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Abstract. Due to the limited availability of high-resolution topographic data, accurate flood simulation remains a significant 

challenge in many flood-prone regions, particularly in developing countries and in urban domains. While publicly available 

Digital Elevation Model (DEM) datasets are increasingly accessible, their spatial resolution is often insufficient for reflecting 

fine-scaled elevation details, which hinders the ability to simulate effectively pluvial floods in built environments. To address 

this issue, we implemented a deep learning-based method, which efficiently enhances the spatial resolution of DEM data, and 15 

quantified the improvement in flood simulation. The method employs a tailored multi-source input module, enabling it to 

effectively integrate and learn from diverse data sources. By utilizing publicly open global datasets, low-resolution DEM 

datasets (such as the 30m SRTM) in conjunction with high-resolution multispectral imagery (e.g., Sentinel-2A), our approach 

allows to produce a super-resolution DEM, which exhibits superior performance compared to conventional methods in 

reconstructing 10m DEM data based on 30m DEM data and 10m multispectral satellite images. Such superior performance 20 

translates, when applied to pluvial flood simulations, into significantly improved accuracy of floodwater depth and inundation 

area predictions compared to existing alternatives. This study underscores the practical value of machine-learning techniques 

that leverage publicly available global datasets to generate DEMs that allow enhancing flood simulations. 

1 Introduction 

The occurrence of severe floods has increased significantly due to climate change, which intensifies extreme rainfall events 25 

(Tabari, 2020). To address these challenges, high-resolution flood modelling is essential for making informed flood 

management decisions (Y. Wang et al., 2018). As one of the key inputs for flood simulations, accurate Digital Elevation Model 

(DEM) supports reliable flood simulation, in turn enabling the assessment of various flood mitigation strategies. However, the 

fidelity of flood simulations is heavily contingent upon the spatial resolution of DEM data (Hawker et al., 2018). At present, 

open datasets of DEM data with global coverage are predominantly available at raster resolutions coarser than 30´30 meters, 30 
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failing to capture the fine-resolution local topography details that are crucial for flood modelling (Hawker et al., 2018). The 

lack of publicly open high-resolution DEM is particularly affecting data-scarce regions of the developing world, which are 

often the most vulnerable to the devastating impacts of floods (Malgwi et al., 2020). In response to these challenges, this 

research examines the effect of implementing a deep learning-based image super-solution model for generating high-resolution 

DEM data, and demonstrates the performance of the enhanced DEM data on improving pluvial flood simulations. 35 

1.1 Existing methods for improving the spatial resolution of DEM  

Improving the quality and spatial resolution of DEM data is in great demand in the fields of geospatial analysis and 

environmental modelling, as this can substantially improve the performance of a wide range of applications, particularly 

for natural hazard mapping, such as predicting floods (Tan et al., 2024), landslides (Brock et al., 2020), and volcanic 

flows (Deng et al., 2019). The most widely adopted approaches in existing studies of DEM super-resolution can be 40 

categorised into interpolation-based, data fusion-based, and learning-based methods (Zhou et al., 2023). The 

interpolation methods, such as bilinear and bicubic interpolations (Rees, 2000), are based on the concept of spatial 

autocorrelation, which posits that points in closer proximity are more alike than those that are more distant (Arun, 2013). 

While being straightforward and computationally efficient, their performance is often limited by the simplicity of terrain 

continuity and smoothness, potentially leading to over-smoothed terrain features (Yifan Zhang & Yu, 2022). Data fusion-45 

based approaches leverage the unique strengths of different multi-source DEMs (Yue et al., 2015). During the fusion 

process of multiple DEM sources, height error maps or weight maps were commonly adopted for determining the 

importance of each DEM source. However, these simple methods may wrongly alter height values and cannot adequately 

resolve edge effects (Okolie & Smit, 2022).  

Deep learning methods have significantly advanced the field of Single Image Super-Resolution (SISR), achieving 50 

superior performance in reconstructing high-resolution images from their low-resolution counterparts (Yang et al., 2019). 

Thus, besides interpolation-based and data fusion-based methods, deep learning-based super-resolution techniques have been 

implemented to enhance low-resolution DEM data (Demiray et al., 2021a, 2021b; Jiang et al., 2023; Kubade et al., 2020; Z. 

Li et al., 2023; Yue et al., 2015; Zhou et al., 2023, 2021, 2021). The implementations of deep learning-based SISR methods 

substantially improve the performance of remote sensing applications (Ling & Foody, 2019; Shang et al., 2022; Xie et al., 55 

2022) and promote the utilisation of data that was previously underutilized due to limited spatial resolution (Zhu et al., 2021). 

