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Dear Sir/Madam, 
 
I am writing to submit the revised version of our manuscript titled “Improving Pluvial Flood Simulations 
with Multi-source DEM Super-Resolution” for consideration in Natural Hazards and Earth System Sciences. 
 
We sincerely appreciate the time and effort the reviewers invested in evaluating our manuscript and 
providing insightful comments. We have carefully considered each comment and have made 
corresponding revisions to the manuscript. 
 
To facilitate the review process, we are including a detailed point-by-point response to the comments, 
indicating how each issue has been addressed. In the below point-by-point response, our responses are in 
italic, and the text in the revised manuscript is marked with quotation marks. Changes made to the 
manuscript are highlighted in the track-changes file. 
 
We believe that these revisions have further enhanced our manuscript and hope that it will be considered 
favourably for publication. Thank you for considering our revised submission. Please do not hesitate to 
contact me if further information is needed. 
 
 
 
Sincerely, 
Yue Zhu 
 
  



Referee #1 
 
The paper introduces a deep-learning method that combines low resolution DEM and multi-spectral 
images to obtain a high-resolution DEM that is ultimately used for running a pluvial flood simulation. 
The authors also compare this approach with other DL and not methods showing its improved 
efficacy. 

The manuscript is well written, clear, concise, and informative.  As such I recommend publication 
with just few minor details that might further improve the quality of the paper. 

Thank you very much for your comments, we have made corresponding revisions to the manuscript, 
and provide a detailed point-by-point response to each comment as below. 

Minor comments: 

1. In the results/discussion section, I would emphasize that the difference between the RCAN 
and the RCAN-MS is mainly in the inputs used (if I followed everything correctly), thus 
further proving your point that the extra information coming from multi-spectral images is 
beneficial, since so far it seemed "just" a difference in method as you have with VDSR, for 
example. 

Thank you for this suggestion. We agree with this and have emphasised in the manuscript that the 
primary distinction between RCAN and RCAN-MS lies in the inputs used, as the tailored input layers to 
processing multi-sourced inputs. This added information supports the advantage of using multi-
spectral images and strengthens the argument that they contribute to improved model performance. 
We revised the discussion section to clarify this as follows: 

(Line 138) “The proposed method, referred to as RCAN-Multispectral (RCAN-MS), incorporates a 
tailored multi-source and multi-scale input module, which is the key distinction from the original RCAN.” 

(Line 147) “The tailored multi-source input module is integrated into the model structure before the 
first layer of the RCAN backbone structure (Fig. 1).” 

(Line 395) “The improved performance of RCAN-MS in flood simulation, compared to its backbone 
method RCAN, underscores the value of incorporating multispectral images as they enhance terrain 
representation and reduce noise in the super-resolution DEM, thus leading to more accurate flood 
simulation results.” 

 

2. Could you explain why do the results in terms of flood simulations look more consistent in 
Dataset II rather than in Dataset I, at least visually? For example, in Figure 6, all interpolation 
methods seem to produce some sort of accumulation ponds in correspondence of the 
bifurcations of the rivers and the bicubic approximation results in a noisy pattern. However, 
that does not seem the case for Figure 8 with Dataset II. Do you have any clue why? 

Thank you for raising this point. A potential explanation for the difference in flood simulation results 
between the two datasets may stem from the terrain characteristics of the study areas. As shown in 
Figures 4 and 5, the test area in Dataset 1 is relatively flat, while the second test area in Dataset 2 has 
a hillier terrain. In Dataset 1, the flatter landscape leads to a more diffuse distribution of floodwater, 
which can result in less distinct patterns and variability in the simulation results. In contrast, the hilly 



terrain of Dataset 2, even with bicubic interpolation, naturally facilitates more concentrated 
floodwater accumulation in certain areas, resulting in relatively more consistent simulation outcomes 
across different methods.  

We include this discussion in the manuscript as follows: 

(line 350) “The terrain characteristics can influence the effectiveness of interpolation and super-
resolution methods in flood simulation. Specifically, the improvement in flood simulation maps 
achieved by RCAN-MS is more evident in Dataset 1 than in Dataset 2. A key factor contributing to this 
discrepancy is the difference in terrain between the two datasets. As shown in Fig.5 and Fig. 6, Dataset 
1 features a relatively flat landscape, while Dataset 2 is characterized by hillier topography. In the 
flatter terrain of Dataset 1, floodwater tends to be distributed in a wider area, resulting in less distinct 
patterns and greater noise in the simulation results generated by baseline methods (e.g., bicubic 
interpolation). In contrast, the hilly terrain of Dataset 2 naturally promotes more concentrated flow 
accumulation, leading to visually coherent flood patterns across different methods, even using the 
DEM generated with bicubic interpolation. Therefore, the improvement provided by the proposed 
super-resolution method tends to be more significant in regions with less pronounced topography.” 

3. I think you could also comment further on why is the IoU very low (despite the proportional 
increase) for high thresholds of water depths. 

Thank you for your question. The low IoU for high water depth thresholds, despite the proportional 
increase, can likely be attributed to the much smaller extent of deep floodwater areas. At higher 
thresholds, the areas of flooding become more concentrated in specific regions with much smaller 
spatial coverage, which may not align well with the predicted flood areas. In this case, at higher depth 
thresholds, even small misalignments between the predicted and actual flood zones can result in a 
significant decrease in IoU. While the proportional increase suggests that the model is correctly 
identifying more flood-prone areas as the water depth threshold rises, the precision and spatial 
accuracy required to match the predicted and actual flood extents become more challenging. 

We made the corresponding revision in the manuscript as follows: 

(line 316) “It can be observed in Fig. 8 and Fig. 10 that, although the proportional increase in IoU 
indicates that the proposed methods are correctly identifying more flood-prone areas compared to 
baseline methods, the IoU for high water depth thresholds is much lower than for lower water depth 
thresholds. This can be attributed to the significantly smaller spatial extent of deep floodwater areas. 
At higher thresholds, even small misalignments between the predicted and actual flood zones can 
result in a substantial reduction in IoU. While it becomes more challenging to simulate deep flood levels 
in their exact locations, flood simulation based on RCAN-MS still achieved the best performance in 
simulating deep floodwater areas compared to all baseline methods in both datasets.” 

