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Abstract 10 

Digital Elevation Models (DEMs) play a key role in slope instability studies, ranging from landslide detection and 11 

recognition to landslide prediction. DEMs assist these investigations by reproducing landscape morphological 12 

features and deriving relevant predisposing factors, such as slope gradient, roughness, aspect, and curvature. 13 

Additionally, DEMs are useful for delineating map units with homogeneous morphological characteristics, such 14 

as Slope Units (SUs). 15 

In many cases, the selection of a DEM depends on factors like accessibility and resolution, without considering 16 

its actual accuracy. In this study, we compared freely available global elevation models (ALOS, COP, FABDEM) 17 

and a national dataset (TINITALY) with a reference model (local airborne LiDAR) to identify the most suitable 18 

DEM for representing fine-scale morphology and delineating SUs in the Marche Region, Italy, for landslide 19 

susceptibility studies. Furthermore, we proposed a novel approach for selecting the optimal SUs partition. 20 

The DEM comparison was based on several criteria, including elevation, residual DEMs, roughness indices, slope 21 

variations, and the ability to delineate SUs. TINITALY, resampled at a 30x30m pixel size, was found to be the 22 

most suitable DEM for representing fine-scale terrain morphology. It was then used to generate the optimal SUs 23 

partition among 18 combinations. These combinations were evaluated using both existing and newly integrated 24 

metrics alongside mapped landslide inventories to optimize terrain delineation and contribute to landslide 25 

susceptibility studies. 26 

 27 

Introduction 28 

Open-access global DEMs have been commonly used for a vast range of geomorphological studies, which have 29 

required modelling or analysis of terrain surface in mountain environments, where these DEMs have been 30 

characterized by a marked quality deterioration (Guth et al., 2024; Trevisani et al., 2023b). One of the many uses 31 

of DEMs has been to serve as the base input for analyzing landslides morphological features, state and style of 32 

activity and generating landslide susceptibility models (Brock et al., 2020). Among multiple methods of data-33 

driven (Ahmed et al., 2023; Lombardo et al., 2020; Lombardo and Tanyas, 2020; Titti et al., 2021a) and physical-34 

mailto:giacomo.titti@unibo.it


   

 

2 
 

based models (Van den Bout et al., 2021) to predict, investigate (Brenning, 2005; Pirasteh and Li, 2017; Steger et 35 

al., 2023) and detect landslides (Qin et al., 2013), the elevation model has been of essential use. DEMs are utilized 36 

to derive terrain-based characteristics (Brock et al., 2020; Mahalingam and Olsen, 2016) which have been 37 

conditioned by their resolution. In the literature, DEM resolution and its influence have been tested in several 38 

aspects such as: in landslide modelling and hazard assessment (Catani et al., 2013; Claessens et al., 2005; Fenton 39 

et al., 2013; Huang et al., 2023), in 3D physical models (Qiu et al., 2022), as well as morphological quality 40 

assessment explored at regional scales (Grohmann, 2018; Hawker et al., 2019; Trevisani et al., 2023b).  41 

Comparisons among DEMs to evaluate the most suitable product are based on different criteria and the results 42 

have likely varied as per the test site. Thus, even if the same criteria have been used to rank DEMs, regional 43 

topography has influenced the preference of the elevation model in different areas (Florinsky et al., 2019; Zhang 44 

et al., 2019). Landcover has been specifically important when global DEMs (Bielski et al., 2024), such as 45 

Copernicus GLO-30 (COP) and Advanced Land Observing Satellite (ALOS) World 3D-30m, have been used for 46 

deriving a Digital Terrain Model (DTM), given that most of the times these products resembled more a Digital 47 

Surface Model (DSM: Guth & Geoffroy, 2021). 48 

An ongoing initiative, the Digital Elevation Model Inter-comparison eXercise (DEMIX; Strobl et al., 2021), has 49 

aimed to align methodologies allowing for criteria-based ranking of global DEMs. In the first application (Bielski 50 

et al 2024), metrics related to slope and roughness have been considered in addition to those related to elevation 51 

differences; the approach has further developed, adopting new metrics and a wide range of geomorphometric 52 

derivatives (Guth et al., 2024). Global DEMs have been commonly used in geoscientific research due to their 53 

spatial extent and public accessibility whereas national DEMs (Gesch et al., 2018; Muralikrishnan et al., 2013; 54 

Tarquini et al., 2007) have generally been tailored to represent country-specific land surface and morphology at a 55 

higher spatial resolution and accuracy to serve geoscience applications. Shuttle Radar Topography Mission 56 

(SRTM; Jarvis et al., 2008), ALOS (Takaku et al., 2014), Terra Advanced Spaceborne Thermal Emission and 57 

Reflection Radiometer Global DEM (ASTER GDEM; Abrams et al., 2010) have been among the most widely 58 

used, freely accessible and initial global DEMs utilized in geomorphic analysis (Becek, 2014; Florinsky et al., 59 

2019; Mahalingam and Olsen, 2016; Trevisani et al., 2023b; Zhang et al., 2019). However, several factors must 60 

be considered when implementing these global datasets in a localized area for landslide recognition, mapping, 61 

and assessment. 62 

Landslide inventories and elevation models have been essential inputs for data-driven landslide models, for which 63 

the DEM has been used to derive morphological parameters such as slope angle and slope aspect. For these 64 

derivatives to be as accurate as possible in a model, the DEM quality (Claessens et al., 2005; Mahalingam and 65 

Olsen, 2016; Saleem et al., 2019) should satisfy the representation of fine-scale morphology (Chaplot et al., 2006; 66 

Florinsky, 1998). In other words, the DEM quality has significantly affected the prediction capacity of a model. 67 

The errors contained within a DEM, even when small, propagate in derivatives of elevation (Karakas et al., 2022; 68 

Mahalingam and Olsen, 2016; Pawluszek and Borkowski, 2017; Saleem et al., 2019) which have been weighed 69 

as important factors in landslide occurrence. The various available DEMs have been generated using a range of 70 

technologies. While significant efforts have been made to improve DEMs over time, the accuracy of these models 71 

has remained a critical issue. Selecting an appropriate DEM has proven to be more important than the number of 72 

DEM-derived factors used in landslide assessment (Kamiński, 2020). 73 
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Another use of DEMs has been the delineation of mapping units (Schlögel et al., 2018). Mapping units have been 74 

used to subdivide the study area in homogeneous, elemental units such as: administrative units (Lombardo et al., 75 