For instance, Demiray et al. (2021a) employed Generative Adversarial Networks (GAN) for constructing a 3 feet high-

resolution DEM from a 50 feet low-resolution DEM. Zhou et al. (2021) proposed a double filter deep residual neural network 

for DEM super-resolution. Demiray et al. (2021b) employed EfficientNetV2 as the backbone model to reconstruct DEMs up 

to 16 times finer than their initial spatial resolution. More recently, Li et al. (2023) developed a transformer-based deep learning 60 

network for upscaling DEM data with different upsampling factors (i.e., x2, x4). However, it should be noted that the majority 

of the deep learning applications in DEM super-resolution only employed low-resolution DEM data as input, without 
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incorporating additional information. This can be insufficient to accurately capture the unique terrain features that characterize 

high-resolution DEM (Zhou et al., 2023) and that are required to support accurate flood modelling. 

1.2 Multi-source deep learning for remote sensing applications 65 

The increasing availability of data from diverse sensors has provided a practical basis for multi-source data analysis 

applications (Choi & Lee, 2019). The key benefits of integrating multi-source inputs include enhanced model 

performance through the combination of complementary data sources, and improved robustness and reliability of model 

performance in various remote sensing applications (J. Li et al., 2022). For instance, Shen et al. (2019) developed a deep 

learning-based model for drought monitoring, which employed multi-source remote sensing data as input, including 70 

DEM data, and meteorological and soil data. Lu et al. (2022) proposed a deep learning framework taking Google Earth 

imagery and point of interest heatmap as input data for urban functional zone extraction. 

Many existing studies on DEM super-resolution tend to be solely based on a single source of low-resolution (LR) 

DEM input, which can be an ill-posed task as high-resolution details can hardly be accurately reconstructed without 

additional reference information (Yue et al., 2016). This also includes the attempts to include additional features 75 

generated from low-resolution DEM data. For instance, Zhang et al. (2023) calculated terrain gradient maps based on 

DEM data to guide the optimization process of a Convolutional Neural Network (CNN)-based DEM super-resolution. 

Zhou et al. (2023) proposed a terrain feature-based CNN for DEM super-resolution, which extracts slope and aspect 

from low-resolution DEM data and deploys them as additional features for model inputs and loss function. Although the 

additional low-resolution features facilitate performance gains in DEM super-resolution model training, they are 80 

constrained by an inherent lack of high-frequency details. 

Arguably, an effective method to enhance DEM resolution could be that of fusing different data sources, such as 

integrating spatial data from higher-resolution sources (e.g., optical images), which offer more details related to terrain 

features, rather than directly upscaling low-resolution DEM (Tan et al., 2024), thereby offering great potential to improve the 

performance of learning-based DEM super-resolution. One example following this direction is found in Argudo et al. (2018), 85 

who examined the feasibility of combining natural colour aerial images and low-resolution DEM data as input to train a CNN 

for producing high-resolution DEM, suggesting improved performance compared with interpolation-based methods. Tan et al. 

(2024) introduced a deep learning-based DEM upscaling network that enhances low-resolution DEMs by predicting elevation 

differences using high-resolution optical images, and then fusing these predictions with the original DEM data through 

additional convolutional layers. It should be noted that these studies mainly employed natural colour images for feature fusion. 90 

In contrast, multispectral images can provide further features from non-visible wavelengths, such as near-infrared, allowing 

for more detailed and specialized analysis. This is supported by Chen et al. (2013), showcasing the effects of utilizing 

multispectral bands of satellite images on improving the performance of an interpolation-based DEM densification method. 
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1.2  Significance of this study  

In this literature context, this study aims to investigate the effectiveness of improving flood simulations using an 95 

enhanced DEM super-resolution generating method, which incorporates multispectral images, including the near-

infrared band, as additional input for a deep learning-based DEM super-resolution model. Specifically, we provide the 

following main contributions: (i) the development of an efficient DEM super-resolution method that incorporates a 

tailored input module for processing multi-source and multi-scale input data, including both low-resolution DEM data 

and high-resolution multispectral satellite images; (ii) the use for this purpose of publicly open datasets, which ensures 100 

the generalizability of the method, especially for DEM-related applications in data-scarce regions; (iii) the quantitative 

assessment of the performance of the generated super-resolution DEM maps in improving pluvial flood simulations. The 

latter is achieved by evaluating the flood inundation maps generated based on different DEM super-resolution methods 

in terms of both floodwater depth and inundation area. Overall, this study represents a methodological advancement that 

showcases the practical value of multi-sourced deep learning-based methods for enhancing pluvial flood simulations, 105 

thus offering an exemplary pathway to address the issue of lacking high-resolution DEM for reliable risk assessments in 

the context of land use planning and disaster management. 

