
 

Response to Referee 1 Comments on: 

 

Probabilistic Flood Inundation Mapping through Copula Bayesian 

Multi-Modelling of Precipitation Products 

Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani 

 

MS. Ref. No.: NHESS-2024-26 

Natural Hazards and Earth System Sciences  

 

We appreciate the constructive comments provided by the reviewer as they have helped enhance 

the quality of our manuscript. Enclosed, please find the revised manuscript with all the necessary 

corrections implemented in accordance with the comments and suggestions in tracked and cleaned 

versions. The following are point-by-point answers, in blue color, to the comments of the first 

referee: 

Referee #1 (RC1): 

1. The role of copula function and the choice for a specific function remains somewhat 

elusive. For one, Section 2.2 could benefit from being more specific in the role of copula 

function in replacing the posterior distribution. How does the copula function relate to the prior 

distribution? In addition, the section would benefit from an introduction of the concept of a 

copula function in statistical terms so as to convince the reader that the separation of functional 

dependence and modeling of marginal distributions is appropriate.  

Response: We appreciate the reviewer's suggestion regarding the introduction of copula 

functions, which we consider is crucial for enhancing the understanding of the readers. To 

address this, we have made improvements to the readability of the paragraph that introduces 

copula functions. Additionally, we have incorporated the statistical concept of copulas within 

the BMA approach in Section 2.2, as suggested, and referenced the Cop-BMA methodological 

steps outlined by Madadgar and Moradkhani (2014) and Abbaszadeh et al. (2022a), which 

were employed in our study. The modified text and equations added reads as follows: 

“Copulas are functions in the unit cube, which can link multi-dimensional distributions to their one-

dimensional marginals (Sklar, 1959), they provide a flexible and powerful tool for modelling the 

dependency structure between variables, regardless of their individual marginal distributions and 

model dependency. This is particularly valuable in scenarios where the relationships between variables 

are complex and may not follow a simple linear pattern. Cop-BMA modifies the BMA predictive 

distribution through relaxing the assumption on parametric posterior distribution 𝑔(𝑦𝑡|𝑀𝑖
𝑡, 𝜎𝑖

2) 

replaced with a group of multivariate copula functions. Multiple copula functions have been applied to 

postprocess hydrological forecasts (Abbaszadeh et al., 2022a; He et al., 2018; Madadgar et al., 2014; 

Madadgar and Moradkhani, 2014), and are used in this study for the estimation of water surface 

elevation posterior distribution. Equation 1 is modified to incorporate copula functions replacing the 

posterior distribution 𝑝(𝑦𝑡|𝑀𝑖
𝑡, 𝑌) following the procedure from Abbaszadeh et al. (2022a). Supported 



by Sklar theorem copulas can express the joint behaviour among correlated variables through their 

marginal CDFs in equation 3.  

𝑃(𝑥1, … , 𝑥𝑛) = 𝐶[𝑃(𝑥1, … , 𝑃(𝑥𝑛)] = 𝐶(𝑢1, … 𝑢𝑛)      (3) 

where 𝐶 is the Cumulative Distribution Function (CDF) of the copula and 𝑃(𝑥𝑖) is the marginal 

distribution of 𝑥𝑖 denoted as 𝑢𝑖 for the interval [0, 1]. Using the PDF of copula, the joint probability 

density function of the variables involved can be defined as follows: 

𝑝(𝑥1, … , 𝑥𝑛) = 𝑐(𝑢1, … , 𝑢𝑛) ∏ 𝑝(𝑥𝑖)𝑛
𝑖=𝑖        (4) 

The conditional probability distribution of 𝑥1 given 𝑥2 is defined in equation 5: 

𝑝(𝑥1|𝑥2) =
𝑝(𝑥1,𝑥2)

𝑝(𝑥2)
          (5) 

Considering the copula joint probability from equation 4, the equation 5 can be expressed as: 

𝑝(𝑥1|𝑥2) =
𝑝(𝑥1,𝑥2)

𝑝(𝑥2)
=

𝑐(𝑢1,𝑢2)∙𝑝(𝑥1)∙𝑝(𝑥2)