4. In terms of metrics you could also consider adding a different metric such as the critical 
success index (CSI), which has been used in several flood studies. 

Thank you for this suggestion. We incorporated Intersection over Union (IoU) as one of the metrics in 
our analysis. The formulas for IoU and Critical Success Index (CSI) are mathematically identical in the 
context of this study. Both metrics measure the overlap between the predicted and actual positive 
areas (True Positives, TP) relative to the total number of areas covered by both predicted positives (TP 
+ FP) and actual positives (TP + FN), which can be expressed as: 



𝐶𝑆𝐼 = 𝐼𝑜𝑈 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 We believe this provides an adequate measure of overlap and performance in our flood simulation 
results. 

 

5. While most figures are of high quality, I think Figure 7 and 9 can be better, despite already 
being informative. Consider changing their style. 

To improve Fig 7 and 9 (which are now Fig 8 and 10 in the revised manuscript), we changed the figure 
style to bar charts as follows: 

 
 

  

 
Fig. 8 Performance evaluation of pluvial flood simulations based on super-resolution DEM data compared with the original high-
resolution DEM data in the exemplary patch of Dataset I. Left: MAE and MSE comparison of flood depth values; right: IoU 
evaluation of the spatial coverage of flood area delineated by different depth thresholds from 5cm to 40 cm. 

 

 
Fig. 10 Performance evaluation of flood simulation maps produced based on super-resolution DEM data compared with the original 
high-resolution DEM data in the exemplary patch of Dataset II. Left: MAE and MSE comparison of flood depth values; right: IoU 
evaluation of the spatial coverage of flood area delineated by different depth thresholds from 5cm to 40 cm. 

 



Referee #2  
 

The authors extend the practice of super-resolution (SR) for DEM by including multi-spectral image 
inputs. By enhancing the resolution of SRTM using this Sentinel-2A data, they demonstrate the 
performance improvement provided by their method for 2 case studies. The study is extended by 
comparing the performance of the resulting DEMs in a pluvial flood simulation. 

1. From what I can tell, this is a well-done study, advances SR-DEM, and should be published. 
However, I'm not sure the work fits within NHESS... rather than journals more focused on 
ML or hydrodynamic modelling, like those where the references studies are published. i.e., 
there is only one NHESS reference in the bib (and this ref is intro fluff not related to the 
work). But maybe this is more of an editorial decision. 

Thank you for raising this point, we tend to believe that, as NHESS is an interdisciplinary journal 
publishing research with topics related to various aspects of natural hazards, studies on investigating 
input data quality to facilitate enhanced hazard mapping fit the journal’s scope. We also found some 
other published NHESS papers in this field. For instance, Blöschl et al. (2024) investigated hyper-
resolution flood hazard mapping, which involves enhanced DEM data for improved flood simulation. 
Miller et al. (2022) tested the impact of different spatial resolutions of DEM data on snow avalanche 
modelling. Löwe & Arnbjerg-Nielsen (2020) explored the effect of data resolution on urban pluvial flood 
risk assessment.  

We added the related studies as references in the manuscript as follows: 

(line 40) “Methods to enhance the spatial resolution of DEM data have been widely adopted across 
geospatial applications to improve risk estimates. These advancements have significantly enhanced 
the accuracy and reliability of natural hazard mapping, including flood prediction (Löwe & Arnbjerg-
Nielsen, 2020; Tan et al., 2024), landslide modelling (Brock et al., 2020), volcanic flow assessment 
(Deng et al., 2019), and snow avalanche forecasting (Miller et al., 2022).” 

(line 75) “In general remote sensing applications, the benefits of integrating multi-source inputs have 
been increasingly recognised, as the combination of complementary data sources enhances the 
robustness and reliability of model performance (J. Li et al., 2022). ... Blöschl et al. (2024) integrated 
additional riverbed geometry information into the DEM to enhance national-scale flood hazard 
mapping.” 

2. Further, the authors could consider the following suggestions: 

• I appreciate the use of pluvial flood simulations to generate an additional performance 
metric for the SR, however I think this work should be de-emphasized and moved to the 
supplement... leaving the manuscript more focused on the SR architecture and 
experiment (which should be better described).  i.e., while the pluvial sections take up 
roughly half the current manuscript, this work does not really influence the conclusion or 
abstract. You could instead focus on how traditional raster metrics (e.g., MAE) are 
inadequate for flood simulations... this would be an interesting paper... but a different 
paper.  

Thank you for this comment. We would like to argue that the section on pluvial flood simulation 
evaluation should remain in the main manuscript. This is because the study aims to improve pluvial 
flood simulation by enhancing DEM data through super-resolution techniques, addressing the critical 



issue of the lack of publicly available high-resolution DEMs for flood mapping. Examining the effect of 
super-resolution DEM data on flood simulation is essential to the objectives of this study. Notably, 
quantifying the extent to which the proposed method improves flood simulation provides valuable 
insights for other researchers and practitioners considering whether to adopt this approach in their 
studies and work. Furthermore, the experimental results in the flood simulation section demonstrate 
that better performance in DEM super-resolution, as measured by traditional metrics, does not 
necessarily lead to improved performance in flood simulation. Therefore, to validate the effectiveness 
of the proposed super-resolution approach in enhancing flood simulation, it is crucial to include the 
flood simulation analysis as an integral part of this study. 
 

• Code and data should be made public. e.g., there is no way to properly review such a 
manuscript without access to the code and data.  

Thank you for raising this point. We agree to openly share the code and data of this study, except for 
the high-resolution data for Dataset 2, which is from TanDEM-X. This is because TanDEM-X data 
requires proposal submission and approval for data acquisitions. This information is added in the 
manuscript as follows: 
 
“Except for the data from TanDEM-X, which requires a proposal submission and approval for data 
acquisition, all other data and codes are openly accessible here: 
https://zenodo.org/records/14868516” 
 
 

• The comparison against 4 baseline methods is a great idea and communicates the benefits 
of the proposed method well. However, these baseline methods (like the proposed 
method) need to be described adequately for reproducibility. i.e., the training and 
hyperparameters used. The authors should take care to provide as 'fair' a comparison as 
possible. 

