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Abstract. The powers that artificial intelligence (AI) has developed are impressive, with recent success in 12 

leveraging human expertise at various stages of model development. AI can attain its full potential only if, 13 

as part of its intelligence, it also actively teams with humans to co-create solutions. Combining AI 14 

simulation with human intelligence through data convergence can improve decision-making processes and 15 

provide a capacity akin to a "teaming intelligence." This research, for the first time, introduces the concepts 16 

of Human-AI Convergence (HAC) capabilities for flood evacuation decision-making. The objective of this 17 

study was to develop a unique, computationally effective surrogate HAC system for flood evacuation 18 

decision-making that integrates the distinctive features of AI with transportation geospatial data, a river 19 

hydraulic model, and human data from X (previously Twitter) to visualize flood inundation areas and 20 

suggest re-routing. The HAC system is smartly designed to forecast flood stage levels using AI across the 21 

US Geological Survey gauging stations and combine the results with Manning's equation results and 22 

transportation data, integrated into a web-based Google Earth visualization architecture. The technology 23 

has been tested in the Lowcountry of South Carolina, where previous flooding disasters caused considerable 24 

damage to the transportation networks and increased traffic on evacuation routes. This state-of-the-art HAC 25 

system— a flood evacuation product— stands to advance the frontier of human-AI collaborative research 26 

in the context of real-time flood emergency management and response. 27 

 28 

Keywords: Artificial Intelligence; Human-AI Convergence; Flood Emergency Management; Evacuation 29 

Decision Making and Planning. 30 

 31 

1. Introduction 32 

Evacuation is crucial for minimizing the risk of injury or loss of life during flooding events. However, the 33 

decision to evacuate can be complex, involving multiple factors including social considerations, resource 34 

availability, isolation of location, and capacity of the infrastructure (Kolen et al., 2013). The costs of an 35 

evacuation in the case of hurricanes in the United States can exceed 1 million dollars per mile due to losses 36 

in commerce, productivity, and direct losses to goods (Wolshon et al., 2005). To reduce this cost, 37 

deterministic models such as a heuristically driven flood evacuation planning model (Bennett et al., 2017) 38 

and stochastic models such as a Fuzzy logic-based decision support system (Jia et al., 2016) have been 39 

developed to aid decision-makers in planning and preparing for the flood evacuation processes. However, 40 

when a flood disaster occurs, analyzing complex information and data to make quick evacuation decisions 41 
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is a challenging task for decision-makers and authorities.  Therefore, providing more rapid and accurate 42 

evacuation modeling is essential for a safe and smart emergency response and decision-making. 43 

  44 

Machine learning approaches are increasingly becoming a viable solution for flood evacuation 45 

decisions. Scholars have recently developed machine learning models to forecast flooding and determine 46 

safe evacuation routes during emergencies (Sreejith et al., 2022; Wang et al., 2023). The results of these 47 

studies are important for rapid evacuation decision-making, however, a mechanism to incorporate decision-48 

makers knowledge and data into machine-learning approaches is lacking. The approach of uniting data from 49 

humans and machine learning leverages the strengths of humans and machine learning systems, resulting 50 

in more efficient and effective flood evacuation decisions. Indeed, combining machine learning simulation 51 

with human understanding and strategic abilities through data convergence may optimize the flood 52 

evacuation process and provide a capacity akin to a "teaming intelligence." In this human-AI convergence 53 

(HAC) system, humans can perform tasks such as search and rescue, communication, and flood damage 54 

validation, which require human knowledge and social skills while machine learning can perform flood 55 

forecasting and analyze massive real-time data and information. This cooperation is driven by a shared 56 

objective, which necessitates exchanging crucial information through diverse forms of communication, 57 

prediction, and the achievement of high-level coordination tasks (McNeese, et al. ,2018).  58 

 59 

Previous studies on the concepts similar to HAC have focused on the interaction and effectiveness of human 60 

teams with AI working in robotic swarms (Seeber, et al., 2020) with landed aircraft perimeter security 61 

(Madni & Madni, 2018) in collaborative games (Ong, et al., 2012), to identify risky human behavior 62 

(Stephens et al., 2023), and how various factors such as a person's understanding of the limits or mistakes 63 

of a machine learning system might affect team performance in a HAC implementation (Bansal, et al., 64 

2019; Liang et al., 2019;). These studies have led to increased growth in HAC literature, where humans and 65 

AI data meet at a point to work together in collaboration and carry out complex tasks as an integrated unit. 66 

However, HAC has never been applied for flood response and evacuation problems, and this area could 67 

benefit from  creative solutions.  68 

 69 

The goal of this study is to address this knowledge gap by synthesizing and analyzing HAC competence in 70 

flood evacuation decisions and harnessing the potential of machine learning as a partner in real-time 71 

decision-making. This research examines the step-by-step structure of employing a HAC system for flood 72 

evacuation planning in South Carolina, USA. The intention is not to include all possible algorithms, 73 

applications, and techniques, but rather to provide case study applications where HAC system has been 74 

successfully implemented. As part of this study, an HAC system was developed for flood evacuation 75 

decision-making to provide a general structure for researchers to use HAC concepts to devise effective 76 

systems that cooperate well. Additionally, the project evaluates the state-of-the-art in this area, and, in doing 77 

so, provides a research agenda and a roadmap for future HAC studies. Our developed HAC system 78 

combines machine learning models with human data to predict flood depth and inundation areas and then 79 

use these forecasts to determine flood evacuation rerouting decisions. The system includes machine 80 

learning approaches for forecasting floods across the  US Geological Survey (USGS) gauging stations and 81 

incorporates the results into a Height Above Nearest Drainage (HAND) model to calibrate inundation areas 82 

in real-time. In addition, we leveraged human data into the HAC system by integrating X (previously 83 
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Twitter) data into the system. In this integrated HAC framework, the fusion of flood level predictions, a 84 

river hydraulic model, transportation data, and real-time X observations heralds an innovative paradigm in 85 

flood evacuation prediction and response strategies. 86 

 87 

The remainder of this paper is structured as follows: Section 2 provides an introduction to the machine 88 

learning models, human data, river hydraulic model, rerouting approach, HAC workflow, and performance 89 

metrics. Section 3 presents the results of the HAC applications. Finally, Section 4 presents the discussion, 90 

conclusions, and  paths for future research.  91 

 92 

2. Methodology 93 

2.1. Study Area and Data  94 

Our HAC system was developed and tested for the Lowcountry in South Carolina (SC), USA where 95 

frequent flooding caused significant damage to critical infrastructure, properties, and people's lives. The 96 