2 Methodology 

2.1  Residual Channel Attention Network (RCAN) 

The proposed DEM super-resolution method employs the Residual Channel Attention Network (RCAN) as the backbone 110 

structure, which is a widely recognised method for single-image super-resolution (Y.Zhang et al., 2018). One of the key 

features employed in an RCAN is a deep residual network structure that integrates residual in residual (RIR) blocks. The 

RIR block combines long and short skip connections, enabling the network to learn more high-dimensional features from 

low-resolution to high-resolution images with a very deep structure, meanwhile avoiding the issue of vanishing gradient 

during training processes. Another key feature of RCAN is its use of channel attention mechanisms within each residual 115 

block. The channel attention mechanism weighs the importance of each channel, thus allowing RCAN to adaptively 

emphasise features from more important channels while suppressing less useful ones, thereby optimising reconstruction 

performance by focusing on the most significant features. This channel-attention mechanism can be particularly useful 

for processing multi-source input data (X. Liu et al., 2021). By integrating the RIR structure with channel-attention 

mechanisms, RCAN can extract and exploit hierarchical features from the input image effectively. However, since 120 

RCAN is developed for image super-resolution tasks on natural colour images, the structure of the model may need 

modification when handling inputs from different sources. 
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2.2  Multi-source and multi-scale input data fusion  

By using RCAN as the backbone structure, this study proposes a multi-source method for DEM super-resolution, which 

incorporates high-resolution multispectral satellite images with low-resolution DEM data as the input to reconstruct 125 

high-resolution DEM data. Multispectral satellite images contain information captured across various spectral bands, 

including both visible light and invisible bands, which offer a wealth of information about surface materials, vegetation 

coverage, water bodies, and other landscape features (Carrão et al., 2008). Given the rich information and the open 

accessibility of high-resolution multispectral images, there is great potential to leverage the high-resolution spectral 

features from multispectral satellite images to compensate for the coarse information in low-resolution DEM and 130 

facilitate the reconstruction of high-resolution information on topography. It is anticipated that, by combining 

multispectral imagery with elevation data, deep learning models can access a more comprehensive set of features for 

prediction. 

Given that two types of input data have different sizes, a tailored multi-source input block is integrated into the 

model structure before the first layer of the RCAN backbone structure (Fig. 1). In particular, the 30m DEM data is fed 135 

into a 2D convolutional layer with a kernel size of 3x3, a stride of 1, and padding size of 1. Meanwhile, the 10m 

multispectral satellite images are passed to another 2D convolutional layer that has a kernel size of 3x3 but with a stride 

of 3, which can effectively reduce the spatial dimensions of the input by a factor of 3. A Rectified Linear Unit (ReLU) 

activation function follows the convolution, introducing non-linearity and enhancing feature representation. As such, the 

information in 4-band multispectral input is encoded to a 4-channel tensor that has the same size as the encoded low-140 

resolution data flow. Upon the same size of the two data flows, they can be concatenated along the channel dimension, 

 
Fig. 1 The structure of the proposed DEM Super-resolution model, MS-RCAN. Low-resolution DEM data and 4-band multispectral 
satellite images are adopted as the input to reconstruct high-resolution DEM data. 
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and then processed by another 2D convolutional layer for data fusion of spatial and spectral information from multi-

source inputs. The Mean Absolute Error (MAE) is adopted as the loss function. The proposed method is named RCAN-

Multispectral (RCAN-MS) and is tested with two datasets at different geographical locations by comparing it with a 

series of baseline models in the following sections. 145 

3 Experiment settings 

3.1  Datasets 

Although publicly open DEM datasets with global coverage have limited spatial resolution (coarser than 30m), the spatial 

resolution of publicly open multispectral satellite imagery with global coverage can reach 10m spatial resolution, such 

as Sentinel-2A, which has great potential to provide fine-grained features adding complementary information for DEM 150 

super-resolution. Thus, by employing the RCAN as the backbone model, this study proposes a novel method that utilises 

10m multispectral satellite images and 30m DEM data to produce 10m super-resolution DEM data. Thus, considering 

the availability of datasets and the generalizability as global scales, we chose to work with a scale factor of ×3 for testing 

Table 1. Information on the DEM data and multispectral satellite images in two datasets for the tests of DEM Super-resolution models 

  
Dataset I. 

England area 

Dataset II. 