2019), terrain units (Van Westen et al., 1997), unique condition units (Titti et al., 2021b), grid cells (Reichenbach 76 

et al., 2018) or SUs (Ahmed et al., 2023). SUs were initially introduced by Carrara et al. (1991) as portions of 77 

territory, presenting homogeneous morphological characteristics for landslide identification and susceptibility 78 

mapping. The SU, according to the scale adopted, has served as a solution that adequately represents unstable 79 

slopes. 80 

To assess the suitability of DEMs for landslide susceptibility and prediction, it has been essential to conduct a 81 

quality assessment of these models which has commonly referred to the spatial resolution alone. Therefore, global 82 

DSMs and a national Italian DTM has been compared with a local accurate elevation model (Airborne LiDAR) 83 

in the context of terrain representation and its delineation. The Italian DTM has been already investigated in some 84 

studies, mainly focusing on hydrogeomorphology studies (Pulighe and Fava, 2013; Zingaro et al., 2021; Annis et 85 

al., 2020; Tavares da Costa et al., 2019). Accordingly, the quality evaluation from the perspective of fine-scale 86 

morphology and geomorphometric derivatives in the context of landslide science has remained an interesting 87 

aspect to elaborate on. 88 

This study has aimed to optimize inputs used for representing morphological data in landslide susceptibility 89 

assessment and to understand their interactions by: identifying the most suitable DEM for accurately representing 90 

fine-scale slope morphology; proposing a new metric for analyzing optimal SU parameters for landslide 91 

susceptibility mapping, integrating landslide inventory data with landslide area and numerosity; extending and 92 

applying the methodology to test landslide susceptibility at a regional scale in the Marche Region of Central Italy. 93 

Study Area 94 

In this study, we have selected two distinct study areas. The first Area of Interest (AOIa) has encompassed the 95 

entire Marche region, located in central-eastern Italy (Figure 1, AOIa). From the morphological point of view, this 96 

region is characterized by three different types of landforms that extend in the north-south direction. In the western 97 

part, the region has been crossed by the Apennines which can reach, in the area, a peak of 2476m a.s.l. at Monte 98 

Vettore. Then, the reliefs degrade to more rounded hills in the central part of the region till the flat eastern coastal 99 

strip. From a geological perspective, the Apennines, a Neogene fold-and-thrust belt that formed following the 100 

closure of the Mesozoic Tethys Ocean, is characterized by calcareous units, calcareous-marly and arenaceous 101 

units, as well as pelitic-arenaceous and marly-arenaceous units, ranging in age from the Jurassic to the Neogene. 102 

Several small rivers traverse the region from west to east. In particular, the basins of Misa, Esino, Cesano, and 103 

Metauro rivers were affected by an exceptional thunderstorm in September 2022, triggering floods and landslides 104 

(Corti et al., 2024). One of the highest rainfall intensity of the 2022 event was registered in a sub-portion of the 105 

Marche region, that has been selected as the second study area (AOIb) for this work (Figure 1, AOIb). This 106 

selection is not only based on the consequences of the exceptional rainfall event but also on the fact that, 107 

morphologically, it is typically representative of the mountainous terrain of Marche. Moreover, this area has been 108 

covered by a high-resolution dataset (1m pixel size) which allows us to effectively conduct the experiments as 109 

described in the following text.  110 
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A relevant portion of the territory of Marche region (AOIa) presents slope failures. The most populated dataset of 111 

landslide in the area is the inventory of the Piano stralcio per l’Assetto Idrogeologico (PAI) of Marche Region 112 

(Figure 1). In the area of Marche region (AOIa), the PAI counts 19,296 inventoried landslides for a total landslide 113 

area of 1394 km2 which covers 15% of the total regional surface classified as flow, slide and complex landslides 114 

(Cruden and Varnes, 1996). 115 

 116 

Figure 1: Study area in central Italy. On the left, is the study area AOIa, encompassing the entire Marche region which 117 

has been analyzed in the second phase of the study. The geological classification is ordered by age (Quaternary, 118 

Cretaceous-Lower Pliocene, Lower Pliocene-Lower Pleistocene, Middle-Upper Miocene, Upper Eocene-Upper 119 

Miocene, Upper Trias-Middle Eocene) .  On the right is study area AOIb, a sub-portion of the Marche region where we 120 

conducted the DEM analysis in the first phase covered by the 1m pixel size airborne LiDAR survey. The Piano Stralcio 121 

per l’Assetto Idrogeologico (PAI) landslide inventory of the Marche Region identifies 19,296 landslide bodies as 122 

polygons.  123 

124 
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Materials and Methods 125 

The methodology implemented in this study has aimed to assess the quality of freely available DEMs, framing 126 

their use for landslide susceptibility assessment. DEMs have been essential because they allow the derivation of 127 

landslide predisposing factors and generate a morphology-based terrain subdivision: SUs. Thus, these two uses of 128 

a DEM in landslide susceptibility assessment have been investigated.  129 

The analysis has been conducted in two sequential phases (Figure 2). In the first phase the differences in DEM 130 

derivatives have been assessed by comparing global and a national DEM to a local high-resolution reference 131 

elevation data in AOIb. In the second phase we have evaluated 18 SU partitions on the base of internal/external 132 

homogeneity, landslide extension and landslide number using the best performing open-source DEM, which has 133 

been identified in the first phase of this study. 134 

135 
Figure 2: Workflow of the two-phases analysis. Phase 1 DEM assessment: comparison of global and national DEM to 136 

a local high-resolution reference elevation model (with reference to AOIb). Phase 2 Slope Units delineation: selection 137 

of the optimal parameters for SUs delineation (with reference to AOIa). 138 

Phase 1: DEM assessment 139 

In this phase, the accuracy of three global DEMs, as mentioned below, and one national DEM (TINITALY) has 140 

been evaluated by a comparison with a local airborne LiDAR in the study area AOIb. 141 

ALOS  (ALOS World 3D - 30m. V3.2, 2024) has been released by Japan Aerospace Exploration Agency (JAXA) 142 

in 2015, at a horizontal resolution of 1 arc-second, approximately 30 meters as a DSM (Caglar et al., 2018). This 143 

product, surveyed from 2006 to 2011, uses the 5-meter mesh of "World 3D Topographic Data" and is provided in 144 

two resampled versions by JAXA (mean resampling kernel is used in this study), with elevation expressed 145 

according to the Earth Gravitational Model 1996 (EGM96). 146 
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COP (European Space Agency, 2024), has been obtained from the WorldDEM at 1 arc second as a DSM, a product 147 

of the radar data acquisition of 12 meters TanDEM-X mission from 2011 to 2015. Forest And Buildings removed 148 

COP DEM (FABDEM; Hawker et al., 2022), has been made available as a corrected global DTM available at 1 149 

arc-second grid spacing (60°S-80°N) derived from COP. Machine learning techniques have been devised to 150 

improve mean absolute vertical error in built-up and forested areas in comparison to COP (Hawker et al., 2022). 151 