Lowcountry is characterized by a low elevation, flat terrain area prone to inundation conditions and storm 97 

surge. Following recent major flooding such as the SC Flood of 2015 and Hurricane Matthew in 2016, many 98 

local roads in the Lowcountry were under water, which limited mobility, hampered evacuation response, 99 

and in some places isolated communities. Roads in this region were not built high enough to accommodate 100 

water flowing around and under them (Phillips, 2020). Consequently, managing flood damage and 101 

facilitating evacuations pose major challenges in this region. 102 

We tested the HAC system for multiple USGS gauging stations in the Lowcountry, as case studies (see 103 

Figure 1). Rainfall and river data were collected from the USGS and the National Weather Service (NWS). 104 

We trained the machine learning models for three USGS gauging stations located in the Lowcountry, 105 

including Turkey Creek (USGS02172035), South Fork Edisto River (USGS02173000), and North Fork 106 

Edisto River (USGS02173500), shown in Figure 1.  107 

 108 

 109 

Figure 1: The USGS gauging stations in the Lowcountry, SC used in this research. 110 

https://doi.org/10.5194/nhess-2024-25
Preprint. Discussion started: 15 February 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

 

 111 

Historical time series data of precipitation and gauge height obtained from the USGS were used to train 112 

machine learning algorithms. During no-flood events, the gauge height of the river was slow-changing. 113 

Conversely, gauge height values changed significantly during flooding events over short intervals of 15 114 

minutes. Since the flood prediction task was defined on an hourly basis, we used a pandas (McKinney, 115 

2010) library to calculate the cumulative daily data. We used machine learning algorithms, NWS rainfall 116 

forecast data, and a Rational method along with a rating curve conversion tool (explained in the next 117 

sections) to predict flood level (or gauge height of the river) in ungauged/poorly gauged watersheds in the 118 

Lowcountry, SC.   119 

 120 

2.2. Machine Learning Algorithms 121 

We trained two types of RNN models, i.e., Long Short-Term Memory (LSTM) and Gated Recurrent Unit 122 

(GRU; Cho, 2014) using three USGS gauging stations. For each station, we used Optuna (Akiba  et al., 123 

2019) to optimize the hyperparameters. We trained 30 models for each station (overall 180 models [2 124 

models, 3 stations and 30 models each]) and used the best model for real-time flood forecasting. During 125 

training, we used the pruning technique in Optuna as an early stopping technique. Pruning within the 126 

Optuna hyperparameter optimization library stops RNN training early if it is deemed unlikely to produce a 127 

better result than the previous best-known model configuration (Akiba  et al., 2019). The pruning technique 128 

enables user to stop model training efficiently if it is deemed unlikely to produce better results without 129 

sacrificing the quality of results. From the 180 models produced during training, the six best models were 130 

selected from the Optuna library (for three gauging stations and two models), and then the three best models 131 

were chosen manually based on performance metrics.  132 

 133 

The architecture of LSTM and GRU variants were specifically modified to address the issue of vanishing 134 

gradients that are commonly encountered in conventional recurrent networks. LSTM is equipped with a 135 

specialized memory cell capable of retaining information for extended periods. Additionally, this network 136 

features three distinct types of gates - namely, the input gate, forget gate, and output gate - which regulate 137 

the inflow and outflow of information to and from the memory cell. The gates incorporated in the network 138 

facilitate the selective retention or omission of information, rendering it highly appropriate for applications 139 

that entail the manipulation and retention of sequential data, such as Natural Language Processing (NLP), 140 

speech recognition, and time series prediction. The LSTM network receives input data as a sequential vector 141 

set, with each individual LSTM unit processing a single vector at each time step. The output of each LSTM 142 

unit is a hidden state vector that is subsequently utilized as input for the following time step. The LSTM 143 

model can effectively model intricate sequential data by using gates to regulate the flow of information 144 

within the network. This enables the model to retain information from past inputs and leverage it to make 145 

informed predictions about future inputs.  146 

 147 

Our study employed an LSTM consisting of six layers, a dropout value, and a dense layer. The first three 148 

hidden layers were followed by a dropout layer, which was then followed by the remaining LSTM layers. 149 

This was succeeded by a flattened layer and a dense layer containing five neurons. The spatial dimensions 150 

of the input are reduced to the size of the channel by a flattened layer. The LSTM layer is designed to 151 

predict the subsequent 5 data points (5 hours in advance) by utilizing the preceding 48 data points (48 hours) 152 
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as “look back” time. The dropout rate, number of units for each layer and epoch number were decided after 153 

training 240 models using Optuna. This is because the quantity of water flowing into and out of a river 154 

system affects the height of a gauge. The river system receives runoff from precipitation, whereas the runoff 155 

output from the system is represented by discharge or gauge height. Briefly, the gauge height of the river 156 

was predicted using LSTM and GRU models, the best model was then selected, which was the LSTM, for 157 

forecasting gauge height in real-time using NWS rainfall forecast data. Figure 2 illustrates the flood 158 

forecasting workflow using LSTM.   159 

 160 
Figure 2: Flood forecasting workflow using LSTM as the best model. 161 

 162 

2.2.1 Performance Metrics Used for Machine Learning Modeling Evaluation 163 

Several performance measures are utilized in this research to assess LSTM and GRU performance. They 164 

are Mean Square Error (MSE), Mean Absolute Error (MAE), Mean absolute scaled error (MASE), the 165 

