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Abstract. Water resources are an important component of the earth's system, and the frequent occurrence of floods and 15 

droughts in the context of current climate change makes rapid and accurate monitoring of water resources particularly 

important. The optical water index (OWI) is a commonly used method for extracting water areas on the basis of remote sensing 

images, often with a high level of automation. However, selecting the right OWI is challenging due to the variety of water 

types. To quantitatively evaluate the differences in the mapping potential of different OWIs for surface water, we selected 12 

commonly used OWIs to conduct comparative experiments among five types of surface water based on Landsat-8 and Sentinel-20 

2 images. The results revealed that the Normalized Difference Water Index (NDWI) was better for turbid water, the Multi-

Band Water Index (MBWI) was better for shaded water, the Modified Normalized Difference Water Index (MNDWI) was 

better for green water, and the Automated Water Extraction Index (AWEIsh)was better for swamp water and saltwater. Sentinel-

2 has a higher ability to classify water than Landsat-8. Our work provides prior experience for fast and accurate water resources 

mapping in case of floods or droughts. 25 

1 Introduction 

Surface water is highly dynamic(Pekel et al., 2016) and at the same time it is an important part of the global ecosystem and 

climate system (Zhang et al., 2022). Monitoring these changes in surface water marks the initial stage of advancing research 

on ecosystem and flood management (Dronova et al., 2011). Remote sensing technology is widely regarded as a cost-effective 

and efficient method for monitoring large-scale water resources(Huang et al., 2018). Compared with machine learning methods, 30 

the optical water index (OWI) method presents notable advantages in simplicity, efficiency, and repeatability, rendering it 
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highly suitable for long-term and large-scale analyses across diverse environmental applications (Du et al., 2014), and it is also 

widely used in hazard mapping in conjunction with SAR because the most serious problem with optical imaging is the influence 

of clouds (Psomiadis et al., 2020). Wang et al. (2019) used a method of extracting water by combining OWIs and vegetation 

indexes to monitor the changes in inundated hydrological conditions in Poyang Lake before and after the completion of the 35 

Three Gorges Dam from 1988 to 2016. Zhang et al. (2022) used a method of combining water index to monitor the changes 

in open water in the Yellow River Basin from 1986 to 2020. Luying et al. (2023) used the MNDWI to study the relationship 

between surface water change and climate change in Qinghai Province from 1986 to 2018. 

Classification methods that use OWIs as inputs to classify water and other classes from OWIs can be roughly divided into 

three categories: supervised classification, unsupervised classification, and threshold methods (Li et al., 2016). Some scholars 40 

use the threshold method (Adrian et al., 2016); however, choosing the optimal threshold is very complex and time-consuming 

(Liu et al., 2023). The Otsu method (1979) is a widely used automatic thresholding method aimed at maximizing interclass 

variance and minimizing intraclass variance (Du et al., 2016). However, the algorithm does not yield good results for images 

without bimodal features (Zhou et al., 2015). Supervised classification and its accuracy is depend on the quality of the training 

samples (Shin et al., 2016). An unsupervised classification algorithm does not rely on training samples and has less subjective 45 

interference (Tian et al., 2024). Therefore, we ultimately chose an unsupervised classification method to classify OWI images 

to pursue objective evaluation results. 

In fact, as sensors progress, the OWI develops (Huang et al., 2018). Most OWI methods are constructed on the basis of 

Landsat series images. Although MODIS data are frequently used for surface monitoring, their coarse spatial resolution often 

leads to suboptimal classification accuracy for mixed water and non-water pixels(Tian et al., 2017). The emergence of Sentinel-50 

2 has significantly enhanced the monitoring of water areas via remote sensing owing to its higher spatial resolution and 

increased spectral bands(Zeng et al., 2022). 

The concept of OWIs can be traced back to 1985, when tasseled cap transformations were primarily used. Specifically, 

Tasseled Cap Wetness (TCW) offers features closely related to the wetness features derived from Thematic Mapper (TM) 

Tasseled Cap transformations (Crist, 1985). Eleven years later, the Normalized Difference Water Index (NDWI) was 55 

introduced, inspired by the Normalized Difference Vegetation Index (NDVI). The NDWI capitalizes on the fact that water 

exhibits higher reflectance in the green band than in the near-infrared band, whereas soil and vegetation typically show the 

opposite pattern. Consequently, water features yield positive values and are accentuated, whereas vegetation and soil tend to 

yield zero or negative values and are subdued (Mcfeeters, 1996). The Normalized Difference Water Index 3(NDWI3) method 

was subsequently introduced to address the challenge of accurately delineating the transitional zone between water and non-60 

water regions in TCW images. Ouma and Tateishi (2006) aimed to increase the precision of water boundary extraction, and 

they used the bands in the TCW images and the normalized structure of the NDWI, with the NDWI3 being the most accurate. 

