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Abstract. Accurate assessment of forest losses and evaluation of future damage risks are crucial for effective forest 10 

management and conservation, particularly as global warming intensifies natural disturbance agents. This study introduces a 

novel approach combining convolutional neural networks (CNNs) with Random Forest (RF) machine learning classifiers to 

enhance the precision of forest disturbance detection and risk evaluation. We tested this approach on a large-scale dataset 

(1490 km2) with diverse forest types and environmental conditions of cool temperate-south boreal forests on Kunashir Island 

(Northwest Pacific). Using the U-Net deep learning architecture, we precisely identified windthrow patches from (VHR) 15 

Pléiades-1 optical satellite imagery. Resulted windthrow map was integrated with an RF classifier that utilized environmental 

predictors, including elevation, slope aspect, slope inclination, slope curvature, forest canopy closure, landform type, and forest 

vegetation type, to assess forest damage risk. Our analysis revealed approximately 21.73 km2 of the forested area as 

significantly disturbed, predominantly within dark coniferous forests. Elevation emerged as the most critical predictor of 

disturbance risk, with complex interactions observed among predictors such as canopy closure and slope steepness. This 20 

integrated approach allowed for highly accurate forest loss detection and provided valuable insights into the risk of future 

damage events. By combining advanced deep learning techniques with RF and detailed environmental predictors, this approach 

offers a robust framework for evaluating forest disturbance risk. This method pushes forward the frontiers in the precision of 

forest loss detection but also aids in developing effective strategies for managing and mitigating risks from future disturbance 

events. 25 

1 Introduction 

Modern remote sensing techniques enable the detection of disturbed forest areas across diverse forest ecosystems (Curtis et 

al., 2018; Hansen et al., 2013; Tyukavina et al., 2022). Accurate mapping of disturbances and their correlation with potential 

risk factors enhances the precision of windthrow risk assessments (Suvanto et al., 2019). This approach provides a deeper 

understanding of how various disturbance events, such as storms, tropical and extratropical cyclones (TCs and ETCs), or 30 
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tornadoes impact forest ecosystems. Ultimately, it allows for the refinement of forest disturbance risk assessments and the 

integration of these considerations into forestry planning efforts.  

Until recently, a limitation existed in the spatial resolution of freely available satellite images. The Moderate Resolution 

Imaging Spectroradiometer (MODIS) had a resolution of 250 m pixel-1, only allowing for identifying extensive forest canopy 

disturbances (Jin and Sader, 2005). The modern Landsat-8 satellite offers a resolution of 30 m pixel-1 (Hansen et al., 2013), 35 

and the Sentinel-2 mission provides a maximal resolution of 10 m pixel-1 (Zhang et al., 2021). Such resolutions enable the 

reliable identification of even intermediate-size patches of disturbed forests but may not be sufficient to detect small canopy 

gaps (Chen et al., 2021). The development of remote sensing methods and the advancement of open data policies have 

substantially increased the quantity, quality, and availability of high-resolution data (<1 m pixel-1). This progress opens new 

possibilities for the detailed spatial estimation of forest sensitivity to disturbances. Very high-resolution (VHR) satellite optical 40 

data and advanced convolutional machine learning techniques, such as semantic segmentation neural networks, enable the 

delineation of disturbed areas down to small canopy gaps (Kattenborn et al., 2021; Kislov et al., 2021). The advancements in 

machine learning and the availability of satellite images have unlocked the potential for precise analysis of the linkage between 

forest disturbances caused by atmospheric events and environmental predictors, such as terrain features (Korznikov et al., 

2022). 45 

Global climate changes are escalating the risks associated with natural forest disturbances, including cyclonic vortices of both 

tropical and extratropical origins (Little et al., 2023; Priestley and Catto, 2022). A convergence of extreme wind speeds and 

heavy precipitation leads to significant economic losses (Montagné-Huck and Brunette, 2018; Sánchez et al., 2021; Roos, 

2023). Beyond direct damage, these substantial disturbances can trigger a cascade of ecological consequences, potentially 

exacerbating, or even surpassing, the impact of an initial disturbance (Seidl et al., 2017; Seidl and Rammer, 2017). Large-scale 50 

forest disturbances significantly affect the carbon cycle, influencing carbon turnover times, climate regulation services, and 

the social costs associated with carbon emissions (Anderson-Teixeira et al., 2021; Liu et al., 2011; Pugh et al., 2019). Therefore, 

evaluating the impact of various disturbance agents on different forest types is crucial for assessing future risks to forest 

ecosystems (Altman et al., 2024). 