𝑝(𝑥2)
= 𝑐(𝑢1, 𝑢2) ∙ 𝑝(𝑥1)     (6) 

Since 𝑢1 and 𝑢2 are the observations (𝑦𝑡) and simulations (𝑀𝑘
𝑡 ) respectively, the posterior distribution 

in equation 1 is replaced with the conditional probability distribution from equation 6 as: 

𝑝(𝑦𝑡|𝑀1
𝑡 , 𝑀2

𝑡 , … , 𝑀𝑘
𝑡 , 𝑌) = ∑ 𝑤𝑖 ∙ 𝑝(𝑦𝑡|𝑀𝑖

𝑘 , 𝑌) = ∑ 𝑤𝑖 ∙ 𝑐 (𝑢𝑦𝑡 , 𝑢𝑀𝑖
𝑡) ∙ 𝑝(𝑦𝑡) 𝑘

𝑖=1
𝑘
𝑖=1   (7) 

Where 𝑐(𝑢𝑦𝑡 , 𝑢𝑀𝑡) represents the PDF of the copula function. To estimate weight 𝑤𝑖, it is required to 

maximize the log likelihood function of the vector of parameter 𝜃 = {𝑤𝑖, 𝑖 = 1, … , 𝑘} as: 

𝑙(𝜃) = log (∑ 𝑤𝑖 ∑ 𝑐 (𝑢𝑦𝑡 , 𝑢𝑀𝑖
𝑡) ∙ 𝑝(𝑦𝑡)𝑇

𝑡=1
𝑘
𝑖=1 )      (8) 

 

Besides Section 2.2, the choice of copula in Section 4.1, line 329, is not convincing. It should 

be argued why only three distinct copula functions are evaluated and how that decision to 

restrict it to these three took place (one could imagine extreme value copulas or the Normal 

copula to be a candidate as well). For instance, whether there are certain characteristics that 

are sought in terms of attainable dependence, dimensionality, etc. Also, please detail the fitting 

process for evaluation on line 330 – it is unclear. The authors could use a copula cross-

validation criterion, for instance, to make their choice tractable and not dependent on the rest 

of the model. 

Response: We initially focused on the three most representative Archimedean copulas (Frank, 

Gumbel, Clayton) within our analysis, as they have been commonly used in previous 

hydrologic studies (Abbaszadeh et al., 2022; He et al., 2018). In response to the reviewer's 

comment, we expanded the scope of copulas considered to also include the Elliptic copulas 

(Gaussian and t-Student), as evaluated in the original COP-BMA paper (Madadgar & 

Moradkhani, 2014). To ensure robust copula selection, we employed the Akaike Information 

Criterion (AIC), which serves as a measure of the relative quality of statistical models. While 

this aspect was not previously mentioned in the article, we have incorporated it into the 

manuscript in Section 4.1 to provide details regarding our methodology. Furthermore, in 

accordance with the reviewer's suggestion, we conducted copula cross-validation using the 

criterion (xv-CIC) proposed by Grønneberg and Hjort (2014) employing a fold 𝑘 = 10, 

yielding consistent conclusions with the AIC results for copula selection, which is also 

mentioned. Table S2 in supplementary data is added with results from criterion testing. We 

have updated the results section in the manuscript and included Table 4 to summarize the 

copulas selected per QPEs and cluster analyzed. The text reads as follows: 



“In this study, five distinct copula functions are evaluated, Gumbel, Clayton, and Frank from the class 

of Archimedean copulas, and Gaussian and t-Student from Elliptical group. Copulas are constructed 

and evaluated using the marginals distributions of the observed data and each of the precipitation 

products modelling results of water surface elevation per cluster as 𝑐(𝑢𝑦, 𝑢𝑀𝑘
). Fitting and selection 

process was conducted using Akaike Information Criterion (AIC) and copula cross-validation criterion 

(xv-CIC) (Grønneberg and Hjort, 2014) using copula package implemented in R (Hofert et al., 2023), 

where the copula fit with lowest value of AIC and higher xv-CIC was selected. Table 4 shows the 

selected copulas for the seven QPEs evaluated in HR2D simulations over the three clusters. Calculated 

values for AIC and xv-CIC are presented in Table S2 in the supplementary material.” 