 In the same year, Xu (2006) introduced refinements to minimize the effects of intervening in the building background, 

substituting the mid-infrared band for the near-infrared band in the NDWI to construct the Modified Normalized Difference 

Water Index (MNDWI). One year later, Yan et al. (2007) considered Henan Province, China, an arid and semiarid region with 65 
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a complex background environment that included vegetation, cultivated land, buildings, and dry river channels and that a 

single band difference would not be sufficient to eliminate all sources of interference; thus, the Enhanced Water Index (EWI), 

which combines the, was introduced. NDWI and MNDWI. This is the first study in which noticed the effects of a dry river on 

watershed extraction have been reported. Feng (2012) subsequently added a second shortwave infrared band using Landsat 

imagery to construct the New Water Index (NWI).  70 

The Automated Water Extraction Index (AWEI) is meticulously crafted to increase robustness and precision while 

maintaining a stable threshold. Within its design, the iterative process establishes a stability threshold, denoted 0, crucial for 

discerning water from non-water areas. Comprising two distinct formulas, AWEInsh and AWEIsh, the latter is specifically 

engineered to increase accuracy by eliminating shadow pixels that AWEInsh may not effectively address (Feyisa et al., 2014).  

 To enhance its applicability across diverse environmental backgrounds, Index of Water Surfaces (IWS) employs two 75 

division operations to adjust the image to only two gray levels, resulting in a soil brilliance that resembles that of other land 

uses except for water (Hassani et al., 2015). Notably, in this article on the construction of the IWS, classification results with 

those of other OWIs are not compared. The proposed Water Index 2015 (WI2015) discriminates surface reflectance into distinct 

land classes linearly and determines the coefficients of minimum intraclass variance and maximum interclass variance (Adrian 

et al., 2016). This approach was adopted to increase the level of automation so that the threshold can still have good accuracy 80 

when it varies over a small range of values. Later, Wang et al. (2018) proposed the Multi-Band Water Index (MBWI) due to 

the misclassification of low-reflectivity surfaces because of their similarity in reflectivity to water. 

After the launch of Sentinel-2, its unique vegetation-sensitive red-edge band was introduced to construct the Sentinel-2 

Water Index (SWI) (Jiang et al., 2021).  

Table 1. Formula for the optical water index. 85 

Index Equation Reference 

TCW 

1 2

0.1509 0.1973 0.3279

0.3406 0.7112 0.4572

blue green red

nir swir swir

TCW   

  

=  +  + 

+  −  − 
                (1) 

(Crist, 1985) 

NDWI 
green nir

green nir

NDWI
 

 

−
=

+
                                                                                        (2) 

(Mcfeeters, 

1996) 

NDWI3 

 

1
3

1

nir swir

nir swir

NDWI
 

 

−
=

+
                                                                                        (3) 

(Ouma and 

Tateishi, 2006) 

MNDWI 
1

1

green swir

green swir

MNDWI
 

 

−
=

+
                                                                          (4) 

(Xu, 2006) 
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EWI 
1

1

green nir swir

green nir swir

EWI
  

  

− −
=

+ +
                                                                                (5) 

(Yan et al., 

2007) 

NWI 
1 2

1 2

blue nir swir swir

blue nir swir swir

NWI
   

   

− − −
=

+ + +
                                                                 (6) 

(Feng, 2012) 

AWEI 
1 24 ( ) 0.25 2.75nsh green swir nir swirAWEI    =  − −  +                        (7) 

1 22.5 1.5 ( ) 0.25sh blue green nir swir swirAWEI     = +  −  + −          (8) 

(Feyisa et 

al., 2014) 

IWS 
1 1

1

2 (4 )
2swir blue swir

swir blue

IWS
  

 

  −
= − 

                                                   (9) 

(Hassani et 

al., 2015) 

WI2015 
2015 21.7204 171 3 70 45 71blue green red nir swirWI    = +  +  −  −  −       (10) (Adrian et 

al., 2016) 

MBWI 
1 22 green red nir swir swirMBWI     =  − − − −

                                                 (11) 
(Wang et 

al., 2018) 

SWI 
1 2

1 2

vre swir

vre swir

SWI
 

 

−
=

+
                                                                                            (12) 

(Jiang et al., 

2021) 

 

Table 1 shows the formula for each OWI, where βblue represents the reflectance of the blue band (B2 of Landsat-8 and 

Sentinel-2), βgreen represents the reflectance of the green band (B3 of Landsat-8 and Sentinel-2), βred represents the reflectance 

of the red band (B4 of Landsat-8 and Sentinel-2), βnir represents the reflectance of the near-infrared band (B5 of Landsat-8, B8 

of Sentinel-2), βswir1 represents the reflectance of the first shortwave infrared band (B6 of Landsat-8, B11 of Sentinel-2) and 90 

βswir2 represents the reflectance of the second shortwave infrared band (B7 of Landsat-8, B12 of Sentinel-2), and βvre1 represents 

the reflectance of the vegetation red edge 1 (B5 of Sentinel-2). 