Both FABDEM and COP elevations have been referred to EGM 2008 geoid.  152 

TINITALY’s 1.0 (Tarquini et al., 2007), and version 1.1 (Tarquini et al., 2023), has covered the whole of Italian 153 

territory, as a DTM available at 10m pixel size. Heterogenous data, mainly based on Technical Regional 154 

Cartography (CTR) with elevations derived by means of photogrammetric method, has been used to build a 155 

national scale model. In particular, the CTR map scaled at 1:10000 with 10m interval for contour lines is used for 156 

Marche region in the compilation of TINITALY. A Triangular Irregular Network (TIN) structure has been 157 

employed in constructing the DEM to tackle varying data density and redundancy. Merging various types of input 158 

data is followed by significant investigation to ensure the seamless production of a high resolution and 159 

considerably the most accurate representation for Italy, with a root mean square error ranging from 0.1 to 6 meters 160 

(Tarquini et al., 2007).  161 

The reference DEM (as called hereafter) has been a DTM acquired in 2012 using airborne LiDAR, with a pixel 162 

size of 1x1m, and a reported vertical and planimetric accuracy of 15 cm and 30 cm, respectively (Ministero 163 

dell'Ambiente e della Sicurezza Energetica, https://gn.mase.gov.it/portale/pst-dati-lidar). This reference DTM has 164 

been aggregated via averaging the pixel size to 30m. 165 

The global DEMs (COP, FABDEM, ALOS) and TINITALY have been projected in WGS84 UTM 33N with a 166 

pixel size of 30 and 10 meters respectively using bilinear interpolation for alignment with the reference DEM.  167 

The inclusion of COP and FABDEM, along with ALOS as a global DEM and TINITALY as a national-scale 168 

elevation model for comparison, has been invoked by several studies (Bielski et al., 2024; Guth & Geoffroy, 2021; 169 

Meadows et al., 2024; Osama et al., 2023; Trevisani et al., 2023). All the DEMs, except TINITALY (geoid model 170 

not publicly available), have been transformed to a common geoid model, EGM2008 respectively for alignment 171 

and comparison with the reference grid. TINITALY is based on the Italian geodetic network (IGM95) where the 172 

measured ground points have been described by the Italian geoid called ITALGEO 2005 (Albertella et al., 2008; 173 

Barzaghi et al., 2007). Barzaghi and Carrion (2009) have concluded that the difference between ITALGEO05 174 

(regional geoid model) and EGM2008 (global geoid model) is negligible for many applications, and both are 175 

capable to represent the region of Italy. Therefore, no geoid transformation for TINITALY has been required. 176 

To perform the quality assessment of selected DEMs, elevation differences have been considered for compatibility 177 

with precedent studies. Indeed, studies focusing on DEMs comparison (Polidori and Hage, 2020) are generally 178 

based on elevation differences, using standard statistical metrics such as standard deviation and Root Mean Square 179 

Error (RMSE), and in some cases slope and aspect have been considered (Meadows et al., 2024; Zhang et al., 180 

2019). However, as suggested in many studies (Bielski et al., 2024; Crema et al., 2020; Florinsky et al., 2019; 181 

Gesch, 2018; Guth & Geoffroy, 2021; Kakavas et al., 2020; Liu et al., 2019; Purinton & Bookhagen, 2017; 182 

Trevisani et al., 2023), statistical metrics of elevation differences alone fail to fully capture the quality of DEMs, 183 

including the capability to represent fine-scale morphology and the presence of artifacts. Therefore, for this reason 184 

https://gn.mase.gov.it/portale/pst-dati-lidar
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and because the focus of the work has been to investigate mainly the accuracy of the DEMs geomorphometric 185 

derivatives, along with the differences in elevation, a straightforward and simple approach to take the local spatial 186 

variability of surfaces into account based on a geostatistical-based methodology (Isaaks and Srivastava, 1989), as 187 

discussed by Trevisani et al. (2023b), has been proposed. 188 

The approach has been based on the derivation of a residual DEM, also known as Topographic Position Index 189 

(TPI; Guisan et al., 1999; Hiller and Smith, 2008; Wilson and Gallant, 2000), and the calculation of roughness 190 

indices. The residual DEM, derived by detrending the original surface, has permitted to highlight the capability 191 

of DEMs to reproduce local fine-scale morphology. Moreover, the residual DEM has been used as input for the 192 

calculation of roughness indices such as the standard deviation of residual DEM (Grohmann et al., 2011) or even 193 

geostatistical based estimators such as the variogram (Eq 1, with p = 2), the madogram (Eq. 1, with p = 1) and 194 

(Eq. 2) represents the more robust Median Absolute Differences (MAD; Trevisani and Cavalli, 2016; Trevisani 195 

and Rocca, 2015). The generalization of the variogram have been described as in Eq. (1) and MAD as Eq. (2); 196 

𝛾(𝒉)𝑝 =
1

2𝑁(𝒉)
∑ |𝑧(𝒖𝑎) − 𝑧(𝒖𝑎 + 𝒉)|𝑝𝑁(𝒉)

𝛼=1 =
1

2
⋅ 𝑚𝑒𝑎𝑛(|∆(𝒉)|𝑝),         (1) 197 

where, 198 

 𝛥(𝒉)𝑎 = 𝑧(𝒖𝑎) − 𝑧(𝒖𝑎 + 𝒉) 199 

 MAD(𝒉) = |∆(𝒉)𝛼=𝑚𝑒𝑑𝑖𝑎𝑛|,    (2) 200 

where 𝒉 is the separation vector (lag) between two locations (𝑢), 𝑧(𝑢) is the value of the variable of interest in 201 

the location 𝑢 (e.g., residual elevation), and Ν(𝒉) is the number of point pairs with a separation vector 𝒉 found in 202 

the search window considered. Accordingly, the variogram is the half of the mean squared differences 𝛥(ℎ)𝑎 and 203 

the MAD is the median of the absolute differences 𝛥(ℎ)𝑎. It should be highlighted that there are roughness indices 204 

such as MADk2 and the Radial Roughness Index (RRI) that have been calculated directly from the DEM, without 205 

detrending (Trevisani et al., 2023c, a).  206 

A simple short-range omnidirectional roughness index, such as MAD calculated for lag distances of 2 pixels and 207 

circular kernel of 3 pixels, permits to analyze fine-grain roughness (see Trevisani et al., 2023a; Trevisani and 208 

