
RC2: 'Comment on nhess-2024-207' 
 
We sincerely appreciate the time and effort the reviewers invested in evaluating our manuscript and 
providing insightful comments. We have carefully considered each comment. To facilitate the review 
process, we are including a detailed point-by-point response to the comments, indicating how each 
issue has been addressed. In the below point-by-point response, our responses are in italic, and the 
text in the revised manuscript is marked with quotation marks. Thank you for considering our revised 
submission. 

 

Attached are additional comments. Thank you for the nice paper, it was a pleasure to read.  

We will make the following response to the comments and revisions to the manuscript: 

(line 15) we will modify the abstract with a clarification about the research context: “Accurate flood 
simulation remains a significant challenge in many flood-prone regions, particularly in developing 
countries and urban areas, where the availability of high-resolution topographic data is especially 
limited.” and about the quantification of performance metrics: “We evaluated the performance of the 
super-resolution DEM in flood simulations. Compared to conventional methods (e.g., bicubic 
interpolation), the simulation results demonstrated that our approach significantly improved the 
accuracy of flood simulations, with a reduction in the mean absolute error of floodwater depth from 
0.137 to 0.119 (-13.1%) and an increase in the IoU for inundation area predictions from 0.207 to 0.302 
(+45.9%).” 

(line 25) We will tone down the introduction as: “The occurrence of severe floods has been on the rise, 
partly influenced by climate change, which contributes to more frequent extreme rainfall events 
(Tabari, 2020).” 

(line 30) We will add the citation: “open datasets of DEM data with global coverage are predominantly 
available at raster resolutions coarser than 30 x 30 meters (Marsh et al., 2023)” 

(line 36) We can rephrase the introduction to existing methods for improving the spatial resolution of 
DEM to differentiate with other similar statements: “Methods to enhance the spatial resolution of DEM 
data have been widely adopted across various geospatial applications to improve risk estimation. 
These advancements have significantly enhanced the accuracy and reliability of natural hazard 
mapping, including flood prediction (Löwe & Arnbjerg-Nielsen, 2020; Tan et al., 2024), landslide 
modelling (Brock et al., 2020), volcanic flow assessment (Deng et al., 2019), and snow avalanche 
forecasting (Miller et al., 2022).” 

(line 46) We can rephrase the introduction to data fusion-based approaches for improving DEM spatial 
resolution for better clarity: “During the fusion process, tools such as elevation error maps or weight 
maps are commonly used to assign importance to each DEM source, ensuring that higher-quality data 
has a greater influence on the final output. However, these methods often introduce inaccuracies by 
altering elevation values and failing to address edge effects (Okolie & Smit, 2022), such as abrupt 
transitions or mismatches between overlapping DEM datasets.” 

(line 52) As suggested, we will remove the acronym SISR for Single Image Super-Resolution due to its 
infrequent use in the manuscript. We did not adopt the acronym SR for super-resolution, as it consists 
of only two letters and could be confused with spatial resolution, which is frequently referenced 
throughout the manuscript. 



(line 50) we consolidated the sentence introducing deep-learning DEM super-resolution methods: “The 
implementations of deep learning-based super-resolution methods have been shown to substantially 
improve the performance of remote sensing applications (Ling & Foody, 2019; Shang et al., 2022; Xie 
et al., 2022) and promote the utilisation of data that was previously underutilised due to limited spatial 
resolution (Zhu et al., 2021), including the applications of enhancing low-resolution DEM data (Demiray 
et al., 2021a, 2021b; Jiang et al., 2023; Kubade et al., 2020; Z. Li et al., 2023; Yue et al., 2015; Zhou et 
al., 2023, 2021, 2021).” 

(line 60) We will revise the literature review to provide a richer discussion of related studies, 
elaborating on their methods and performance. Additionally, we explained how our approach 
improves upon these previous works: “For instance, Demiray et al. (2021) utilized Generative 
Adversarial Networks (GANs) to upscale low-resolution DEMs (50ft) to high-resolution DEMs (3ft), 
although this study demonstrated the potential of adversarial training in spatial resolution 
enhancement, GANs are known for unstable in training, facing challenges such as mode collapse and 
vanishing gradients (Jabbar et al., 2021). Zhou et al. (2021) introduced a double-filter deep residual 
neural network, leveraging residual learning to improve feature extraction and enhance the accuracy 
of reconstructed DEMs. More recently, Li et al. (2023) proposed a transformer-based deep learning 
network for upscaling DEM across multiple upsampling factors (e.g., ×2, ×4), showcasing the 
effectiveness of attention mechanisms in capturing long-range dependencies and spatial relationships. 
Building on the advances of these existing methods, we refine a DEM super-resolution method by 
employing a computationally efficient architecture with attention mechanisms to achieve accuracy 
and robustness.” 