Nash–Sutcliffe model efficiency coefficient (NSE), and Huber Loss. 166 

 167 

MSE (Equation 1) is the average square of the difference between the model's predicted data and the actual 168 

data throughout the whole dataset.  169 
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𝑀𝑆𝐸 =  
1

𝑛
∑𝑛

𝑖=1 (𝑌𝑖 − �̂�𝑖)
2
                                                                                                          Equation (1) 170 

Where: 171 

�̂�𝑖 is predicted gauge height. 𝑌𝑖 is observed gauge height. n is the length of the dataset. 172 

 173 

MAE (Equation 2) is the average magnitude of the difference between the model’s predicted and observed 174 

flood gauge height data for a collection of predictions and observations as a measure of the magnitude of 175 

errors for the entire dataset. 176 

𝑀𝐴𝐸 =
∑𝑛

𝑖=1 |𝑌𝑖−�̂�𝑖|

𝑛
                                                                                                                      Equation (2) 177 

Where: 178 

�̂�𝑖 is predicted gauge height. 𝑌𝑖 denotes observed gauge height. n represents the length of the dataset. 179 

 180 

MASE (Equation 3) is an alternative to metrics like MAE to provide a more interpretable scale. To calculate 181 

MASE, we divide the MAE of the forecasting method with the MAE obtained when using the previous 182 

observation as the forecast for the next observation. 183 

 184 

𝑀𝐴𝑆𝐸 =
𝑀𝐴𝐸𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑀𝐴𝐸𝑛𝑎𝑖𝑣𝑒
                                                                                                                                 Equation (3) 185 

Where:  186 

𝑀𝐴𝐸𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 is MAE of the forecast method. 𝑀𝐴𝐸𝑛𝑎𝑖𝑣𝑒 represents MAE obtained when using the previous 187 

observation as the forecast for the next observation. 188 

 189 

The Huber loss (Equation 4) is a robust loss function used in regression problems. It combines the properties 190 

of the MAE and the MSE. The Huber loss is quadratic for small error values (similar to MSE) and linear 191 

for large error values (similar to MAE), making it less sensitive to outliers than the MSE. The ideal value 192 

of huber loss is zero; closer the value to zero, better the model performance. 193 

𝐿𝛿(𝑦, 𝑓(𝑥)) = {
1

2
 (𝑦 − 𝑓(𝑥))

2
                          𝑖𝑓 𝑦 − 𝑓(𝑥)  ≤  𝛿 194 

                                | 𝑦 − 𝑓(𝑥) | −
1

2
𝛿2                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                           Equation (4) 195 

Where:  196 

y is the observed gauge height. f(x) denotes the predicted gauge height. δ represents a threshold value. 197 

 198 

2.3. Rational Method  199 

The Rational method (Equation 6) is a deterministic hydrological approach commonly used for estimating 200 

peak flow rate or discharge in an ungauged watershed. It is based on the principle that the peak flow rate is 201 

directly proportional to the rainfall intensity, the area of the catchment, and a runoff coefficient that 202 

considers the characteristics of the land use and soil type in the area. This method uses a simple 203 

mathematical equation to estimate flood peak discharge (Q) based on three inputs: the rainfall intensity (I), 204 

the drainage area (A), and the runoff coefficient (C). The equation is given as:  205 

 206 

𝑄 =  
𝐶∗𝐼∗𝐴

360
                                                                                                                                    Equation (5)  207 

 208 

https://doi.org/10.5194/nhess-2024-25
Preprint. Discussion started: 15 February 2024
c© Author(s) 2024. CC BY 4.0 License.



7 

 

The Equation 5 involves: The measurement of I in inches per hour (in/hr), the expression of A in acres, and 209 

the utilization of C as a dimensionless factor. 210 

 211 

To obtain the value of Q in cubic feet per second (cfs), it is necessary to divide the product of C, I, and A 212 

by 360. The product of the values of C, I, and A is first divided by 12 to convert the unit of measurement 213 

from inches to feet and subsequently divided by 60 to convert the unit of measurement from hours to 214 

minutes. This calculation yields a factor of 1/720. This value is subsequently multiplied by 3600, which 215 

serves to convert minutes to seconds, resulting in a factor of 1/360. The computation of Q in cfs is obtained 216 

through division by 360.  217 

 218 

The initial step in computing the runoff coefficient involves obtaining the land use data for a specific 219 

latitude and longitude through the utilization of an application programming interface (API). A coefficient 220 

is assigned to each type of land use. The OpenWeatherMap API is utilized to obtain data on rainfall 221 

intensity. The drainage area is obtained by utilizing a digital elevation model (DEM) specific to the low-222 

country region of SC. Initially, the metadata of DEM was extracted, encompassing details such as the pixel 223 

dimensions and transformation data. Subsequently, the provided latitude and longitude values were 224 

transformed into pixel coordinates utilizing the available transformation data. A threshold value was 225 

subsequently employed on the DEM to generate a binary mask that denotes the watershed region. The 226 

predicted gauge height is considered as a threshold value for HAND. Finally, the computation of the 227 

watershed's drainage area involves the summation of the mask, which is then multiplied by the pixel area. 228 

The calculated drainage area is expressed in units of square meters and converted to acres through division 229 

by 4047. By utilizing these three variables, it is possible to derive the maximum flood peak rate in a 230 

catchment. 231 

 232 

A Rating curve approach is then employed to convert the maximum flood peak rate obtained from the 233 

