 ,𝑌𝑌) = ∑ 𝑤𝑤𝑖𝑖 ∙  𝑝𝑝(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖

𝑡𝑡 ,𝑌𝑌)𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1    (1) 

∑ 𝑤𝑤𝑖𝑖 = 1𝑘𝑘
𝑖𝑖=1            (2) 150 

where 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖
𝑡𝑡 ,𝑌𝑌) is the PDF of 𝑦𝑦𝑡𝑡 given the model 𝑀𝑀𝑖𝑖

𝑡𝑡 and training data 𝑌𝑌 and  𝑝𝑝(𝑀𝑀𝑖𝑖
𝑡𝑡|𝑌𝑌) = 𝑤𝑤𝑖𝑖  is the likelihood of model 

prediction being corrected, given the observations, 𝑌𝑌, during the analyzed period. These weights reflect the performance of 

models in predicting the target variable with a total sum equal to one. In summary, the weight 𝑤𝑤 reflects the degree to which 

a model aligns with the observed data; that is models demonstrating high-performance receive higher weights. 
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With BMA, the assumption that the posterior distribution is following a Gaussian distribution is commonly used as 155 

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖
𝑡𝑡 ,𝑌𝑌) ~ 𝑔𝑔(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖

𝑡𝑡 ,𝜎𝜎𝑖𝑖2), but this may not be correct in all cases given the nature of data used. In these cases, it is 

convenient to transform the data from its original space to a Gaussian space via Box-Cox transformation. Considering the 

target variable as water surface elevation, the Yeo-Johnson power transformation is preferred to account for negative values. 

This is particularly relevant in coastal environments where such values are commonly observed due to tidal conditions. 

To overcome the limitations of BMA associated with the Gaussian distribution of variables and their joint distribution, a second 160 

solution involves integrating Copula multivariate functions into the BMA approach, known as Cop-BMA. Copulas are 

functions in the unit cube, which can link multi-dimensional distributions to their one-dimensional marginals (Sklar, 1959), 

they provide a flexible and powerful tool for modelling the dependency structure between variables, regardless of their 

individual marginal distributions and model dependency. This is particularly valuable in scenarios where the relationships 

between variables are complex and may not follow a simple linear pattern. Cop-BMA modifies the BMA predictive distribution 165 

through relaxing the assumption on parametric posterior distribution 𝑔𝑔(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖
𝑡𝑡 ,𝜎𝜎𝑖𝑖2) replaced with a group of multivariate 

copula functions. Multiple copula functions have been applied to postprocess hydrological forecasts (Abbaszadeh et al., 2022a; 

He et al., 2018; Madadgar et al., 2014; Madadgar and Moradkhani, 2014), and are used in this study for the estimation of water 

surface elevation posterior distribution. Equation 1 is modified to incorporate copula functions replacing the posterior 

distribution 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖
𝑡𝑡 ,𝑌𝑌)  following the procedure from Abbaszadeh et al. (2022a). Supported by Sklar theorem copulas can 170 

express the joint behaviour among correlated variables through their marginal CDFs in equation 3.  

𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝐶𝐶[𝑃𝑃(𝑥𝑥1), … ,𝑃𝑃(𝑥𝑥𝑛𝑛)] = 𝐶𝐶(𝑢𝑢1, … 𝑢𝑢𝑛𝑛)       (3) 

where 𝐶𝐶 is the Cumulative Distribution Function (CDF) of the copula and 𝑃𝑃(𝑥𝑥𝑖𝑖) is the marginal distribution of 𝑥𝑥𝑖𝑖 denoted as 

𝑢𝑢𝑖𝑖 for the interval [0, 1]. Using the PDF of copula, the joint probability density function of the variables involved can be 

defined as follows: 175 

𝑝𝑝(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛) = 𝑐𝑐(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛)∏ 𝑝𝑝(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=𝑖𝑖         (4) 

The conditional probability distribution of 𝑥𝑥1 given 𝑥𝑥2 is defined in equation 5: 

𝑝𝑝(𝑥𝑥1|𝑥𝑥2) = 𝑝𝑝(𝑥𝑥1,𝑥𝑥2)
𝑝𝑝(𝑥𝑥2)

          (5) 

Considering the copula joint probability from equation 4, the equation 5 can be expressed as: 

𝑝𝑝(𝑥𝑥1|𝑥𝑥2) = 𝑝𝑝(𝑥𝑥1,𝑥𝑥2)
𝑝𝑝(𝑥𝑥2)

= 𝑐𝑐(𝑢𝑢1,𝑢𝑢2)∙𝑝𝑝(𝑥𝑥1)∙𝑝𝑝(𝑥𝑥2)
𝑝𝑝(𝑥𝑥2)

= 𝑐𝑐(𝑢𝑢1,𝑢𝑢2) ∙ 𝑝𝑝(𝑥𝑥1)      (6) 180 

Since 𝑢𝑢1  and 𝑢𝑢2  are the observations (𝑦𝑦𝑡𝑡)  and simulations (𝑀𝑀𝑘𝑘
𝑡𝑡)  respectively, the posterior distribution in equation 1 is 

replaced with the conditional probability distribution from equation 6 as: 