Rocca, 2015 for a full discussion). The MAD omnidirectional roughness index essentially provides a measure of 209 

omnidirectional spatial variability (median differences in residual elevation) by comparing all pixel values 210 

separated by a distance of |h| pixels in the moving window considered. An alternative roughness index which does 211 

not require the definition of calculation parameters is the RRI (Trevisani et al., 2023c), that has been derived to 212 

improve the popular Topographic Ruggedness Index (TRI; Riley et al., 1999). 213 

All the comparisons have been done using a pixel size of 30x30m. This value was assumed because it is closer to 214 

the size of global 1 arc second DEMs, except for TINITALY which is released with a pixel size of 10x10m. 215 

TINITALY has been upscaled by mean-pixel aggregation to 30x30m pixel size. The 30m DEM (TINITALY30m) 216 

has also been compared with the 10m pixel size version (TINITALY10m) in AOIb to assess the effect of upscaling 217 

on the analysis. The aggregation at 30m permits to filter out or at least reduce some characteristics artifacts of 218 

TINITALY, such as triangular patterns, due to interpolation in areas of low data density, and artificial terraces, due 219 

to the interpolation of contour lines. Given that, slope, roughness indices and residual DEM are scale-dependent 220 
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geomorphometric derivatives, a normalization has been done to compare the results of the differences between 221 

the derivatives at different resolutions of TINITALY and the reference DEM. Accordigly, a normalized difference 222 

has been adopted for each derivative D:  223 

(𝐷𝑇𝐼𝑁𝐼𝑇𝐴𝐿𝑌 – 𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝐸𝑀) / ( 𝐷𝑇𝐼𝑁𝐼𝑇𝐴𝐿𝑌  +  𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝐸𝑀). 224 

Finally, an additional analysis has been conducted. Since the goal of the research proposes attribution to landslide 225 

studies, the DEM-derived slope difference distribution in the landslide areas delineated by the PAI inventory is 226 

also included. To prevent overestimation of landslide areas, polygons contained within or significantly 227 

overlapping another polygon (primarily representing landslide reactivations) have been merged. 228 

To further assist in evaluating the quality of DEMs in the frame of landslide susceptibility assessment, the SUs 229 

have been generated using various DEMs (global and national). This has allowed for a comparison of the SUs 230 

produced from the reference DEM with those derived from the global DEMs under evaluation, highlighting any 231 

differences in terrain partitioning and geometry. The software r.slopeunits (Alvioli et al., 2016) has been used to 232 

generate the SU maps, starting from the SU parameters proposed by Alvioli et al. (2016) for AOIb. After a few 233 

corrections and optimizations, the parameters have been set as: flow accumulation threshold to 5×105 m2, 234 

minimum SU area as 80,000 m2, circular variance as 0.4 and clean size of 60,000 m2 with the cleaning method 235 

(flag -m) that removes SU smaller than the clean size as well as removes odd-shaped polygons and SUs with 236 

width as small as two grid cells (Alvioli et al., 2016). To quantify the similarity between SUs derived from 237 

reference DEM and from each DEM under observation, the Jaccard Index (Jaccard, 1901) has been utilized to 238 

estimate Intersection-over-Union (IoU) ratio between the reference (in this case SU derived from reference DEM) 239 

and the predicted (in this case the DEM under test). The Jaccard Index can measure the segmentation of the SU 240 

in reference to the overlapping of the defined shape and similarity of terrain-representation. Ranging from 0, 241 

signifying no similarity, to 1 that signifies identical sets, this index considers the combined size which is inclusive 242 

of the intersection. Hence, the higher the index value, the better delineation of terrain as per the considered 243 

reference.  244 

Phase 2: Slope Units delineation  245 

This phase of the work has been focused on the identification of the most representative and freely available DEM 246 

to subdivide the study area in SUs for landslide modelling. Therefore, 18 SUs partitions have been generated with 247 

r.slopeunits software and then compared with landslide areas and landslide counts mapped in the AOIa to find the 248 

optimal ones. The optimal DEM obtained from the first phase has been used to test SU delineation in the study 249 

area with a range of parameters. As proposed by Alvioli et al. (2016), an aspect segmentation metric has been used 250 

to analyze the optimal parameters for the Marche region, altering two parameters: the minimum surface area of 251 

SU and the minimum circular variance for terrain, and fixing the parameters flow accumulation and clean size. 252 

The aspect segmentation metric has been based on the concept of partitioning terrain by grouping pixels sharing 253 

similar aspect properties. This has been transferred to SU delineation, with the assumption, given the partitioning 254 

has been evaluated by the internal homogeneity and external heterogeneity of SU. The aspect segmentation metric 255 

can be written as: 256 
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𝐹(𝑎, 𝑐) =  
𝑉𝑚𝑎𝑥 − 𝑉

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
+  

𝐼𝑚𝑎𝑥 −𝐼

𝐼𝑚𝑎𝑥  − 𝐼𝑚𝑖𝑛
   ,    (3) 257 

where 𝑉 (SU homogeneity) is the local aspect variance and 𝐼 is the autocorrelation which represents the external 258 

heterogeneity of the adjacent SUs and 𝐹 evaluates the morphometric delineation of the SUs, explained by the 259 

minimum surface area of a SU (𝑎) and the minimum circular variance (𝑐) (see for more details, Alvioli et al., 260 

2016). The first term of 𝐹 value is estimated based on the homogeneity of pixels grouped in a single SU, thus a 261 

higher value represents a better segmentation. In the same way, on the base of the second term of Eq. 3, the greater 262 

the difference between the average aspect value of each SU and each of the relative adjacent SU, the higher is the 263 

𝐹 value. Overall, from a geometrical point of view the optimal a and c combination is the one that maximizes the 264 

metric value. 265 

Differently from Alvioli et al. (2016) where the Area Under the Curve (AUC) derived from landslide susceptibility 266 

assessment has been also considered in selecting the optimal SU parameters, this study proposes to compare the 267 

landslides extension (𝐴) and landslide density (𝐷) per SU. The former sums the percentage of the landslide area 268 

included inside the SU where the failure has been triggered (from the initiation point). The latter is the inverse of 269 

the average number of landslides in each SU. 𝐴 and 𝐷 can be expressed as;  270 

𝐴 =
∑ 𝑙𝑖

𝑁
𝑖=1

𝐿𝑖
  ,   (4) 271 

1

𝐷
=

∑  𝑑𝑖 𝑁
𝑖=1

𝑁
  ,  (5) 272 

where Li , in Eq. 4, is the total landslide area of all the events triggered in the ith SU, li is the cumulative landslides 273 

area inside the ith SU which excludes the extension of landslide that occupies adjacent SUs, N, in Eq. 5, is the 274 

number of unstable SUs, di is the number of landslides triggered in the ith SU. 275 