Although many OWIs are available, they can be deceptive. Because of the variety of types of water, including spectral 

variations and their presence in various background environments, it is not feasible to simply apply one formula to all 

conditions (Zeng et al., 2022). However, currently, comprehensive comparative analyses of OWIs that demonstrate the 95 

strengths and weaknesses of different indices across various types of water and background environments are lacking. Research 

on the overall performance of these indicators in different types of water and complex and variable environments in different 

regions of the world is lacking. No single OWI stands out as the best, as each index has different applicability. In this work, 

we aim to quantify the advantages and disadvantages of twelve OWIs. In this work, we aim to quantify the strengths and 

weaknesses of the twelve OWIs, which can provide technical and theoretical support for better water resources monitoring and 100 

rapid mapping in case of related disasters. 
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2 Materials and methods 

2.1 Study area 

As shown in Figure 1., in this study, we selected a total of 10 study areas through a literature review as well as field surveys, 

namely, the Yellow River, the Nile River, Lake Taihu, the Danube River, Namtso Lake, Lake Eyre, Lake Geneva, the Charles 105 

River, Poyang Lake, and Lake Okeechobee. The 10 study areas comprehensively represent five types of water in the world, 

namely, turbid water, green water, saltwater, water in shadow, and swamp water, which are suitable for studying the effects of 

different OWIs. 

 

Figure 1. Distribution of the study area locations. DEM comes from ENVI 5.3 software publicly available data. 110 

The Yellow River is the second-largest river in China and is known for its high sediment content (Shen et al., 2010). The 

Blue Nile, a tributary of the Nile River, carries two-thirds of the sediment of the world's longest river(Janse Van Vuuren et al., 

2018). 

The Hungarian segment of the Danube River and Taihu Lake exemplify eutrophic waters, and we chose these two research 

areas to study green water. Lake Taihu is located in one of the world’s most heavily populated regions, and a large amount of 115 

polluted water is discharged into Lake Taihu, resulting in a phytoplankton bloom (Le et al., 2009). At present, the water bloom 

in Taihu Lake is still serious(Wang et al., 2020). The Danube River is the most international river in the world (Sommerwerk 

et al., 2010) and Europe’s second-largest river. Blooms have also been observed in the Danube's waters, and water quality is 

a major concern (Horvat et al., 2021).  

Namtso Lake and Lake Eyre are both saltwater lakes, so we selected these two study areas to assess the effectiveness of 120 

OWIs for saltwater. Namtso Lake, which is located on the Qinghai-Tibet Platea, is the highest lake in the world and the second-

largest inland saltwater lake in China (Xu and Kang, 2010). Lake Eyre is the largest salt lake and lowest point in Australia 

(Nanson and Price, 1998).  
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Lake Geneva and the Charles River, one surrounded by mountains and the other by buildings, were used to investigate 

the impact of OWI extraction in shaded regions. Lake Geneva, situated in Switzerland, is encircled by the Alps, the largest 125 

mountain range in Western Europe, and it is a mountain-surrounded lake (Lemmin et al., 2005). The Charles River originates 

in Newton and flows through a linear formation of university campuses and affiliated R&D complexes, ultimately terminating 

in Boston(Gahagan and Bailey, 2020). 

We selected the wetland ecosystems of Poyang Lake and Lake Okeechobee as our study sites to investigate the efficacy 

of OWIs in differentiating swamps from surface waters. Poyang Lake, China's largest freshwater lake, experiences significant 130 

fluctuations in water area (Guiping et al., 2014; Tian et al., 2017). The Poyang Lake wetland, which is situated in the littoral 

zone of the lake, is among the earliest sites designated Wetlands of International Importance under the Ramsar Convention 

(Secretariat, 2010). Lake Okeechobee, situated at the heart of the broader Kissimmee River Lake Okeechobee Everglades 

ecosystem in South Florida, plays a pivotal role in a range of ecosystem and water management functions(Gahagan and Bailey, 

2020).  135 

2.2 Data 

Google Earth Engine (GEE), which stores a large number of pre-processed remotely sensed images(Gorelick et al., 2017), we 

used for surface reflectance (SR) data. The spatial resolution of OWIs computed by Landsat-8 is 30m and that of OWIs 

computed by Sentinel-2 is 10m. The data used in this study are shown in Table 2. In addition to remotely sensed imagery data, 

we also combined ground-truth observation data. 140 

Table 2: Type of satellite, type of water, time of image acquisition, and location. 

