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nhess-2024-213 » Author's response

Schlögl, M., Graser, A., Spiekermann, R., Lampert, J., and Steger, S.: Brief communication: Visualizing

uncertainties in landslide susceptibility modeling using bivariate mapping, Nat. Hazards Earth Syst.

Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2024-213, in review, 2024.

Response to editor comments

Dear editor,

please find the reviewer comments and our responses below.

Based on your comment we have expanded several of our responses to address the reviewer comments

more explicitly instead of primarily referring to another published paper or literature.

With respect to some comments raised in CC1 we would like to point out that we think that discussing

technical details on the methodological modelling workflow of the dataset used for visualization purposes

is beyond the scope of this manuscript. The main focus of this manuscript is the presentation of a

visualization method. This presentation would work with different kinds of data sets, even with an

artificially generated one. We figured that it would be nice to build upon a recently published result to

showcase this method using an actual real-world example. Therefore, we provide answers to the questions

raised by the reviewer below, but we did not include all these technical details in the revised version. We

think that this would distract from the main focus of the manuscript, which is on uncertainty

communication and visualizing uncertainties and not on discussing the intricacies of modelling apporach

used for creating the underlying dataset. The latter topic, which is more technical in nature, is discussed in

detail in the companion paper. We therefore argue that referring to the companion paper where the

methodological details of the dataset used in this manuscript are described in detail does not compromise

the relevance and scientific integrity of this manuscript.

We added the most important statements when referencing other work concisely in the revised version of

this manuscript (e.g. by succinctly summarizing the term geomorphic plausibility, which is discussed

extensively in other publications).

Best regards,

Matthias Schlögl
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Response to RC1

Using the Central Eastern Alps as an example, this brief communication presents a unique method

that integrates the vulnerability and uncertainty of landslides into a single bivariate map. Compared

to the conventional approach of examining landslide risk through separate maps, this method offers

several advantages. First, by integrating two maps into one, readers can avoid the hassle of cross-

referencing, which greatly improves efficiency and reduces the possibility of errors. Secondly, the

bivariate map provides a more holistic and intuitive understanding of the complex interplay between

vulnerability and uncertainty, enhancing the overall assessment of landslide risk.

The manuscript is well-structured and professionally written. Therefore, the reviewer has no issues

with agreeing to publication in its current form.

Thank you for the positive feedback and for taking the time to review the manuscript. We are glad to hear that

you found the manuscript well-structured and professionally written. We appreciate your recommendation for

publication.
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Response to RC2

The authors present a bivariate mapping method to spatially visualize both prediction values and

uncertainty within the same map. They also provide supplemental material to enable others to apply

this approach using free and open-source software packages. The authors discuss and present an

approach for estimating uncertainties and classifying susceptibility levels required to build a

bivariate map.

This brief communication is well-written and provides a generally significant contribution to the

landslide science community, as it highlights a method for improving the communication of

uncertainties in hazards predictions. I would recommend minor revisions to address some literature

gaps in the introduction and discussion.

The paper fails to acknowledge previously peer-reviewed research on visualization methods for

geospatial predictions. The only reference on this topic is from a blog post, which is problematic

given that the main contribution of this paper is the visualization of spatial prediction uncertainties.

In particular, it is missing references to highly cited research by MacEachren et al (2013 in

Cartography and Geographic Information Science), earlier applications to slope stability (Davis and

Keller 1997 in Computers & Geosciences), and others who have applied bivariate mapping for

communicating spatial prediction and uncertainties (Cola 2013 in Cartography and Geographic

Information Science and Nelson 1999 in Cartographic Perspectives).

Another major drawback of this paper is its heavy reliance on reference to works by its own co-

authors (Steger and Spiekermann) for landslide susceptibility modelling and data quality, while

failing to acknowledge other important contributions in the field.

Thanks for the constructive and helpful feedback provided in this reviewer comment.