Shenzhen & Hong Kong 

10m DEM 

Collection source 

LIDAR Composite DTM 2019 

(Published by UK Environment 

Agency) 

TanDEM-X (Provided by German Aerospace 

Centre (DLR)) 

Spatial resolution Resampled from 2m to 10m resolution Resampled from 12m to 10m resolution 

Acquisition time 2019-09-01 2016-01-13 

30m DEM 

Collection source 
Shuttle Radar Topography Mission 

(SRTM) 

Shuttle Radar Topography Mission (SRTM) 

Spatial resolution 1 arc-second (~ 30m) resolution 1 arc-second (~ 30m) resolution 

Acquisition time 2014-09-23 2014-09-23 

10m 

Multispectral 

Images 

Collection source Sentinel-2A Sentinel-2A 

Spatial resolution 10m resolution 10m resolution 

Bands 
Band 2 – Blue, Band 3 – Green, Band 

4 – Red, Band 8 - Near-infrared 

Band 2 – Blue, Band 3 – Green, Band 4 – Red, 

Band 8 - Near-infrared 

Acquisition time 2022-11-25 / 2023-01-21/ 2023-02-13 2023-12-25 
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DEM super-resolution models, which is also a scale factor widely adopted in most of the existing studies on image super-

resolution (P. Wang, Bayram, & Sertel, 2022).  155 

Two datasets at different geographical locations were employed in this study for training and evaluation of DEM 

super-resolution methods, as well as for the simulation of pluvial floodwater distribution. All the data in these two 

datasets are collected from publicly open sources that have been widely adopted for remote sensing applications in urban 

environments, including SRTM (Wu, et al., 2019), TanDEM-X (Geiß et al., 2015), and Sentinel-2A (C. Li, et al., 2021). 

The two datasets cover the areas of (i) England, UK (Dataset I), and (ii) Shenzhen and Hong Kong, China (Dataset II). 160 

Each dataset contains three different data sources (Table 1), including a 10m high-resolution DEM map, a 30m low-

resolution DEM map, and the corresponding 10m multispectral satellite image composed of four bands (i.e., red, blue, 

green, near-infrared). It should be noted that, although the spatial resolution of the high-resolution DEM data in both 

datasets was pre-processed at the same resolution of 10m, they were collected from different sources due to data 

 
Fig. 2 Overview of the two datasets for DEM Super-resolution. (a) the training, validation, and test sets of Data set I. (b) the training, 
validation, and test sets of Data set II. 
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availability. However, such differences in data sources can also be leveraged to test the robustness and generalizability 165 

of the proposed methods.  

As shown in Fig. 2, each dataset for the test on DEM super-resolution methods was split into three subsets, which 

are the training set, validation set, and test set. There are no spatial overlapping areas between the three subsets in each 

dataset. In each dataset, the three subsets were randomly subsampled into 2000, 200, and 300 small patches for training, 

validation, and testing, respectively. The size of the subsampled low-resolution DEM patches is 80´80 pixels, and the 170 

sizes of the subsampled high-resolution DEM and multispectral images are 240´240 pixels. Correspondingly, the DEM 

super-resolution models are trained with a target of upscaling the DEM data to three times its original size.  

3.2  Experiment setup 

The experiments were composed of two main stages (Fig. 3): (i) DEM super-resolution, and (ii) pluvial flood simulation. 

The first stage was centred on assessing the performance of DEM Super-resolution methods in enhancing the resolution 175 

of the original DEM data, whereas the second stage was to examine the effects of adopting the super-resolution DEM 

for pluvial flood simulations.  

In the first stage, besides using the original high-resolution DEM data for performance evaluation, four additional 

baseline methods were employed for comparison with the performance of the proposed method, RCAN-MS. These 

baseline methods include a conventional bicubic interpolation method, and three other widely adopted neural network-180 

based SISR methods, which are Super-resolution Convolutional Neural Network (SRCNN, Dong et al., 2016), Very 

Deep Convolutional Network (VDSR, Kim et al., 2016), and Residual Channel Attention Network (RCAN, Y.Zhang et 

al., 2018).  

 
Fig. 3. Workflow of the experiments, including (i) establishing a DEM Super-resolution model to reconstruct a high-
resolution DEM, then (ii) adopting the high-resolution DEM for pluvial flood simulations. 
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The training of DEM Super-resolution models was conducted with two RTX 4090 GPUs on High-performance 

computing (HPC) clusters. All the test methods were trained with a batch size of 8 and a learning rate of 8*10-5. 185 

Regarding the stopping criteria for mode performance evaluation, all the models were trained for 200 epochs with the 

data in the training set, after which the epoch yielding the smallest MAE values on the validation set was selected for 

further performance elevation. In particular, the assessments of model performance were conducted on the test set, which 

was neither involved in the training process nor in the stopping criteria. The Mean Absolute Error (MAE), Mean Square 

Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) were employed to 190 

evaluate the performance of DEM super-resolution models. PSNR and SSIM are two widely used evaluation metrics in 

image super-resolution tasks (Dong et al., 2016; Kim et al., 2016; Yang et al., 2019). The PSNR measures the quality of 

reconstruction of a lossy transformation (e.g., image compression) (Z. Wang et al., 2021), with higher values indicating 

a smaller difference. The SSIM measures the similarity between two images, specifically targeting changes in brightness, 

contrast, and structure (Z. Wang et al., 2021).  195 

For both the UK and China datasets, the DEM data generated by all the downscaling methods in the super-

resolution test were adopted as input for flood simulation. In each dataset, a subarea of 450 by 600 pixels was cropped 

for pluvial flood simulation. The simulation is conducted using a cellular automata model, Caddies (Guidolin et al., 

2016), which is known for efficient pluvial flood simulation in urban environments (Liu, et al., 2018; Y. Wang, et al., 

2019; Y. Wang et al., 2023).  200 

The pluvial flood simulation was based on a 100-year return period, and 30-minute duration rainfall as a forcing 

scenario. Since the two geographical locations feature different climate conditions, the rainfall intensity corresponding 

to the 100-year return period rainfall was set based on the Intensity-duration-frequency (IDF) curves of the UK and Hong 

Kong, respectively. The IDF curve of the UK is computed using the hourly rainfall data recorded at the rain gauge station 

of Seathwaite, North England, and downloaded from the MIDAS UK sub-hourly rainfall observations dataset (Met 205 

Office, 2006). The adopted IDF curve for Hong Kong is according to a report published by the Civil Engineering and 

Development Department, the Government of the Hong Kong Special Administrative Region (Tang & Cheung, 2011). 

Specifically, the 100-year return period rainfall intensity for a 30-minute duration is 42 mm/h for Dataset I, and 190 

mm/h for Dataset II. The simulated flood maps were evaluated by comparing their similarity with the flood map 

generated based on reference high-resolution DEM data. Both flood depth values and flood area coverage were assessed. 210 

The evaluation metrics to measure flood depth values are MAE and MSE, and the metric for evaluating the flood areas 

is Intersection over Union (IoU), which is a widely adopted method to assess the accuracy of a predicted area in 

comparison to the target area found in ground truth data (Rahman & Wang, 2016). 
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4 Experiment settings 

4.1  DEM Super-resolution 215 

The experimental results of the comparison between the proposed DEM super-resolution method and all the baseline 

methods are presented in Table 2, including the comparisons in both datasets. For Dataset I, the RCAN-MS method 

demonstrates a marked improvement over the Bicubic method, reducing the MAE from 3.01 to 2.20, and the MSE from 

19.02 to 8.71. This enhancement is also reflected in the values of PSNR and SSIM, which increase from 33.41 to 36.76, 

and from 0.46 to 0.62, respectively, suggesting a substantially improved fit to the target high-resolution DEM. Similarly, 220 

Dataset II results reveal that RCAN-MS significantly outperforms the bicubic interpolation method, with the MAE 

sharply decreasing from 9.976 to 5.918, and the MSE from 186.035 to 67.588. The RCAN method, serving as the 

backbone method for RCAN-MS, shows better results than the other deep learning-based methods such as SRCNN and 

VDSR across both datasets, underscoring the superior performance of the RCAN-based architecture in the task of DEM 

super-solution. Specifically, for Dataset I, RCAN posts an MAE of 2.60 and an MSE of 12.95, with a PNSR of 35.05 225 

and an SSIM of 0.60, which are better than those for SRCNN and VDSR. In Dataset II, RCAN achieves an MAE of 6.41 

and an MSE of 83.53, with a PNSR of 38.40 and an SSIM of 0.68, further confirming its robustness. The performance 

superiority of the proposed RCAN-MS method is evident across all metrics in both datasets, demonstrating its enhanced 

capability in generating high-fidelity super-resolution DEM data. This is exemplified by the significant reductions in 

MAE and MSE and the corresponding increase in PNSR and SSIM values, signifying its substantial improvements over 230 

the baseline methods.  

Fig. 4 and Fig. 5 present the two selected patches from the test sets of Datasets I and II for visual assessment of 

the performance of the super-resolution DEM maps, in which a subarea of exemplary patches is additionally enlarged 
Table 2. Evaluation results of all the tested methods on two test sets with different geographical locations 

 
 Test set of Dataset I.   Test set of Dataset II.  