Satellite Type Water Type Date Acquisition Study Area 

Landsat-8 Turbid water February 9, 2020 Yellow River 

  September 21, 2021 Nile River 

 Green water July 28, 2021 Danube River 

  June 23, 2021 Taihu Lake 

 Salt water November 3, 2021 Namtso Lake 

  May 19, 2021 Lake Eyre 

 Shaded water July 29, 2021 Lake Geneva 

  July 27, 2021 Charles River 

 Swamp water January 12, 2021 Poyang Lake 

  June 24, 2022 Lake Okeechobee 

Sentinel-2A Turbid water March 3, 2021 Yellow River 

  February 1, 2022 Nile River 

 Green water June 21, 2021 Danube River 
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  June 23, 2021 Taihu Lake 

 Salt water October 05, 2021 Namtso Lake 

  April 30, 2021 Lake Eyre 

 Shaded water May 31, 2021 Lake Geneva 

  May 27, 2021 Charles River 

 Swamp water January 1, 2021 Poyang Lake 

  September 30, 2022 Lake Okeechobee 

2.3 Method 

The K-means classification method is widely employed for unsupervised classification. In the K-means algorithm, cluster 

analysis is utilized to randomly determine the central locations of clusters and subsequently group the objects that are closest 

to these centers (Piloyan and Konečný, 2017). Through iterative calculations, the values of each clustering center are updated 145 

individually until the optimal clustering outcome is achieved. In this study, the calculation results of twelve OWIs were 

classified via the K-means method. Specifically, the K-means classification method was employed to partition the images into 

five categories through ten iterations. Each scene contains approximately five categories: water, vegetation, impervious cover, 

bare ground, and swamp-and 10 iterations constitute the number of iterations with the highest accuracy that we obtained after 

repeated experiments. These categories were then aggregated into two overarching groups, 'water' and 'non-water', and the 150 

merging process compared true color images, thereby constructing a binary representation. Here, we classify swamp as non-

water. Although it has a high-water content, it does not have fluidity. 

The performance of these OWIs in unclear water varies significantly, primarily due to spectral variations. We quantified 

the spectral variations in different water types by calculating the percentage increase or decrease in various bands across five 

distinct categories, namely turbid water, green water, shaded water, swamp water, and saltwater, relative to that for clear 155 

reference water. The calculation formula is as follows: 

  

100%unclear clear

clear

 




−
= 

                                                                                                                           (13) 

where  represents the percentage increase or decrease in each band for different types of water, βunclear denotes the 

reflectance of each band of the unclear water, and βclear signifies the reflectance of each spectral band of water in the first-class 160 

water source protection area. Spectral samples of clear water were obtained from the Danjiangkou Reservoir, which is the 

largest artificial freshwater lake in Asia and a national first-class water source protection area (Pan et al., 2021). Spectral 

samples of the Danjiangkou Reservoir were obtained from Landsat-8 imagery from March 2, 2017, and September 21, 2021, 

and we used these spectral samples as benchmarks to quantify the degree of spectral variability in several other types of water. 
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The images from these two days are cloudless and the water quality is good. The spectral data of the remaining five water 165 

types and various background features were acquired from 10 study areas via the Landsat-8 dataset (Figure 2.). 

 

Figure 2: (a) Spectral curves for 5 types of water. (b) Spectral curves from swamps, buildings, vegetation, and soil. 

We first validated the accuracy of the 12 OWIs, a step based on the average of the accuracies of two types of satellite 

imagery, Landsat-8, and Sentinel-2, in 10 study areas for five different types of water, with the exception of the SWI, for which 170 

the accuracy validation was based on only one type of satellite imagery, Sentinel-2, because the βvre1 used is unique to Sentinel-

2. We used this method to reduce the difference in accuracy among different sensors. In the second step, we explain the reasons 

for the correct and incorrect identification of 11 OWIs based on spectra and structures that can be calculated based on Landsat 

images. In the third step, we compared the difference of water recognition accuracy between Landsat-8 and Sentinel-2. The 

overall process is shown in the following Figure 3. 175 
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Figure 3: Study flow chart. 

