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We appreciate the constructive comments provided by the reviewers as they have helped enhance 
the quality of our manuscript. The following are point-by-point answers to each referee in blue 
color: 

Referee #1 (RC1): 

1. The role of copula function and the choice for a specific function remains somewhat 
elusive. For one, Section 2.2 could benefit from being more specific in the role of copula 
function in replacing the posterior distribution. How does the copula function relate to the prior 
distribution? In addition, the section would benefit from an introduction of the concept of a 
copula function in statistical terms so as to convince the reader that the separation of functional 
dependence and modeling of marginal distributions is appropriate.  
Response: We appreciate the reviewer's suggestion regarding the introduction of copula 
functions, which we consider is crucial for enhancing the understanding of the readers. To 
address this, we have made improvements to the readability of the paragraph that introduces 
copula functions. Additionally, we have incorporated the statistical concept of copulas within 
the BMA approach in Section 2.2, as suggested, and referenced the Cop-BMA methodological 
steps outlined by Madadgar and Moradkhani (2014) and Abbaszadeh et al. (2022a), which 
were employed in our study. The modified text and equations added reads as follows: 

“Copulas are functions in the unit cube, which can link multi-dimensional distributions to their one-
dimensional marginals (Sklar, 1959), they provide a flexible and powerful tool for modelling the 
dependency structure between variables, regardless of their individual marginal distributions and 
model dependency. This is particularly valuable in scenarios where the relationships between variables 
are complex and may not follow a simple linear pattern. Cop-BMA modifies the BMA predictive 
distribution through relaxing the assumption on parametric posterior distribution 𝑔𝑔(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖

𝑡𝑡,𝜎𝜎𝑖𝑖2) 
replaced with a group of multivariate copula functions. Multiple copula functions have been applied to 
postprocess hydrological forecasts (Abbaszadeh et al., 2022a; He et al., 2018; Madadgar et al., 2014; 
Madadgar and Moradkhani, 2014), and are used in this study for the estimation of water surface 
elevation posterior distribution. Equation 1 is modified to incorporate copula functions replacing the 
posterior distribution 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖

𝑡𝑡,𝑌𝑌) following the procedure from Abbaszadeh et al. (2022a). Supported 
by Sklar theorem copulas can express the joint behaviour among correlated variables through their 
marginal CDFs in equation 3.  
𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝐶𝐶[𝑃𝑃(𝑥𝑥1, … ,𝑃𝑃(𝑥𝑥𝑛𝑛)] = 𝐶𝐶(𝑢𝑢1, …𝑢𝑢𝑛𝑛)      (3) 
where 𝐶𝐶 is the Cumulative Distribution Function (CDF) of the copula and 𝑃𝑃(𝑥𝑥𝑖𝑖) is the marginal 
distribution of 𝑥𝑥𝑖𝑖 denoted as 𝑢𝑢𝑖𝑖 for the interval [0, 1]. Using the PDF of copula, the joint probability 
density function of the variables involved can be defined as follows: 
𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛)∏ 𝑝𝑝(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=𝑖𝑖        (4) 
The conditional probability distribution of 𝑥𝑥1 given 𝑥𝑥2 is defined in equation 5: 
𝑝𝑝(𝑥𝑥1|𝑥𝑥2) = 𝑝𝑝(𝑥𝑥1,𝑥𝑥2)

𝑝𝑝(𝑥𝑥2)
          (5) 

Considering the copula joint probability from equation 4, the equation 5 can be expressed as: 
𝑝𝑝(𝑥𝑥1|𝑥𝑥2) = 𝑝𝑝(𝑥𝑥1,𝑥𝑥2)

𝑝𝑝(𝑥𝑥2)
= 𝑐𝑐(𝑢𝑢1,𝑢𝑢2)∙𝑝𝑝(𝑥𝑥1)∙𝑝𝑝(𝑥𝑥2)

𝑝𝑝(𝑥𝑥2)
= 𝑐𝑐(𝑢𝑢1,𝑢𝑢2) ∙ 𝑝𝑝(𝑥𝑥1)     (6) 



Since 𝑢𝑢1 and 𝑢𝑢2 are the observations (𝑦𝑦𝑡𝑡) and simulations (𝑀𝑀𝑘𝑘
𝑡𝑡) respectively, the posterior distribution 

in equation 1 is replaced with the conditional probability distribution from equation 6 as: 
𝑝𝑝(𝑦𝑦𝑡𝑡�𝑀𝑀1

𝑡𝑡 ,𝑀𝑀2
𝑡𝑡 , … ,𝑀𝑀𝑘𝑘

𝑡𝑡 ,𝑌𝑌) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑝𝑝�𝑦𝑦𝑡𝑡�𝑀𝑀𝑖𝑖
𝑘𝑘 ,𝑌𝑌� = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑐𝑐 �𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑖𝑖

𝑡𝑡� ∙ 𝑝𝑝(𝑦𝑦𝑡𝑡) 𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1   (7) 

Where 𝑐𝑐(𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑡𝑡) represents the PDF of the copula function. To estimate weight 𝑤𝑤𝑖𝑖, it is required to 
maximize the log likelihood function of the vector of parameter 𝜃𝜃 = {𝑤𝑤𝑖𝑖, 𝑖𝑖 = 1, … ,𝑘𝑘} as: 
𝑙𝑙(𝜃𝜃) = log �∑ 𝑤𝑤𝑖𝑖 ∑ 𝑐𝑐 �𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑖𝑖

𝑡𝑡� ∙ 𝑝𝑝(𝑦𝑦𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑘𝑘
𝑖𝑖=1 �      (8) 

 
Besides Section 2.2, the choice of copula in Section 4.1, line 329, is not convincing. It should 
be argued why only three distinct copula functions are evaluated and how that decision to 
restrict it to these three took place (one could imagine extreme value copulas or the Normal 
copula to be a candidate as well). For instance, whether there are certain characteristics that 
are sought in terms of attainable dependence, dimensionality, etc. Also, please detail the fitting 
process for evaluation on line 330 – it is unclear. The authors could use a copula cross-
validation criterion, for instance, to make their choice tractable and not dependent on the rest 
of the model. 
Response: We initially focused on the three most representative Archimedean copulas (Frank, 
Gumbel, Clayton) within our analysis, as they have been commonly used in previous 
hydrologic studies (Abbaszadeh et al., 2022; He et al., 2018). In response to the reviewer's 
comment, we expanded the scope of copulas considered to also include the Elliptic copulas 
(Gaussian and t-Student), as evaluated in the original COP-BMA paper (Madadgar & 
Moradkhani, 2014). To ensure robust copula selection, we employed the Akaike Information 
Criterion (AIC), which serves as a measure of the relative quality of statistical models. While 
this aspect was not previously mentioned in the article, we have incorporated it into the 
manuscript in Section 4.1 to provide details regarding our methodology. Furthermore, in 
accordance with the reviewer's suggestion, we conducted copula cross-validation using the 
criterion (xv-CIC) proposed by Grønneberg and Hjort (2014) employing a fold 𝑘𝑘 = 10, 
yielding consistent conclusions with the AIC results for copula selection, which is also 
mentioned. Table S2 in supplementary data is added with results from criterion testing. We 
have updated the results section in the manuscript and included Table 4 to summarize the 
copulas selected per QPEs and cluster analyzed. The text reads as follows: 

“In this study, five distinct copula functions are evaluated, Gumbel, Clayton, and Frank from the class 
of Archimedean copulas, and Gaussian and t-Student from Elliptical group. Copulas are constructed 
and evaluated using the marginals distributions of the observed data and each of the precipitation 
products modelling results of water surface elevation per cluster as 𝑐𝑐�𝑢𝑢𝑦𝑦,𝑢𝑢𝑀𝑀𝑘𝑘�. Fitting and selection 
process was conducted using Akaike Information Criterion (AIC) and copula cross-validation criterion 
(xv-CIC) (Grønneberg and Hjort, 2014) using copula package implemented in R (Hofert et al., 2023), 
where the copula fit with lowest value of AIC and higher xv-CIC was selected. Table 4 shows the 
selected copulas for the seven QPEs evaluated in HR2D simulations over the three clusters. Calculated 
values for AIC and xv-CIC are presented in Table S2 in the supplementary material.” 

Table 4. Summary of copula fitting results per cluster for each precipitation product used in the HEC-
RAS 2D model simulations. 



Precipitation 
Product 

Transitional 
cluster 

Upper cluster Coastal 
cluster 

CMORPH Gumbel Gumbel t-Student 
Daymet Gumbel Gumbel t-Student 
ERA5 Gumbel Gaussian t-Student 
IMERG Gumbel Gumbel t-Student 
NCEP Stage IV Gumbel Gumbel t-Student 
MRMS Gumbel Gumbel t-Student 
NLDAS Gumbel Gumbel t-Student 

 

2. Validation: A substantial part of the manuscript aims to validate the approach by comparing 
the model prediction with the inundation level at certain stations and comparing these against 
single data-source predictions. As the COP-BMA nests all other single models, it is no surprise 
that it outperforms the others by design. A better comparison might be not against the other 
models but against a non-copula BMA. An alternative would be to omit one data source (likely 
the best performing rain gauge data) and to make the horserace of the COP-BMA against that 
single model. This comparison has additional implication as it would be a remote sensing data 
vs. rain gauge data comparison. 
Response: We agree that analyzing QPEs against rain gauges and observations is a more 
reasonable approach than initially implemented. This approach provides the basis for 
comparing remote sensing QPE products, their COP-BMA integration and rain gauge data. In 
response, we have made modifications to the manuscript to reflect this adjustment: 

• Rain gauge data has been excluded from the Global Cop-BMA analysis, and this 
exclusion has been reflected in the updated version of Table 3. 