Wind is the primary factor responsible for cyclone disturbances, directly causing mechanical stress that leads to tree falls and 55 

breakage (Everham and Brokaw, 1996; Foster, 1988). The severity of windthrow is influenced by numerous factors, such as 

terrain conditions, forest canopy closure, and vegetation type, which can either increase or decrease a forest's vulnerability to 

windthrow (Mitchell, 2013). Consequently, assessing the risk of forest cyclone disturbances is an essential task in forest and 

environmental management (Seidl and Turner, 2022; Thom and Seidl, 2016). 

To test the new approaches for disturbance detection, it is necessary to have a diverse study area (from geomorphological and 60 

forest types of perspective and cloudless VHR satellite images. Our study assesses forest damage caused by a severe winter 

extratropical cyclone (ETC) using VHR satellite images from the Pléiades-2 satellite (50 cm pixel-1). For this purpose, we 

employ the U-Net semantic segmentation convolutional neural network (CNN) to detect forest damage and use the Random 

Forest (RF) algorithm to evaluate vulnerability risk, incorporating geomorphological features, forest canopy closure, and forest 
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types. The Kunashir Island (the Kuril Islands), with its diverse terrain and various types of pristine forests. In addition, was 65 

affected by severe ETC on December 17, 2014, bringing intense wet snow and winds exceeding 50 ms-1, resulting in extensive 

forest damage, including hundreds of hectares of fallen forest patches. Hence, it represents an ideal set of conditions for 

applying our CNN-based approach, enhancing our understanding of varying degrees of forest vulnerability and resistance to 

disturbances. 

Snowstorms from ETCs are common in northern temperate and boreal zones (Barrere et al., 2023), and the frequency of 70 

extreme winter ETCs in the Northern Hemisphere is projected to increase by 4% by the end of the 21st century, particularly 

in the Northwest Pacific and the transition zone between Eurasia and the Pacific Ocean (Priestley and Catto, 2022). This 

underscores the need for advanced technologies in assessing forest damage and risk, addressing not only ETCs but also a broad 

range of abiotic and biotic damage agents. Our study highlights the importance of integrating new methodologies for evaluating 

forest damage and risk, thereby enhancing forest management and ecological resilience strategies in response to increasingly 75 

extreme weather events. 

Specifically, our objectives are to (i) create a precise forest disturbance map using VHR imagery and the deep learning U-Net 

semantic segmentation CNN; (ii) calculate and compare the distribution of disturbed patches relative to the entire forest cover 

across environmental predictors; and (iii) determine the strongest environmental predictors of the risk of disturbance caused 

by ETC events. We hypothesize that a vulnerability of forest cover to ETC-induced disturbances is linked to topographic 80 

attributes, forest canopy closure, and specific forest types 

2 Material and methods 

2.1 Study Area 

Kunashir, a volcanic island with an area of over 1,490 km², is located in the southern part of the Kuril Islands, an archipelago 

elongated more than 1,200 km from Japan to Kamchatka (Fig. 1). Kunashir features rugged terrain with four active volcanoes, 85 

with its highest peak reaching 1,819 meters above sea level. According to the Yuzhno-Kurilsk weather station (World Weather 

Organization code 32165), the average annual temperature is +5.5°C, with mean annual precipitation of 1,260 mm. Kunashir 

is susceptible to ETCs throughout the year which come from the south or southeast and bring a lot of precipitation and heavy 

gusty winds. 