As accuracy verification results can be significantly influenced by the selection of validation samples (Adrian et al., 2016), 

we adopted a systematic approach by selecting 100 sample quadrats, each measuring 6 km×6 km. These quadrats covered the 

interface between aquatic and terrestrial environments within each study area. Whether it is water or not was determined 180 

through manual digitization of true-color images. Additionally, we employed the confusion matrix accuracy validation method 

to report the classification accuracy, including the overall accuracy (OA), kappa coefficient (Ka), producer accuracy (PA), and 

user accuracy (UA). We selected these indicators to show the overall classification level of these OWIs, as well as the 

mismarking and missing mark scenarios. The specific calculations are as follows: 

 

TP TN
OA

TA

+
=

                                                                                                                                 (14) 185 

 
2

[( ) ( ) ( ) ( )]

[( ) ( ) ( ) ( )]

TP TN TP FP TP FN FN TN FP TN
Ka

TA TP FP TP FN FN TN FP TN

+ − +  + + +  +
=

− +  + + +  +
                                           (15) 
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TP
PA

TP FN
=

+                                                                                                                                           (16) 

 

TP
UA

TP FP
=

+                                                                                                                                           (17) 

where TA denotes the overall sample size, TP denotes the total number of image elements correctly identified as water, 

TN denotes the total number of non-water image elements correctly classified as such, FP denotes the total number of image 190 

elements incorrectly classified as water, and FN denotes the total number of image elements incorrectly classified as non-

water. 

3 Results 

Establishing a priori knowledge of the recognition accuracy of different water indexes in different situations is essential for 

rapid automated mapping in the event of a disaster. Waters of different types exhibit distinct spectral characteristics (Figure 195 

2.), and clear water is markedly different from the four other types of water, resulting in the varying performance of OWIs for 

different water types. The image below (Figure 4.) shows 12 OWIs used to extract the average accuracy of five different types 

of water.  

The extraction results for swamp water demonstrated overall accuracies ranging from 82.56% to 95.15%, with kappa 

coefficients ranging from 0.65 to 0.91. Notably, the AWEIsh and NDWI show superior discriminatory capabilities for swamp 200 

water, achieving overall accuracies of 95.15% and 94.81%, respectively, with corresponding kappa coefficients of 0.90 and 

0.91. Similarly, was the EWI, had an overall accuracy of 94.61% and a kappa coefficient of 0.91. Conversely, WI2015 and the 

TCW exhibited lower performances in terms of swamp water extraction, with overall accuracies of 82.56% and 85.59% and 

kappa coefficients of 0.65 and 0.74, respectively. 

Overall, the extraction accuracy of the twelve OWIs for shaded water was lower than that of the other four types of water, 205 

with an average overall accuracy of 85.08%, ranging from 60.63% to 96.19%, and kappa coefficients ranging from 0.40 to 

0.86. The highest accuracy was achieved by the MBWI, with an average overall accuracy of 96.19%, followed closely by the 

MNDWI, with 96.13% accuracy. The MBWI also had the highest kappa coefficient of 0.86, followed by the MNDWI and 

WI2015 with a kappa coefficient of 0.82. Overall, the MBWI demonstrated the most effective separation of shaded water. 

For saltwater, the AWEIsh and MBWI demonstrated high overall accuracies of 97.91% and 97.56%, respectively, with 210 

matching kappa coefficients of 0.96. The NDWI followed closely as the third-best performer, achieving an overall accuracy 

of 96.61% and a kappa coefficient of 0.95. In contrast, NDWI3 exhibited the least effective extraction for saltwater, with an 

overall accuracy of 79.58% and a kappa coefficient of 0.70. Overall, the AWEIsh is generally considered superior in extraction 

for saltwater. 
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The extraction performance of different OWIs varied for green water, with overall accuracies ranging from 74.36% to 215 

97.1% and kappa coefficients ranging from 0.50 to 0.94. The MNDWI and SWI achieved overall accuracies higher than 

95.00%, with the MNDWI exhibiting the highest accuracy. Conversely, NDWI3, the IWS, and WI2015, with overall accuracies 

lower than 85%, also had kappa coefficients below 0.70. Among these methods, the IWS had the poorest separation effect for 

green water, with an overall accuracy of 74.36% and a kappa coefficient of 0.50. 

For turbid water, the NDWI demonstrated the most effective extraction, achieving an overall accuracy of 95.20% and a 220 

kappa coefficient of 0.89. The EWI and NWI followed closely, with overall accuracies of 93.59% and 91.62%, respectively. 

In contrast, WI2015 had the poorest performance in separating turbid water, with an overall accuracy of 75.37% and a kappa 

coefficient of 0.59. 

Among the 12 OWIs, the MNDWI and MBWI displayed the highest stability for different types of water, with mean 

overall accuracy values of 94.63% and 93.33% and a mean kappa coefficient value of 0.87. Conversely, NDWI3, the IWS, and 225 

WI2015 exhibited the lowest stability in accurately extracting all types of water, with average overall accuracies of 77.33%, 

83.28%, and 85.78%, respectively, and average kappa coefficients of 0.63, 0.70, and 0.72, respectively. Notably, the AWEI sh 

demonstrated a better separation effect for various types of water than the AWEInsh did, confirming the findings of previous 

studies (Zhang et al., 2017). 