Thank you for this suggestion, we revised the manuscript to provide more details on training strategies 
and hyperparameters as follows: 

(line 205) “The training of DEM Super-resolution models was established and trained with PyTorch on 
two NVIDIA GeForce RTX 4090 GPUs on high-performance computing (HPC) clusters. All baseline 
models were implemented using the default parameter settings for hidden layers as specified in their 
original papers. The input and output layer configurations were adapted to suit the task of DEM super-
resolution. The baseline methods used as benchmarks utilized single-band input and output layers, 
except for RCAN-MS, which was configured with five input bands (i.e., single-band DEM and four-band 
multispectral image). All the test methods adopted the same training strategy, they were all trained 
with a batch size of 8 and a learning rate of 1´10-4. With an adaptive learning rate scheduler, the 
learning rate decreases to a fraction of 0.8 when the validation loss stops decreasing for 50 epochs. 
The optimizer adopted for all the methods is Adam with default momentum parameters. The loss 
function is the Mean Absolute Error (MAE). Regarding the stopping criteria for mode performance 
evaluation, all the models were trained for 200 epochs with the data in the training set, after which 
the epoch yielding the smallest MAE values on the validation set was selected for further performance 
elevation on the test sets.” 

• The transferability of the method to different regions should be better explored and 
discussed (does the model need to be retrained for each region?) 



Thank you for highlighting this important aspect. Our model is trained and evaluated separately on 
data from specific study areas, and while the results demonstrate its effectiveness in this context, its 
transferability to other geographic areas has not been thoroughly tested, and it is expected that certain 
retraining or parameter-tuning would be required to achieve a good performance in other regions. 
Therefore, we addressed this point as a limitation in the manuscript as follows: 

(line 370) “In addition, one should observe that the model was trained and evaluated in two specific 
geographic areas. Thus, its straight transferability without minor adjustments (e.g. fine tuning of 
parameterisation) may not be guaranteed in other regions, particularly those with significantly 
different terrain characteristics. However, retraining or fine-tuning of the model, which is generally 
possible, is expected to allow for effective implementation in many different regions.” 

 

3. Attached are additional comments. Thank you for the nice paper, it was a pleasure to read.  

Thank you for the detailed comments in the attachments, which are very helpful in improving the 
quality of this study. We made the following response to the comments and revisions to the manuscript: 

(line 15) we modified the abstract with a clarification about the research context: “Accurate flood 
simulation remains a significant challenge in many flood-prone regions, particularly in developing 
countries and urban areas, where the availability of high-resolution topographic data is especially 
limited.” and about the quantification of performance metrics: “We evaluated the performance of the 
super-resolution DEM in flood simulations. Compared to conventional methods (e.g., bicubic 
interpolation), the simulation results demonstrated that our approach significantly improved the 
accuracy of flood simulations, with a reduction in the mean absolute error of floodwater depth of about 
13.1% and an increase in the IoU for inundation area predictions of about 46%.” 

(line 28) We have toned down the introduction as: “The occurrence of severe urban floods has been on 
the rise, partly influenced by climate change, which contributes to more frequent extreme rainfall 
events (Tabari, 2020).” 

(line 33) We added the citation: “At present, open datasets of DEM data with global coverage are 
predominantly available at raster resolutions coarser than (or equal) 30m (Marsh et al., 2023)” 

(line 40) We rephrased the introduction to existing methods for improving the spatial resolution of 
DEM to differentiate with other similar statements: “Methods to enhance the spatial resolution of DEM 
data have been widely adopted across various geospatial applications to improve risk estimation. 
These advancements have significantly enhanced the accuracy and reliability of natural hazard 
mapping, including flood prediction (Löwe & Arnbjerg-Nielsen, 2020; Tan et al., 2024), landslide 
modelling (Brock et al., 2020), volcanic flow assessment (Deng et al., 2019), and snow avalanche 
forecasting (Miller et al., 2022).” 

(line 50) We rephrased the introduction to data fusion-based approaches for improving DEM spatial 
resolution for better clarity: “During the fusion process, tools such as elevation error maps or weight 
maps are commonly used to assign importance to each DEM source, ensuring that higher-quality data 
has a greater influence on the final output. However, these methods often introduce inaccuracies by 
altering elevation values and failing to address edge effects (Okolie & Smit, 2022), such as abrupt 
transitions or mismatches between overlapping DEM datasets.” 

(line 55) As suggested, we removed the acronym SISR for Single Image Super-Resolution due to its 
infrequent use in the manuscript. We did not adopt the acronym SR for super-resolution, as it consists 



of only two letters and could be confused with spatial resolution, which is frequently referenced 
throughout the manuscript. 

(line 60) we consolidated the sentence introducing deep-learning DEM super-resolution methods: “The 
implementations of deep learning-based super-resolution methods have been shown to substantially 
improve the performance of remote sensing applications (Ling & Foody, 2019; Shang et al., 2022; Xie 
et al., 2022) and promote the utilisation of data that was previously underutilised due to limited spatial 
resolution (Zhu et al., 2021), including the applications of enhancing low-resolution DEM data (Demiray 
et al., 2021a, 2021b; Jiang et al., 2023; Kubade et al., 2020; Z. Li et al., 2023; Yue et al., 2015; Zhou et 
al., 2023, 2021, 2021).” 

(line 65) We revised the literature review to provide a richer discussion of related studies, elaborating 
on their methods and performance. Additionally, we explained how our approach improves upon these 
previous works: “For instance, Demiray et al. (2021) utilized Generative Adversarial Networks (GANs) 
to upscale low-resolution DEMs (50ft) to high-resolution DEMs (3ft), although this study demonstrated 
the potential of adversarial training in spatial resolution enhancement, GANs are known for unstable 
in training, facing challenges such as mode collapse and vanishing gradients (Jabbar et al., 2021). Zhou 
et al. (2021) introduced a double-filter deep residual neural network, leveraging residual learning to 
improve feature extraction and enhance the accuracy of reconstructed DEMs. More recently, Li et al. 
(2023) proposed a transformer-based deep learning network for upscaling DEM across multiple 
upsampling factors (e.g., ×2, ×4), showcasing the effectiveness of attention mechanisms in capturing 
long-range dependencies and spatial relationships. Building on the advances of these existing methods, 
we refine a DEM super-resolution method by employing a computationally efficient architecture with 
attention mechanisms to achieve accuracy and robustness.” 