 90 
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Figure 1: Geographical overview and windthrow impact on forest cover of Kunashir Island during the extratropical cyclone 

disturbance event.  The relief map of Northeast Asia is based on data from an i-cubed eTOPO 1:250,000-scale map from the source 

"USA Topo Maps”  (https://www.arcgis.com/home/item.html?id=99cd5fbd98934028802b4f797c4b1732). 95 

 

The forest vegetation of Kunashir Island covers approximately 80% of the territory. The zonal, or climate-determinate 

vegetation (Pojar et al., 1987), primarily consists of southern boreal forests dominated by coniferous evergreen trees. A spruce 

forms forest stands in swamps and volcanic deposits. Temperate broadleaf and mixed forests, featuring a diverse mix of tree 

species such as maples and oaks, are located on the warmer southwestern coast of the island. Monodominant oak stands are 100 

prevalent in the southern part of the island, while boreal forests predominate in the north. Mixed boreal forests consist of fir, 

spruce, and stone birch (Betula ermanii Cham.). Stone birches also form secondary forest stands. At higher elevations, such 

as mountain peaks and volcanic ridges, thickets of dwarf pine dominate. Stands of alder and various willows are typical in 

riparian zones. In deforested areas, thickets of dwarf bamboo (Sasa spp.) with single or sparse trees are common (Korznikov 

et al. 2024). Even the limited forest management on the island ceased in the mid-20th century, and almost half of the island is 105 

now designated as a nature reserve. Consequently, the vegetation cover on Kunashir is largely representative of the natural, 

undisturbed forests typical of the transition zone between temperate deciduous and southern coniferous boreal forests. The 

vegetation map of Kunashir Island is available in Fig. 2. 
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 110 
Figure 2: Actual vegetation map of Kunashir Islands, made by Sentinel-2 multispectral satellite images. The relief map of Northeast 

Asia is based on data from an i-cubed eTOPO 1:250,000-scale map from the source "USA Topo Maps”  
(https://www.arcgis.com/home/item.html?id=99cd5fbd98934028802b4f797c4b1732). 

2.2 Extratropical Cyclone Disturbance Event 

An atmospheric depression originated over the East China Sea on December 15th, 2014, and migrated eastward, transforming 115 

into an ETC in the Kuroshio warm current zone in the Pacific Ocean, east of Japan. This ETC maintained its northward 

trajectory and eventually affected the southern part of the Kuril Islands on December 17th. An extraordinarily low atmospheric 

pressure of 949 hPa was recorded at the ETC's center during this event. In the northern hemisphere, such low-pressure levels 

are typical for the centers of TCs but are less common for ETCs. Throughout the ETC event in Kunashir, air temperatures 

ranged from -0.1 to +2.7 °C. The total precipitation of 39 mm, primarily in the form of wet snow, resulted in an 80 mm snow 120 

cover within 24 hours. A combination of wet snow adhering to tree crowns and exceptionally strong wind gusts triggered 

extensive windthrows. Specifically, data from the Yuzhno-Kurilsk weather station reported wind speeds exceeding 43 m s-1, 

with gusts reaching up to 51 m s-1. These strong wind gusts are extreme for this area and are comparable to those experienced 

during strong TC events. The prevailing wind directions were from the east and northeast. 

2.3 Forest Disturbances Recognition 125 

Due to the monsoon climate, there are very few cloudless satellite images of this area during the summer. Fortunately, the 

Pléiades-1 satellite system captured VHR images of Kunashir Island in June 2015, six months after the ETC disturbance event. 
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This is the only VHR satellite image available for the entire island. VHR optical images (0.5 m pixel-1) were utilized to 

precisely identify disturbances using the semantic segmentation U-Net CNN (Kislov et al., 2021; Kislov and Korznikov, 2020). 

The achieved level of accuracy was 0.92, as determined by the balanced accuracy (BA) and F1 metrics, and the Intersection 130 

over the Union metric. Following recognition, we excluded polygons representing small canopy gaps smaller than 10 m², 

corresponding to single broken trees, using the software ArcMap 10.8.2. An example of the recognition result on a VHR 

satellite image is presented in Fig. 3. The Python code for training and applying the U-Net CNN is provided in Supplementary 

1. 