The TCW, the AWEInsh, the AWEIsh, and WI2015 were established via iterative or regression methods. The average overall 230 

accuracy and kappa coefficient were 87.57% and 0.78, respectively, both of which were lower than the 12 OWIs (89.02% and 

0.79, respectively). Among the 12 OWIs, NDWI3 exhibited the most unstable downward trend from the near-infrared band to 

the shortwave infrared band. Upon excluding this index, the average accuracy of the remaining 11 water indexes increased to 

90.08%, with a kappa coefficient of 0.81. 
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 235 

Figure 4: The mean values of the 12 optical water indexes in the extraction results are indicative of both (a) the overall 

accuracy and (b) the kappa coefficient for the five types of water. 

The average user accuracy and producer accuracy values for the extraction of various waters were computed for the 12 

OWIs (Figure 5.). For turbidity water, all 12 OWIs, with the exception of the IWS, exhibit a producer accuracy greater than 

the user accuracy. Conversely, for swamp water, except for the SWI and AWEInsh, the user accuracy is greater than the producer 240 

accuracy, whereas the remaining 10 OWIs result in the producer accuracy exceeding the user accuracy. Similarly, for shaded 

water, all 12 OWIs exhibit a producer accuracy that surpasses the user accuracy. This suggests that for the three types of water, 

misclassification was more prevalent than leakage was, resulting in numerous non-water objects being erroneously classified 

as water. For green water, excluding the TCW and WI2015, and for saltwater, excluding the TCW and AWEInsh, these exceptions 

are where the producer accuracy exceeds the user accuracy. Conversely, among the remaining 10 OWIs for these two types, 245 

the user accuracy exceeds the producer accuracy. This implies a greater number of missing pixels than the number of instances 
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where water is classified as other features. The reasons for the specific misclassifications and omissions are explained in more 

detail in the discussion section. 

 

Figure 5: Comparison of producer accuracy and user accuracy for the 12 OWIs for five different types of water. PA = 250 

producer accuracy; UA = user accuracy. 

Choosing the right sensor is also critical for more accurate water monitoring. We compared all Landsat-8 and Sentinel-2 

results calculated in this work to evaluate the performance of the two sensors in water recognition (Figure 6.). The overall 

accuracy of Sentinel-2 and Landsat-8 was 89.16% and 88.60%, respectively. Kappa coefficients were 0.75 and 0.71, 

respectively. In general, Sentinel-2 sensor is slightly better than Landsat-8 in separating water. This result also confirms 255 

previous studies (Zhou et al., 2017). 
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Figure 6:Comparison of water identification accuracy between Landsat-8 and Sentinel-2. (a) the overall accuracy, (b) 

the Kappa coefficient. 

4 Discussion 260 

4.1Explanation of the phenomenon 

Understanding the reasons for the different OWIs identification results is important to improve this highly automated water 

identification method for better regulation during hydrological hazards. Various OWIs utilize distinct spectral information to 

enhance water characteristics, resulting in different classification results for the same area. Explaining the reasons behind these 

divergent classification outcomes of OWIs and summarizing the patterns observed can provide valuable insights for the 265 

development of future OWIs. 

Specifically, turbid water demonstrates a substantial increase in reflectance across the red, near-infrared, and two 

shortwave infrared bands. The red band experiences an increase of 169.74%, whereas the near-infrared band exhibits a 

remarkable increase of 356.00%.  

Additionally, the first shortwave infrared band shows a notable increase of 174.41%, and the second shortwave infrared 270 

band displays a significant increase of 199.12%. This behavior elucidates the resemblance of turbid water treated by OWIs 

such as WI2015, the MBWI, and the TCW, which may resemble vegetation and swamps (Figure 7.). 

For example, when the TCW is employed, both turbid water and swamps are assigned values of 0.02, whereas turbid 

water treated by the MBWI has a value of -0.28, which closely resembles the swamp's value of -0.27. Similarly, the processing 

results for turbid water, vegetation, and swamps in the WI2015 images are -9.18, -12.56, and -8.80, respectively, while the clear 275 

water score is 4.85. Consequently, in images where turbid water, vegetation, and swamps appear to be similar, the confusion 

experienced by WI2015 in extraction becomes more pronounced. 
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The difference in reflectance between the red wave band and the first and second shortwave infrared bands decreases 

from 0.03, 0.04, and 0.04 to -0.13, -0.03, and 0.02, respectively. This reduction in differentiation capacity diminished the 

index's effectiveness. The normalized values for turbid water in the near-infrared and first shortwave infrared bands, with a 280 

value of 0.34, were closely aligned with those for vegetation and swamps, with values of 0.33 and 0.34, respectively. Because 

NDWI3 relies solely on these two bands, it struggles to discriminate turbid water from the surrounding swamp and vegetation.  