Rational method's equation into gauge height. The Rating curve is established by the USGS as an empirical 234 

correlation linking the stage of a river to its stream discharge. The rating curve represents the correlation 235 

between the height of a measuring instrument and the volume of water flowing in a stream. The Rational 236 

method is employed in cases where there is insufficient data to facilitate flood gauge height prediction. 237 

 238 

2.4. HAND Model 239 

We developed the HAND model as an inundation mapping approach (Nobre, et al., 2011) in Python to 240 

depict the potential extent of flooding. The HAND model is a terrain analysis technique that estimates the 241 

elevation of a point above the nearest stream or river. The model is extensively employed for the purpose 242 

of ascertaining the flood risk, drainage patterns, and erosion potential of a given region. The HAND model 243 

is founded on the principle of surface elevation and the idea that water flows in a downward direction from 244 

elevated to lower altitudes, ultimately accumulating water in low-gradient areas with a potential for ponding 245 

conditions (see Nobre, et al., 2011). Consequently, the vertical distance between a given point and the 246 

closest stream or river is crucial in determining the likelihood of water movement toward the downstream 247 

portion. The initial step in generating a HAND model utilizes a DEM model to produce a flow accumulation 248 

map. The map portrays the number of cells that contribute to the flow of each cell within the DEM. 249 

Typically, the cells exhibiting the greatest flow accumulation are situated in proximity to the streams and 250 
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rivers. Subsequently, a distance transform algorithm determines the distance between each cell in the DEM 251 

and the closest stream or river. Subtracting the elevation of individual cells in the DEM from the distance 252 

to the closest stream or river results in the computation of the HAND value for that particular cell. The 253 

utilization of HAND values is viable in the creation of a HAND map, which effectively displays the altitude 254 

of individual points in relation to the nearest stream or river.  255 

 256 

The HAND model utilizes a pair of methodologies on a DEM to normalize the terrain in relation to the 257 

hydrological network. The initial stage involves executing a sequence of computations to produce a DEM 258 

that adheres to hydrological principles, establishes pathways for water flow, and allocates drainage 259 

channels. The subsequent phase entails employing indigenous drain orientations and the drainage system 260 

to generate the nearest drainage chart, which will subsequently guide the HAND operator in establishing 261 

the normalized topology of the HAND model in a spatial manner. The HAND model is classified into 262 

various classes based on flood depth and the severity of inundation. These classes include class 1 (0 to 0.5 263 

meters), class 2 (0.51 to 1 meters), class 3 (1.1 to 1.5 meters), class 4 (1.51 to 2.0 meters), class 5 (greater 264 

than 2.0 meters). The HAND model postulates that inundation occurs when the elevation of water surpasses 265 

the altitude above the adjacent stream or drainage (see Nobre, et al., 2011). The HAND methodology 266 

involves assigning a value to each pixel in a raster, which represents the relative elevation in meters between 267 

the pixel and the nearest water stream. Equation 6 provides the map algebra formula for calculating 268 

inundation that is equal to or less than the HAND value. 269 

 270 

𝐻𝐴𝑁𝐷 𝑟𝑎𝑠𝑡𝑒𝑟 <  𝑥                                                                                                                   Equation (6) 271 

where x is the gauge height value. 272 

 273 

Figure 3 presents a step-by-step example of HAND calculation. DEM is first filled to remove any sinks or 274 

pits (Step 1). The D8 flow direction raster file is then generated to determine flood direction. A flow 275 

accumulation (Step 3) and a stream raster (Step 4) are then generated to calculate the amount of flood at 276 

the outlet of a drainage system. DINF (D-Infinite) is calculated to create a raster of flow direction from 277 

each cell to its downslope neighbor or neighbors (see Tarboton, 1997). The flow distance raster is then 278 

generated using flow direction raster and the vertical distance (elevation differences). For the last step (i.e., 279 

Step 8), Equation 7 is used to calculate the HAND based inundation area and integer 2 is considered the 280 

flood depth. 281 
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 282 

Figure 3: The workflow of HAND model. 283 

 284 

Initially, the HAND elevation data was acquired from Liu et al. (2020) and used to generate a hydrological 285 

terrain raster, known as HAND, for a Hydrologic Unit Code 6 (HUC6) region in the contiguous United 286 

States (CONUS). This was achieved by utilizing a DEM with a 10-meter resolution obtained from the 287 

USGS 3-D Elevation Program (3DEP) and the National Hydrography Dataset (NHD) Plus hydrography 288 
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dataset. The HAND data was then generated (by following the steps explained above) by utilizing 289 

geospatial data sources such as the National Hydrography Dataset (NHD). Then, the aforementioned data 290 

was amalgamated with the hydraulic property data to generate an all-encompassing dataset. Subsequently, 291 

the map algebra approach in Python was employed to compute the HAND value for each raster grid.  Next, 292 

the HAND map was categorized into several classes to reflect flood depth, as explained above.  293 

 294 

2.4. Social Media Text Mining 295 

Human input is a crucial component of HAC architecture. Collecting data about how humans respond to a 296 

flooding event is often lengthy and time-consuming; however, with new technology advancements, 297 

gathering this human data has become less complicated. This research collected data generated by humans 298 

using social media, here X.  We used the X API to collect human data including real-time updates, 299 

posts/tweets, and contextual information. The X API is a valuable tool for collecting X posts related to 300 

flooding because the posts provide near real-time updates on flood conditions and evacuation efforts. The 301 

X API enables developers to search for messages using particular keywords or hashtags, making it simple 302 

to collect relevant data. The X API also provides metadata about messages, such as location and time, which 303 

can be used to filter and analyze the collected data. In this study, only X posts from SC were retrieved. 304 

 305 

In addition, we designed and developed a text classification model to filter only those X posts that were 306 

deemed relevant to flooding. Specifically, we used Google’s Bidirectional Encoder Representations from 307 