• To summarize the results more effectively and enhance clarity, we have generated a 
new Figure 6 to compare time-series of average error to observations per cluster. This 
figure compares errors generated by individual QPEs, Global Cop-BMA, and rain 
gauge simulations. Discussion of these results has been updated accordingly in the 
manuscript in Section 4.1. The new Figure 6 and modified text reads as follows: 



 

Figure 6. Averaged error time series of validation stations per cluster of simulated water 
surface elevation (WSE) by the HEC-RAS 2D model using QPE datasets and Global Cop-
BMA approach results (black) against observed WSE during Hurricane Harvey.  

“The averaged error of simulations using different QPEs against observations from validation 
stations are shown in Figure 6, featuring rain gauges simulation errors and estimations for 
Global Cop-BMA approach per cluster. Notably, this method exhibits better results in its 
responses to different precipitation products and clusters, leading to an enhanced accuracy in 
water level estimations, particularly during peak periods compared to the range of modelling 
water surface elevation outputs from the analyzed QPE such as Daymet or ERA5 which exhibit 
larger averaged errors. This demonstrates the Cop-BMA’s capability to generate results that 
closely correspond to the observed values at the validation stations. It is important to highlight 
that if all models consistently overestimate or underestimate, Global Cop-BMA may not lead 
to significant improvement in the result (e.g., NOAA 8770613, USGS 08074710, USGS 
08072050 in Figure 4; and Coastal cluster in Figure 6). Despite its advanced weighting 
mechanism, Global Cop-BMA's effectiveness relies on the diversity and accuracy of the model 
ensemble. Therefore, while it enhances the integration of diverse model outputs, its capability 
to improve results may be limited when all models exhibit similar differences compared to the 
observations at certain sections of the hydrograph”. 
 



The modification implies changes to evaluation of new weights distribution per cluster. 
We updated the weights discussion in Section 4.1 as follows: 

“As depicted in Figure 7, the distribution of weights per cluster exhibits greater variability. In 
the transitional cluster, CMORPH, Daymet, ERA5 and NCEP Stage IV have weights below 0.1, 
as these four products generated underestimated responses in the hydrographs for most stations 
within this cluster. Weights center around the precipitation from MRMS, IMERG and NLDAS 
QPEs. Within the upper cluster, a different weights distribution among the QPEs is observable, 
with minimal influence from CMORPH, Daymet, MRMS and NLDAS QPEs. A higher difference 
is observable the three more dominant QPE, where NCEP Stage IV has a weight of 0.663 
compared to the 0.144 of IMERG and 0.174 of ERA5 QPEs. For the Coastal cluster, 
precipitation from Stage IV QPE also holds the greatest weight (0.753) compared to the rest of 
QPEs which hold weight values below 0.1. Within this cluster, minimal discernible differences 
exist between QPEs water surface elevation results for the stations, as seen in Figure 4 (NOAA 
stations 8771013 and 8770613) and in Figure 6.” 

• Figures 7, 8, and 9 have been updated to reflect the new weights calculation after 
excluding rain gauge data in the Cop-BMA analysis and incorporating Elliptical copula 
functions within the fitting process as discussed previously. These updates ensure that 
the figures accurately represent the latest calculations and findings. 
 

• Section 4.1 was complemented and modified to be consistent with the change 
suggested. 

 

3. Implication: As already indicated in the previous point raised, the manuscript lacks the precise 
quantification or discussion of the proposed methodology's advantages and applications. For 
instance, staying with the case of Hurricane Harvey: what are the computational costs and 
runtime of the model? Could it be employed in risk assessment with rain-on-grid data 
forecasts? How much better is it compared to a non-COP BMA? While these questions are for 
illustration only, the discussion in the manuscript could aim to assess the methodology's benefit 
in a broader context. 
Response: Thank you for your comment. In response, we have made the following revisions 
to strengthen the implications and broader impacts of our study: 

• Section 5 has been edited to discuss the potential use of alternative precipitation 
forecast datasets and the application of our framework for operational forecasting 
purposes. This discussion expands the scope of our study and highlights its relevance 
for real-world applications and future areas of improvements. We have edited the text 
in the Discussions and Conclusions section as follows: 

“One advantage of our proposed framework is its flexibility allowing for the use of alternative 
precipitation products to enhance model simulations. For instance, this framework can be 
implemented for operational forecasting purposes where the Quantitative Precipitation 
Estimations (QPEs) utilized in this study can be replaced with Quantitative Precipitation 
Forecasts (QPF) from numerical weather prediction models such as High-Resolution Rapid 
Refresh (HRRR), North American Mesoscale Forecast System (NAM), Global Forecast System 
(GFS), European Centre for Medium-Range Weather Forecasts (ECMWF) among others”. 