(line 75) We rewrote the section “1.2. Multi-source deep learning for remote sensing applications” to 
remove redundant or unnecessary sentences and added related citations. The modified paragraphs 
are as follows: 

“In general remote sensing applications, the benefits of integrating multi-source inputs have been 
increasingly recognised, as the combination of complementary data sources enhances the robustness 
and reliability of model performance (J. Li et al., 2022). For instance, Shen et al. (2019) developed a 
deep learning-based model for drought monitoring, which employed multi-source remote sensing data 
as input, including DEM data, and meteorological and soil data. Lu et al. (2022) proposed a deep 
learning framework taking Google Earth imagery and point of interest heatmap as input data for urban 
functional zone extraction. Blöschl et al. (2024) integrated riverbed geometry information into the DEM 
to enhance national-scale flood hazard mapping. 

With respect to the input for DEM super-resolution, it can be argued that, solely relying on a single 
source of low-resolution (LR) DEM input can be an ill-posed task, as high-resolution details can hardly 
be accurately reconstructed without additional reference information (Yue et al., 2016). Studies have 
been made to include additional features generated from low-resolution DEM data. For instance, 
Zhang et al. (2023) calculated terrain gradient maps based on DEM data to guide the optimisation 
process of a Convolutional Neural Network (CNN)-based DEM super-resolution. Zhou et al. (2023) 
proposed a terrain feature-based CNN for DEM super-resolution, which extracts slope and aspect from 
low-resolution DEM data and deploys them as additional features for model inputs and loss function. 

Besides generating additional features based on low-resolution DEM, efforts have also been made to 
fuse different data sources to offer fine-granular details related to terrain features, which can improve 
performance. One example following this direction is found in Argudo et al. (2018), who examined the 
feasibility of combining natural colour aerial images together with low-resolution DEM data as input 



to train a CNN for producing high-resolution DEM, suggesting improved performance compared with 
interpolation-based methods. Tan et al. (2024) introduced a deep learning-based DEM upscaling 
network that uses high-resolution optical images to predict elevation differences, and then fuses these 
predictions with the original DEM data through additional convolutional layers. It should be noted that 
these studies mainly employed natural colour images for feature fusion. In contrast, multispectral 
images can provide further features from non-visible wavelengths, such as near-infrared, allowing for 
more detailed and specialised analysis. This is supported by Chen et al. (2013), showcasing the effects 
of utilising multispectral bands of satellite images on improving the performance of an interpolation-
based DEM densification method. More recently, a few attempts have explored the effects of 
integrating low-resolution DEM with remote sensing imagery for DEM super-resolution. Gao & Yue 
(2024) used the red band of Sentinel-2 images to provide auxiliary high-frequency information for DEM 
super-resolution training. Paul & Gupta (2024) incorporated 3-band satellite images with low-
resolution DEM to develop a GAN-based DEM super-resolution model.” 

(line 110) We rephrased the second main contribution of the study as: “…(ii) by using publicly open 
datasets we ensure the generalizability of the method, especially for DEM-related applications in data-
scarce regions;” 

(line 117) Thank you for the comments on revising the overall significance of the study from “offering 
an exemplary pathway to address the issue of lacking high-resolution DEM for reliable risk assessments 
in the context of land use planning and disaster management” to focus on emphasising “improve flood 
simulation”. However, given that we intend to keep the section on pluvial flood simulation evaluation 
in the main manuscript, we would like to argue that the section on quantifying the improvements in 
pluvial flood simulation also indicates the potential of improving broader applications across various 
domains that rely on high-resolution DEMs for reliable spatial analysis. Therefore, we think the original 
statement reflects the broader significance of the study, showcasing its value beyond flood simulations 
and positioning it as a methodological advancement applicable to multiple disciplines. 

(line 120) We thank you for the comment about adding sentences guiding the reader into the method 
section. Accordingly, we added a guiding sentence as follows: “To improve the spatial resolution of 
DEM data for enhancing flood simulations, we further develop a deep learning-based DEM super-
resolution method. This method employs the Residual Channel Attention Network (RCAN) (Y.Zhang et 
al., 2018) as the backbone structure and incorporates a tailored multi-source input block to leverage 
multi-sourced input data, contributing to improved performance in reconstructing high-resolution 
DEM data.” 

(line 135) As suggested, we also modified the last sentence of this paragraph to clarify our 
modifications on the backbone structure as follows: “However, since RCAN has been developed for 
image super-resolution tasks on single natural colour images, we tailored the structure of its input 
module to handle inputs from different data sources.” 

(line 140) As suggested, we modified section 2.2 “The input module enables the integration of high-
resolution multispectral satellite images with low-resolution DEM data, leveraging the complementary 
information from both sources to reconstruct high-resolution DEMs with enhanced accuracy (Fig. 6). 
Multispectral satellite images contain information captured across various spectral bands, including 
both visible light and near-infrared bands, which offer a wealth of information about surface materials, 
vegetation coverage, water bodies, and other landscape features (Carrão et al., 2008), making them 
ideal for compensating for the coarse information in low-resolution DEMs. By combining high-
resolution multispectral imagery with low-resolution elevation data, deep learning models can access 
a more comprehensive feature set, facilitating the reconstruction of detailed topographic information.” 



(line 146) Thank you for the suggestion, we revised Figure 1 to emphasise the location of the multi-
source input module in the model structure, which now corresponds to the text: “The tailored multi-
source input module is integrated into the model structure before the first layer of the RCAN backbone 
structure (Fig. 1).” 

 

 

Comment: need to expand this section so it is more clear what your contribution/improvements are 
vs. the original RCAN framework.  