Transformers (BERT) package to classify X posts. BERT is a cutting-edge, pre-trained NLP model with 308 

sophisticated neural network architecture and capacity for contextual text analysis (Khan et al., 2023). The 309 

BERT model can generate high-quality representations of natural language text by simultaneously 310 

considering the entire input sequence of words to the left and right of the target word, thereby enabling 311 

more contextually relevant representations. In contrast to previous NLP models, which only consider the 312 

context of the target term's left and right word, this model considers the entire sentence.  313 

 314 

To classify posts related to flooding, the BERT model was trained on a labeled dataset of X posts, where 315 

each X post was categorized as relevant or irrelevant to flooding. A text classifier was created on top of the 316 

BERT model. After the X posts were collected using X API in real-time, we performed text classification 317 

of collected X posts. This text classification decided whether the X post was relevant to a flood disaster or 318 

not. Figure 4 illustrates the workflow of BERT combined with the HAND model. After collecting relevant 319 

X posts using the BERT approach, the outcomes were integrated into the HAND model to validate the 320 

inundation areas. We used various geospatial information to integrate HAND and BERT outcomes with the 321 

transportation data.  322 
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 323 
Figure 4: The workflows of the system after LSTM prediction  324 

 325 

2.4.1. Performance Metrics Used in X Post Classification 326 

To evaluate the performance of the BERT model for classifying X posts, we used three standard 327 

performance metrics: accuracy, precision, and recall. Accuracy measures the model's overall performance 328 

and represents the percentage of X posts correctly classified as relevant or irrelevant to flooding. This metric 329 

is essential for evaluating the general effectiveness of the model. Precision measures the proportion of 330 

correctly classified relevant X posts among all X posts classified as relevant by the model. This metric is 331 

essential for evaluating the accuracy of the positive predictions made by the model. Recall measures the 332 

proportion of correctly classified relevant X posts among all relevant X posts in the dataset. This metric is 333 

essential for evaluating the completeness of the positive predictions made by the model. Equations 7, 8, and 334 

9 are accuracy, precision, and recall formulas, respectively. In these equations, TP denotes true positive, 335 

TN is true negative, FP represents false positive, P is total positive classes, and N denotes total negative 336 

classes. 337 

 338 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑇𝑃 + 𝑇𝑁

𝑃+𝑁
                                                                                                                 (Equation 7) 339 
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 340 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                                  (Equation 8) 341 

 342 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                        (Equation 9) 343 

 344 

2.5. HAC System Structure and Workflow  345 

Figure 5 illustrates the workflow of the HAC system. The system combines multiple modules including a 346 

machine learning prediction model, Rational method, river hydraulic model, BERT text mining approach, 347 

evacuation re-routing model, and visualization. The system first predicts gauge height using machine 348 

learning approaches and uses the Rational method if USGS gauging data is not available for a particular 349 

watershed. The estimated gauge height or flood depth is then used in the HAND model for flood inundation 350 

mapping. The inundation outcome is integrated into the BERT model and X posts to validate the inundation 351 

areas. Finally, the system uses the Grasshopper API to avoid inundated roads and suggest rerouting.  To 352 

perform evacuation re-routing, a Leaflet routing machine, and a JavaScript library for interactive re-routing 353 

in web applications were used to connect with the Graphhopper API. The Graphhopper API provides 354 

various re-routing algorithms using the 'alternative_route' algorithm, which generates multiple alternative 355 

routes for a given start and end point. 356 

 357 

 358 

Figure 5: The overall workflow of the HAC flood evacuation system. 359 

  360 
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3. Results and Applications  361 

This section includes flood forecasting using machine learning approaches as well as human data collection, 362 

inundation mapping, and evacuation re-routing. The results are presented for the three gauging stations 363 

across the Lowcountry, SC.  364 

 365 

3.1. Flood Forecasting  366 

We conducted training for both the LSTM and GRU models. A total of 180 models were trained using the 367 

Optuna algorithm, from which the top three models were selected. To tune the hyperparameters, we 368 

minimized the validation loss function in Optuna. In each gauging station, Optuna computed the number of 369 

neurons in each layer, dropout rate, and number of epochs. Optuna trained both LSTM and GRU and 370 

optimized hyperparameters. The number of neurons varied significantly among hidden layers with the least 371 

number in the 6th layer (5 to 15) and the maximum value in the first hidden layer (100 to 200). The drop-372 

out rate ranged between 0.1 to 0.5 with Epoch number of 50-200. The three gauging stations that were used 373 

include Turkey Creek (USGS02172035), South Fork Edisto River (USGS02173000), and North Fork 374 

Edisto River (USGS02173500). We used 03/01/2013 to 05/08/2023 datasets to simulate gauge height 375 

values for USGS02173500 and USGS0217035. Due to data unavailability, we used 01/01/2020 to 376 

05/08/2023 period to predict and forecast gauge height values at USGS02173000.  377 

 378 

The performance of both the LSTM and GRU models exhibited a high degree of similarity. However, the 379 

LSTM model exhibited slightly superior performance, particularly on the test dataset. Therefore, only the 380 

LSTM model is presented here.  LSTM was particularly successful in capturing flood peak rates and time 381 

to peak, which are two important factors for flood emergency decisions. Table 1 shows the performance 382 

achieved by LSTM as the best model for all gauging stations in testing, validation, and training periods, 383 

respectively. The LSTM was proficient in simulating gauge heights across the three gauging stations, with 384 

respect to the multiple performance metrics. Error estimation metrics such as Huber Loss, MSE, and MAE 385 

was comparably low across different gauging stations. Although, error estimation metrics were particularly 386 

low and somewhat close to zero during validation and training periods (see Table 1).  387 