 MAE MSE PNSR SSIM MAE MSE PNSR SSIM 

bicubic 3.0078 19.0206 33.4055 0.4621 9.2924 163.0170 35.4505 0.6091 

SRCNN 2.7665 15.5027 34.2901 0.5776 6.8153 94.1950 37.8500 0.6794 

VDSR 2.6530 13.4866 34.8653 0.5737 6.6412 88.7638 38.1110 0.6811 

RCAN 2.5967 12.9453 35.0460 0.5975 6.4150 83.5288 38.3950 0.6838 

RCAN-
MS 2.1952 8.7102 36.7605 0.6205 5.8181 66.6251 39.3543 0.7411 
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for further visual comparison of details. These two exemplary patches of the test sets are employed for pluvial flood 

simulation in the following section. The performance related to using the super-resolution DEM maps produced by all 235 

the tested methods was compared with that of the corresponding reference high-resolution DEM map. The values of the 

evaluation metrics (i.e., MAE, MSR, PSNR, SSIM) are also summarised in the two figures. The ranking of the 

performance of all the tested methods is aligned with the overall evaluation of the test sets reported in Table 2. For the 

exemplary patch from Dataset I, bicubic interpolation exhibits an MAE of 3.53 and an MSE of 23.69, with a PNSR of 

32.29 and an SSIM of 0.497. RCAN offers a larger magnitude of enhancement than SRCNN and VDSR with an MAE 240 

of 2.98 and an MSE of 16.38, with a PNSR of 33.87 and an SSIM of 0.617, demonstrating a notable increase in precision. 

RCAN-MS stands out among all the tested methods, recording the lowest MAE of 2.07 and an MSE of 7.91, while also 

achieving the highest PSNR of 37.04 and the highest SSIM of 0.685.  

The enlarged area of Dataset II is situated at a relatively higher elevation in the patch (Fig. 5). Despite the different 

geographical locations of the exemplary patches in the two datasets, the results of the DEM super-resolution test on 245 

Dataset II align with the results of Dataset I. RCAN method surpasses SRCNN and VDSR with an MAE of 5.70 and an 

MSE of 57.38, coupled with a PNSR of 39.91 and an SSIM of 0.685. The proposed method RCAN-MS also presents in 

the case of Dataset II the best performance among the methods tested, with the lowest error metrics with an MAE of 

 
Fig. 4 Comparison of DEM maps in the test set of Dataset I. generated by the proposed method, RCAN-MS, other baseline methods 
and the original high-resolution DEM map in Dataset I. 
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5.19 and an MSE of 47.40, and the highest values in PNSR (40.74) and SSIM (0.743), highlighting its effectiveness in 

reconstructing fine-grained information and also capturing the complexity of terrain elevations.  250 

Arguably, in contrast to the exemplary patch from Dataset II (Fig. 5), the patch from Dataset I is characterized by 

a relatively flatter terrain (Fig. 4). it is noteworthy that flatter areas could pose a greater challenge due to smaller 

variations in elevation, which are closer in magnitude to the vertical accuracy of the DEM, potentially increasing the 

likelihood of error. Thus, demonstrating the effectiveness of RCAN-MS in such conditions, as seen with Dataset I, 

manifestly provides a more stringent test of its capabilities in maintaining accuracy across subtler elevation changes. 255 

The conventional image interpolation method, bicubic, presents the worst performance in the exemplary patches 

from both Dataset I and Dataset II with pixelated DEM maps that lack fine-grained features. Regarding the deep-

learning-based super-resolution methods in Dataset I (Fig. 4), the super-resolution DEM images generated by SRCNN 

and VDSR exhibit over-smoothing effects which lead to a loss of details. In contrast, the super-resolution DEM images 

produced by RCAN and RCAN-MS presented substantially less blurring effect than other baseline methods. 260 

Furthermore, by incorporating multispectral satellite images as part of the input, RCAN-MS generated a super-resolution 

DEM image with finer details in elevation difference compared with RCAN, which showed the best performance among 

all the baseline methods.  

 

Fig. 5. Comparison of DEM maps in the test set of Dataset II generated by the proposed method, RCAN-MS, other baseline 
methods and the original high-resolution DEM map. 
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To assess the extent to which the improved DEM data can facilitate pluvial flood simulation, the exemplary patches of 

the two test sets were adopted as the input data in the next stage experiment for pluvial flood simulation.  265 

4.2  Pluvial flood simulation  

Pluvial flood simulations were conducted using the super-resolution DEM data of the two exemplary patches presented 

in Fig. 4 and Fig. 5, including the DEM data produced by all the tested methods. As mentioned further above, the rainfall 

scenario for pluvial flood simulation was set to be a 30-minute duration for a 100-year return period for both datasets, 

with intensities set according to the geographical location, respectively 42 mm/h for England in Dataset I and 190 mm/h 270 

for Hong Kong in Dataset II.  