(line 140) Thank you for the comment on clarifying that the main difference between the proposed 
method and RCAN is the multi-source and multi-scale input module. This is clarified in the earlier 
sections as follows: “The proposed method, referred to as RCAN-Multispectral (RCAN-MS), 
incorporates a tailored multi-source and multi-scale input module, which is the key distinction from 
the original RCAN.” 

 

 

 

 

 

 

 

 

 
Fig. 1 The structure of the proposed DEM super-resolution model, MS-RCAN. Low-resolution DEM data and four-band 
multispectral satellite images are fused using a tailored multi-source and multi-scale input module to facilitate the reconstruction of 
high-resolution DEM data. 



(Table 1) Thank you for the comments on Table 1, we added citations to the corresponding dataset in 
the table, the revised version is as reported here below: 

 

NASA JPL (2013). NASA Shuttle Radar Topography Mission Global 1 arc second [Data set]. NASA EOSDIS Land Processes 
Distributed Active Archive Center. Retrieved from https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 
UK Environment Agency. (2023). LIDAR Composite DTM 2019 – 10m. Retrieved from 
https://www.data.gov.uk/dataset/8311f42d-bddd-4cd4-98a3-e543de5be4cb/lidar-composite-dtm-2019-10m 

(line 170) As suggested, we added more information on the data sources as follows: 

“The data are all collected from publicly open sources, including SRTM, TanDEM-X, and Sentinel-2, 
which have been widely adopted for remote sensing applications, e.g., urban environments (Wu, et al., 
2019; Geiß et al., 2015; C. Li, et al., 2021). SRTM utilized dual radar antennas to collect interferometric 
radar data, which was then processed into digital topographic data with a resolution of 1 arc second 
(Farr et al., 2007). TanDEM-X mission uses a single-pass interferometric synthetic aperture radar 
(InSAR) system to produce 12 m resolution global digital surface models. The Sentinel-2 satellites carry 
the Multi-Spectral Instrument (MSI), which captures imagery in 13 spectral bands, with the blue, green, 
red, and near-infrared bands having a 10m spatial resolution (Spoto et al., 2012).” 

Thank you for the suggestions for improving Fig.2. We changed the colours of DEM maps to ensure a 
colour-blind-friendly appearance, and added north arrows, using the same colour scale for similar 
maps. We did not add a legend for multi-spectral images as they are presented in false colour mode 
with the composition of three bands. Additionally, we added a world map and marked the location of 
the two datasets. The modified figure is as follows: 

 

Table 1. Information on the DEM data and multispectral satellite images in two datasets for the tests of DEM super-resolution 
models 

  Dataset 1. 
England  

Dataset 2. 
Shenzhen & Hong Kong 

10m DEM 

Collection source 
LIDAR Composite DTM 2019, 

published by UK Environment Agency 
(2023)  

TanDEM-X, provided by German Aerospace 
Centre (DLR)) 

Spatial resolution Resampled from 2m to 10m resolution 
using a bilinear interpolation 

Resampled from 12m to 10m resolution using a 
bilinear interpolation 

Acquisition date  2019-09-01 2016-01-13 

30m DEM 
Collection source 

Shuttle Radar Topography Mission 
(SRTM), accessed from USGS 

EarthExplorer  

Shuttle Radar Topography Mission (SRTM) , 
accessed from USGS EarthExplorer 

Spatial resolution 1 arc-second (~ 30m) resolution 1 arc-second (~ 30m) resolution 
Acquisition date 2014-09-23 2014-09-23 

10m 
Multispectral 

Images 

Collection source Sentinel-2A Sentinel-2A 
Spatial resolution 10m resolution 10m resolution 

Bands Band 2 – Blue, Band 3 – Green, Band 4 
– Red, Band 8 - Near-infrared 

Band 2 – Blue, Band 3 – Green, Band 4 – Red, 
Band 8 - Near-infrared 

Acquisition date 2022-11-25 / 2023-01-21/ 2023-02-13 2023-12-25 

 



 

Comment: what did you do with the edge/leftover pixels? 

(line 190) We subsample patches in the areas with valid pixel values, therefore no leftover pixels were 
involved in the training process. 

 

Comment: missing a lot of description that are needed to make your method reproduceable (e.g., 
hyperparameters, data augmentation, framework (pytorch?), architecture/layer sizes) 

(line 205) we have responded in the above main comment section, in which we revised the manuscript 
to provide details regarding training settings and hyperparameters. The revised section can be found 
around line 205. 

 

 

 
Fig. 2 Overview of the two datasets for DEM Super-resolution. (a) the training, validation, and test sets of Dataset 1. (b) the training, 
validation, and test sets of Dataset 2 (see Table 1 for data source). 

 



Regarding the comment on the necessity of the pluvial flood simulation section, as addressed in the 
main comment section, a key contribution of this study is to quantify the impact of the super-resolution 
DEM, generated using the proposed deep-learning method, on hazard simulations. This quantification 
offers two main benefits: (i) Since the evaluation metric of super-resolution DEM may not necessarily 
reflect their effectiveness in geospatial applications, evaluating how DEMs generated through different 
methods perform in end applications, particularly in flood hazard modelling, can provide more 
comprehensive performance evaluation. (ii) For practitioners in the field of hazard applications, this 
section offers insight into whether the proposed deep-learning approach provides a cost-efficient 
solution for enhancing the accuracy and applicability of flood simulations. We added the above 
arguments in the manuscript as follows: 

(line 194) “The first stage was centred on assessing the performance of DEM Super-resolution methods 
in enhancing the resolution of the original DEM data, whereas the second stage was to quantify the 
effects of adopting the super-resolution DEM on enhancing pluvial flood simulations. This 
quantification offers two main benefits: (i) provides a more comprehensive performance evaluation of 
how DEMs generated through different methods perform in impact applications; (ii) examines whether 
the proposed deep-learning approach provides a cost-efficient solution for improving flood 
simulations.” 

For the comments in section 3.2 Experiment setup, we provide the answers as follows (line 205): 

- Regarding the training setup of baseline models, we adopted the same training setup as the 
proposed method; 

- The models in the two case studies were trained separately, but using the consistent training 
setup described in the manuscript; 

- Regarding the selection of batch size and learning rate, we conducted experiments with batch 
sizes in the range {4,6,8,10} and learning rates between 1´10-5 to 1´10-3. The tests indicated 
that the chosen configuration achieved the best performance. Additionally, we employed an 
adaptive learning rate scheduler, which reduced the learning rate by a factor of 0.8 when the 
validation loss did not decrease for 50 epochs. 