Table 4. Summary of copula fitting results per cluster for each precipitation product used in the HEC-

RAS 2D model simulations. 

Precipitation 

Product 

Transitional 

cluster 

Upper cluster Coastal 

cluster 

CMORPH Gumbel Gumbel t-Student 

Daymet Gumbel Gumbel t-Student 

ERA5 Gumbel Gaussian t-Student 

IMERG Gumbel Gumbel t-Student 

NCEP Stage IV Gumbel Gumbel t-Student 

MRMS Gumbel Gumbel t-Student 

NLDAS Gumbel Gumbel t-Student 

 

2. Validation: A substantial part of the manuscript aims to validate the approach by comparing 

the model prediction with the inundation level at certain stations and comparing these against 

single data-source predictions. As the COP-BMA nests all other single models, it is no surprise 

that it outperforms the others by design. A better comparison might be not against the other 

models but against a non-copula BMA. An alternative would be to omit one data source (likely 

the best performing rain gauge data) and to make the horserace of the COP-BMA against that 

single model. This comparison has additional implication as it would be a remote sensing data 

vs. rain gauge data comparison. 

Response: We agree that analyzing QPEs against rain gauges and observations is a more 

reasonable approach than initially implemented. This approach provides the basis for 

comparing remote sensing QPE products, their COP-BMA integration and rain gauge data. In 

response, we have made modifications to the manuscript to reflect this adjustment: 

• Rain gauge data has been excluded from the Global Cop-BMA analysis, and this 

exclusion has been reflected in the updated version of Table 3. 

• To summarize the results more effectively and enhance clarity, we have generated a 

new Figure 6 to compare time-series of average error to observations per cluster. This 

figure compares errors generated by individual QPEs, Global Cop-BMA, and rain 

gauge simulations. Discussion of these results has been updated accordingly in the 

manuscript in Section 4.1. The new Figure 6 and modified text reads as follows: 



 

Figure 6. Averaged error time series of validation stations per cluster of simulated water 

surface elevation (WSE) by the HEC-RAS 2D model using QPE datasets and Global Cop-

BMA approach results (black) against observed WSE during Hurricane Harvey.  

“The averaged error of simulations using different QPEs against observations from validation 

stations are shown in Figure 6, featuring rain gauges simulation errors and estimations for 

Global Cop-BMA approach per cluster. Notably, this method exhibits better results in its 

responses to different precipitation products and clusters, leading to an enhanced accuracy in 

water level estimations, particularly during peak periods compared to the range of modelling 

water surface elevation outputs from the analyzed QPE such as Daymet or ERA5 which exhibit 

larger averaged errors. This demonstrates the Cop-BMA’s capability to generate results that 

closely correspond to the observed values at the validation stations. It is important to highlight 

that if all models consistently overestimate or underestimate, Global Cop-BMA may not lead 

to significant improvement in the result (e.g., NOAA 8770613, USGS 08074710, USGS 

08072050 in Figure 4; and Coastal cluster in Figure 6). Despite its advanced weighting 

mechanism, Global Cop-BMA's effectiveness relies on the diversity and accuracy of the model 

ensemble. Therefore, while it enhances the integration of diverse model outputs, its capability 

to improve results may be limited when all models exhibit similar differences compared to the 

observations at certain sections of the hydrograph”. 

 



The modification implies changes to evaluation of new weights distribution per cluster. 