 135 
Figure 3: Results of windthrow detection utilizing the U-Net neural network. The satellite image was taken by the Pléiades-1. 

2.4 Environmental Predictors 

To identify the environmental factors influencing forest damage risk, we compiled a set of 7 predictors (Table 1). Elevation 

above sea level was derived directly from the raster data of the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer digital elevation model (ASTER DEM) version 3, with a resolution of 30 m pixel-1 and vertical accuracy of 7 140 

meters (Abrams et al., 2020). We calculated values for slope aspect (slope exposition), slope steepness, and general slope 

curvature using the ASTER DEM raster and the raster surface tools in the ArcMap 10.8.2 program (2024). To clarify, standard 

curvature values are interpreted as follows: positive values indicate an upwardly convex surface; negative values indicate an 

upwardly concave surface; and a value of 0 indicates a flat surface. Expected values for a hilly area (moderate relief) range 
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from −0.5 to 0.5, while for steep, rugged mountains (extreme relief), values can range between −4 and 4 (visualization in Fig. 145 

S4). Separate raster layers with a resolution of 30 m pixel-1 were created for each topographical predictor. 

 

Table 1: Environmental predictors for windthrow risk assessment 

Predictor Range Step Data source Type 

Aspect (direction), ° 0–360 10 ASTER DEM Quantitative 

Curvature -4–4 0.5 ASTER DEM Quantitative 

Elevation, m 0–1570 10 ASTER DEM Quantitative 

Slope steepness, ° 0–70 2 ASTER DEM Quantitative 

Canopy (forest closure), % 20–100 2 Global Tree Cover  Quantitative 

Forest type 1, 2, …, 7 1 Vegetation map  Categorical 

Landform class 1, 2, …, 10 1 ASTER DEM Categorical 

 
 150 
Figure 4: Visual guide to landform classification and surface curvature interpretation. 

 

Landform types were classified using ASTER DEM data based on the system proposed by (Jasiewicz and Stepinski, 2013), 

containing 10 classes: 1 – peak, 2 – ridge, 3 – shoulder, 4 – spur, 5 – hillslope, 6 – footslope, 7 – flat, 8 – hollow, 9 – valley, 

10 – peat (visualization in Fig. 4). We created a raster attribute of landform classes using the R toolkit r.geomorphon (available 155 

on https://github.com/OSGeo/grass/tree/main/raster/r.geomorphon), configuring the geomorph() function with a flatness 

threshold set at 1°, and both width and height values of the focal window set to 50 m, resulting in a raster layer with a resolution 

of 30 m pixel-1. 
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Forest canopy closure data for the study area were sampled from the Global Tree Cover dataset (Hansen et al., 2013) with a 

resolution of 30 m pixel-1. A canopy closure of 20% was selected as the minimal limit for forest vegetation.  160 

The vegetation map of Kunashir Island, with a resolution of 20 meters pixel-1, was generated using multispectral Sentinel-2 

satellite images, based on an original dataset of field observations and vegetation data (Korznikov et al., 2024). The 

classification algorithm was implemented through the multistep RF analysis. The map encompasses ten classes of vegetation 

units, six belonging to forest vegetation: 1 – dark coniferous (spruce and fir), 2 – mixedwood (spruce, fir, and broadleaf trees), 

3 – birch, 4 – broadleaf temperate (oaks, maples), 5 – Mongolian oak, 6 – spruce swamps, 7 – riparian forests (alders and 165 

willows). The forest type was used as one of the predictors in our analysis. 