 
• Computational resources and computational time required for the hydrodynamic 

modeling task have been addressed in Section 3.1, providing readers with insight into 
the practical aspects of implementing the proposed methodology. We consider the 
computational times (~7 hours) to be adequate for the application of the proposed 
methodology, and future research efforts will focus on utilizing the Linux version of 
HEC-RAS 2D on High-Performance Computing (HPC) systems. Added text reads as 
follows: 

“It is worth mentioning that our simulations were performed on a desktop computer with an 
Intel Core i7-7700 CPU @ 3.60GHz and 32GB RAM memory, averaging about seven hours 
per simulation for the time window.” 

 
• The improvements achieved using the Cop-BMA approach in terms of overall 

performance have been integrated into Section 4.1. This section provides a detailed 
analysis of the enhanced performance resulting from the application of the Cop-BMA 
methodology. The modified text in the manuscript describing the Cop-BMA results 
reads as follows: 

“Figure 8 provides a comprehensive overview of collective performance metrics of the HR2D 
model across the seven QPE simulations, rain gauges simulation, and the Global Cop-BMA 
multi-modelling for the seven QPEs evaluated at 30 validation stations over the 11-day 
simulation period. In general, the inundation modelling driven by different products 
consistently exhibits NSE performance with mean values ranging between 0.695 and 0.846. In 
terms of KGE performance, the interquartile ranges for QPEs display broader ranges, and the 
medians for Daymet and ERA5 products fall below 0.8 in contrast to other simulations. 
Notably, the Cop-BMA approach exhibits slightly higher performance metrics compared to the 
QPE products, NSE has an average of 0.858 and its total variability is lower compared to 
single precipitation products. KGE metric has a similar result with an average value of 0.852. 
The Averaged RMSE for Cop-BMA is 0.561m which is smaller than all the single QPE except 
for the rain gauges simulation which is only 3 centimetres lower. The averaged MBE for single 
QPEs ranged between -0.018 and 0.23m, while the Global Cop-BMA method results in an 
averaged value of 0.049m. Among individual products, the rain gauge outperforms all spatially 
distributed precipitation datasets and comes closest to matching the performance of Cop-BMA 
method. This highlights that reanalysis gridded precipitation products may have higher errors 
when compared to in-situ rain observations and allows Global Cop-BMA to generate QPE 
post-processed results that are closer to modelling results with observed precipitation from rain 
gauges. This methodology could be replicated in areas where measured precipitation is not 
available and obtain better performance metrics accounting for the uncertainties from this 
input”. 

 

Minor remarks: 
 

• Line 52: please introduce the HEC-RAS 2D when first mentioning it, briefly. 
Response: Description of HEC-RAS 2D model was added in Section 1. Text reads as 
follows: 



“Among various hydrodynamic models, the Hydrologic Engineering Center's River Analysis 
System (HEC-RAS) developed by the United States Army Corps of Engineers (USACE, 2022). It 
has the capability to simulate flooding conditions allows in both 1D and 2D.” 

• Line 83: please discuss the advantages and disadvantages of deterministic vs. probabilistic 
approach in this setting. 
Response: Description and discussion of deterministic and probabilistic approaches for 
flood mapping was added to the manuscript along with references from Di Baldassarre et 
al. (2010); Bates et al. (2004) and Merwade et al. (2008) to the readers interested in the 
topic. We have included your suggestion in the revised manuscript as follows: 

“On the deterministic front, the numerical results of the HEC-RAS 2D 6.3.1 hydrodynamic model, 
incorporating RoG, are evaluated to best describe the hydrodynamic behaviour of rivers, coastal 
and floodplain processes with a computationally affordable model. In parallel, a probabilistic 
approach is employed to use eight distinct precipitation products as forcing data to the 
hydrodynamic model to estimate an ensemble of flood extent and water depth in response to this 
hurricane-induced flood event. The deterministic approach provides a single representation of 
flood extents and depths based on predefined inputs and parameters, offering a clear understanding 
of potential inundation scenario evaluated. However, it fails to adequately capture the uncertainty 
associated with flood modelling, potentially leading to underestimation or overestimation of flood 
extents in other scenarios considering highly sensitive input parameters, which can impact the 
accuracy of results (Di Baldassarre et al., 2010; Bates et al., 2004). 
Probabilistic flood inundation mapping incorporates probabilistic techniques to assess and 
quantify uncertainty, providing a more comprehensive understanding of the range of potential flood 
outcomes and associated risks. It allows the integration of different datasets and input values, 
accommodating a wider range of initial and boundary conditions, and improving the robustness of 
flood predictions (Merwade et al., 2008; Di Baldassarre et al., 2010). Often this approach requires 
conducting numerous simulations to assess parameter uncertainty, leading to a substantial 
consumption of computational resources. Consequently, there is a preference for utilizing models 
that make substantial flow assumptions to conduct these simulations more efficiently and reduce 
computational costs.” 