We agree that there are some literature gaps in this article. To some extent, the brevity in some aspects is

attributable to the manuscript type (i.e., "Brief Communication") and the corresponding guidelines in terms of

manuscript length, number of figures and number of references (c.f. https://www.natural-hazards-and-earth-

system-sciences.net/about/manuscript_types.html). We did already stretch the limits in terms of the number of

references, but felt that a more extensive reference list was needed for this article. In our endeavor to keep the

article length and reference list short, we have omitted some potentially interesting publications that could be

cited here.

We agree with the reviewer that the papers mentioned are of high relevance and added references to the

following publications as suggested by the reviewer:

MacEachren et al (2005): https://doi.org/10.1559/1523040054738936

Davis and Keller (1997): https://doi.org/10.1016/S0098-3004(97)00012-5

DeCola (2013): https://doi.org/10.1559/152304002782008413

Nelson (1999): https://doi.org/10.14714/CP32.625

Concerning the references by the co-authors, the article includes one reference to a paper by Spiekermann et al.

and indeed four (well cited) references to manuscripts authored by Steger et al. Given the background of the

senior author, whose research focus is on uncertainty assessment in landslide susceptiblity modelling since

many years, we think that this number is not excessive.

https://doi.org/10.1559/1523040054738936
https://doi.org/10.1016/S0098-3004(97)00012-5
https://doi.org/10.1559/152304002782008413
https://doi.org/10.14714/CP32.625
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Other comments

Introduction

The introduction provides a good overview of methods applied for spatially estimating uncertainties

of landslide susceptibility predictions. However, it is lacking background on general methods for

visualizing and communicating uncertainties in spatial predictions. Existing research on this topic

should be incorporated to help position the authors’ approach within the context of prior work.

We added the following references related to visualizing and communicating uncertainties in spatial

predictions to the introduction:

Kinkeldey et al. (2014): http://doi.org/10.1179/1743277414Y.0000000099

MacEachren et al. (2005): https://doi.org/10.1559/1523040054738936

Davis and Keller (1997): https://doi.org/10.1016/S0098-3004(97)00012-5

L20. The authors rely heavy on citing the co-authors’ prior contributions on data quality. However,

there are many different researchers with significant contributions in this field, and these should be

acknowledged.

The focus on our prior contributions simply reflects our emphasis on data quality within previous research. We

agree with your suggestion and have added references to other significant contributions to ensure broader

acknowledgment:

Gaidzik & Ramírez-Herrera (2021): https://doi.org/10.1038/s41598-021-98830-y

Loche et al. (2022): https://doi.org/10.1016/j.earscirev.2022.104125

L40. The paper should also reference Heckmann et al. (2014 in NHESS), who used repeated

resampling and combined (100) susceptibility maps to estimate the interquartile range (IQR) in

spatially predicted probabilities – a similar approach to the one used in this submission.

Thank you for this literature suggestion. We added a reference to Heckmann et al. (2014)

https://doi.org/10.5194/nhess-14-259-2014. We noted that the metric used in this study is actually the

interquantile range between the 0.95-quantile and the 0.05-quantile, thereby encompassing 90 % of the

modelled susceptibility values.

Methods

Section 2.1: The authors cite a blog post as the source of their methods but fail to reference earlier

peer-reviewed contributions using a similar approach (e.g., Cola et al. 2013). While the authors clarify

that their uncertainty calculations are based solely on variations in the sampling of absence (non-

landslide) points, given the large number of landslide samples (~2000), they could have also

resampled landslides (e.g., using a cross-validation approach). At the very least, they should

acknowledge that more robust approaches, which account for variations in landslide presence data,

are available.

Thanks for pointing this out. We fully agree and added the following references in this section:

Trumbo (1981): http://doi.org/10.1080/00031305.1981.10479360

Nelson (1999): https://doi.org/10.14714/CP32.625

http://doi.org/10.1179/1743277414Y.0000000099
https://doi.org/10.1559/1523040054738936
https://doi.org/10.1016/S0098-3004(97)00012-5
https://doi.org/10.1038/s41598-021-98830-y
https://doi.org/10.1016/j.earscirev.2022.104125
https://doi.org/10.5194/nhess-14-259-2014
http://doi.org/10.1080/00031305.1981.10479360
https://doi.org/10.14714/CP32.625
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Speich et al. (2015): http://doi.org/10.1016/j.jhydrol.2015.01.086

Teuling et al. (2011): http://doi.org/10.1002/joc.2153

DeCola (2013): https://doi.org/10.1559/152304002782008413

Since the main purpose of this brief communication is on the visualization aspect, we did not discuss the

underlying models in detail. We agree that acknowledging that more robust approaches exist is important and

added a corresponding remark in the text.