Values for each environmental predictor were extracted from randomly selected points (n=20,000, with a discretization of 30 

m) within windthrow patches identified by U-Net CNN (matrix #1). The same procedure was applied to 1,000,000 randomly 

selected points across the entire forest cover, including windthrow patches (matrix #2) and excluding windthrow patches 

(matrix #3). We repeated random selection for matrices #1 and #3 100 times to plot the distribution of disturbed patches and 170 

entire forest cover across the separate environmental predictors. To compare the distribution of predictors across disturbed and 

undisturbed patches we calculated the mean values and 95% confidence intervals. Matrix #2 was used for the RF analysis. 

Some of the quantitative environmental predictors used in our analyses exhibited intercorrelation. Categorical predictors, such 

as landform classes and forest vegetation types, are integral characteristics connected to other predictors. For example, the 

upper parts of mountains are typically occupied by stone birch forests, which often feature a more open forest canopy. Different 175 

forest types also tend to occupy distinct landform classes (Fig. 5).  

 

Figure 5: Proportional distribution of forest types among landform classes. 
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Therefore, using predictors separately, without considering the entire landscape context and their intercorrelations, can lead to 180 

incorrect conclusions. Matrix #3 was also used to calculate correlations between quantitative predictors using Spearman’s tests 

in the R function cor.test() (Table 2).  

 

Table 2: Spearman’s rank correlation coefficients between quantitative predictors, the categorial predictors not 

included 185 

 Aspect Canopy Curvature Elevation Slope 

Aspect 1  
   

Canopy -0.096 1    

Curvature 0.08 0.121 1   

Elevation -0.025 -0.787* 0.165 1  

Slope 0.034 -0.846* 0.129 0.552* 1 

*Asterisks indicate the p-value <0.05 

2.4 Environmental Predictors 

To discern the contribution of individual variables to the windthrow patches we employed the RF analysis from the Scikit-

learn package in Python (Pedregosa et al., 2011). We conducted a grid search to identify the optimal set of hyperparameters 

for the RF classifier. During the grid search, 80% of the data was allocated for training and the remaining 20% for validation. 190 

The grid search yielded the following set of hyperparameters: n_estimators = 200, max_depth = 20, min_samples_split = 

4,000, class_weight = 'balanced_subsample', with other parameters set to default values. 

The RF classifier was trained to classify pixels as belonging to or not belonging to the windthrow patch. Given that we had six 

predictors (Table 1), we tested all possible combinations during the predictor selection process. Feature importance scores 

were calculated during both the training and validation phases. We selected the BA accuracy (BA) score metric to estimate the 195 

quality of the classification. The BA was calculated using the following equation (1): 

BA =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠/(𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

The entire methodology scheme is illustrated in Fig. 6. The Python code is available in Supplementary 2.  
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Figure 6: Workflow diagram for forest disturbance risk model development. The process begins with data input, including VHR 200 
Pléiades-1 optical satellite images and MR Sentinel-2 multispectral satellite images, both feeding into their respective analysis 

pathways. The U-Net CNN processes the VHR images to create a windthrow map, while the MR images contribute to the vegetation 

map via the RF classification. Concurrently, data from the ASTER DEM and the Global Tree Cover dataset provide topographical 

information and forest canopy closure, respectively, which are calculated and sampled to form a comprehensive set of predictors. 

These predictors then converge with the maps created from satellite images to form a complete dataset, which the RF algorithm uses 205 
to develop the windthrow risk model. Abbreviations: VHR – Very High Resolution, MR – Medium Resolution, CNN – Convolutional 

Neural Network. 

3 Results 

The total area of disturbed forest patches amounted to nearly 21.73 km2, which is equivalent to 1.82% of the total forest cover. 

Almost 70% of the disturbed patches were concentrated within dark coniferous forests, while > 27% occurred in mixedwood 210 

forests, and approximately 1% in birch forests. Other forest types accounted for < 2% of the disturbed areas. Large patches 

over 1 hectare constituted 38.5% of windthrows. Intermediate-sized canopy gaps (0.01–1 ha) represented 37.5%, and small 

gaps (less than 0.01 ha) comprised 26.7% of the total disturbed area (Fig. 7). Most trees were uprooted rather than broken, as 

evidenced by visible root pits in VHR satellite images and confirmed by our ground observations (Fig. 8). 