Comment: I'd like to see a plot of MAE vs. epoch for all relevant models on both datasets. I think 
this will make the methods clearer. 

As requested, we added a figure to present MAE vs. epoch for all relevant models on both datasets as 
below: 

 
Fig. 3 Changes in the MAE values of all the tested models as training epochs increase for Dataset 1 (left) and Dataset 2 (right). 

 



 

Comment on section 4.1 DEM Super-resolution: there are too many acronyms and numbers here 
for me to follow... unless you are pointing out something special.. just leave the info in the table.  
Or talk about 'percent change' if you want to be more quantitative. 

We revised this paragraph by emphasising just the most important numerical values and adding 
percentage changes. The revised paragraph is as follows: 

(line 245) “For Dataset 1, the RCAN-MS method demonstrates a marked improvement over the Bicubic 
method, reducing the MAE from 3.0 to 2.2 m (-26.7%), and the MSE from 19.0 to 8.7 m2 (-54.2%). This 
enhancement is also reflected in the values of PSNR (+9.9%) and SSIM (+34.8%), suggesting a 
substantially improved fit to the target high-resolution DEM. Similarly, Dataset 2 results reveal that 
RCAN-MS significantly outperforms the bicubic interpolation method, with the MAE sharply decreasing 
from 9.9 to 5.9 m (-40.4%), and the MSE from 186.0 to 67.6 m2 (-63.7%). The RCAN method, serving 
as the backbone method for RCAN-MS, shows better results than the other deep learning-based 
methods such as SRCNN and VDSR across both datasets, underscoring the superior performance of the 
RCAN-based architecture in the task of DEM resolution enhancement. Specifically, for Dataset 1, RCAN 
posts an MAE of 2.60 m and an MSE of 12.9 m2, which are better than those for SRCNN and VDSR. In 
Dataset 2, RCAN achieves an MAE of 6.4 m and an MSE of 83.5 m2, further confirming its robustness. 
The performance superiority of the proposed RCAN-MS method is evident across all metrics in both 
datasets, demonstrating its enhanced capability in generating high-fidelity super-resolution DEM data. 
This is exemplified by the significant reductions in MAE and MSE and the corresponding increase in 
PNSR and SSIM values.” 

 

Comment on Table 2: show units 

Thank you for this comment, we added units for MAE and MSE in the table. However, PNSR is unitless 
ratio, and SSIM a similarity measure ranging from 0 to 1. The revised table is as below: 

 

 

Table 2. Evaluation results of all the tested DEM resolution enhancement methods on two test sets with different 
geographical locations 

 
 Test set of Dataset 1.   Test set of Dataset 2.  

 MAE (m) MSE (m2) PNSR SSIM MAE (m) MSE (m2) PNSR SSIM 

bicubic 3.0078 19.0206 33.4055 0.4621 9.2924 163.0170 35.4505 0.6091 

SRCNN 2.7665 15.5027 34.2901 0.5776 6.8153 94.1950 37.8500 0.6794 

VDSR 2.6530 13.4866 34.8653 0.5737 6.6412 88.7638 38.1110 0.6811 

RCAN 2.5967 12.9453 35.0460 0.5975 6.4150 83.5288 38.3950 0.6838 

RCAN-
MS 2.1952 8.7102 36.7605 0.6205 5.8181 66.6251 39.3543 0.7411 

 



 

Comment regarding experimental results represented in Fig 5 and Fig 6: 

- use the same color pallete as your previous figure 

We would like to argue that, since the previous figure, Figure 2, adopts a color-blind friendly palette, 
the contrast of values difference is less visually detectable. Unlike Figure 2, which presents an overview 
of the two datasets, Figures 5 and 6 compare the super-resolution DEMs generated by different models, 
which contain subtle differences. To make the differences more distinctive, a color palette with multi-
hued transitions is more effective. Therefore, we use the ‘terrain’ color palette in Matplotlib for these 
two figures. 

- include the SRTM source image (I assume this will be identical to 'bicubic'.. so just ammend 
the axis title). and an optical image 

We amended Figures 5 and 6 to include SRTM source images. 

- this figure (Figure 5) has a lot of redundant information as 

Thank you for pointing this out. We removed the scale bar on each subplot, and only kept one for all 
of them on the right side of the figure. 

- for the zoom/call-out, use a different colorscale so we can see what is going on 

Thank you for this suggestion. The primary objective of the zoom-in patch is to enlarge details within 
the tested area while maintaining consistency with the multi-hued color palette used for the main plots 
across both datasets. Our current approach ensures that variations remain detectable without 
introducing potential misinterpretations from an altered color scale. While applying a different color 
scale to the zoom-in plots might add additional contrast, it could also disrupt consistency and 
comparability. Given these considerations, we believe our current visualization effectively conveys the 
necessary details. 

- oh.. I see you are reporting the metrics separately for the patch.. is this needed? 

Table 2 provides the overall performance metrics for the entire test set, which may not capture 
differences in specific subareas. Therefore, to facilitate a meaningful comparison between these 
patches, we also report their corresponding metrics. This approach ensures that the patches are 
quantitatively comparable. 

- I think this whole paragarph could be replaced with "test patch performs similarly"... unless 
there is some performance difference we should be aware of.... this also seems like it can 
be removed (paragraph starting with ”The enlarged area of Dataset II….”) 