We updated the weights discussion in Section 4.1 as follows: 

“As depicted in Figure 7, the distribution of weights per cluster exhibits greater variability. In 

the transitional cluster, CMORPH, Daymet, ERA5 and NCEP Stage IV have weights below 0.1, 

as these four products generated underestimated responses in the hydrographs for most stations 

within this cluster. Weights center around the precipitation from MRMS, IMERG and NLDAS 

QPEs. Within the upper cluster, a different weights distribution among the QPEs is observable, 

with minimal influence from CMORPH, Daymet, MRMS and NLDAS QPEs. A higher difference 

is observable the three more dominant QPE, where NCEP Stage IV has a weight of 0.663 

compared to the 0.144 of IMERG and 0.174 of ERA5 QPEs. For the Coastal cluster, 

precipitation from Stage IV QPE also holds the greatest weight (0.753) compared to the rest of 

QPEs which hold weight values below 0.1. Within this cluster, minimal discernible differences 

exist between QPEs water surface elevation results for the stations, as seen in Figure 4 (NOAA 

stations 8771013 and 8770613) and in Figure 6.” 

• Figures 7, 8, and 9 have been updated to reflect the new weights calculation after 

excluding rain gauge data in the Cop-BMA analysis and incorporating Elliptical copula 

functions within the fitting process as discussed previously. These updates ensure that 

the figures accurately represent the latest calculations and findings. 

 

• Section 4.1 was complemented and modified to be consistent with the change 

suggested. 

 

3. Implication: As already indicated in the previous point raised, the manuscript lacks the precise 

quantification or discussion of the proposed methodology's advantages and applications. For 

instance, staying with the case of Hurricane Harvey: what are the computational costs and 

runtime of the model? Could it be employed in risk assessment with rain-on-grid data 

forecasts? How much better is it compared to a non-COP BMA? While these questions are for 

illustration only, the discussion in the manuscript could aim to assess the methodology's benefit 

in a broader context. 

Response: Thank you for your comment. In response, we have made the following revisions 

to strengthen the implications and broader impacts of our study: 

• Section 5 has been edited to discuss the potential use of alternative precipitation 

forecast datasets and the application of our framework for operational forecasting 

purposes. This discussion expands the scope of our study and highlights its relevance 

for real-world applications and future areas of improvements. We have edited the text 

in the Discussions and Conclusions section as follows: 

“One advantage of our proposed framework is its flexibility allowing for the use of alternative 

precipitation products to enhance model simulations. For instance, this framework can be 

implemented for operational forecasting purposes where the Quantitative Precipitation 

Estimations (QPEs) utilized in this study can be replaced with Quantitative Precipitation 

Forecasts (QPF) from numerical weather prediction models such as High-Resolution Rapid 

Refresh (HRRR), North American Mesoscale Forecast System (NAM), Global Forecast System 

(GFS), European Centre for Medium-Range Weather Forecasts (ECMWF) among others”. 



 

• Computational resources and computational time required for the hydrodynamic 

modeling task have been addressed in Section 3.1, providing readers with insight into 

the practical aspects of implementing the proposed methodology. We consider the 

computational times (~7 hours) to be adequate for the application of the proposed 

methodology, and future research efforts will focus on utilizing the Linux version of 

HEC-RAS 2D on High-Performance Computing (HPC) systems. Added text reads as 

follows: 

“It is worth mentioning that our simulations were performed on a desktop computer with an 

Intel Core i7-7700 CPU @ 3.60GHz and 32GB RAM memory, averaging about seven hours 

per simulation for the time window.” 

 

• The improvements achieved using the Cop-BMA approach in terms of overall 

performance have been integrated into Section 4.1. This section provides a detailed 

analysis of the enhanced performance resulting from the application of the Cop-BMA 

methodology. The modified text in the manuscript describing the Cop-BMA results 

reads as follows: 

“Figure 8 provides a comprehensive overview of collective performance metrics of the HR2D 

model across the seven QPE simulations, rain gauges simulation, and the Global Cop-BMA 

multi-modelling for the seven QPEs evaluated at 30 validation stations over the 11-day 

simulation period. In general, the inundation modelling driven by different products 

consistently exhibits NSE performance with mean values ranging between 0.695 and 0.846. In 

terms of KGE performance, the interquartile ranges for QPEs display broader ranges, and the 

medians for Daymet and ERA5 products fall below 0.8 in contrast to other simulations. 

Notably, the Cop-BMA approach exhibits slightly higher performance metrics compared to the 

QPE products, NSE has an average of 0.858 and its total variability is lower compared to 

single precipitation products. KGE metric has a similar result with an average value of 0.852. 