Section 2.2.1, L87. I think it’s good that you acknowledge the source of your inspiration for your

bivariate approach; however, existing peer-review on bivariate mapping approaches to communicate

prediction and uncertainty should also be acknowledged.

Thanks for pointing this out. We fully agree and updated the references in this section.

Results

L133. The authors mention the term “geomorphic plausibility” in the introduction, but don’t define

it. I think it would be useful to the reader to define it.

Thank you for this suggestion. In our previous paper, we introduced the term geomorphic plausibility in the

context of landslide susceptibility modelling (cf. Steger et al. 2016). In summary, a geomorphic plausibility

assessment serves as an evidence-based approach to identify implausible predictions, akin to the concept of

‘biological plausibility’ used to evaluate empirical relationships in biology. It aims to detect whether a landslide

susceptibility map reflects evident errors or artefacts from the classification algorithm or input data,

contradicting geomorphic plausibility. Following also Oreskes et al. (1994), a model is geomorphically

implausible if the resulting map exhibits detectable flaws. This subjective evaluation is supported by holistic

interpretations of exploratory data analyses, modelled relationships, and the spatial structure of predictors and

predicted patterns. In order to maintain the focus of this "brief communication type publication," we refer the

reader to the mentioned publication and expanded this section as follows: "Geomorphic plausibility evaluation

aims to assess whether a landslide susceptibility map aligns with fundamental process knowledge or rather

reflects errors stemming from input data or the modeling approach, as detailed in Steger et al. (2016)"

Discussion

L159. “In addition, the type of uncertainty conveyed should be kept in mind” – what are you trying to

communicate with this sentence? It’s not clear.

There are different sources of uncertainty, notably including uncertainties stemming from the landslide

inventory, explanatory features or the modelling algorithm used. We expanded this paragraph by appending

the following sentence to make this more explicit: "In addition, the type of uncertainty conveyed should be kept

in mind: The underlying uncertainties can be aleatoric and epistemic in nature. Especially epistemic uncertainty,

stemming from different sources along the modelling workflow, including the inventory, explanatory features

or the model used, can be visualized."

L164. “In landslide susceptibility modeling, results are commonly discretized into three classes

signifying low, medium and high susceptibility” – this statement is highly debatable. There are a wide

range of approaches in practice to classify landslide susceptibility levels.

http://doi.org/10.1016/j.jhydrol.2015.01.086
http://doi.org/10.1002/joc.2153
https://doi.org/10.1559/152304002782008413
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We agree and removeed the word 'three', indicating more generally that a discretization of the continuous

variable into susceptibility classes is commonly performed.

L166. The authors again cite only co-authors’ works (Spiekermann and Steger), even though there

are other well-cited approaches for calculating breaks (e.g. Chung and Fabbri 2003) including

accounting for proportion of landslides covered (e.g. Petschko et al 2014), as applied in this

submission.

With respect to the derivation of class intervals we did cite the following publications (L162f): Slocum et al.

(2022), Jiang (2013), Jenks and Caspall (1971) as well as Fisher (1958). We supplemented this section with the

following additional references:

Chung and Fabbri (2003): http://doi.org/10.1023/B:NHAZ.0000007172.62651.2b

Costanzo et al. (2012): http://doi.org/10.5194/nhess-12-327-2012

Conoscenti et al. (2016): http://doi.org/10.1016/j.geomorph.2016.03.006

Petschko et al. (2014): http://doi.org/10.5194/nhess-14-95-2014

Hussin et al. (2016): http://doi.org/10.1016/j.geomorph.2015.10.030

L175. The authors discuss the importance of color considerations but should expand on how their

chosen color palette addresses issues like color impairment (e.g., for colorblind readers). Providing

recommendations for alternative palettes or best practices would be helpful for readers.