• Line 123: please precisely state which variables are all subject of BMA. 
Response: The water surface elevation was the variable of interest. This information was 
added. 

• Line 133: "In other worlds..." 
Response: Edited to “In summary”. 

• Line 148: Is the copula function bivariate? Please introduce the concept of a copula 
function here. 
Response: Copulas evaluated in this study are bivariate. Description of copula functions 
and formulation within BMA approach were added to the manuscript in Section 2.2 as 
mentioned in Comment 1. 

 
 
 
 
 



Referee #2 (RC2): 

1. Although the technical details of the copula functions have been presented in the literature, it 
will be helpful for readers to catch the meanings of new variables presented in this article if 
these variables are illustrated clearly. For example, what are the terms in the copula function 
on the right-hand side of Equation (3)? 
Response: To address this comment, we have further extended the description of copulas for 
better understanding of the readers. Specifically, in response to the suggestions provided, in 
Section 2.2 we have expanded the description of key terms in equations, the formulation of 
copulas and implementation as Cop-BMA. We added references of original formulation from 
Sklar (1959) and previous Cop-BMA methodology from Madadgar et al., (2014) and 
Abbaszadeh et al. (2022) to provide readers with additional context and theoretical 
explanations. These additions aim to facilitate a deeper understanding and address questions 
that may arise. The modified text and equations added reads as follows: 

“Copulas are functions in the unit cube, which can link multi-dimensional distributions to their one-
dimensional marginals (Sklar, 1959), they provide a flexible and powerful tool for modelling the 
dependency structure between variables, regardless of their individual marginal distributions and 
model dependency. This is particularly valuable in scenarios where the relationships between variables 
are complex and may not follow a simple linear pattern. Cop-BMA modifies the BMA predictive 
distribution through relaxing the assumption on parametric posterior distribution 𝑔𝑔(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖

𝑡𝑡,𝜎𝜎𝑖𝑖2) 
replaced with a group of multivariate copula functions. Multiple copula functions have been applied to 
postprocess hydrological forecasts (Abbaszadeh et al., 2022a; He et al., 2018; Madadgar et al., 2014; 
Madadgar and Moradkhani, 2014), and are used in this study for the estimation of water surface 
elevation posterior distribution. Equation 1 is modified to incorporate copula functions replacing the 
posterior distribution 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑀𝑀𝑖𝑖

𝑡𝑡,𝑌𝑌) following the procedure from Abbaszadeh et al. (2022a). Supported 
by Sklar theorem copulas can express the joint behaviour among correlated variables through their 
marginal CDFs in equation 3.  
𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝐶𝐶[𝑃𝑃(𝑥𝑥1, … ,𝑃𝑃(𝑥𝑥𝑛𝑛)] = 𝐶𝐶(𝑢𝑢1, …𝑢𝑢𝑛𝑛)      (3) 
where 𝐶𝐶 is the Cumulative Distribution Function (CDF) of the copula and 𝑃𝑃(𝑥𝑥𝑖𝑖) is the marginal 
distribution of 𝑥𝑥𝑖𝑖 denoted as 𝑢𝑢𝑖𝑖 for the interval [0, 1]. Using the PDF of copula, the joint probability 
density function of the variables involved can be defined as follows: 
𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛)∏ 𝑝𝑝(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=𝑖𝑖        (4) 
The conditional probability distribution of 𝑥𝑥1 given 𝑥𝑥2 is defined in equation 5: 
𝑝𝑝(𝑥𝑥1|𝑥𝑥2) = 𝑝𝑝(𝑥𝑥1,𝑥𝑥2)

𝑝𝑝(𝑥𝑥2)
          (5) 

Considering the copula joint probability from equation 4, the equation 5 can be expressed as: 
𝑝𝑝(𝑥𝑥1|𝑥𝑥2) = 𝑝𝑝(𝑥𝑥1,𝑥𝑥2)

𝑝𝑝(𝑥𝑥2)
= 𝑐𝑐(𝑢𝑢1,𝑢𝑢2)∙𝑝𝑝(𝑥𝑥1)∙𝑝𝑝(𝑥𝑥2)