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑀𝑀1
𝑡𝑡 ,𝑀𝑀2

𝑡𝑡 , … ,𝑀𝑀𝑘𝑘
𝑡𝑡 ,𝑌𝑌) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑝𝑝�𝑦𝑦𝑡𝑡�𝑀𝑀𝑖𝑖

𝑘𝑘 ,𝑌𝑌� = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑐𝑐 �𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑖𝑖
𝑡𝑡� ∙ 𝑝𝑝(𝑦𝑦𝑡𝑡) 𝑘𝑘

𝑖𝑖=1
𝑘𝑘
𝑖𝑖=1    (7) 

Where 𝑐𝑐(𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑡𝑡) represents the PDF of the copula function. To estimate weight 𝑤𝑤𝑖𝑖 , it is required to maximize the log 

likelihood function of the vector of parameter 𝜃𝜃 = {𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑘𝑘} as: 185 

𝑙𝑙(𝜃𝜃) = log �∑ 𝑤𝑤𝑖𝑖 ∑ 𝑐𝑐 �𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑖𝑖
𝑡𝑡� ∙ 𝑝𝑝(𝑦𝑦𝑡𝑡)𝑇𝑇

𝑡𝑡=1
𝑘𝑘
𝑖𝑖=1 �       (8) 
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The Expectation-Maximization (EM) algorithm, proposed by Raftery et al. (2005), is used to maximize equation 8. This is 

achieved through iterative updates of the weights by adjusting a latent variable until a specified tolerance criterion is met.  

In order to probabilistically estimate the flood extent and depth over a large domain, a comprehensive approach is necessary 

to spatially characterize the outcomes derived from different numerical models or, in this context, various hydrodynamic 190 

simulations with different precipitation products. This becomes especially crucial when the variables used in this study, namely 

the precipitation products and water level resulting from numerical simulations, exhibit significant spatial variability. 

Parameter regionalization plays an important role in identifying clusters or regions where assigning a single parameter for the 

whole domain is not reasonable (Jafarzadegan et al., 2020). To estimate weights for these clusters or regions, a global extension 

of the Cop-BMA has been developed, following the same procedure as the EM algorithm introduced earlier for the estimation 195 

of weights and likelihood (Yan et al., 2020). Likelihood function (equation 8) is adjusted to consider multiple stations over 

each cluster. 

 

𝑙𝑙(𝜃𝜃) = ∑ log �∑ 𝑤𝑤𝑖𝑖 ∑ 𝑐𝑐 �𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑖𝑖
𝑡𝑡� ∙ 𝑝𝑝(𝑦𝑦𝑡𝑡)𝑇𝑇

𝑡𝑡=1
𝑘𝑘
𝑖𝑖=1 �𝑁𝑁

𝑛𝑛=1        (9) 

where 𝑁𝑁 refers to the number of stations per cluster. 200 

 

3. Study Area and Data 

The Galveston Bay area is located in southeastern Texas on the Gulf Coastal Plain and covers parts of Brazoria, Chambers, 

Galveston, Harris, and Liberty counties. As the largest estuary in the state, it exhibits a notable level of urbanization in the 

western zone, primarily attributed to the city of Houston. The city has several bayous and creeks that flow mostly southeastward 205 

into Galveston Bay. To the north is the San Jacinto River, which flows from the discharge of Lake Houston spillway to the 

south.  

3.1 Model setup 

The HEC-RAS 2D model is built through the RAS Mapper tool version 6.3.1 with Shallow Water Equations with Eulerian-

Lagrangian Method (SWE-ELM) formulation for governing equations It has a total geometry extension of 5514.8 km2 with 210 

396,063 computational cells with spatial resolution of 200 x 200 meters refined to 75 x 75 meters or less in Houston city area 

(Garcia et al., 2020; Scotti et al., 2020). The unstructured meshing approach used in this study results in proper characterization 

of terrain complexities in urban areas while maintaining a reasonable computational time. For unsteady flow analysis in HR2D 

setup, an hourly simulation time window is defined between August 16/2017 to September 3/2017. The 2D flow domain is 

defined considering the most significant discharge contributions to the Galveston Bay area (Figure 2). The main highways in 215 

the Houston area, including Texas 8 Beltway and Interstate 610, serve as critical watershed boundaries for hydrodynamical 
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modelling in the urban regions. Therefore, an additional major effort was made to incorporate break lines along these features 

in Houston. This allows for proper hydro-enforcement and enhances hydraulic connectivity between the computational cells. 

The NCEI Continuously Updated Digital Elevation Model (CUDEM) Bathymetric and Topographic DEM, with a 1/9 arc-

second resolution(National Centers for Environmental Information, 2014) is used as the topography data. Since a fraction of 220 

the study area is highly urbanized, and there is no information on all the bridges, culverts, and geometry of the artificial 

channels. Topographic adjustments are made within RasMapper to guarantee and preserve the hydraulic characteristics of the 

streams.  

Manning roughness coefficients are spatially assigned using the 2019 National Land Cover Database (Dewitz and U.S. 