Thank you for this suggestion, we removed some numerical descriptions that present consistent 
performance with the overall evaluation on the test set, whereas we preferred to preserve the 
description related to the pluvial flood simulation. The revised paragraph is as below: 

(line 255) “Fig.5 and Fig. 6 present the two selected patches from the test sets of Datasets 1 and 2 for 
visual assessment of the performance of the super-resolution DEM maps, in which a subarea of 
exemplary patches is additionally enlarged for further visual comparison of details. The corresponding 



reference low-resolution DEM and high-resolution DEM map are also presented for comparison. The 
ranking of the performance of all the tested methods is aligned with the overall evaluation of the test 
sets reported in Table 2, suggesting that RCAN offers a larger magnitude of enhancement than SRCNN 
and VDSR, and RCAN-MS stands out among all the tested methods, recording the lowest MAE and MSE 
values. These two exemplary patches of the test sets are employed for pluvial flood simulation in the 
following section. 
We note that the enlarged area of Dataset 2 is situated at a relatively higher elevation in the patch 
(Fig. 6). Despite the different geographical locations of the exemplary patches in the two datasets, the 
results of the DEM super-resolution test on Dataset 2 align with the results of Dataset 1. RCAN gained 
the second-best performance, and the proposed RCAN-MS still shows the best performance among the 
models tested, highlighting its effectiveness in reconstructing fine-grained information and also 
capturing the complexity of terrain elevations.” 

- I don't think you're 1 patch comparison is enough evidence to claim that your model 
performs better in flat terrain. include some discussion of this limitation here. 

Thank you for pointing this out. We would like to clarify that the proposed model not only achieved the 
best performance on this single patch but also demonstrated superior overall performance on Dataset 
I, which generally features relatively flatter terrain compared to Dataset II. However, we agree that 
this does not definitively confirm its generalizability in flat terrains. Therefore, we have toned down 
the statement and added a discussion of potential limitations.  

(line 270) “In contrast to the exemplary patch from Dataset 2 (Fig. 6), the patch from Dataset 1 is 
characterized by a relatively flatter terrain (Fig. 5). Arguably, flatter areas could pose a greater 
challenge due to smaller variations in elevation, which are closer in magnitude to the vertical accuracy 
of the DEM, potentially increasing the likelihood of error. Given the superior overall performance of 
RCAN-MS in Dataset 1, this suggests its potential effectiveness in handling subtler elevation changes. 
However, as we looked at two geographical regions only, the method performance in a wider range of 
terrain characteristics remains to be tested.” 

- Please add an evaluation of cross-validating the two datasets (i.e., use the Hong Kong model 
weights to make predicitions in England). This will better communicate the methods ability 
for transferability. 

Thank you for your suggestion. We acknowledge that an extended cross-validation between the two 
datasets may provide additional insights into model transferability. However, differences in data 
distribution, sensor resolution, and regional terrain features between the two datasets may introduce 
confounding factors that require further adaptations. In this sense, applying a model trained on one 
specific source domain directly to another without any adaptations (e.g., parameter tuning) could 
significantly impact performance, particularly given the distinct terrain characteristics of the two 
regions.  

We understand that extended cross-validation between models trained in different datasets would be 
a valuable approach for studies prioritising transferability. For instance, a truly generalisable model 
would require training on diverse datasets that minimize bias rather than relying on a single source 
domain. However, our primary focus in this study is to assess model performance within different 
datasets under consistent training conditions, ensuring applicability to various terrain characteristics. 
The experimental results on both datasets have met these objectives. 

Comment on Section 4.2 Pluvial flood simulation: I suggest moving all of this to the supplement 



As clarified in previous responses, we consider the pluvial flood simulation section as essential because 
it quantifies the impact of super-resolution DEMs on hazard modeling, complementing the evaluation 
metrics of DEM super-resolution and underlying the practical implications in hazard modelling. This 
section provides indeed practitioners with insights into the cost-effectiveness of the proposed deep-
learning approach for improving flood simulation accuracy. Therefore, we prefer to retain this section 
in the main text. 

 

Comment on Fig 9: need to make it more clear that these are popout boxes; use a different color for 
zero 

 
Fig. 5 Maps of pluvial flood inundation depth simulated using super-resolution DEM data and compared with the flood 
inundation depth simulated using the original high-resolution DEM data in an exemplary patch of Dataset 1. 

 

 
Fig. 4 Maps of pluvial flood inundation depth simulated using super-resolution DEM data and compared with the flood 
inundation depth simulated using the original high-resolution DEM data in an exemplary patch of Dataset 2. 

 



Thank you for this comment, we amended the figures using white color for zero and made them clearer 
as pop-out boxes. The revised figures are as below: 

 

Comment on Section 5. Discussion: 

- “pepper-and-salt noise effects” need to talk about this in the introduction 

Thank you for this comment. We would like to clarify that the "pepper-and-salt noise effects" 
mentioned here refer to issues observed in the super-resolution DEM data generated by RCAN, one of 
the baseline models. This is not a common issue for this model, nor is it a characteristic of the original 
data. Therefore, we believe it is more appropriate to discuss this in the discussion section rather than 
in the introduction. To avoid any misunderstanding, we have revised the sentence for better clarity. 
The revised version is as follows: 

(line 325) “Such superior performance is due to learning from multi-source inputs, particularly 
incorporating high-resolution multispectral satellite images enables it to achieve fine-resolution details, 
while mitigating the pepper-and-salt noises in the super-resolution DEM generated by RCAN. 
Concurrently it avoids over-smoothing as instead occurs in the SRCNN and VDSR.” 

- “in RCAN-MS, the improvement effect of the multi-source input on DEM super-resolution is 
likely due to the additional feature extracted from multispectral information” didn't you 
show this? This is why you need to provide more information on your baseline models. 

We wish to clarify that “the additional features” here refer to the multi-spectral satellite images that 
are employed as part of the input for RCAN-MS, this has been explained in the previous sections. To 
avoid unambiguity, we revised this description for better clarity as follows: 

(line 330) “Arguably, in RCAN-MS, the improvement effect of the multi-source input on DEM super-
resolution is due to the input from multispectral information that contributes to a better understanding 
of how land cover features interact with different terrains, thus leading to more detailed and accurate 
terrain reconstructions.” 

- “in principle better performance in DEM super-resolution does not necessarily guarantee an 
improvement in flood simulation accuracy” This is an interesting point, and a good 
argument for including some sort of hydrologic metrics in your evaluation (as you did with 
the pluvial flooding). However, I still think this is a minor point... esp as it only supports the 
conclusion of your traditional metrics. 