In terms of recommendations for alternative palettes we refer to the R package biscale, which implements a

set of bivariate mapping palettes. The palettes provided therein are based on recommended palettes used for

map representations. We added the twelve color palettes provided in biscale as well as map representations

with six selected palettes in the appendix. In addition, tools such as https://colorbrewer2.org or

https://hclwizard.org (c.f. the R package colorspace) provide valuable assistance for selecting palettes for

users with different types of vision deficiencies. We added a reference to these two tools as a footnote.

L185. The authors should reference other approaches for quantifying uncertainties in landslide

susceptibility models to provide a more balanced discussion.

We supplemented this statement with the following references to provide a broader context:

Rossi et al. (2010): http://doi.org/10.1016/j.geomorph.2009.06.020

Petschko et al. (2014): http://doi.org/10.5194/nhess-14-95-2014

Brenning et al. (2015): https://doi.org/10.5194/nhess-15-45-2015

Lombardo et al. (2020): https://doi.org/10.1016/j.earscirev.2020.103318

http://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
http://doi.org/10.5194/nhess-12-327-2012
http://doi.org/10.1016/j.geomorph.2016.03.006
http://doi.org/10.5194/nhess-14-95-2014
http://doi.org/10.1016/j.geomorph.2015.10.030
http://doi.org/10.1016/j.geomorph.2009.06.020
http://doi.org/10.5194/nhess-14-95-2014
https://doi.org/10.5194/nhess-15-45-2015
https://doi.org/10.1016/j.earscirev.2020.103318
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Response to CC1

Thank you for the input and the suggestions. Given that we the manuscript under consideration is a "Brief

Communication" we feel that several of the remarks exceed the scope of this type of manuscript. We therefore

refer to Schlögl et al. (2025), where the questions raised here are answered, and the study area, data, methods

and methodology is described and discussed in detail. The companion paper is available at

https://doi.org/10.1007/s12665-024-12041-y. In this manuscript, we decided to summarize the core aspects

relevant to obtain a brief overview and general understanding of the data visualized in the bivariate map.

While the underlying model is of course important, we wanted to focus on the method of presenting and

communicating estimates and associated uncertainty via bivariate mapping, using a recent model as a case

study example. This is also beneficial for providing data alongside the code in the supplementary GitHub

repository. Please find more detailed responses below.

1. Related to susceptibility mapping of landslides

This paper deals with a method for visualizing landslide susceptibility and associated uncertainty

through bivariate mapping (randon forest modeling of landslide susceptibility and associated

uncertainty, and bivariate mapping). The model used (random forest) results in the mapping of

susceptibility (means) and uncertainty (standard deviations), the combination of which (bivariate

mapping) is the subject of this paper.

Landslide susceptibility modeling is based on the “randon forest” method (p. 3 of the article: 2.1

Landslide susceptibility modeling). The implementation of “randon forest” is preceded by the

collection, selection and the classification of events (1973 events). What period/years do these

events cover?

The inventory used includes all landslides documented by October 2023. Please note that not all recorded

events have an exact timestamp (i.e., information on the exact event day is not always available, especially for

events farther back in time). Many events in the inventory were mapped using a very high resolution digital

terrain model, which is continuously updated (every five years), whith different areas of Carinthia being

covered in regular intervals. The earliest events date back to the 1920s and 1930s, the first quartile is 1996,

the median 2009, and the third quartile 2007. The newest events are from 2023. The empirical density of all

events with date information looks as follows:

https://doi.org/10.1007/s12665-024-12041-y
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These events served as target variable (i.e., training labels): in the matrix used by the model

(observations in rows and variables in columns), each event is represented by which parameters /

characteristics: probability of occurrence, magnitude, damage, etc.?