𝑆(𝑎, 𝑐) =
𝐹(𝑎,𝑐)−𝐹𝑚𝑖𝑛(𝑎,𝑐)

𝐹𝑚𝑎𝑥(𝑎,𝑐)−𝐹𝑚𝑖𝑛(𝑎,𝑐)
∙

𝐴(𝑎,𝑐)−𝐴𝑚𝑖𝑛(𝑎,𝑐)

𝐴𝑚𝑎𝑥(𝑎,𝑐)−𝐴𝑚𝑖𝑛(𝑎,𝑐)
 ∙  

𝐷(𝑎,𝑐)−𝐷𝑚𝑖𝑛(𝑎,𝑐)

𝐷𝑚𝑎𝑥(𝑎,𝑐)−𝐷𝑚𝑖𝑛(𝑎,𝑐)
 ,  (6) 276 

where 𝑆 is the final metric which combines 𝐹, 𝐴 and 𝐷. The optimal combination of a and c for SU delineation in 277 

the study area selected is the one that maximizes the 𝑆 metric in Eq. 6. SU parameters for the experiment on entire 278 

Marche region have been tested with; flow accumulation threshold to 10×105 m2, clean size of 20,000 m2 with the 279 

cleaning method (flag -m). Minimum area (a) has been tested with 40, 80, 150, 200, 300 and 500x103 m2 with 280 

corresponding circular variance (c) of 0.1, 0.4 and 0.7 for each a, making 18 combinations.  281 

The Susceptibility Zoning plugin (SZ-plugin), integrated with QGIS and developed by Titti et al. (2022), has been 282 

used to calculate the aspect segmentation metric (F) and to map the landslide susceptibility in the Marche region 283 

(AOIa). This analysis has utilized the DEM selected in Phase 1 and assessed four SU delineations, ranked from 284 

highest to lowest performance, as mapping units for evaluating landslide susceptibility. The analysis has been 285 

conducted using a Generalized Additive Model (Loche et al., 2023). The covariates selection includes: lithology, 286 

from national dataset (http://portalesgi.isprambiente.it/), landcover (2018 CORINE, https://land.copernicus.eu/en) 287 

as categorical covariates. The continuous covariates have been generated using the Spatial Reduction Tool (Titti 288 

et al., 2022) from the phase 1-selected DEM as derivatives; slope angle, planar and profile curvature as ordinal 289 

covariates and northness, eastness as linear covariates. The collinearity between the predisposing factors has been 290 

http://portalesgi.isprambiente.it/
https://land.copernicus.eu/en
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evaluated by the Pearson’s coefficient. The results have been validated with a 10-fold spatial cross-validation 291 

which clusters the dataset with a k-means approach (Elia et al., 2023). The overall prediction capacity has been 292 

estimated with ROC-based AUC (Fawcett, 2006), F1 score (Singhal, 2001) and Coen’s Kappa score (K; Kraemer, 293 

2015). 294 

Results 295 

The differences between elevation, residual DEMs, roughness indices and slope variations within the four selected 296 

open-access DEMs and the reference DEM have been shown in Figure 3. The boxplots report the distribution of 297 

the differences higlighting the median, the first and the third quartile excluding the outlayers. Moreover, since the 298 

differences report positive and negative values, the absolute mean difference has been calculated. Therefore, the 299 

lower the variance and the absolute mean difference, the better is the output considered. 300 

Overall, TINITALY resampled at 30m (TINITALY30m) has showcased the best performance across all metrics, 301 

with a smaller distribution of differences and lower absolute mean difference. ALOS, on the other hand, has 302 

displayed the largest difference among all DEMs across all metrics. Between COP and FABDEM, COP has shown 303 

a larger distribution of elevation differences, and as expected, COP has had a stronger tendency to overestimate 304 

elevation with respect to FABDEM (Figure 3). However, for slope (Figure 3B) and isotropic roughness (Figure 305 

3C), FABDEM has displayed more spread in differences.  306 
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 307 

Figure 3:Boxplots visualizing the differences among the DEMs at 30 meters, using different metrics with the absolute 308 

mean calculated; A) Elevation, B) Slope, C) Isotropic Roughness Index, D) Radial Roughness Index and E) Residual 309 

DEM.  310 

Figure 4 exhibits the differences of the selected derivatives between TINITALY30m and TINITALY10m. Apart 311 

the elevation, TINITALY at 10m is quantifying a larger distributions in normalized differences for the terrain 312 

indices. The absolute mean difference confirms the trend. 313 
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 314 

Figure 4: Boxplots showing the differences in TINITALY at 10m and 30m with respect to the reference LiDAR at the 315 

respective resolution, for different indices with the absolute mean calculated; A) Elevation, B) Slope, C) Isotropic 316 

Roughness Index, D) Radial Roughness Index and E) Residual DEM. 317 

Since the main topic of our analysis is to support landslide susceptibility mapping, we have investigated the 318 

performance of the selected DEMs to derive slope, which is considered one of the most relevant landslide 319 

predisposing factors, in the area where landslide bodies have been mapped. Figure 5 shows the slope-difference 320 

within the mapped polygons of the PAI landslide inventory. TINITALY30m is seen to have the smallest differences 321 

in terms of absolute mean and the distribution among all the other DEMs (Figure 5A). Similarly, in Figure 5B, 322 

the distributions of the normalized differences of TINITALY 10m and 30m clearly highlight the larger differences 323 

distribution of the 10m DEM. 324 
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 325 

Figure 5: A) Slope differences for 30m DEMs as compared to the reference DEM in PAI landslide polygons. B) 326 

Normalized difference in slope with reference DEM for 10m and 30m TINITALY in PAI landslide polygons. 327 

The last part of the DEMs comparison would investigate the effect on the SUs delineation of different DEMs. 328 

Table 1 reports the Jaccard index tested comparing the SUs delineated with DEMs at 30m and SU generated with 329 

the reference DEM. The highest similarity index is for TINITALY30m.  330 

Table 1: Jaccard Index represented as Intersection-over-union for SUs generated from the DEMs under test with the 331 

reference LiDAR DEM SUs. 332 

DEM IoU 

ALOS 0.866 

FABDEM 0.896 

COP 0.887 

TINITALY30m 0.912 

 333 

The second phase of the analysis has been focused on the optimal SUs delineation to assess landslide susceptibility 334 

in AOIa. Since in the previous analysis TINITALY30m has been found as the most accurate DEM to represent the 335 

morphology of the mountainous area of the Marche region, we have generated 18 SU combinations based on 336 