The IWS index uses the sum of the ratio of the blue wave band to the first shortwave infrared band and a reciprocal. In 

the context of turbid water, this ratio is 0.43, with its reciprocal of 2.33. However, this ratio is similar to that observed for soil 

(0.27, with a reciprocal of 3.70) and buildings (0.45, with a reciprocal of 2.22). 285 

Compared with that of clear water, the spectral curve of the near-infrared band exhibited a 384.61% increase from the 

absorption valley to the reflection peak, with a standard deviation of 0.11. The reflectance of the near-infrared band increased 

from 0.02 to 0.12. Simultaneously, there was a decrease of 12.02% in the blue band and an increase of 58.92% in the green 

band due to varying algae contents within the waters. In green water, the spectral curve of bloom water can be observed, and 

a spectral curve similar to that of clear water can be seen. This is why the NDWI, EWI, AWEInsh, AWEIsh, MBWI, and NWI, 290 

which are different from the blue or green band and the near-infrared band, all show omissions in the extraction of green water 

(Figure 7.).  

The reflection of the first shortwave infrared band of the green water is still 0.02. The reflectance of this band in clear 

water is 0.01, which is similar to that of the two types of water. This is why the MNDWI, which does not use the near-infrared 

band but uses only the difference between the green band and the shortwave infrared band, can extract water with blooms 295 

better. Despite the utilization of six bands, including near-infrared bands, the TCW still accurately identifies green water. 

Moreover, considering its underlying principles and structural design, the positive coefficient of the TCW for the near-infrared 

band ensures consistent detection results, even with the increased reflectivity in green waters. 

Considering the normalization values of the near-infrared and shortwave infrared bands, which are 0.50 for green water, 

0.25 for normal water, 0.33 for vegetation, and 0.34 for swamps, the treatment outcome of green water is more similar to that 300 

of vegetation and swamps than to that of normal water. Consequently, NDWI3 classifies green water into one category, with 

vegetation and swamps while distinguishing it from normal water. 

The ratio of the blue band and the first shortwave infrared band of the green water and its reciprocal sum is 2.13, and that 

of the clear water is 2.70. Because these two ratios are negative, the green water presents a bright color similar to that of other 

ground objects in the IWS image and is difficult to distinguish. 305 
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Figure 7: On the left are the results of turbid water extraction: (a) the Yellow River and (b) the Nile River. On the right 

are the results of green water extraction: (c) the Danube River and (d) Lake Taihu. All remote sensing images are from 

Landsat-8 data provided by the GEE platform. 

The presence of salt ions in saltwater induces significant changes in its spectral curve compared with that of freshwater. 310 

Within the visible light range, the reflectance gradually diminishes with increasing wavelength, reaching its minimum in the 

near-infrared band before increasing again in the shortwave infrared band. Notably, the reflectance values for each band are 

consistently lower than those observed for freshwater: reductions of 17.81% in the blue band, 57.52% in the green band, 91.64% 

in the red band, 103.75% in the near-infrared band, and 79.46% and 68.33% for both shortwave infrared bands. 

This change led to the obvious omission OWIs of the NDWI3, the NDWI, the EWI, and the IWS. The minimum difference 315 

between the green band and the near-infrared band underwent a transition from 0.03 to 0.01, thereby leading to the exclusion 

of NDWI and EWI in saltwater lake extraction (Figure 8.). The ratio between the blue wave band and the first short-wave 

infrared band is considered a unified entity, and the IWS is transformed into a functional form for analysis. When the ratio 

between the blue wave band and the first shortwave infrared band falls within the range of 0.27-3.73, IWS also classifies both 

waters and other ground objects as positive pixels. However, because, the reflectance of the blue band is three times greater 320 
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than that of the first shortwave infrared band in saltwater environments, the IWS is unsuitable for application under such 

conditions. The reflectance of the first shortwave infrared band of saltwater is 0.004 higher than that of the near-infrared band. 

This upward trend contradicts that observed in normal water, rendering NDWI3 unsuitable for application in saltwater regions. 

As a nonaquatic region with high soil moisture content, the spectral curve of marsh regions is similar to that of water in 

several aspects. A gradual decrease is observed from the near-infrared to the shortwave infrared bands, with a difference of 325 

0.10. An absorption valley is evident in the shortwave infrared band. Notably, there is a phenomenon where the reflectance 

values for the blue or green bands surpass those of both the first and second shortwave infrared bands but remain lower than 

those of the near-infrared band for swamps. The AWEInsh, the AWEIsh, the EWI, the IWS, the MBWI, the MNDWI, the TCW, 

and WI2015 all exploit the difference between a blue or green band and a shortwave infrared band. However, in these indexes, 

the difference between the green band and the near-infrared and shortwave infrared bands is utilized by the EWI and AWEIsh. 330 

Notably, the weight assigned to the near-infrared band is approximately equal to or slightly less than that assigned to the 

shortwave infrared band (0.25). This weighting scheme accounts for the enhanced discriminatory effect of these two indexes 

on swamp water compared with the other ten OWIs (Figure 8.). 