 388 

Table 1. LSTM performance across three gauging stations. 389 

Station MASE Huber Loss MSE MAE 

                                                   Training Period 

USGS02173500 0.0028 0.0025 0.0050 0.0430 

USGS02173000 0.0063 0.0020 0.0040 0.0447 

USGS0217035 0.0094 0.0188 0.0890 0.0066 

                                                   Testing Period 

USGS02173500 0.0019 0.0120 0.02404 0. 1284 

USGS02173000 0.0066 0. 0248 0.0498 0.1619 

USGS0217035 0.00460 0.0177 0.0354 0.1406 

                                                 Validation Period 

USGS02173500 0.0027 0.0070 0.0140 0.0887 
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USGS02173000 0.0052 0.0075 0.0150 0.0634 

USGS0217035 0.0078 0.0065 0.0131 0.0696 

 390 

Prediction results of LSTM are visualized in Figures 6, 7, and 8. As shown, the LSTM was able to accurately 391 

predict a quick rise and fall of the flood gauge height values, particularly at USGS02173000. Although the 392 

slope and behavior of the gauge height data are not well captured in the Turkey Creek gauging station 393 

(USGS0217035). In addition, low gauge height values are not well captured by LSTM across all three 394 

gauging stations. Specifically, when the gauge height values were less than 4 meters, the LSTM 395 

performance dropped significantly. LSTM appears to be sensitive to the widespread scale of data, so the 396 

model might learn that the low gauge height values carry no information. In addition, the prediction of low 397 

gauge height values is a challenge for machine learning models since those data do not add much value to 398 

the learning process. 399 

  400 

In addition, LSTM showed overfitting in terms of low gauge height values prediction. This network, with 401 

its ability to capture long-term dependencies, is prone to overfitting, especially when the data values are 402 

small. To mitigate this issue, we implemented Optuna as an early stopping technique to monitor the model 403 

performance during the validation period and stop the training process when the performance begins to 404 

degrade. While Optuna allowed us to implement state-of-the-art optimization algorithms to speed up the 405 

hyperparameter tuning process, these advanced algorithms are built to efficiently search for the best 406 

objective when the cost to iterate the model training process is too expensive. If we train our models with 407 

a small amount of data, it is possible that Optuna uses Random Search and Grid Search for hyperparameters 408 

tuning which can either spend too much time or can’t even locate the minima. On the other hand, if the data 409 

volume increases and models get more complex, the cost of using Random Search and Grid Search to train 410 

a set of hyperparameters increases significantly.  411 

 412 

Further, LSTM can suffer from vanishing or exploding gradient problem during training. When the 413 

gradients become too small, it is hard for the model to learn long-term dependencies in the dataset, resulting 414 

in unstable training. One can also note the insignificant differences between modelling performances of 415 

USGS02173000 and USGS02173500. These two gauging stations are part of a large Edisto River 416 

Basin.  This concludes that that LSTM was able to learn the gauge height fluctuations and dependencies 417 

across a large basin.  418 

 419 
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 420 

Figure 6: USGS02173500 flood gauge height prediction for training, testing and validation periods 421 

(03/01/2013 to 05/08/2023). 422 

 423 

Figure 7: USGS02173000 flood gauge height prediction for training, testing and validation periods 424 

(01/01/2020 to 05/08/2023). 425 
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 426 
Figure 8: USGS0217035 Flood gauge height prediction for training, testing and validation periods 427 

(03/01/2013 to 05/08/2023).  428 

 429 

3.2. Social Media Data Analysis 430 

In this research, we leveraged unstructured social media data to enrich the human dimension of the HAC 431 

system. The real-time nature of social media, especially X, was instrumental in adding real-time human 432 

knowledge to the HAC system. The social media text data provided immediacy and diversity of 433 

perspectives, offering contextual richness to incorporating human data into the system. We used the X API 434 

to collect and mine text data. The keywords that were used to search for X posts include “floods,” “flood 435 

emergency,” “road damage,” and "evacuation". These keywords can be customized by the user to collect 436 

data on specific flood events or locations. We filtered X text data and threw away those data that were not 437 

relevant to flooding. The filtration was performed via an X post-classifier model that was constructed 438 

utilizing an NLP model called BERT algorithm. We first created a text classifier on top of the BERT model. 439 

We then collected the dataset from various sources such as WALLACH, (2018), Preda, (2020),  Stepanenko 440 

and Liubko, (2020), Alam et al., (2021),  and Suresh, (2021) to train BERT. Overall, a dataset of 441 

approximately 60,000 X text posts was gathered and manually annotated to indicate whether each post was 442 

related to flooding or not. This dataset was used to develop an X text post classifier model. The text data 443 

was partitioned into two datasets, namely a training set and a testing set, with a ratio of 75%:25%.   444 

 445 

These data sources also contain irrelevant X posts so that BERT could learn to distinguish between relevant 446 

and irrelevant X posts by accumulating irrelevant X posts alongside relevant ones during training. By 447 

including irrelevant X posts in the training data, the model learned to differentiate between various 448 

categories of X posts and identified which specific features or keywords indicate whether an X post is 449 

relevant or irrelevant to flooding.  Each text was then given a category of 0 (not relevant) or 1 (relevant). 450 

During the process of fine-tuning, the BERT model learned to identify key flood-related textual features 451 

and used them to make accurate predictions.  452 
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 453 

The fine-tuning process involved training the BERT model on the labeled dataset and adjusting its 454 

parameters to classify relevant X posts.  A backpropagation method was then used for the text fine-tuning 455 

process. The model was trained for 30 epochs. The model's predictions were compared with the true labels, 456 

and the model's parameters were adjusted to minimize the difference between the predictions and the true 457 

labels. Once the BERT model was fine-tuned, it was then used to classify new, unlabeled X posts as either 458 

relevant or irrelevant to flooding. The model's output is a probability score indicating the likelihood that 459 

the X post is relevant to flooding. If the probability score is above a threshold of 80%, the X post is classified 460 

as relevant to flooding. After the X posts were collected using X API in real-time, we performed text 461 

classification of collected X posts. This text classification decided whether the X post was relevant to a 462 

flood disaster or not. 463 

 464 

Figure 9 shows the BERT architecture designed to classify the X posts. The input dimension (i.e., 60,000 465 