The Averaged RMSE for Cop-BMA is 0.561m which is smaller than all the single QPE except 

for the rain gauges simulation which is only 3 centimetres lower. The averaged MBE for single 

QPEs ranged between -0.018 and 0.23m, while the Global Cop-BMA method results in an 

averaged value of 0.049m. Among individual products, the rain gauge outperforms all spatially 

distributed precipitation datasets and comes closest to matching the performance of Cop-BMA 

method. This highlights that reanalysis gridded precipitation products may have higher errors 

when compared to in-situ rain observations and allows Global Cop-BMA to generate QPE 

post-processed results that are closer to modelling results with observed precipitation from rain 

gauges. This methodology could be replicated in areas where measured precipitation is not 

available and obtain better performance metrics accounting for the uncertainties from this 

input”. 

 

Minor remarks: 

 

• Line 52: please introduce the HEC-RAS 2D when first mentioning it, briefly. 

Response: Description of HEC-RAS 2D model was added in Section 1. Text reads as 

follows: 



“Among various hydrodynamic models, the Hydrologic Engineering Center's River Analysis 

System (HEC-RAS) developed by the United States Army Corps of Engineers (USACE, 2022). It 

has the capability to simulate flooding conditions allows in both 1D and 2D.” 

• Line 83: please discuss the advantages and disadvantages of deterministic vs. probabilistic 

approach in this setting. 

Response: Description and discussion of deterministic and probabilistic approaches for 

flood mapping was added to the manuscript along with references from Di Baldassarre et 

al. (2010); Bates et al. (2004) and Merwade et al. (2008) to the readers interested in the 

topic. We have included your suggestion in the revised manuscript as follows: 

“On the deterministic front, the numerical results of the HEC-RAS 2D 6.3.1 hydrodynamic model, 

incorporating RoG, are evaluated to best describe the hydrodynamic behaviour of rivers, coastal 

and floodplain processes with a computationally affordable model. In parallel, a probabilistic 

approach is employed to use eight distinct precipitation products as forcing data to the 

hydrodynamic model to estimate an ensemble of flood extent and water depth in response to this 

hurricane-induced flood event. The deterministic approach provides a single representation of 

flood extents and depths based on predefined inputs and parameters, offering a clear understanding 

of potential inundation scenario evaluated. However, it fails to adequately capture the uncertainty 

associated with flood modelling, potentially leading to underestimation or overestimation of flood 

extents in other scenarios considering highly sensitive input parameters, which can impact the 

accuracy of results (Di Baldassarre et al., 2010; Bates et al., 2004). 

Probabilistic flood inundation mapping incorporates probabilistic techniques to assess and 

quantify uncertainty, providing a more comprehensive understanding of the range of potential flood 

outcomes and associated risks. It allows the integration of different datasets and input values, 

accommodating a wider range of initial and boundary conditions, and improving the robustness of 

flood predictions (Merwade et al., 2008; Di Baldassarre et al., 2010). Often this approach requires 

conducting numerous simulations to assess parameter uncertainty, leading to a substantial 

consumption of computational resources. Consequently, there is a preference for utilizing models 

that make substantial flow assumptions to conduct these simulations more efficiently and reduce 

computational costs.” 

• Line 123: please precisely state which variables are all subject of BMA. 

Response: The water surface elevation was the variable of interest. This information was 

added. 

• Line 133: "In other worlds..." 

Response: Edited to “In summary”. 

• Line 148: Is the copula function bivariate? Please introduce the concept of a copula 

function here. 

Response: Copulas evaluated in this study are bivariate. Description of copula functions 

and formulation within BMA approach were added to the manuscript in Section 2.2 as 

mentioned in Comment 1. 

 

 

Additional references included to manuscript: 
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Thank you again for your constructive comments. 

 

Sincerely, 

 

 

Francisco J. Gomez, Corresponding Author 

Center for Complex Hydrosystems Research (CCHR) 

Department of Civil, Construction and Environmental Engineering 

The University of Alabama 

 