𝑝𝑝(𝑥𝑥2)
= 𝑐𝑐(𝑢𝑢1,𝑢𝑢2) ∙ 𝑝𝑝(𝑥𝑥1)     (6) 

Since 𝑢𝑢1 and 𝑢𝑢2 are the observations (𝑦𝑦𝑡𝑡) and simulations (𝑀𝑀𝑘𝑘
𝑡𝑡) respectively, the posterior distribution 

in equation 1 is replaced with the conditional probability distribution from equation 6 as: 
𝑝𝑝(𝑦𝑦𝑡𝑡�𝑀𝑀1

𝑡𝑡 ,𝑀𝑀2
𝑡𝑡 , … ,𝑀𝑀𝑘𝑘

𝑡𝑡 ,𝑌𝑌) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑝𝑝�𝑦𝑦𝑡𝑡�𝑀𝑀𝑖𝑖
𝑘𝑘 ,𝑌𝑌� = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑐𝑐 �𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑖𝑖

𝑡𝑡� ∙ 𝑝𝑝(𝑦𝑦𝑡𝑡) 𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1   (7) 

Where 𝑐𝑐(𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑡𝑡) represents the PDF of the copula function. To estimate weight 𝑤𝑤𝑖𝑖, it is required to 
maximize the log likelihood function of the vector of parameter 𝜃𝜃 = {𝑤𝑤𝑖𝑖, 𝑖𝑖 = 1, … ,𝑘𝑘} as: 
𝑙𝑙(𝜃𝜃) = log �∑ 𝑤𝑤𝑖𝑖 ∑ 𝑐𝑐 �𝑢𝑢𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑀𝑀𝑖𝑖

𝑡𝑡� ∙ 𝑝𝑝(𝑦𝑦𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑘𝑘
𝑖𝑖=1 �      (8) 

 
2. As shown in Equation (4), the form of the likelihood function (a product of the probability 

density at different time steps) is valid when the temporal predictions are independent. But in 



this study, we may not assume the “hourly” output to be independent of each other. So what 
are the potential impacts of autocorrelation of the target variables, y, on the Cop-BMA results? 
Response: We consider that hydrodynamic simulations resulting from the different QPEs are 
independent of each other as these products come from different sources and methodologies, 
with both different spatial and temporal resolutions. For readers interested in a more detailed 
analysis, we refer to the original BMA and Cop-BMA research article by Madadgar and 
Moradkhani (2014) in the manuscript. Additionally, equation 4 (equation 8 in recent edited 
version) was edited as the summation over time term was typed in an incorrect position as 
shown in the comment 1.  

 
3. It is not clear how to transform the rainfall into runoff in the HEC-RAS 2D model. Also, it 

seems to be unfair to compare the performance of different precipitation products since the 
infiltration process was not considered in the hydrodynamic modeling process. In addition, in 
Line 453, why do the infiltration processes mainly impact the “initial” water surface elevation 
results? How about the “continuous” loss during the flood event? 
Response: We appreciate the reviewer's feedback regarding infiltration processes, and we 
acknowledge the importance of considering these hydrological processes in hydrodynamic 
models. It is commonly assumed, especially for events like Hurricane Harvey in highly 
urbanized areas such as Houston, that the soil was completely saturated due to previous rainfall 
and the percentage of impervious cover is significant. While this assumption simplifies the 
analysis by neglecting infiltration processes, it may not fully capture the dynamic nature of soil 
properties and runoff transformation in hydrodynamic simulations as mentioned in the 
manuscript. In light of this, we recognize the need to explore infiltration processes more 
comprehensively in future research. We have outlined this aspect in Section 5 for the benefit 
of the readers as future research topics. This includes testing different infiltration methods 
directly within the HR2D model, such as Deficit and Constant, SCS Curve Number, and Green-
Ampt, across various storm events in rural areas with more diverse land cover. The additional 
text reads as follows: 

“The HEC-RAS model can also incorporate the impact of infiltration during flood events. This involves 
testing various infiltration methods, such as Deficit and Constant, SCS Curve Number, and Grenn-
Ampt, across different storm events in rural areas with diver land cover.” 

 
4. Manning values are important parameters in flood modeling and the values will change with 

the water depth. As presented in Line 192, the Manning values “are further adjusted during the 
calibration period, 7 days before the occurrence of Hurricane Harvey”, would it be better or 
necessary to calibrate the roughness parameters based on a similar flood event? 
Response: Previous research conducted by our research group, as outlined in Muñoz et al. 
(2022) focused on the estimation of Manning roughness coefficients using Latin Hypercube 
Sampling (LHS) within the study area considering the extreme water levels generated at the 
peak of Hurricane Harvey for calibration procedure. The values obtained from this research 
were thoroughly tested and, where necessary, slightly modified to suit the specific 
requirements of the current study using HR2D. We cite this previous work as a guiding 
reference to the readers for the methodology employed and the selection of Manning 
coefficients in our study. Modified text in Section 3.1 reads as follows: 



“In a previous research conducted by Muñoz et al. (2022), they used Latin Hypercube Sampling and 
tested various Manning roughness values for different land cover categories during Hurricane Harvey 
event. We use their calibrated parameters as a reference for HR2D model setup. These values are 
slightly adjusted during the calibration period, 7 days before the occurrence of Hurricane Harvey”. 