Forests on slopes with aspect from 10 to 170° demonstrated a higher vulnerability to disturbance, whereas western slopes 215 

exhibited a lower proportion of damaged forest (Fig. 9a). The distribution of windthrow occurrences concerning elevation and 

slope steepness indicates that forests at altitudes between 10 and 150 m above sea level on less steep slopes experienced more 

pronounced disturbances. In contrast, forests situated above 150 m in elevation and on slopes steeper than approximately 15° 

showed a lower susceptibility to disturbances (Fig. 9b and 9c). Forests with a canopy closure below roughly 70% were less 

susceptible to windthrow compared to those with denser canopies (Fig. 9d). Terrain curvature did not present any significant 220 
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influence on the severity of disturbance (Fig. 9e). Landform classes, specifically 'flat', 'footslope', 'shoulder', 'peak', 'ridge', and 

'pit', exhibited a higher proportion of windthrows (Fig. 9f). 

 

Figure 7: Proportional distribution of windthrow disturbances among forest types compared to total forest composition. 

 225 
Figure 8: Post-ETC disturbance impact, satellite Pléiades-1(a) and ground survey (b) images of uprooted trees.  
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Figure 9: Comparative distribution of the proportion of damaged forest areas and entire forest cover across different environmental 

predictors in Kunashir Island. Non-overlapping 95% confidence intervals indicate a statistically significant difference. 

The RF analysis identified 'elevation' as the most influential predictor for the risk of damage, accounting for over 45% of the 230 

feature importance. In contrast, 'curvature' and 'landform' exerted the least impact on the outcome of the RF model (Fig. 10). 

The optimal combination of predictors, which achieved the highest BA score, includes 'aspect,' 'slope,' 'elevation,' 'canopy 

closure,' 'landform type,' and 'vegetation type'. A list of the top 99 predictor combinations, with BA scores ranging from 0.72 

to 0.55 (Table in Supplementary 3). However, we observed a complex interplay among elevation, canopy closure, slope 

steepness, and forest types (Fig. 11), indicating that these factors do not independently determine windthrow vulnerability. 235 

 

Figure 10: Feature importance scores for the RF results. 
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Figure 11: Distribution of different forest types across slope steepness (a), elevation (b), and canopy closure (c). 

4 Discussion 240 

Using CNN and machine learning techniques, we identified the elevation gradient as a pivotal factor in the disturbance risk 

models, primarily due to its connection with varying forest types. The elevation gradient reflects a complex ecological pattern 

representing the suite of ecological and climatic factors that collectively influence forest vulnerability to disturbance (Černý 

et al., 2022). Our analysis revealed a pronounced susceptibility to damage in dark coniferous and mixedwood forests dominated 

by spruces and firs, which are predominantly situated in low-elevation areas and characterized by high canopy closure, making 245 

them more vulnerable to the ETC event. Conversely, open canopy forests, particularly those with oak and birches, exhibited 

lower disturbance rates and demonstrated resistance to the ETC event. Naturally developed open canopy forest stands are 

adapted to open-grown conditions, contributing to their higher resistance to windthrow (Taylor et al., 2019). Open-canopy 

forests resulting from logging or sparse plantations face a higher risk of windthrow (Suvanto et al., 2016; Valinger and 

Fridman, 2011). 250 

https://doi.org/10.5194/nhess-2024-217
Preprint. Discussion started: 15 January 2025
c© Author(s) 2025. CC BY 4.0 License.