Thank you for pointing this out. As clarified in earlier responses to this concern, besides supporting 
traditional metrics, an important contribution of having the section on pluvial flood simulation is to 
quantify the extent to which super-resolution DEM generated by the proposed model can improve 
flood simulation, compared with other baseline models. This not only can highlight the effectiveness 
of the method in hazard simulation applications, but also provide important reference for practitioners 
to consider and evaluate the cost-effective of this approach in similar applications. 

- “only incorporated 4-band multispectral satellite images as additional features, other 
terrain-related features (e.g., slope, aspect) that may bring further improvement to model 
performance were not tested in this study” this isn't really a limitation.. more about future 
work 



Thank you for this comment. We revised this paragraph to merge into the section of discussion on 
future work. The revised content is as follows: 

(line 375) “In future work, further tests could focus on investigating the impact of including additional 
inputs on model performance. This study takes advantage of multi-scale and multi-source input data 
for DEM super-resolution but only incorporates 4-band multispectral satellite images as additional 
features. Other terrain-related features (e.g., slope, aspect) may potentially improve model 
performance and were not tested. Thus, future work can explore the impact of terrain-related features 
on enhancing model performance, as well as examine the performance of the proposed methods with 
different downscaling factors, where higher-resolution DEM data are available as training targets.” 

- “In future work…” this is better placed in the conclusion section. 

We believe this discussion of future studies is better suited for the discussion section rather than the 
conclusion. As the discussion of future studies here is more connected with the above-described 
limitations, putting it in the discussion section allows for a critical reflection on the limitations and 
highlights areas for further exploration. Meanwhile, we tend to have the conclusion section focus on 
summarizing the key findings and main takeaways. Introducing future work in the conclusion may 
detract from the focus on the study results. 

 

Comment: Need to have a very good reason to not share your code. Esp. considering all the authors 
seem to come from publicly funded institutions. I can not complete the review without seeing the 
code. 

As responded in the previous section of the main comments, we agree with openly sharing the code 
and data, except for the high-resolution DEM data for Dataset 2. This information is added in the 
manuscript as follows: 

 
“Except for the data from TanDEM-X, which requires a proposal submission and approval for data 
acquisition, all other data and codes are openly accessible here: 
https://zenodo.org/records/14868516” 

 

  



Referee #3 
 
This paper presents a new deep learning method to downscale coarse, satellite-derived terrain data 
to 10m resolution by exploiting higher resolution multispectral image data. The results of the 
method are validated for two case areas, both through direct comparison against high resolution 
terrain data, and by comparing pluvial flood simulations with varying terrain inputs. Several 
benchmark downscaling methods are included in the comparison. 

 
I think this is a very good paper. I very much appreciate the investigation of the effects of 
downscaling methods on the final application, i.e., pluvial flood simulation, and I think it is well 
placed within the scope of the journal. I have only some very minor comments that are mentioned 
below and don't require further review. I suggest accepting the paper. 

Comments: 
 
1. Language - please perform a proofread, there are several typos distributed throughout 
the paper 

 
Thank you for your comments. We performed a careful proofreading and corrected typos in this 
manuscript. 

 
 
2. Units - please include units in the results figures e.g. Fig. 7 and 9. Similarly, the scores in 
Table 2 require units. I believe that the test in Hongkong does not have an average error of 
8m, but how should we interpret an MSE of 66??? 

 
Thank you for pointing this out. The metrics in Table 2 require proper units. PSNR and SSIM are unitless. 
MAE is measured in meters (m), MSE is measured in square meters (m2), and reflects the mean of 
squared elevation differences, making it more sensitive to outliers. The MSE of 66.6251 aligns with the 
average MAE of 5.8181 when considering that MSE is more sensitive to outliers. As such, MSE provides 
a measure of error variability, where large errors have more influence. This highlights the importance 
of interpreting both MAE and RMSE for a complete understanding of model performance. We have 
included these units in the revised table to clarify the interpretations. 
 

Table 3. Evaluation results of all the tested DEM resolution enhancement methods on two test sets with different 
geographical locations 

 
 Test set of Dataset 1.   Test set of Dataset 2.  

 MAE (m) MSE (m2) PNSR SSIM MAE (m) MSE (m2) PNSR SSIM 

bicubic 3.0078 19.0206 33.4055 0.4621 9.2924 163.0170 35.4505 0.6091 

SRCNN 2.7665 15.5027 34.2901 0.5776 6.8153 94.1950 37.8500 0.6794 

VDSR 2.6530 13.4866 34.8653 0.5737 6.6412 88.7638 38.1110 0.6811 

RCAN 2.5967 12.9453 35.0460 0.5975 6.4150 83.5288 38.3950 0.6838 

RCAN-
MS 2.1952 8.7102 36.7605 0.6205 5.8181 66.6251 39.3543 0.7411 

 



 
 
3. Figure 1 - please include resolutions in the figure. The entire residual in residual block 
operates in 30m resolution. In addition, the upscaling module is not described. I suppose 
this is another 2D convolution. Does it receive a skip connection with high resolution as 
input? 
 

Thank you for this comment.  
 
In terms of the resolution in Figure 1, we have included resolution information for the low-resolution 
DEM data, high-resolution multi-spectral satellite images, and the super-resolution DEM output. We 
argue that, since the data passing through convolutional layers are tensors that may not have explicit 
physical units, it is more appropriate to represent the height and width of the spatial dimensions as 
spatial resolution in the figure. Therefore, we have added the spatial resolution (height, width) in this 
figure, as shown below: 

 
Regarding the upscaling module, we added a description regarding the upscaling layer as follows: 
 
(line 154) “After that, the concatenated multi-source input is passed through the RCAN backbone 
structure, which consists of RIR blocks and includes a 2D convolutional layer at the end of the model 
structure to upscale the data flow to the size of the high-resolution DEM map.” 
 
We did not add a skip connection between the input and the high-resolution output, this is because 
there is a long skip connection at the end of the input module and before the upscaling layer at the end 
of the model structure, which are just a few layers to reach the final output. 
 

 
Fig. 6 The structure of the proposed DEM Super-resolution model, MS-RCAN. Low-resolution DEM data and 4-band multispectral 
satellite images are adopted as the input to reconstruct high-resolution DEM data. 

 