X text data) was chosen “None” to set the dimension to any scalar number (Abadi, et al., 2016). So, the 466 

input dimension was arbitrary to the input text length. A pre-processed layer obtained from a pre-existing 467 

saved text preprocessing layer was then utilized to preprocess the text data in TensorFlow Hub. This layer 468 

served as a companion to the BERT model, facilitating the preprocessing of plain text inputs into the 469 

specific format that BERT required. The pre-processed layer's output was linked to the input of the BERT 470 

encoder layer sourced from a pre-existing TensorFlow Hub model that was trained beforehand. BERT 471 

utilized a Transformer architecture and a deep, pre-trained neural network to generate dense vector 472 

representations for natural language. The BERT model employed 12 hidden layers, also known as 473 

Transformer blocks, with a hidden size of 768 and 12 attention heads. The weights utilized in this model 474 

correspond to those disclosed by the primary authors of BERT. The outputs of the encoder consist of two 475 

components: the "pooled_output," which served to encapsulate the entirety of the input sequence, and the 476 

"sequence_output," which represented each individual token within the context of the sequence. The output 477 

obtained from pooling was linked to the dropout layer with a rate of 0.1. The dropout was subsequently 478 

linked to a densely connected output layer. 479 
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 480 

Figure 9: Neural network architecture of X post classifier constructed in this research. 481 

The BERT model attained an accuracy rate of 88.5% along with a precision rate of 0.84% and a recall rate 482 

of 0.85% during the training period. Similarly, during the testing phase, the model achieved an accuracy 483 

rate of 89%, a precision rate of 81%, and a recall rate of 94%. The count of the number of predicted versus 484 

actual of each class was obtained using a confusion matrix (see Table 2). As shown, the number of positive 485 

predicted values are much higher that negative values.   486 

 487 

 488 

 489 
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Table 2. Confusion Matrix for the test set of the BERT model. 490 

 

Predicted Values 

Negative Positive  

Actual 

Value 

Negative 8183 1238 

Positive 319 5209 

 491 

BERT's architecture, especially its bidirectional mechanism, was pivotal in understanding the context 492 

behind text classification. When we examined BERT for real time X post classification, its performance 493 

highlighted the model's ability to effectively utilize human-generated data in the context of evolving flood 494 

situations. BERT demonstrated its efficacy as a vital tool for contemporary flood prediction systems by 495 

efficiently eliminating extraneous data and focusing on relevant flood-related information. Although, the 496 

research progress of X post mining was considerably affected by the X decision of not supporting free 497 

access to the API.  498 

 499 

3.3. Evacuation Re-routing Results 500 

A routing algorithm was included in the HAC system to suggest alternative routes in case of flooding. A 501 

Leaflet routing machine through the Graphhopper API was employed to generate evacuation re-routing 502 

during a major flooding event on January 10, 2024, in Lowcountry, SC. The Grasshopper API was then 503 

integrated into the prototype to calculate the shortest or alternative routes between multiple points. The 504 

parameters passed to the API include the algorithm type (alternative_route), maximum number of routes 505 

(max_paths), maximum weight factor (max_weight_factor), and maximum sharing factor 506 

(max_share_factor). The key parameters used in the Graphhopper API for our case studies are:  507 

 508 

(i) Algorithm Type (alternative_route): This parameter specifies the algorithm used for routing, 509 

with alternative_route being particularly useful for evacuation as it provides several route 510 

options. 511 

(ii) Maximum Number of Routes (max_paths): Determines the number of alternative routes to 512 

generate. In evacuation scenarios, having multiple paths ensures that there are options available 513 

if the primary route becomes impassable. 514 

(iii) Maximum Weight Factor (max_weight_factor): This parameter influences the maximum 515 

weight of the alternative paths, which can be interpreted as a measure of route efficiency in 516 

terms of distance. 517 

(iv) Maximum Sharing Factor (max_share_factor): This parameter controls the degree of similarity 518 

between the alternative routes. A lower sharing factor tells the algorithm to provide routes that 519 

diverge from each other, which can increase the chances of avoiding blocked areas. 520 

 521 

These parameters ensure that multiple evacuation routes are generated and that flooded areas are avoided 522 

as much as possible. After the API returned the routes, each route was checked to see if it was in the 523 
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inundation area or not. The fastest route, which was out of the inundation area, was then selected and 524 

displayed on the map to guide citizens toward a safe evacuation.  525 

 526 

We used 'alternative_route' as a parameter in the Graphhopper API to generate and return multiple routes; 527 

the best route that was not inundated was selected as an alternative route. When the API returned data for 528 

multiple routes, each route was checked manually to ensure it was out of the flooded/inundation area; the 529 

fastest route was then driven from point A to point B (see Figure 10). The optimal route — the fastest one 530 

clear of flooding — was displayed on the map to offer a reliable guide for safe evacuation rerouting. By 531 

actively avoiding inundated areas, the system ensured that the evacuation routes remain as safe as possible.  532 

 533 

 534 

Figure 10: Map showing re-routed path in Hwy 41 (near Turkey Creek River) during January 10, 2024, 535 

flooding in Lowcountry, SC (Leafmap Python package [see Wu, 2021] was used for interactive mapping 536 

and geospatial analysis). 537 
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4. Conclusions 538 