Since the model is a binary classification model, each event is simply characterized by its presence. Event size is

available for many events (i.e., events are mapped as polygons), but due to the regional scale of the analysis

events are summarized to data points signifying the landslide scarp. Damage, magnitude or recurrence interval

are not considered for the susceptibility model. Information on physical damage is not available.

It would be interesting to indicate the main determinants: elevation, slope, precipitation...

(independent variables: Variation Inflation Factor VIF?) selected and the method used to select them

(regression coefficient: Ordinary Least Square or other?) with regard to the dependent variable

studied (landslide events).

Detailed information on the main determinants are available from the feature importance plot of the

underlying model as provided in Schlögl et al. (2025). The main determinants include the vector ruggedness

measure, land cover type, slope, tree height and the 30-day SPEI (a drought indicator). Please find

correlation heatmaps for (1) all features initially considered and (2) the reduced feature set used for

modelling. For the second (reduced) feature set, features that exhibit redundant information as indicated

by high Pearson correlation coefficients (ρ > 0.6) were omitted.
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“A more detailed description of the modeling approach as well as an in-depth discussion focusing on

statistical performance and geomorphic plausibility is provided in Schlögl et al. (2024)” Finally, I

propose to better describe both the study site (its dimensions: how many km in length and width,

number of pixels in rows and columns, etc.) and the method for modeling landslide susceptibility,

this method is apparently considered by another paper (Schlögl et al., 2024) but which is currently

being evaluated. The aim is to show that the two maps (susceptibility and uncertainty) are based on

a method that is both (statistically) validated and (methodologically) reproducible.

The size of the study area is stated right at the beginning of subsection 2.1:

"The study region encompasses an area of $5,785$ km² within the Central Eastern Alps in Carinthia,

Austria."

The size of the sub-area used for visualization is 999 times 499 pixels. The pixel size is 10x10 meters (in

EPSG:3416). The full data set and the corresponding outline of the area of interest are provided in the

supplementary GitHub repository at https://github.com/r3xth0r/bivariate-lsm.

We argue that the statistical method employed for assessing landslide susceptibility is of secondary importance

in this context. The primary focus of this article is on the communication of uncertainties through bivariate

mapping. The methodological approach and the corresponding discussion of the model fall outside the scope of

this article.

The maps are fully reproducible, since all data used for creating the maps as well as the corresponding R scripts

and QGIS-Project are available in the supplementary GitHub repository. In addition, all resources related to the

landslide susceptibility model (including all scripts for data preprocessing, data preparation, sampling, model

tuning, training and validation) are available on GitLab at https://gitlab.com/Rexthor/lsm-carinthia. These

resources are mentioned in the "Code and data availability statement" at the end of the manuscript.

The landslide hazard is probably linked to other natural hazards (precipitation, freezing and thawing

periods, etc.). Can't we talk about a landslide triggered by other hazards (multi-hazard)? Perhaps

we're probably getting off the topic of this paper (Schlögl et al., 2024?).

This is of course a relevant topic. However, the focus of this manuscript lies on visualization of results in terms

of science-to-science as well as science-to-public communication. Additional discussions related to landslide

mechanics, geomorphology and multizahard impact assessment are beyond the scope of this manuscript.

Uncertainty can be taken into account at different stages/steps:

when calculating susceptibility (if possible), resulting in only a single dataset (instead of two

datasets: means and standard deviations) by “random forest” itself?

in post-processing (if possible), by crossing the two datasets (means and standard deviations:

like the coefficient of variation)?

or by bivariate mapping, as proposed in the article (e.g. crossing the two rasters: Raster 1 of

Susceptibility * Raster 2 of Uncertainty)

This is correct. We state in the article that "[t]he uncertainty displayed here merely refers to the estimation

uncertainty stemming from the sampling of negative instances, as quantified through the ensemble modeling

approach." Please also see our response to RC2 with respect to epistemic and aleatory uncertainties, and the

corresponding changes to the manuscript.

https://github.com/r3xth0r/bivariate-lsm
https://gitlab.com/Rexthor/lsm-carinthia
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2. Related to mapping of susceptibility and uncertainty

“We advocate that bivariate mapping is a straightforward yet sound and effective way to

communicate landslide susceptibility and the associated uncertainty.” How can we show/verify that

the bivariate map is more effective in conveying the message than the two initial maps of

susceptibility and uncertainty? It's a question of visual perception and cognitive understanding of

the final map by end-users (elected representatives, citizens, tourists), in order to confirm that the

final map is more effective (or not).