Fig. 6 demonstrates the simulated pluvial floodwater inundation maps using super-resolution DEM maps of the 

exemplary patch of Dataset I, which are illustrated in Fig. 4. Comparing the various flood inundation maps in Fig. 6, it 

can be observed that the flood inundation map generated based on RCAN-MS replicates more similarity of floodwater 

distribution obtained from using the high-resolution DEM, compared to the other super-resolution generating methods 275 

considered (i.e., Bicubic, SRCNN, VDSR, RCAN), thus reflecting the effects of less elevation errors of DEM data in 

flood simulation. This can be particularly observed in the enlarged areas in Fig. 6, the inundated area predicted based on 

 
Fig. 6 Maps of pluvial flood inundation depth were simulated using super-resolution DEM data and compared with the original 
high-resolution DEM data in an exemplary patch of Dataset I. 
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the RCAN-MS method exhibits greater consistency with the high-resolution DEM, with the distribution of floodwater 

appearing more contiguous, while other methods display more abrupt changes in water levels which can be inferred from 

the scattered dark blue shading within the maps.  280 

The performance in terms of floodwater depth and flood inundation area using super-resolution DEM data in the 

exemplary patch of Dataset I was also quantitively evaluated and compared with the values obtained from simulations 

that used the reference high-resolution DEMs (Fig. 7). The errors of floodwater depth were evaluated using MAE and 

MSE. The RCAN-MS method outperforms the other methods with the lowest MAE of 0.0247 and the lowest MSE of 

0.0095, scoring an approximately 30% improvement compared with conventional bicubic methods in both MAE and 285 

MSE. The accuracy of flood areas, defined using varying thresholds (i.e., 5 cm, 10 cm, 20 cm, 30 cm, 40 cm), was 

assessed using Intersection over Union (IoU), which measures the overlapping areas between the predicted flood areas 

defined using these thresholds. Here, the RCAN-MS method generally shows higher IoU values at different depth 

thresholds compared to other methods, suggesting it is more precise in predicting the actual flood-affected area that will 

emerge from using the original DEM. Particularly for the flooded area with thresholds of 5 cm and 10 cm, the RCAN-290 

MS method exhibits the highest IoU values with an improvement of 146% and 202% compared with bicubic 

interpolation.  

The comparison of flood simulation results generated based on super-resolution DEM data from Dataset II are 

presented in Fig. 8 and Fig. 9. The visual inspection of flood inundation maps and quantitative evaluation suggest that 

results generally align with the performance obtained for Dataset I. In particular, the flood inundation map generated 295 

based on RCAN-MS shows more fine-resolution details matching the floodwater distribution generated with the 

reference high-resolution DEM. Furthermore, the RCAN-MS-based flood inundation map yields the smallest MAE 

 
Fig. 7 Performance evaluation of pluvial flood simulations based on super-resolution DEM data compared with the original high-
resolution DEM data in the exemplary patch of Dataset I. Left: MAE and MSE comparison of flood depth values; right: IoU 
evaluation of the spatial coverage of flood area delineated by different depth thresholds from 5cm to 40 cm. 
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(0.1193) and MSE values (0.3009), indicating approximately 13% and 15% improvement in flood depth errors compared 

with the bicubic-based flood inundation map.  

 
Fig. 8 Maps of pluvial flood inundation depth were simulated using super-resolution DEM data and compared with the original 
high-resolution DEM data in an exemplary patch of Dataset II. 

 

 
Fig. 9 Performance evaluation of flood simulation maps produced based on super-resolution DEM data compared with the original 
high-resolution DEM data in the exemplary patch of Dataset II. Left: MAE and MSE comparison of flood depth values; right: IoU 
evaluation of the spatial coverage of flood area delineated by different depth thresholds from 5cm to 40 cm. 
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5 Discussion  300 

Among the investigated techniques to generate super-resolution DEMs, the here developed RCAN-MS provided superior 

performance compared to other baseline methods not only in terms of accuracy with respect to the high-resolution 

reference DEM, but also with respect to the impact that its use has on flood simulation. Such superior performance is 

due to learning from multi-source inputs, particularly the incorporation of high-resolution multispectral satellite images, 

enabling it to achieve fine-resolution details, while mitigating the pepper-and-salt noise effects in RCAN but avoiding 305 

over-smoothing in SRCNN and VDSR. Arguably, in RCAN-MS, the improvement effect of the multi-source input on 

DEM super-resolution is likely due to the additional feature extracted from multispectral information, which can 

facilitate the estimation of the reflectance of varying land cover types, and contribute to a better understanding of land 

cover features interact with different terrains, thus leading to more detailed and accurate terrain reconstructions (Chen et 

al., 2013). Specifically, the differentiation between vegetated areas and bare soil in multispectral data can increase the 310 

performance of model in accurately predicting elevation changes and surface contours. The variety of spectral bands 

helps in distinguishing between features that may have similar elevation profiles but different spectral characteristics, 

such as the different inter-class variations between urban areas and rocky terrain.  