 
5. For the application of Cop-BMA, it is like a trial-and-error procedure to select an appropriate 

marginal distribution and a copula function for the target variable. Is there any general guidance 
or suggestion for interested readers if they want to apply the framework to the other areas or 
variables? 
Response: We appreciate the reviewer's constructive suggestion. To provide clarity and 
guidance to interested readers, we have incorporated a description of the criteria used in the 
selection process in Section 4.1 of the manuscript. The selection of marginal distribution is 
based on minimizing the sum of squared error (SSE) using the Maximum Likelihood 
Estimation (MLE). Modified section reads as follows: 

“Parameter estimation for each distribution is performed using the Maximum Likelihood Estimation 
(MLE) technique. To identify the most suitable marginal distribution, the sum of squared errors (SSE) 
is employed to facilitate the selection process, choosing the distribution that provide the lower SSE 
value.” 

To select the appropriate copula, we calculated the Akaike information criterion (AIC) and 
cross-validation criterion (xv-CIC) for each copula and then chose the one with the lowest AIC 
and highest xv-CIC. Details of this analysis have been included in Table S2 and can be found 
in the supplementary materials. We recommend interested readers follow this procedure when 
applying the framework to other studies. Added text to Section 4.1 reads as follows: 

“Fitting and selection process was conducted using Akaike Information Criterion (AIC) and copula 
cross-validation criterion (xv-CIC) (Grønneberg and Hjort, 2014) using copula package implemented 
in R (Hofert et al., 2023), where the copula fit with lowest value of AIC and higher xv-CIC was selected. 
Table 4 shows the selected copulas for the seven QPEs evaluated in HR2D simulations over the three 
clusters. Calculated values for AIC and xv-CIC are presented in Table S2 in the supplementary 
material.” 

 
6. Some cases in Figures 4 and 6 show that if all the members in the precipitation ensembles 

consistently overestimated (e.g., NOAA 8770613 and USGS 08074710) or underestimated 
(e.g., USGS 08072050) the peak WSE, Global Cop-BMA did not help at all. Any comments 
on that? 
Response: These discrepancies primarily arise from errors in the model structure and the 
parameterization of the hydrodynamic model. Factors such as assumptions within the 
governing equations of the HR2D model, infiltration methods, and the absence of full 
bathymetry datasets are identified as significant contributors to these differences in WSE 
values. In Section 4 of the manuscript, we discussed this issue. In our ongoing research, we 
aim to address these discrepancies by exploring alternative numerical models for evaluation 
and testing purposes. By incorporating additional modeling frameworks, we seek to refine and 
improve the accuracy of our simulation results. 



Additionally, when we use the Cop-BMA methodology, the highest weight is assigned to the 
product that provides the closest results to the observations. However, in cases where all model 
members generate overestimated or underestimated results, there may not be a meaningful 
improvement. We incorporate this important remark of Global Cop-BMA methodology in 
Section 4.1, the added text reads as follows: 

“It is important to highlight that if all models consistently overestimate or underestimate, Global Cop-
BMA may not lead to significant improvement in the result (e.g., NOAA 8770613, USGS 08074710, 
USGS 08072050 in Figure 4; and Coastal cluster in Figure 6). Despite its advanced weighting 
mechanism, Global Cop-BMA's effectiveness relies on the diversity and accuracy of the model 
ensemble. Therefore, while it enhances the integration of diverse model outputs, its capability to 
improve results may be limited when all models exhibit similar differences compared to the observations 
at certain sections of the hydrograph.” 