We did conduct stakeholder workshops (world cafe method) with selected expert users from the main target

group (including geologists from the Austrian national geological survey, geologists from Austrian federal

governments and representatives from disaster relief forces), who provided unstructured feedback for using

the map a specific context and for specific tasks. While the users needed some time to become accustomed to

the visualization initially, once they internalized the legend the combined map was considered to be more

effective. The main reasons were that (1) no switching between map views was required, which makes the joint

interpretation less cumbersome (i.e., lower cognitive effort for internalizing the legend once is lower than

switching between maps), and (2) the consideration of the second dimension (uncertainty) was considered less

likely to be neglected. However, a formalized usability evaluation (such as qualitative usability tests with users

or usability expert reviews conducted by usability professionals, or quantitative assessments such as A/B tests)

or studies conducted by cognitive psychologists would be required to formally verify the effectiveness of this

method. Unfortunately, this is beyond the scope of the study. We expanded the methods and results section

accordingly.

When we consider 3 susceptibility classes and 3 uncertainty classes (3 x 3), we obtain 9 classes or 9

color gradations (bivariate map). If we go to 4 x 4, we'll have 16 color gradations, which makes

reading the bivariate map even more & more complex...

This is true. Arguably, the interpretability when using 4 x 4 classes is lower despite the additional amount of

information contained in the map, as the 16 different gradiations are more difficult to distinguish visually.

Therefore, our results are based on 9 classes, which can be distinguished comparatively easily when using

appropriate color palettes while still providing enough information on the core messages conveyed by the map.

Secondly, the use of the visual variable color (which can be aesthetic and attractive) certainly brings

us closer to human visual perception, which is immediately colorful (and in 3D), but what mental

realities do the color used represent of the landscape / site? Is it interesting to represent uncertainty

in blue gradation color (high level of uncertainty in blue)? The paper can try to present / propose a

second color combinations. As future development, the definitive choice of color used (gradation in

one color for each of susceptibility and uncertainty) can be determined / confirmed ALSO with the

help of end-users (students, researchers, laypersons, decision makers).

The choice of color palette is briefly discussed in the discussion section (line 174ff). We emphasize the

importance of accessibility (especially for people with vision deficiencies), the cultural and contextural

relevance, and point towards employing a user-centered design process for tailoring visualized information to

users. Modifying the color palette is straightforward from a technical point of view, as only the string

specifying the name of the palette has to be changed in R. In QGIS, the color palette can easily be changed via

the GUI in the properties of the raster layer. In addition to predefined color palettes, custom palettes could be

provided relatively easily. We have created several alternative representations for demonstration purposes. The

provided these in the appendix.
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The 3D block diagrams in the appendices help to understand the results (visual link between the two

variables: slope and high landslide susceptibility-uncertainty).

We also think that rayshader animations provide additional insights by adding information on the terrain. We

added an interactive rayshader visualization as supplementary material, and serve the animation via GitHub

pages at https://r3xth0r.github.io/bivariate-lsm/rayshader.html.

Is the scale of variation of susceptibility (between 0 and 1) different (or not) from that of uncertainty

(standard deviations)? It is the determination of the limits considered for the creation of the 3

classes in both cases that raises the question here in terms of scales of variation of susceptibility and

uncertainty. Has uncertainty been standardized?

Both scales refer to the same dimensionless quantity, namely landslide susceptibility, proxied by the

classification probability of the underlying binary classification problem. Susceptibility is the mean of the

ensemble, uncertainty its corresponding standard deviation. We do discuss the issue of deriving univariate class

intervals in continuous numerical vectors in the discussion section (line 160 ff).

https://r3xth0r.github.io/bivariate-lsm/rayshader.html