The HAC system which was created in this study as a flood evacuation system, exhibited a high degree of 539 

efficacy in its ability to forecast river gauge height and suggest evacuation re-routing by combining LSTM 540 

with a river hydraulic model and relevant human information. The incorporation of social media data added 541 

a humanistic dimension to the developed HAC system and facilitated the identification of regions that may 542 

require prompt aid and evacuation consideration. In general, the prototype exhibited significant potential 543 

for disaster response applications and evacuation endeavors within low-lying regions of SC that can be 544 

applied to other flood-prone areas. The high accuracy and precision achieved by the LSTM and BERT 545 

models demonstrated the effectiveness of machine learning and NLP in predicting river gauge height values 546 

and filtering relevant social media data which could provide ground information to decision makers. 547 

 548 

Traditionally, machine learning models rely on historical data to make predictions, but this approach may 549 

need to be revised in unpredictable circumstances like flooding, where real-time information is critical. To 550 

address this challenge, we introduced a new methodology incorporating machine learning predictions and 551 

X data into a geographical representation. The cartographic representation functions as an interface between 552 

machine learning and human inputs, facilitating mutual reinforcement and enhancing the precision of 553 

predictions. Utilizing X text data enabled the acquisition of contemporary human knowledge, augmenting 554 

the predictive capacity of machine learning models. The integration of two sources of information was 555 

facilitated by utilizing a visualization map as a platform, creating a cohesive perspective of the flood 556 

evacuation situation.  557 

The HAC system is a novel approach developed towards achieving human-AI collaboration in flood 558 

evacuation problems. As discussed, the HAC system leverages extant competencies to strategically 559 

coordinate the interplay between X text data and machine learning and flood inundation models to analyze 560 

the outcomes and suggest evacuation re-routing alternatives. HAC system development involved 561 

integrating a range of algorithms, data, and information to test the prototype in real-time across Lowcountry, 562 

SC—a flood prone area.  563 

 564 

The utilization of the HAC system in flood evacuation decisions has the potential to augment human 565 

capabilities and knowledge, thereby increasing the prototype’s overall robustness and effectiveness. 566 

Human-AI collaboration continues to evolve, and its decision-making and prediction can help teams deal 567 

with real-time evacuation decisions. At the same time, societal demands for more accurate flood evacuation 568 

decisions will continue to increase; therefore, the need for advanced technologies such as HAC will 569 

continue growing. Engineering solutions to flood management problems, including evacuation and warning 570 

and real-time decision-making, increasingly rely on sophisticated computational solutions rather than 571 

traditional and empirical assessment. At the same time, scientists working in machine learning applications 572 

and flood emergencies will increasingly be pushed towards inquiry that is directly relevant to societal 573 

decision-making. These include incorporating human factors into machine learning based flood forecasting, 574 

which has important consequences for people’s safety and protection. In the future, more research is needed 575 

to develop additional methods that incorporate human data into the HAC system that consider flood 576 

situational conditions; these can inform emergency officials of when they can rely on an AI system and 577 

when they need to intervene. This research will serve as a foundation for future studies exploring the 578 

potential of human-AI collaboration in flood disaster and response domains. Exploring and testing the HAC 579 
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approach could unlock new possibilities for achieving more significant breakthroughs in various human-580 

AI teaming applications in flood modeling and management domains.  581 
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 752 

 753 

 754 

 755 

Appendix A 756 

Pseudocode 757 

 758 

This pseudocode1 requires flood depth (flood_depth), top left clipped rectangle coordinate (TL), bottom 759 

right clipped rectangle coordinate (BR) and HAND DEM path (hand_DEM_path). Functions used in this 760 

pseudo-code: 761 

● OPEN_GIS_DATASET represents the process of opening the GIS file. 762 
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● GET_BAND, GET_DATASET_GEOTRANSFORM, and similar functions represent various GIS 763 

data operations. 764 

● CALCULATE_INVERSE_GEOTRANSFORM calculates the inverse geotransformation matrix. 765 

● APPLY_INVERSE_GEOTRANSFORM applies the inverse geotransform to convert world 766 

coordinates to pixel coordinates. 767 

● READ_RASTER_DATA_AS_ARRAY reads raster data from the GIS file into a numeric array. 768 

● REPLACE_ARRAY_VALUES replaces specific values in an array with another value. 769 

● CREATE_MASK_WHERE creates a boolean mask based on a condition. 770 

● DEFINE_BINS, ASSIGN_TO_BINS, and IDENTIFY_MASK_FOR_ZONE are used for 771 

categorizing the data into different zones based on the flood depth. 772 

● CONVERT_PIXELS_TO_WORLD_COORDINATES converts pixel coordinates back to world. 773 

 774 

 775 

 776 

Pseudocode 2 requires identifier for the flood station (flood_station), time period over which to fetch data 777 

(period), path to the directory where the scaler files are stored (scaler_path) and path to the directory where 778 

the trained machine learning model files are stored (model_path). Function used in this pseudocode are: 779 

● NWIS_WEB_SERVICE: Uses NWIS API to perform GET request and fetch data from it. 780 

● EXTRACT_AND_PROCESS_DATA: Performs operations like fetching data, resampling, and 781 

timezone localization. 782 

● HANDLE_DATA_RETRIEVAL_ERROR: Encapsulates error handling for data retrieval issues. 783 

● LOAD_SCALER: Loads and returns scaler. 784 

● PREPARE_DATA_FOR_PREDICTION: Prepares data scaling and preparation for input into the 785 

predictive model. 786 

● LOAD_MODEL: Loads and return machine learning model. 787 
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● PREDICT: Predict and return predicted data. 788 

● SETUP_MODEL_CUSTOM_OBJECTS: Represents the setup for custom objects required by the 789 

model, such as custom loss functions or metrics. 790 

● POST_PROCESS_PREDICTIONS: Performs the post-processing of predictions to convert them 791 

from the scaled form back to the original measurement scale. 792 

● PREPARE_PREDICTIONS_DATAFRAME: Prepares the creation of a DataFrame with 793 

predictions, including setting up the index with appropriate timestamps. 794 

 795 
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