TINITALY30m to find the optimal SUs partition of AOIa. Figure 6 shows the visual differences in delineation for 337 

some of the parameter combinations. Smaller values of circular variance and minimum area result in smaller 338 

dimensions of SUs which can restrict heterogeneity between adjacent SUs while, ideally, SUs should maintain 339 

external heterogeneity for better terrain representation. 340 
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 341 

Figure 6: SU combinations. 9 out of the 18 combinations are shown to highlight differences as the values of two 342 

parameters change, i.e., minimum area and circular variance. 343 

Figure 7 reports the behavior of the F, A and D metrics and the final S metric based on the 18 combinations of a 344 

and c. Considering that each of the metric represents a goodness for the final SU partition, higher the F, A and D, 345 

better is the SU partition. Excluding F, which shows an almost irregular pattern with the maximum at c equal to 346 

0.1 and a equal to 40x103m2 (Figure 7.1). A and D have a mutually opposite almost linear pattern which reach a 347 

maximum pairing: in A where c is equal to 0.7 and a is each of the values assigned (Figure 7.2), in D with c equal 348 

to 0.1 and a equal to 40x103m2 (Figure 7.3). A shows a better performance increasing the mapping unit extension 349 

of the study area, whereas D shows better performance with smaller partitions. 350 

The product of the normalized metrics results in the S value which is maximized in the range of a between 300x103 351 

m2 and 200x103 m2 and by a value of 0.1 for c (Figure 7.4). Therefore, among the tested combinations, c equal to 352 

0.1 and a equal to 300x103 m2 produce the optimal SU partition for landslide susceptibility mapping in the Marche 353 

region with a SU extension of 0.40 km2 on average (dataset freely available on Ahmed and Titti, 2024). On the 354 

contrary the worst-case partition is the one which combines c equal to 150x103 m2 and a equal to 0.7 with a SU 355 

extension of 0.84 km2 on average. 356 
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 357 

Figure 7: Behavior of the F, A and D metrics and the final S metric with respect to parameters a and c: (1) shows 358 

the F value of SU aspect segmentation metric, (2) visualizes the landslide extension inside a SU (A), (3) shows the 359 

landslide density (D) and (4) depicts the results of the final combined metric S. 360 

Consequently, the susceptibility assessment with the S-optimal and S-worst case SUs partition has been carried 361 

out. The maps resulting from the susceptibility analysis and the relative confusion matrixes based on the S-optimal 362 

and the S-worst case SUs delineation of TINITALY30m dataset are represented in Figure 8, while the quality 363 

metrics generated from the 10-fold spatial cross validation by ROC analysis are reported in Figure 9. The summary 364 

of these metrics is provided in Table 2. 365 

Table 2: Summary of confusion matrix from maps in Figure 8 and performance metrics in Figure 9. 366 

 True 

Positive 

(TP) 

True 

Negative 

(TN) 

False 

Positive 

(FP) 

False 

Negative 

(FN) 

AUC F1 score Cohen’s 

Kappa 

Index 

S-optimal 37% 6% 31% 26% 0.68 0.6 0.23 

S-worst case 45% 6% 24% 25% 0.74 0.67 0.29 

 367 

In addition, two more landslide susceptibility analysis have been carried out using SUs partitions with intermediate 368 

S values: c equal to 200x103 m2 and a equal to 0.4, c equal to 40x103 m2 and a equal to 0.1, to investigate the 369 

relation between AUC and the number, or extension, of the slope units (see Discussion section). 370 
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 371 

Figure 8: Landslide susceptibility mapping with TINITALY 30m using: A) the selected optimal SU delineation 372 

(a=300x103 m2, c=0.1) with the relative confusion matrix (B) (TN 6% of all and 13% of unstable units); C) the selected 373 

worst case SU delineation (a=150x103 m2, c=0.7) with the relative confusion matrix (D) (TN 6% of all and 12% of 374 

unstable units). Image background from © Google Maps 2019. 375 

 376 

Figure 9: ROC curve with AUC, F1 score and Kappa coefficient values for 10-fold cross validation. A) the optimal SUs 377 

delineation (a=300x103 m2, c=0.1); B) the worst-case SUs delineation (a=150x103 m2, c=0.7). 378 
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Discussion 379 

Based on the results of the quantitative comparison between ALOS, COP, FABDEM, TINITALY10m and 380 

TINITALY30m, the latter has performed better than the other DEMs as per the indices used in this study (Figure 381 

3). These comparisons are insightful for morphological differences for instance, in regard to roughness indices 382 

(Figure 3D), all DEMs tend to oversmooth with respect to the reference DEM. This can be indicative of the spatial 383 

support being larger than 30m in reality, meaning that the spatial data density is much lower than the given 384 

resolution. It is also interesting to realize the difference between COP and FABDEM. FABDEM (DTM) being a 385 

product of COP (DSM), in essence should be closer to the LiDAR representation of the terrain with vegetation 386 

and buildings removed, but it produces a less accurate output. The efforts of generating a DTM from COP have 387 

been motivated in the application of flood modelling trying to optimize the terrain representation, especially in 388 

areas of relatively low elevation. However, the algorithm has not been devised for optimizing geomorphometric 389 

derivatives such as slope (Hawker et al., 2022). This can be particularly relevant when modelling slope instability. 390 

Thus, FABDEM in the region considered does not improve the terrain representation as compared to COP (Bielski 391 

et al., 2024). This behavior is visible in Figure 3 where FABDEM shows larger difference distributions than COP 392 

for slope, residual DEM and both roughness indices. For instance, in regard to roughness indices (Figure 3D), all 393 

DEMs tend to oversmooth with respect to the reference DEM which can be indicative of the spatial support being 394 

larger than 30m in reality, meaning that the spatial data density is much lower than the given resolution. 395 

ALOS consistently features high differences in all computed metrics against the counter global DEMs which 396 

could be explained with the analysis of Caglar et al. (2018). They concluded that ALOS contains a significant 397 

number of anomalies in elevation values, possibly attributed to unfiltered sensor noise and processing algorithms 398 

which are often not easily identifiable. Nonetheless, ALOS is still ranking well above other global products like 399 

SRTM and NASADEM according to quantitative assessments on DEM derived parameters and is still comparable 400 

with COP and FABDEM (Bielski et al., 2024; Guth et al., 2024). 401 

The numerical comparisons resulting in Figure 3 can be supported by the graphical representation of the slope 402 

differences in Figure 10. Although the spatial distribution of differences varies, larger differences are most 403 

noticeable in the ALOS DEM, followed by COP and FABDEM, compared to TINITALY30m, which exhibits 404 

fewer differences in slope compared to the reference DEM. 405 
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 406 