Geological Survey, 2021). To reduce the spatial complexity of various land covers in the study area, the land cover map is 225 

simplified into five groups of developed/urban areas, forests/wetlands, open water, navigational areas, and barren land (crops, 

pasture, agriculture). In a previous research conducted by Muñoz et al. (2022), they used Latin Hypercube Sampling and tested 

various Manning roughness values for different land cover categories during Hurricane Harvey event. We use their calibrated 

parameters as a reference for HR2D model setup. These values are slightly adjusted during the calibration period, 7 days before 

the occurrence of Hurricane Harvey. It is worth mentioning that our simulations were performed on a desktop computer with 230 

an Intel Core i7-7700 CPU @ 3.60GHz and 32GB RAM memory, averaging about seven hours per simulation for the time 

window. 
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 235 
Figure 2. Study area map with discharge, still water surface elevation and wind stations as boundary conditions. NLCD 

land covers are incorporated as manning’s roughness in the HEC-RAS 2D model. Basemap ESRI World Imagery. 

3.2 Discharge and tidal forcings 

Hourly discharge data from the U.S. Geological Survey (2016) is used for most of the streams incorporated within the HR2D 

model. Missing data for some gauges are estimated by considering their correlation with other gages located upstream. The 240 

U.S. Army Engineer Research and Development Center (ERDC) has provided the daily discharge time series data for 

Dickinson Bayou, Chocolate River, and Trinity River. San Jacinto River discharge values are estimated using gage height time 

series from USGS gage Lk Houston nr Sheldon, TX (08072000). As downstream boundary condition, the hourly Stillwater 

elevation data from National Oceanic and Atmospheric Administration (NOAA) Galveston Bay Entrance station is selected. 

Table 1 summarizes the boundary conditions applied to the HR2D model. 245 
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Table 1. Summary of discharge and still water surface elevation boundary conditions used in the model setup. 

Gauge station name Source Code/ID Use 

Galveston Bay Entrance NOAA 8771341 Still water surface elevation 
downstream 

Sims Bayou at Houston USGS 08075500 Discharge, data estimated with values 
using USGS gauge 08075400 

Brays Bayou at Houston USGS 08075000 Discharge  
Buffalo Bayou at Houston USGS 08074000 Discharge 
Whiteoak Bayou at Houston USGS 08074500 Discharge  
Greens Bayou nr Houston USGS 08075900 Discharge  
Garners Bayou nr Humble USGS 08076180 Discharge 
Berry Bayou at Nevada USGS 08075605 Discharge 
Little Whiteoak Bayou at 
Trimble St USGS 08074540 Discharge 

Clear Ck nr Friendswood USGS 08077600 Discharge 

San Jacinto River nr Sheldon USGS 08072050 
Discharge, data estimated with height 
values over weir using USGS gauge 
08072000 

Cedar Bayou nr Crosby USGS 08067500 Discharge 
Halls Bayou USGS 08076500 Discharge 
Hunting Bayou USGS 08075763 Discharge 
Goose Ck nr Mcnair USGS 08067520 Discharge 

 

3.3 Precipitation and wind forcings 

Extensive efforts have been dedicated to the detailed comparison and evaluation of diverse precipitation datasets generated on 250 

a regional or global scale. Within this framework, researchers have rigorously examined the total precipitation outputs derived 

from various sources, their alignment with alternative datasets, and their consistency with gauge-based measurements. 

The investigation into the spatial and temporal patterns of extreme precipitation events, particularly during Hurricane Harvey 

has become essential due to the event's catastrophic impact (Fagnant et al., 2020; Wang et al., 2018). Researchers have taken 

a comprehensive approach, encompassing a broad spectrum of precipitation products, which include both remote sensing and 255 

model-based estimations. The comparison often extends to not only the total accumulated precipitation but also its 

spatiotemporal distribution, intensity, and duration. This multifaceted evaluation aims to discern the differences in 

performance, uncover potential biases, and ascertain the overall reliability of these estimates (Brauer et al., 2020; Chen et al., 

2020; Gao et al., 2021; Habibi et al., 2021; Omranian et al., 2018).  

In this study, an evaluation of seven distinct precipitation products is made, across the temporal and spatial resolutions that are 260 

conducive to capturing the intricacies of hydraulic routing through HR2D. The precipitation products considered for Cop-

BMA assessment include: 

1. CMORPH (Climate Prediction Center MORPHing technique) (Xie et al., 2019) 
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2. Daymet (Daily Surface Weather Data on a 1-km Grid) (Thornton et al., 2022) 

3. ERA5 (Muñoz Sabater, 2019) 265 

4. IMERG (Integrated Multi-satellitE Retrievals for GPM) (Huffman et al., 2019) 

5. Multi-Radar Multi-Sensor (MRMS) (Zhang et al., 2016) 

6. NCEP Stage IV precipitation data (Du, 2011) 

7. NLDAS-2 (North American Land Data Assimilation System version 2) (Xia et al., 2009) 

To facilitate analysis and modelling, these datasets undergo preprocessing in the Hydrologic Modelling System (HEC-HMS) 270 

software to generate .dss files, thus facilitating their integration into the HEC-RAS Unsteady Flow Meteorological Data. 