In WI2015, areas with a soil moisture content greater than 50% during the tectonic process were considered to contain 

water (Adrian et al., 2016), including some swamps. The NDWI leverages the disparity between green and near-infrared 335 

spectral bands to enhance the identification of swamp water. Specifically, the normalized value for the near-infrared and 

shortwave infrared bands in swamps is 0.34, which contrasts positively with the normalized value of 0.25 observed in clear 

water. Therefore, in the NDWI3 image, both bright colors cannot effectively distinguish between swamps and water. 
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Figure 8: On the left are the results of saltwater extraction: (a)Lake Eyre and (b)Namtso Lake. On the right are the 340 

results of swamp water extraction: (c) Lake Okeechobee and (d) Poyang Lake. All remote sensing images are from 

Landsat-8 data provided by the GEE platform. 

In areas with water represented by dark pixels, where sunlight is obstructed by surrounding buildings or mountains, the 

reflection of sunlight on the water surface is diminished, resulting in a darker appearance. The reflectivity of each spectral 

band in these shaded regions is lower than that of normal waters. Specifically, the blue band experiences a reduction of 46.66%, 345 

the green band decreases by 59.04%, and the red band diminishes by 59.48%. Moreover, there is an 11.58% decrease in near-

infrared reflectance, a 50.00% decrease in the first short-wave infrared band, and 54.06% decrease in the second shortwave 

infrared band. Consequently, challenges arise when attempting to accurately extract shaded water due to potential confusion 

and omission (Figure 9.).  

The difference between the mean reflectance of shaded water in the blue band and the near-infrared band is 0.01, and the 350 

smallest difference is 0, which leads to the NWI, the AWEIsh, and WI2015, which use the water index of the difference between 

the blue band and the near-infrared band, processing the shaded water as dark, as it is confused with background information. 

The difference between the similar green band and the first shortwave infrared band changes from 0.05 to 0.02 for shaded 
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water, which results in the omission and over-extraction of shaded waters by the EWI and AWEInsh, which exploit the 

difference between the green band and the first shortwave infrared band. When the background object is a building, the ability 355 

of the NDWI to distinguish between shaded water and normal water is also compromised because of confusion with the 

building. This occurs because both the green band and near-infrared band exhibit positive differences in both the building 

background and water (Mcfeeters, 1996), and a similar phenomenon can be observed in NDWI3.  

In shaded water, the ratio between the blue band and the first shortwave infrared band also falls within the range of 0.27-

3.73. Consequently, the IWS categorizes shaded water as non-water features, akin to saltwater.360 

 

Figure 9: Extraction results of shaded water: (a) Lake Geneva and (b) the Charles River. All remote sensing images 

are from Landsat-8 data provided by the GEE platform. 

 

4.2 Drawbacks 365 

In the research process, we attempted to control variables, but the interference of different types of water and different 

backgrounds was interwoven, including the combination of turbid water and swamp background, the combination of green 

water and swamp background, and the combination of saltwater and cloud shadows. The excellent performance of the NDWI 

in identifying swamp water also improves its accuracy in identifying turbid water. However, K-means classification is sensitive 

to noise and outliers, and the classification results of complex ground objects are not ideal, which limits the accuracy of 370 

classification results to some extent. 

5 Conclusions 

Diversity of water resources across the earth system. The spectral characteristics of different water types vary. The AWEIsh, 

NDWI, and EWI have good separation effects for swamp water. When selecting OWIs for swamp areas, it is advisable to 
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avoid the shortwave infrared band or reduce its weight. The MBWI demonstrates superior extraction performance for shaded 375 

water. The AWEIsh is most suitable for saltwater. When selecting OWIs for saltwater, attention should be given to the 

increasing trend from the near-infrared band to the short-wavelength infrared band. The MNDWI performs exceptionally well 

in the extraction of green water. When choosing OWIs for green water, it is essential to consider the increasing reflectance in 

the near-infrared band. Among the considered indexes, the NDWI emerges as the top performer for extracting turbid water. 

Both the MNDWI and the MBWI exhibit remarkable stability across diverse water types. The overall accuracy of OWIs 380 

constructed through regression and iteration is lower than the average of the 12 OWIs. Sentinel-2 has a higher ability to classify 

water with higher spatial resolution than Landsat-8. To increase the classification accuracy of OWIs in the future, it is 

imperative to comprehensively consider the spectral characteristics of different types of water and diverse backgrounds during 

the construction process. Our work provides theoretical and technical support for a better understanding of the global water 

system and for rapid and accurate highly automated water mapping. 385 
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