Figure 10: Difference in slope (degrees) between the four tested DEMs (30m) and the reference LiDAR DEM, by 407 

subtracting the LiDAR value from the test DEM value.  408 

TINITALY was originally published with a pixel size of 10x10m. Since the pixel sizes of the open global DEMs 409 

selected to be compared with the reference DEM in the AOIb area are around 30x30m, we have decided to conduct 410 

the entire analysis using the same grid-cell size of 30m. Therefore, the original TINITALY10m has been resampled 411 

to 30x30m cell size. Despite this, the accuracy of TINITALY10m has been also investigated where we have 412 

compared the performance of TINITALY30m and of TINITALY10m using normalized differences instead of 413 

simple differences. Although this was not the primary aim of the study, the tests indicate that TINITALY at 30m 414 

pixel size outperforms the 10m pixel size (Figure 4). These differences in performance, apart from the expected 415 

lower uncertainty related to the larger spatial support, may be attributed to the interpolation approach used for 416 

TINITALY10m. In areas with low sampling density, noticeable artifacts appear, which can significantly affect the 417 

calculation of geomorphometric derivatives. Resampling from the original 10m pixel size to a coarser one (30m) 418 

can partially filter out these artifacts. Thus, higher resolution does not necessarily guarantee better results if it is 419 

not supported by high-quality elevation data or if it contains a high number of artifacts (Chen et al., 2020; 420 

Mahalingam and Olsen, 2016). Additionally, the use of contour lines as input data for TINITALY 10m along with 421 
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triangulator for interpolation may result in spurious spikes at regular intervals within elevation zones and in areas 422 

with triangular slope-faces (Zingaro et al., 2021). Considering the acquisition dates of DEMs in comparison to the 423 

LiDAR, COP and ALOS have been surveyed closer to the time of the LiDAR than TINITALY but even so, 424 

TINITALY30m has shown better results when compared with the LiDAR. Comparing slope differences in 425 

landslide areas across the selected global open-access DEMs, as well as TINITALY10m and TINITALY30m, yield 426 

similar results. The graphs in Figure 5 present similar distribution of relative differences in Figure 3 and Figure 4. 427 

Comparing slope differences in landslide areas across the selected global open-access DEMs, as well as 428 

TINITALY10m and TINITALY30m, yield similar results.  429 

The similarity between the geometry of delineated SUs with the same parameters, as compared with the ones 430 

delineated from the reference DEM, indicates a higher value of the Jaccard Index for TINITALY30m. This means 431 

that the SUs delineated using TINITALY30m most closely resemble those from the reference LiDAR DEM. The 432 

remaining of the global DEMs also produce SUs with a high similarity index. 433 

In the end of Phase 1, we can conclude that for the Marche region, the use 30m resampled TINITALY DEM is 434 

recommended for SU definition, therefore the rest of the analysis proposed for Phase 2 has been based on 435 

TINITALY30m. 436 

Extending the analysis of SU delineation from AOIb, we have used multiple SU parameters for a more detailed 437 

analysis in AOIa with landslide polygons. Understandably, slope-facing direction and slope angle can be 438 

considered as driving factors for slope failures and can be used to dissect the terrain into units which can 439 

morphologically describe landslide prone areas. Landslide susceptibility evaluates the probability of occurrence 440 

of a landslide according to a set of variables. Susceptibility depends upon a set of variables whose values are 441 

associated in a unitary manner to each mapping unit. Therefore, the mapping unit represents a portion of territory 442 

that each variable describes numerically by a single value as if it was a point object. Consequently, the smaller the 443 

dimension of the mapping unit, the more representative the single variable is. However, a spatial event such as a 444 

landslide, which is a non-point event, does not represent a homogeneous object according to the variables chosen 445 

to predict it (i.e., the degree of slope is not homogeneous throughout the landslide area). Thus, to evaluate the 446 

probability of occurrence of this event, it is necessary to identify unique values for each chosen predictor 447 

calculated within a portion of territory that coincides as much as possible with the landslide. It is also 448 

comprehensible that including stable areas, the portion of territory that most closely resembles the landslide area 449 

is the slope-aspect which can be represented by the SU. Therefore, to satisfy both the needs described above, the 450 

mapping unit should be as concise as possible to describe the shape of the landslide area.  451 

The methodology adopted to evaluate the SU subdivision has been designed to address the forementioned 452 

requirements by integrating new metrics, specifically tailored for landslide studies considering the relevance of 453 

terrain units with landslide inventories. In addition to the aspect segmentation metric (F) proposed by Alvioli et 454 

al. (2016), the landslide extension coefficient (A) and the landslide density coefficient (D) have also been included. 455 

In a way, the F metric can define the shape of the SU on the base of the spatial aspect distribution (Figure 11A 456 

and Figure 11B), while a balance between A and D can define the extension of the SU. 457 

According to A, the optimal SUs are the ones that contain the entire landslide, with no landslide area falling in 458 

adjacent SUs. The landslide coefficient A may not fully capture the extent of landslide area especially when 459 
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dealing with landslides characterized by high mobility, as in the case of flow-like landslide which can reach 460 

considerable distances where the run-out may move out from the homogenous slope-aspect. Nevertheless, the 461 

frequency distribution of the landslide classes in the landslide inventory will balance the A value, therefore the 462 

run-out of flow-like landslides may have an impact on the SU dimensions if their presence is significative in the 463 

inventory. Otherwise, part of the unstable area may fall in the adjacent SUs. Consequently, the larger the SU is, 464 

the higher is the probability of including the entire landslide, as is visible in Figure 11C and Figure 11D where an 465 

example of the lowest and highest performing SU partition according to A is represented. In contrast to A, the D 466 

metric would avoid the overestimation of the SU dimension which should be limited, ideally, to a single landslide 467 

(see the example in Figure 11E and Figure 11F). A correct use of D metric requires that reactivated landslides 468 

should be excluded and considered as unique events, to avoid doubling the number of polygons in the same spatial 469 

unit. 470 

The variability of the SU extension with respect to the parameters a and c can also be described through the 471 

number of unstable units in relation to the total number of SUs. Figure 12 shows how as D increases and A 472 

decreases, the unstable units increase. At the same time as D increases and A decreases, the SU extension is 473 

reduced and therefore SU count increases. 474 
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 475 

Figure 11: Selection of SUs partition of a sub-portion of the study area AOIa. A) and B) The SUs partitions with the 476 

lowest and the highest value of F respectively; C) and D) The SUs partitions with the lowest and the highest value of A 477 

respectively; E) and F) The SUs partitions with the lowest and the highest value of D respectively. 478 
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 479 

Figure 12: Evolution of the portion of unstable SUs in the study area with varying values of a and c. 480 

All metrics unified in S maximizes their effect, as shown in an example in Figure 13 where the comparable 481 

differences explain the concept of the ration between the number and extension of landslides contained in the SUs. 482 