It is important to emphasize that while the primary focus of this research is to assess the integration of precipitation data in 

compound flood events, certain limitations exist. Notably, NLDAS and Daymet products do not provide coverage for terrain 

areas near the coastline, particularly in the southern region of the model domain, which includes Galveston and Texas City. 

This geographical limitation underscores the need for careful consideration when interpreting and generalizing the findings 275 

within these specific regions. 

In addition to the seven precipitation products mentioned above, rain gauge data (RG), provided by the Harris County Flood 

Warning System (HCFWS) portal (https://www.harriscountyfws.org/) is integrated into the study as comparison for modelling 

results. The Houston metropolitan region comprises a network of 188-gauge stations distributed across the county. For this 

study, a subset of 20 stations is selected within the study domain, ensuring the availability of continuous rainfall data 280 

specifically during the occurrence of Hurricane Harvey over the city of Houston. To facilitate the integration of these rain 

gauge measurements as a spatially distributed data, the Inverse Distance Squared Weighting (IDW) interpolation method is 

employed (Chen and Liu, 2012). This technique allows for the estimation of precipitation values at locations that do not have 

direct measurements by considering the spatial proximity and inverse distances between available gauge stations. 
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285 

 

Figure 3. Spatial distribution accumulated precipitation of the seven different precipitation datasets, rain gauges data, 

and their coverage over the study area during Harvey event from 23/Aug/2017 to 03/Sep/2017. 
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Table 2. Spatial and temporal details of the eight precipitation products used in this study. 290 

Precipitation 
product 

Spatial resolution 
(Approx.) 

Temporal 
resolution 

Observations 

NLDAS-2 12.5km x 12.5km Hourly -Do not cover coastal domain 
Daymet 1km x 1km Daily -Do not cover coastal domain 
CMORPH 7.77km x 7.77km 30 min  
IMERG 11.1km x 11.1km 30 min  
ERA5 31km x 31km Hourly  
MRMS 1km x 1km Hourly  
NCEP Stage IV 4.76km x 4.76km Hourly  

Rain Gauges 1km x 1km  15 min 
-Do not cover coastal domain 
*Rain interpolated between 20 rain 
gauges within HEC-RAS 

 

Hurricane Harvey made a significant impact on the Galveston Bay region, manifesting itself as a tropical storm characterized 

by varying maximum wind speeds. These speeds ranged from 78.5 km/h to 34.6 km/h, spanning from the entrance of Galveston 

to downtown Houston. Given the considerable length of the Galveston estuary, incorporating wind forcing into the study is 

essential to comprehensively account for its hydrodynamic behaviour over the surface of the water. Hourly wind velocity and 295 

direction data were integrated from specific NOAA stations across the study area. These stations include Galveston Bay 

Entrance (8771341), Eagle Point (8771013), Morgans Point (8770613), and Manchester (8770777). These meteorological 

boundary conditions are utilized into the HR2D model to accurately simulate the effects of wind within the hydrodynamic 

system. Lagrangian reference frame and Andreas et al. (2012) drag formulation are selected. Similar to precipitation data, IDW 

method is also selected for wind spatial interpolation along the study area. 300 

 

4. Results and Discussion 

The simulations conducted within the HR2D model involved fixed Manning coefficients, ensuring that the water surface 

elevation is solely influenced by the applied precipitation forcing. A model warm-up period is set from August 16, 2017, to 

August 23, 2017. The results during this interval are exclusively used to calibrate the roughness coefficients in comparison to 305 

observational data. The comprehensive assessment of the model's performance is conducted over the period from August 23, 

2017, to September 3, 2017, with hourly results. This temporal scope encompasses the passage of Hurricane Harvey and the 

subsequent recession of the water levels. 

Figure 4 presents hourly hydrographs of observed water surface elevation (WSE) data alongside simulated outputs for various 

validation stations (Information of validation stations is in Table S1 in supplementary data). The simulation results highlight 310 

that relying on a single QPE does not lead to consistent responses across the evaluated hydrographs. It becomes apparent that 

some stations experience an overestimation of water levels, while in other areas within the region, the response tends towards 
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underestimation for the same product. A notable case is observed with the Daymet product, which has a finer spatial resolution 

(1km x 1km), yet its daily precipitation values struggle to capture the hourly fluctuations evident in the observed data. Notably, 

the hydrograph results derived from the Daymet product exhibit a step-like behaviour on a daily scale in several validation 315 

stations, particularly within the upper reaches of the modelled watersheds. 