Most importantly, the RCAN-MS method to build a high-resolution DEM substantially enhances the accuracy of 

flood simulations by producing DEM data with sufficient spatial resolution and improved terrain reconstructions. It is 315 

important to note that in principle better performance in DEM super-resolution does not necessarily guarantee an 

improvement in flood simulation accuracy. This is evident in the experimental results that, although the backbone method 

RCAN achieved the second-best performance in the evaluation of DEM super-resolution tests in both datasets, RCAN 

fell short in pluvial flood simulation when compared to SRCNN and VDSR. This inferior performance can likely be 

attributed to the presence of pepper-and-salt noise within the flood inundation maps simulated from RCAN, where 320 

shallow-depth flooded pixels appear scattered. In contrast, SRCNN and VDSR, known for producing smoother ground 

surfaces, result in DEMs that lead to fewer instances of scattered floodwater pixels. Therefore, despite RCAN yielding 

fewer errors in DEM super-resolution compared to SRCNN and VDSR, the latter models achieve higher scores in 

simulated flood inundation maps due to the reduced occurrence of pepper-and-salt noise. This issue was substantially 

alleviated in the results of RCAN-MS due to the integration of multi-spectral satellite images. The integration of multi-325 

spectral satellite imagery in the RCAN-MS method has proven to be effective in reducing noise and improving flood 

simulation accuracy. Incorporating additional data sources enables the model to better represent complex terrain features, 

which play crucial roles in flood simulation performance.  

While the present study shows the significantly better-performing nature of the RCAN-MS technique compared 

to other well-established methods, one should note that the study is also characterised by some limitations. First, we 330 
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tailored the model structure to take advantage of multi-scale and multi-source input data for DEM super-resolution, but 

only incorporated 4-band multispectral satellite images as additional features, other terrain-related features (e.g., slope, 

aspect) that may bring further improvement to model performance were not tested in this study. Second, for the two 

datasets tested in this study, as we intend to examine the performance of proposed models with a direct and efficient 

workflow, we did not apply data pre-processing techniques (e.g., noise reduction) on the high-resolution DEM data. 335 

There may still be room for improvement in flood simulations using super-resolution DEM data that have pre-processed 

high-resolution DEM as training targets. Finally, it should be acknowledged that variations in acquisition dates of data 

from diverse sources can lead to minor inconsistencies in datasets. These temporal discrepancies, especially between 

multispectral satellite imagery, and between low-resolution and high-resolution images, may affect the efficacy of DEM 

super-resolution generation, potentially reducing its performance.  340 

In future works, further tests could focus on investigating the impact of including additional terrain-related 

features on model performance, as well as examine the performance of the proposed methods with different downscaling 

factors where higher resolution DEM data is available as training targets. Moreover, this study performed pluvial flood 

simulations using a cellular automata-based model forced with a rainfall scenario of a 1-in-100-year return period, further 

tests could assess the effects of super-resolution DEM with alternative rainfall scenarios, and other flood simulation 345 

models that involve further elements influencing the flooding, such surface permeability and drainage networks. In 

addition, this improvement also paves the way for potential applications on other types of hazard simulations that are 

sensitive to variations in DEM resolution and noise, such as landslides, tsunamis-derived floods, and volcanic flows. 

6 Conclusion 

This study addresses the critical challenge of accurate flood simulation in regions where high-resolution DEM data is 350 

limited. We developed and implemented a deep learning-based DEM super-resolution method, incorporating multi-

source input data, including low-resolution DEM and high-resolution multispectral imagery. The experiment suggests 

that the enhanced multi-source DEM super-resolution method, RCAN-MS, significantly improves the accuracy of the 

DEM for the purpose of pluvial flood simulations, particularly in terms of floodwater depth and inundation area 

predictions. The integration of Sentinel-2A multispectral data with the 30m SRTM DEM allows for the reconstruction 355 

of 10m DEM data with higher fidelity compared to conventional methods. The superior performance of RCAN-MS in 

flood simulation compared to its backbone method also highlights the importance of incorporating additional data 

sources to improve terrain representation and reduce noise, thereby enhancing flood simulation accuracy. 

By leveraging publicly available global datasets, this approach offers a promising solution for regions with limited 

access to high-resolution topographic data, enabling not only more precise flood simulations, but also the potential to 360 
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generate large-scale high-resolution DEMs from existing publicly available coarse DEMs and, thus, opens new 

possibilities for resilience development and resource allocation, potentially not only contributing to flood risk reduction, 

but also to broader applications in simulating other natural hazards, such as landslides, tsunamis, and volcanic flows, 

where accurate terrain representation is essential. 
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