While it is difficult to minimize SU area as well as contain the landslide area, it is to be considered that the spatial 483 

and areal accuracy of landslide inventories can significantly affect the output since the best terrain partition is 484 

interpreted based on the dimensions and number of landslide polygons. In this case study, the PAI of Marche 485 

region has been used to test the methodology, and while the landslide inventory plays a crucial role, it has to be 486 

mentioned that the dataset used may come with limitations. The inventory has not been systematically updated 487 

for the mapped landslide areas and the dataset has been updated by reports from scientific literature, local 488 

authorities and projects of the municipalities (Costanzo and Irigaray, 2020). Nonetheless, the methodology 489 

remains compatible with landslide polygons and SUs supporting the selection of an optimal terrain partitioning.  490 



   

 

23 
 

 491 

Figure 13: SUs partitions of a sub-portion of the Marche study area (AOIa) compared to landslides distribution from 492 

the PAI. A) the SU partition (a: 150x103 m2 and c: 0.7) with lowest value of S, B) the SU partition (a: 300 x103m2 and c: 493 

0.1) with highest value of S. 494 

Two susceptibility analyses have been carried out selecting the S-optimal and S-worst case SUs partitions. Since, 495 

the goal of this study is not to assess landslide susceptibility of the Marche region, but to investigate the potential 496 

effect of a thought-out SUs delineation for landslide susceptibility evaluated with largely used metrics such as 497 

AUC, F1-score and Cohen’s Kappa score, the predisposing factors selected for the susceptibility analysis are not 498 

entirely representative of the geo-environmental conditions. In particular, not all predisposing factors (e.g., land 499 

use, vegetation indices and others) have been considered (see also Titti et al. 2024). Therefore, the cross-validation 500 

results (Figure 9A) of the susceptibility map (Figure 8A) calculated with the optimal SU subdivision are not 501 

performing high in the metrics considered (AUC = 0.68, F1 score = 0.6, K = 0.23 on average). Nevertheless, it is 502 

interesting to highlight the trend of the relation between the mapping unit extension and the AUC value along with 503 

other metrics. 504 

AUC is calculated as the integral of the ROC curve. The ROC curve depends on the balance between unstable 505 

units and stable units in the training dataset, thus, the higher is the ratio between the number of unstable SUs and 506 

the total number of SUs, higher is the AUC because higher is the learning capacity of the model to recognize TP 507 

mapping units increasing the True Positive Rate (TPR) value of the ROC curve. In the 18 combinations selected, 508 

to investigate the highest-performing a and c values for SUs delineation, we haven’t changed the landslide number 509 

but the extension of the SUs whose trend is visible through the number of SUs pattern in Figure 14. Considering 510 
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all the combinations of a and c performed in our experiment, the higher the extension of the mapping units, the 511 

higher the proportion between the number of unstable units and the number of all the mapping units and higher 512 

the AUC (Figure 14). Same considerations can be done for the F1 score, and the Cohen’s Kappa index whose 513 

behaviors follow similar trend of the AUC. 514 

 515 

Figure 14: Trend of the number of unstable and total SUs comparison (of 18 combinations for a and c) and the behavior 516 

of the metrics resulting from the landslide susceptibility analysis. The parameters (a, c) are labelled along the 517 

performance metrics to represent the respective trend. 518 

Therefore, at least in the experiments made for this study, the metrics selected are not suitable for comparing 519 

susceptibility maps directly because the training datasets are differently balanced. Nevertheless, a comparison 520 

between the S-optimal and S-worst case susceptibility maps, as shown in Figure 8A and Figure 8C respectively, 521 

can still be made. Graphically, the maps exhibit a similar spatial pattern of landslide probability of occurrence. 522 

This is further supported by the fact that the number of TN units relative to unstable units is nearly the same, at 523 

13% and 12% for the S-optimal and the S-worst case, respectively. The primary distinction lies in the susceptibility 524 

value, which is on average lower in the S-optimal delineation than in the S-worst case. This difference is attributed 525 

to the overestimation of unstable units in the S-worst case due to the imbalance between stable and unstable units. 526 

Conclusions 527 

This study encompasses DEM utilization from the viewpoint of fine-scale morphology and terrain sub-division 528 

into mapping units in the frame of regional predictive landslide modelling. The aim is to compare freely available 529 

global and national DEMs from which morphological landslide predisposing factors and optimized terrain 530 

partition in slope units are derived to map landslide susceptibility. Therefore, the investigation initially identified 531 

the optimal DEM among the available ones and then selected the optimal SUs partition in the alternative 532 

combinations generated. 533 

The global DEMs (ALOS, COP, FABDEM) and TINITALY resampled at 30m have shown considerable 534 

differences with respect to the reference DEM (an airborne LiDAR resampled at 30m pixel size) in the selected 535 

geomorphometric derivatives in AOIb. Concerning the SUs delineation, the TINITALY30m has shown the best 536 

performance thus, it has been selected to generate 18-parameter SUs subdivisions in AOIa. To define the optimal 537 

SUs delineation, a novel method has been proposed, which evaluates the SUs alternatives on the base of internal 538 
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aspect homogeneity/external heterogeneity, landslides numerosity and landslides extension. According to the S 539 

metric (Eq. 6), the SUs partition generated with c equal to 0.1 and a equal to 300x103 m2 results in the optimal 540 

subdivision, contrasting with c equal to 0.7 and a equal to 150x103 m2 as the worst case one. 541 

Ultimately, to understand the effect of the terrain partition on the landslide susceptibility model, we have 542 

performed the S-optimal and the S-worst case landslide susceptibility. It is understood that the performance 543 

metrics (AUC, F1, K) of the landslide susceptibility models do not necessarily equate with the S metric 544 

performance. Indeed, AUC, F1 and K depict opposite trends as compared with the S metric. 545 

Though only TINITALY30m has been used in extending the analysis for SU experiments, COP, as the second-546 

best performing DEM for fine-scale morphology, can also be considered in future studies. A holistic comparison 547 

could help evaluate its effectiveness in landslide susceptibility studies. Moreover, since the result of the S-method 548 

depends on the landslide inventory, further research would pave the way for space-time inventories performing 549 

multi-temporal SUs delineations to reach the best terrain delineation for slope failure prediction. Developing 550 

space-time landslide inventories and adapting SUs delineation for dynamic, evolving terrains could significantly 551 

enhance the predictive capability of landslide models. Ultimately, continued innovation in DEM selection, SU 552 

partitioning methods, and landslide inventory development will contribute to more effective landslide risk 553 

management strategies and mitigation efforts. 554 
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