Among several validation stations, a discernible alignment between observed values and ensembles generated by different 

precipitation datasets can be observed. However, it is crucial to acknowledge that in certain instances, the variability among 

ensembles can exceed 2 meters across different products, and certain ensembles fail to accurately replicate the behaviour of 

observed values. These observations underscore the challenges involved in accurately reproducing the temporal and spatial 320 

patterns of precipitation, especially in regions characterized by complex topography and intricate watershed characteristics 

and influenced by structural uncertainty or parametrization within HR2D model. Additionally, inland initial infiltration 

processes that might have occurred during the Hurricane Harvey event could have impacted the results of water surface 

elevation at gauges in watersheds modelled and were not considered in the hydrodynamic model. Furthermore, in highly 

urbanized systems, drainage systems play a significant role during storm events. Due to the limitations of the employed model, 325 

such hydrosystems are not included in the simulations, adding a layer of uncertainty due to the model structure and the type of 

physical processes involved. 
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Figure 4. Hydrographs of simulated water surface elevation (WSE) by the HEC-RAS 2D model using eight different 330 

precipitation datasets along with the observed WSE values observed for Hurricane Harvey. Each subplot represents 

the result at different validation stations where ID refers to stations in the Harris County Flood Warning System. 

 

4.1 Global Cop-BMA flood elevation and mapping extent 

With the integration of the Cop-BMA approach, it becomes feasible to enhance the accuracy of flood depth estimates at each 335 

validation station. Nonetheless, the generation of results while considering their spatial distribution along a large domain can 

be streamlined through clustering techniques. 

For this purpose, the K-means method is used to partition the 30 validation stations along the study area from different sources 

(USGS, NOAA and HCFWS) into three primary clusters, a selection determined by applying the Elbow method to identify 

the optimal K value. Clustering is implemented by utilizing a flood range metric, defined as the difference between the peak 340 

value and the initial observed value at the beginning of the Hurricane Harvey evaluation period. In this method, each validation 

station is associated with an area of influence, which is delineated based on topographic attributes and often coincides with 

watershed concentration points. In some instances, engineering expertise is employed to supplement the delineation process. 

Figure 5 shows the spatial configuration of validation stations, their corresponding areas of influence, and the resultant 
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clustering regions within the study area. This strategic clustering allows for a more focused and structured analysis, facilitating 345 

the extraction of meaningful insights from the ensemble data generated by different precipitation products. 

 

 
Figure 5. Location of validation stations, areas of influence and clustering regions in the study area. The entire domain 

is clustered into three regions of coastal, transitional, and upper areas. Basemap ESRI World Imagery. 350 

 

A crucial step in implementing Global Cop-BMA is to fit marginal distributions of observed and simulated data and determine 

the copula parameters that define the underlying correlation structure of the multivariate distribution. To fit marginal 

distributions, an array of probability distributions undergo testing. This comprehensive evaluation includes a variety of 

distributions such as Cauchy, Gumbel, Alpha, Beta, Gaussian, Exponential, Gamma, Lognormal, Generalized Pareto, 355 

Generalized Extreme, Weibull, and others. Given the intrinsic nature of the data in this study, which comprises water surface 

elevation data in coastal environments, it is essential to choose statistical distributions that accommodate both positive and 
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negative values within their range of support. Parameter estimation for each distribution is performed using the Maximum 

Likelihood Estimation (MLE) technique. To identify the most suitable marginal distribution, the sum of squared errors (SSE) 

is employed to facilitate the selection process, choosing the distribution that provide the lower SSE value. 360 

Table 3 provides a summary of the optimal fits of marginal distributions for various outcomes of the hydrodynamic modelling. 

The outcomes are categorized by each precipitation product and grouped according to their respective clusters. The table also 

includes the estimated value of SSE between the empirical CDF and the fitted CDF values. 

 

Table 3. Summary of marginal distribution fitting results per precipitation product and sum of squared errors for the 365 

best distribution. 

Precipitation 
Product 

Transitional cluster Upper cluster Coastal cluster 
Best marginal  SSE (m) Best marginal  SSE (m) Best marginal  SSE (m) 

CMORPH Pearson type3 1.236 Beta 2.104 Beta 0.827 
Daymet Exponential 2.115 Beta 2.201 Beta 0.886 
ERA5 Genpareto 0.919 Beta 2.738 Beta 0.744 
IMERG Genpareto 1.415 Beta 2.822 Beta 2.534 
NCEP Stage IV Gamma 2.559 Beta 3.274 Gamma 0.775 
MRMS Pearson type3 2.111 Beta 3.073 Pearson type3 0.730 
NLDAS Gamma 1.936 Beta 3.089 Beta 0.768 
Observed data Pearson type3 3.325 Beta 3.853 Gamma 1.457 

 

Upon identifying the optimal marginal distributions, the subsequent stage of the Global Cop-BMA framework involves the 

selection of a copula function. This copula function serves as a vital link, effectively connecting the CDFs of model simulations 

with observed data. Among various copula options, the most pertinent selection is the one that efficiently captures the inherent 370 

dependence structure between the variables being analysed. In this study, five distinct copula functions are evaluated, Gumbel, 

Clayton, and Frank from the class of Archimedean copulas, and Gaussian and t-Student from Elliptical group. Copulas are 

constructed and evaluated using the marginals distributions of the observed data and each of the precipitation products 

modelling results of water surface elevation per cluster as 𝑐𝑐�𝑢𝑢𝑦𝑦,𝑢𝑢𝑀𝑀𝑘𝑘�. Fitting and selection process was conducted using 

Akaike Information Criterion (AIC) and copula cross-validation criterion (xv-CIC) (Grønneberg and Hjort, 2014) using copula 375 

package implemented in R (Hofert et al., 2023), where the copula fit with lowest value of AIC and higher xv-CIC was selected. 