 
7. Line 20 and Line 382, could you provide quantitative results to measure the degree of 

improvement due to the application of the Cop-BMA approach? 
Response: We appreciate this comment which shows general improvements in the proposed 
methodology. We have added this information to the abstract, providing an overview of the 
performance achieved through the application of the Cop-BMA approach specially with NSE 
metric results. Additionally, in Section 4.1 of the manuscript, detailed results and NSE, KGE, 
RMSE and MBE performance metrics from the utilization of the Cop-BMA approach have 
been elaborated as discussion of the results obtained in the boxplots plotted in Figure 8. This 
analysis offers a comprehensive examination of the quantitative outcomes derived from our 
study, thereby facilitating a more thorough evaluation of the effectiveness and impact of the 
Cop-BMA methodology. The modified text in the manuscript reads as follows: 

“Figure 8 provides a comprehensive overview of collective performance metrics of the HR2D model 
across the seven QPE simulations, rain gauges simulation, and the Global Cop-BMA multi-modelling 
for the seven QPEs evaluated at 30 validation stations over the 11-day simulation period. In general, 
the inundation modelling driven by different products consistently exhibits NSE performance with mean 
values ranging between 0.695 and 0.846 In terms of KGE performance, the interquartile ranges for 
QPEs display broader ranges, and the medians for Daymet and ERA5 products fall below 0.8 in 
contrast to other simulations. Notably, the Cop-BMA approach exhibits slightly higher performance 
metrics compared to the QPE products, NSE has an average of 0.858 and its total variability is lower 
compared to single precipitation products. KGE metric has a similar result with an average value of 
0.852. The Averaged RMSE for Cop-BMA is 0.561m which is smaller than all the single QPE except 
for the rain gauges simulation which is only 3 centimetres lower. The averaged MBE for single QPEs 
ranged between -0.018 and 0.23m, while the Global Cop-BMA method results in an averaged value of 
0.049m.” 

 
8. As discussed by the authors, the final flood inundation maps could not be validated effectively 

because of the scarcity of spatial observed data. Is it possible that the performance of a model 
member in the ensemble would be better than that of Cop-BMA in terms of the inundation 
extents, even though its performance in the WSE comparison at one gauge location is not the 
best? 



Response: It is worth noting that while a flood inundation map provided by a single QPE may 
potentially exhibit greater accuracy compared to one generated by Cop-BMA, the primary 
advantage of using Cop-BMA lies in its ability to generate probabilistic flood inundation maps 
while considering uncertainties associated with various QPE sources. Additionally, the QPE 
offering the highest accuracy is not consistently a single product; it may vary across different 
case studies and flood events. Therefore, employing a BMA-based approach could be a viable 
strategy to achieve high accuracy while addressing sources of uncertainty. Additional text in 
Section 4.1 reads as follows: 

“The validation tasks were primarily focused on assessing the performance of model outputs at 
validation stations, as depicted in Figure 5. This approach enabled us to calculate the performance 
metrics of WSE over a well-distributed network of stations with remarkable temporal resolution. Data 
collected from these validation stations sufficiently capture the hydrograph behaviour within the study 
domain and enables us to quantify flood extents in a probabilistic manner using the HR2D model 
incorporated with the Cop-BMA method. It is worth noting that while a flood inundation map provided 
by a single QPE may potentially exhibit greater accuracy compared to one generated by Cop-BMA, the 
primary advantage of using Cop-BMA lies in its ability to generate probabilistic flood inundation maps 
while considering uncertainties associated with various QPE sources. Additionally, the QPE offering 
the highest accuracy is not consistently a single product; it may vary across different study cases and 
flood event characteristics. Therefore, employing a BMA-based approach could be a viable strategy to 
achieve high accuracy while accounting for uncertainties.” 

 
9. Minor Issues 

 
- Line 42-43, in BMA applications, I think it is the conditional PDF (the second term on the 

right-hand side of Equation (1)) rather than the “data” that is assumed to follow a Gaussian 
distribution. In other words, the pattern of model residuals follows a Gaussian distribution 
in BMA. 
Response: Usually, the conditional PDF of the data is assumed to follow a Gaussian 
distribution in hydrologic-hydrodynamic applications. This phrase was adjusted to be more 
concise. 

- It would be better if more information can be added to Table 1 or Figure 2. For example, 
the temporal resolution of discharge and WSE data, the start and end date of the simulation 
period, indicating which stations are used as boundary conditions and validation, etc. Also, 
the information of USGS 08074710 was not included in Table 1.  
Response:  

o Section 3.1 was complemented with a brief description of simulation time window 
in HR2D model and mention the hourly outputs. Information is incorporated to the 
manuscript as follows: 

“For unsteady flow analysis in HR2D setup, an hourly simulation time window is defined 
between August 16/2017 to September 3/2017.” 

o Within the description of BCs in Section 3.1 the hourly temporal resolution of these 
inputs was incorporated, except for QPEs which are explained in Table 2. 



o We include in the Supplementary data document Table S1 with the stations used for 
validation with details and referred in the manuscript.  

o Figure 5 in Section 4.1 shows stations used for validation during the hurricane 
event, station USGS 08074710 is part of this validation set, not as BC. 

- Line 73: two brackets were used for the reference. Response: Two brackets were deleted. 
- Please add the units of SSE in Table 3. Response: Units added to table. 
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