14 

 

Our results align with the established understanding that coniferous evergreen trees are more susceptible to winter storm 

damage compared to broadleaf trees with leafless canopies (Zeppenfeld et al., 2023). While spruces and firs show a higher risk 

for storm and snow damage, broadleaf hardwoods demonstrate greater resistance (Barrere et al., 2023). In previous studies, 

we also reported a higher risk of windthrow severity for natural dark coniferous forests compared to broadleaf forests (Černý 

et al., 2022; Korznikov et al., 2023, 2022). The tree species from the mountain areas of Northeast Asia adapted to intensive 255 

snowfalls (Krestov, 2003; Nakamura and Krestov, 2005; Shamshin, 1999). The greater resistance of mountain birch forests to 

disturbance can be attributed to structural characteristics or adaptations that stone birch trees have evolved to withstand high 

wind speeds and heavy snowfall (Gansert, 2002; Krestov, 2003; Shamshin, 1999). The leafless crowns of stone birch do not 

accumulate more than 1–1.2 cm of snow, which is insufficient to cause significant crown damage (Suzuki et al., 2008). A 1 

cm layer of snow in the humid winter conditions, typical of Northern Japan or the Southern Kuril Islands, adds an equivalent 260 

weight of 2 kg m-². Thus, a snow layer of 6–7 cm on tree crowns exceeds the crown weights for firs and spruces, and external 

loading has a more substantial effect on tree stability than self-weight does (Nishimura, 2005). Therefore, the estimated 

accumulation of 8 cm of wet snow during the ETC event was sufficient to cause damage and massive disturbances, especially 

in combination with high-velocity wind gusts. 

Our findings indicate that mixedwood forests exhibited a high sensitivity to ETC disturbances. In contrast, (Morimoto et al., 265 

2019) observed that Sakhalin fir artificial stands in Northern Japan consistently experienced higher windthrow ratios than 

natural mixedwood forests. An admixture of 25–30% deciduous trees in spruce-dominated stands could reduce the probability 

of winter storm damage by approximately 50% (Valinger and Fridman, 2011). During the ETC event in Kunashir, disturbances 

within mixedwood forests predominantly occurred in patches of coniferous trees, while patches dominated by broadleaf trees 

showed greater resistance. Therefore, it is critical to recognize that the significant levels of disturbance in Kunashir’s 270 

mixedwood forests are primarily due to damage to conifers. In essence, the ETC has decreased the proportion of coniferous 

trees in the mixedwood forests and the entire forest cover. 

The distribution of forest disturbance patches across the landscape is complex and seems to be linked to snow accumulation 

as well as wind exposure. Our findings highlight that individual predictors are not universal factors of windthrow risk and that 

the relevance depends on the specific context of the landscape and vegetation, as well as the wind and precipitation dynamic 275 

of the weather phenomenon causing the disturbance. The potential contribution of individual factors may be reduced when 

creating more sophisticated models that consider multiple predictors, due to their intercorrelation. Forest damage risk 

assessment relies on elucidating the interactions among predictors and understanding how they influence disturbance severity 

when interacting. Based on our experience, it is often impossible to acquire such comprehensive insight by working exclusively 

with remote sensing data. Ground-based research and understanding of the landscape context and forest cover features remain 280 

extremely important both for the selection of environmental predictors explaining the hazard of wind disturbance and for the 

correct interpretation of the disturbance risk model. 
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5 Conclusions 

We developed and implemented a robust analytical framework to analyze spatial patterns of forest disturbance caused by a 285 

severe weather event. Using the U-Net CNN, we precisely identified windthrow patches totalling 21.73 km² (1.82% of the 

forested area) affected by the disturbance. Our retrospective risk assessment, employing the RF algorithm and various 

environmental predictors, enhanced our understanding of past disturbances and assessed potential future risks under evolving 

disturbance regimes. We found that the primary hazard of forest damage arose from wet snow accumulation on evergreen 

coniferous trees, significantly increasing their vulnerability. Approximately 70% of the windthrow occurred in dark coniferous 290 

spruce and fir forests. In contrast, broadleaf deciduous trees, particularly subalpine stone birch at higher elevations, showed 

lower susceptibility to disturbance. The optimal windthrow risk model included topographic factors of aspect, elevation, slope 

steepness, and landform class, along with forest canopy closure and forest type. Our approach can assess post-ETC forest 

disturbances, offering critical insights into forest loss and recurrence risks due to increasing extreme weather events from 

global warming. This is essential for sustainable forestry and effective management strategies. 295 
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