Table 4 shows the selected copulas for the seven QPEs evaluated in HR2D simulations over the three clusters. Calculated 

values for AIC and xv-CIC are presented in Table S2 in the supplementary material. 

 
Table 4. Summary of copula fitting results per cluster for each precipitation product used in the HEC-RAS 2D model simulations. 380 

Precipitation Product  Transitional cluster Upper cluster Coastal cluster 

CMORPH Gumbel Gumbel t-Student 
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Daymet Gumbel Gumbel t-Student 

ERA5 Gumbel Gaussian t-Student 

IMERG Gumbel Gumbel t-Student 

NCEP Stage IV Gumbel Gumbel t-Student 

MRMS Gumbel Gumbel t-Student 

NLDAS Gumbel Gumbel t-Student 

 

After applying the EM algorithm, it becomes feasible to compute the hydrograph generated for each station based on the 

estimated weights for each cluster. The averaged error of simulations using different QPEs against observations from validation 

stations are shown in Figure 6, featuring rain gauges simulation errors and estimations for Global Cop-BMA approach per 

cluster. Notably, this method exhibits better results in its responses to different precipitation products and clusters, leading to 385 

an enhanced accuracy in water level estimations, particularly during peak periods compared to the range of modelling water 

surface elevation outputs from the analysed QPE such as Daymet or ERA5 which exhibit larger averaged errors. This 

demonstrates the Cop-BMA’s capability to generate results that closely correspond to the observed values at the validation 

stations. It is important to highlight that if all models consistently overestimate or underestimate, Global Cop-BMA may not 

lead to significant improvement in the result (e.g., NOAA 8770613, USGS 08074710, USGS 08072050 in Figure 4; and 390 

Coastal cluster in Figure 6). Despite its advanced weighting mechanism, Global Cop-BMA's effectiveness relies on the 

diversity and accuracy of the model ensemble. Therefore, while it enhances the integration of diverse model outputs, its 

capability to improve results may be limited when all models exhibit similar differences compared to the observations at certain 

sections of the hydrograph. The process of selecting validation stations within each cluster holds a significant influence over 

the subsequent calculation of weights using the BMA methods. The choice of metric or clustering technique can yield distinct 395 

combinations of validation stations, subsequently leading to varying weight distributions.  
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Figure 6. Averaged error time series of validation stations per cluster of simulated water surface elevation (WSE) by 400 

the HEC-RAS 2D model using QPE datasets and Global Cop-BMA approach results (black) against observed WSE 

during Hurricane Harvey.  

 

Figure 7 shows the calculated weights for the Global Cop-BMA method across the three analysed clusters. The weights show 

the contributions of each QPE within different clusters. The distinct distribution of weights between the three clusters reflects 405 

their unique strategies in handling uncertainties and variations among different precipitation products. 
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 410 
Figure 7. Summary of calculated weights of the different precipitation products used within the Global Cop-BMA 

approach. The weight calculation task is implemented in each cluster separately. 

As depicted in Figure 7, the distribution of weights per cluster exhibits greater variability. In the transitional cluster, CMORPH, 

Daymet, ERA5 and NCEP Stage IV have weights below 0.1, as these four products generated underestimated responses in the 

hydrographs for most stations within this cluster. Weights center around the precipitation from MRMS, IMERG and NLDAS 415 

QPEs. Within the upper cluster, a different weights distribution among the QPEs is observable, with minimal influence from 

CMORPH, Daymet, MRMS and NLDAS QPEs. A higher difference is observable the three more dominant QPE, where NCEP 

Stage IV has a weight of 0.663 compared to the 0.144 of IMERG and 0.174 of ERA5 QPEs. For the Coastal cluster, 

precipitation from Stage IV QPE also holds the greatest weight (0.753) compared to the rest of QPEs which hold weight values 

below 0.1.Within this cluster, minimal discernible differences exist between QPEs water surface elevation results for the 420 

stations, as seen in Figure 4 (NOAA stations 8771013 and 8770613) and in Figure 6.  

The evaluation of model performance in validation stations is measured through different metrics, including Nash-Sutcliffe 

Efficiency (NSE) (Nash and Sutcliffe, 1970), Kling-Gupta Efficiency (KGE) (Kling et al., 2012), Root Mean Square Error 

(RMSE), and Mean Bias Error (MSE). The formulations of these metrics, which collectively provide insights into different 

facets of model accuracy, are summarized in Table 4. These metrics serve as quantitative measures to assess the model's 425 

capability in capturing the observed variations in water surface elevation during the Hurricane Harvey event and subsequent 

recession phase. 
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Table 5. Summary of four main performance metrics used in this study for validating predicted time series of WSE 

compared to observed values. 

Evaluation metric Equation 

Root Mean Square Error 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
  

Mean Bias Error 𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�(𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

Nash-Sutcliffe Efficiency 𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

 

Kling-Gupta efficiency 𝐾𝐾𝐾𝐾𝐾𝐾 = 1 − ��
𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦, 𝑦𝑦𝑠𝑠� )
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𝑁𝑁:  total time steps, 𝑖𝑖:  time step, 𝑦𝑦𝑖𝑖 :  observed data, 𝑦𝑦:�  mean of observed data, 𝑦𝑦𝚤𝚤� :  model simulation, 𝑦𝑦𝑠𝑠� :  mean of model 430 

simulations, 𝜎𝜎0: standard deviation of observed data, 𝜎𝜎𝑠𝑠: standard deviation of model simulations. 

 

Figure 8 provides a comprehensive overview of collective performance metrics of the HR2D model across the seven QPE 

simulations, rain gauges simulation, and the Global Cop-BMA multi-modelling for the seven QPEs evaluated at 30 validation 

stations over the 11-day simulation period. In general, the inundation modelling driven by different products consistently 435 

exhibits NSE performance with  mean values ranging between 0.695 and 0.846 In terms of KGE performance, the interquartile 

ranges for QPEs display broader ranges, and the medians for Daymet and ERA5 products fall below 0.8 in contrast to other 

simulations. 

Notably, the Cop-BMA approach exhibits slightly higher performance metrics compared to the QPE products, NSE has an 

average of 0.858 and its total variability is lower compared to single precipitation products. KGE metric has a similar result 440 

with an average value of 0.852. The Averaged RMSE for Cop-BMA is 0.561m which is smaller than all the single QPE except 

for the rain gauges simulation which is only 3 centimetres lower. The averaged MBE for single QPEs ranged between -0.018 

and 0.23m, while the Global Cop-BMA method results in an averaged value of 0.049m. Among individual products, the rain 

gauge outperforms all spatially distributed precipitation datasets and comes closest to matching the performance of Cop-BMA 

method. This highlights that reanalysis gridded precipitation products may have higher errors when compared to in-situ rain 445 

observations, and allows Global Cop-BMA to generate QPE post-processed results that are closer to modelling results with 

observed precipitation from rain gauges. This methodology could be replicated in areas where measured precipitation is not 

available and obtain better performance metrics accounting for the uncertainties from this input. Another factor is that our 

study area encompasses only a few grid cells of some reanalysis products, making the advantages of using spatially distributed 

data less apparent. Overall, the global Cop-BMA approach offers two advantages over individual products: first, it improves 450 

and diminishes the variability of performance metrics over different locations, underscoring the robustness of the proposed 
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approach. Second, it accounts for uncertainties associated with individual precipitation products and generates probabilistic 

flood inundation maps as a post-processing methodology.  
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Figure 8. Boxplot of four performance metrics for different precipitation products (blue) as well as Global Cop-BMA results 

(red). The boxes represent the distribution of performance metrics across the validation stations. 

Utilizing the defined areas of influence and the established clusters, a crucial step for probabilistic flood inundation mapping 

involves the creation of a mask that applies the calculated weights of each QPE and rain gauge product. The resulting water 460 

depth simulations from the HR2D model are then exported in raster format. Employing raster calculator functions, the 

probability of flooding can be quantified using binary flood raster maps. In these maps, pixels hold a value of 0 to denote the 

absence of water and 1 if water is present. Figure 9 presents the computed flood depth and the corresponding estimated flood 

probability using the weights calculated with the Global Cop-BMA method for the modelled area close to downtown Houston. 

This approach offers a probabilistic understanding of the potential flooding scenario, providing decision-makers and 465 

stakeholders with valuable insights into the likely extent and severity of flooding. 
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Figure 9. Results of probabilistic flood inundation map using Global Cop-BMA methodology for Hurricane Harvey 470 

event over Houston area. (a) The average of water depth maps generated by Global Cop-BMA approach (b) The 

probabilistic flood extent map provided by Global Cop-BMA. Basemap ESRI Dark Grey Canvas. 

Given the limited availability of satellite images and validation information for the complete extent of flooding, the challenge 

lies in generating accurate spatial information for validation purposes over Houston (Saksena et al., 2020). While the presented 

approach offers a robust method for probabilistic flood inundation mapping, the verification of spatial extent remains a crucial 475 

task. The validation tasks were primarily focused on assessing the performance of model outputs at validation stations, as 

depicted in Figure 5. This approach enabled us to calculate the performance metrics of WSE over a well-distributed network 

of stations with remarkable temporal resolution. Data collected from these validation stations sufficiently capture the 

hydrograph behaviour within the study domain and enables us to quantify flood extents in a probabilistic manner using the 

HR2D model incorporated with the Cop-BMA method. It is worth noting that while a flood inundation map provided by a 480 

single QPE may potentially exhibit greater accuracy compared to one generated by Cop-BMA, the primary advantage of using 

Cop-BMA lies in its ability to generate probabilistic flood inundation maps while considering uncertainties associated with 
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various QPE sources. Additionally, the QPE offering the highest accuracy is not consistently a single product; it may vary 

across different study cases and flood event characteristics. Therefore, employing a BMA-based approach could be a viable 

strategy to achieve high accuracy while accounting for of uncertainties. Future research efforts may focus on improving the 485 

validation process in other study areas through the integration of additional data sources and innovative techniques to validate 

the entire extent of flooding accurately with other sources more than gauging stations and high water marks, especially in 

highly urban environments with rapid urbanization and constant land cover changes, and also over large and with high 

resolution computational domain (Juan et al., 2020; Schubert et al., 2022). 

5. Discussions and Conclusions 490 

Dynamic simulation of extreme flood events demands a comprehensive approach that accounts for the inherent uncertainties 

and limitations present in both forcing data and numerical models. When conducting scenario analysis by inundation modelling 

driven by different precipitation forcings across the domain, it is crucial to acknowledge that definitively asserting the 

superiority of one product over another is not feasible. This is due to their inherent limitations in terms of spatial and temporal 

coverage, as well as the estimated precipitation values given the algorithms or methodologies used to generate the QPEs. In 495 

this study, comprehensive validation was feasible due to the access to a dense network of stations over Harris County of in-

situ precipitation data (rain gauges) and water surface elevation with temporal high resolution. However, such data are not 

widely available in many regions at a comparable density and temporal resolution. The substantial variability in the modelling 

results, both in terms of flood extent and water depth, is evident, leading to instances of both overestimation and 

underestimation throughout the response hydrograph for all assessments conducted by the different precipitations inputs as 500 

forcing to HR2D model. 

The utilization of Bayesian Model Averaging tools operates on the premise that there is not a single best model, specifically a 

precipitation product that fully captures the behaviour of the flooding caused by Hurricane Harvey. Similarly, there is not a 

single BMA scheme that universally outperforms any other approximation (Parrish et al., 2012). It has been shown that the 

assumption of data and conditional PDF follows a Gaussian distribution, as imposed by the BMA approach in many hydrologic 505 

applications, may lead to an oversimplification of extreme event behaviour, affecting the calculated weights and subsequent 

flood predictions. In this regard, it has been suggested that the incorporation of copula functions (Cop-BMA) can enhance the 

characterization of model-dependence generated by hydrodynamic water surface elevation data distributions and their 

relationships with observed data. Results using Cop-BMA approach show better distribution of performance variability metrics 

over the validation stations and reduced the averaged error per cluster compared to single QPEs in the evaluated metrics.  510 

Given the sensitivity of weight distributions to the selection of validation stations and clustering techniques, future studies 

could explore the impact of alternative clustering methods or metrics on the overall outcomes of the Global Cop-BMA 

approach. Such investigations could provide insights into the robustness of the method and its ability to adapt to varying 

configurations of validation data. Understanding how different clustering strategies influence weight distributions will 
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contribute to a comprehensive interpretation of the uncertainty associated with flood predictions and further refine the decision-515 

making process in flood risk management. 

One advantage of our proposed framework is its flexibility allowing for the use of alternative precipitation products to enhance 

model simulations. For instance, this framework can be implemented for operational forecasting purposes where the 

Quantitative Precipitation Estimations (QPEs) utilized in this study can be replaced with Quantitative Precipitation Forecasts 

(QPF) from numerical weather prediction models such as High-Resolution Rapid Refresh (HRRR), North American Mesoscale 520 

Forecast System (NAM), Global Forecast System (GFS), European Centre for Medium-Range Weather Forecasts (ECMWF) 

among others. Additionally, the proposed framework can be further improved by accounting for uncertainties related to various 

factors such as boundary conditions, and Digital Elevation Models (DEMs), which have already been analysed separately and 

individually. The HEC-RAS model can also incorporate the impact of infiltration during flood events. This involves testing 

various infiltration methods, such as Deficit and Constant, SCS Curve Number, and Grenn-Ampt, across different storm events 525 

in rural areas with diver land cover. By considering these additional sources of uncertainty within the modelling process, it is 

possible to enhance the accuracy and reliability of probabilistic flood inundation mapping, providing a more holistic 

perspective on extreme event simulations. This approach would yield a deeper understanding of the complex interactions and 

non-linearity of multiple factors contributing to flood events, thereby contributing to more robust flood risk assessments and 

management strategies. The challenge of scarce validation data for flood extents was addressed by generating probabilistic 530 

inundation maps. These maps assist in decision-making, especially in coastal regions where risk assessment is particularly 

complex. However, further research is needed to validate these spatial estimates. This is especially relevant in coastal regions 

where the interplay of various forcings makes it particularly complex to estimate risk scenarios for specific return periods. One 

limitation of the employed numerical model is its inability to directly incorporate the drainage networks present in urban areas. 

While the assumption that the drainage system was operating at 100% capacity, future research could explore the influence of 535 

these systems on accurately estimating water depth in urban areas at the city scales. Additionally, considering infiltration 

processes in hydrodynamic modelling when driven by different precipitation products can improve flood inundation modelling 

skill.  
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