(line 65) We will rewrite the section “1.2. Multi-source deep learning for remote sensing applications” 
to remove redundant or unnecessary sentences and added related citations. The modified paragraphs 
are as follows: 

“The benefits of integrating multi-source inputs in remote sensing applications have been increasingly 
recognised, as the combination of complementary data sources enhances the robustness and reliability 
of model performance (J. Li et al., 2022). For instance, Shen et al. (2019) developed a deep learning-
based model for drought monitoring, which employed multi-source remote sensing data as input, 
including DEM data, and meteorological and soil data. Lu et al. (2022) proposed a deep learning 
framework taking Google Earth imagery and point of interest heatmap as input data for urban 
functional zone extraction. Blöschl et al. (2024) integrated additional bathymetric information into the 
DEM to enhance national-scale flood hazard mapping. 

With respect to the input for DEM super-resolution, it can be argued that, solely replying to a 
single source of low-resolution (LR) DEM input can be an ill-posed task, as high-resolution details can 
hardly be accurately reconstructed without additional reference information (Yue et al., 2016). Studies 
have been made to include additional features generated from low-resolution DEM data. For instance, 
Zhang et al. (2023) calculated terrain gradient maps based on DEM data to guide the optimisation 
process of a Convolutional Neural Network (CNN)-based DEM super-resolution. Zhou et al. (2023) 
proposed a terrain feature-based CNN for DEM super-resolution, which extracts slope and aspect from 
low-resolution DEM data and deploys them as additional features for model inputs and loss function.  

Besides generating additional features based on low-resolution DEM, efforts have also been 
made to fuse different data sources to offer fine-granular details related to terrain features to bring 
performance gains. One example following this direction is found in Argudo et al. (2018), who 
examined the feasibility of combining natural colour aerial images together with low-resolution DEM 
data as input to train a CNN for producing high-resolution DEM, suggesting improved performance 
compared with interpolation-based methods. Tan et al. (2024) introduced a deep learning-based DEM 
upscaling network that uses high-resolution optical images to predict elevation differences, and then 
fuses these predictions with the original DEM data through additional convolutional layers. It should 



be noted that these studies mainly employed natural colour images for feature fusion. In contrast, 
multispectral images can provide further features from non-visible wavelengths, such as near-infrared, 
allowing for more detailed and specialised analysis. This is supported by Chen et al. (2013), showcasing 
the effects of utilising multispectral bands of satellite images on improving the performance of an 
interpolation-based DEM densification method. More recently, a few attempts have explored the 
effects of integrating low-resolution DEM with remote sensing imagery for DEM super-resolution. Gao 
& Yue (2024) used the red band of Sentinel-2 images to provide auxiliary high-frequency information 
for DEM super-resolution training. Paul & Gupta (2024) incorporated 3-band satellite images with low-
resolution DEM to develop a GAN-based DEM super-resolution model.” 

(line 100) We will rephrase the second main contribution of the study as: “…(ii) the use of publicly open 
datasets ensures the generalizability of the method, especially for DEM-related applications in data-
scarce regions;” 

(line 110) Thank you for the comments on revising the overall significance of the study from “offering 
an exemplary pathway to address the issue of lacking high-resolution DEM for reliable risk assessments 
in the context of land use planning and disaster management” to focus on emphasising “improve flood 
simulation”. However, given that we intend to keep the section on pluvial flood simulation evaluation 
in the main manuscript, we would like to argue that the section on quantifying the improvements in 
pluvial flood simulation also indicates the potential of improving broader applications across various 
domains that rely on high-resolution DEMs for reliable spatial analysis. Therefore, we think the original 
statement reflects the broader significance of the study, showcasing its value beyond flood simulations 
and positioning it as a methodological advancement applicable to multiple disciplines. 

(line 110) We thank you for the comment about adding sentences guiding the reader into the method 
section. Accordingly, we will add a guiding sentence as follows: “To improve the spatial resolution of 
DEM data for enhancing flood simulations, we proposed a deep learning-based DEM super-resolution 
method. This method employs the Residual Channel Attention Network (RCAN) (Y.Zhang et al., 2018) 
as the backbone structure and incorporates a tailored multi-source input block to leverage multi-
sourced input data, contributing to improved performance in reconstructing high-resolution DEM data.” 

(line 120) As suggested, we will modify the last sentence of this paragraph to clarify our modifications 
on the backbone structure as follows: “However, since RCAN is developed for image super-resolution 
tasks on single natural colour images, we tailored the structure of its input module to handle inputs 
from different data sources.” 

(line 125) As suggested, we will modify section 2.2 “Multi-source and multi-scale input data fusion” to 
avoid redundancy in method descriptions as follows: “This study adopts a multi-source method for 
DEM super-resolution, utilizing the RCAN as the backbone structure. The proposed method, referred to 
as RCAN-Multispectral (RCAN-MS), incorporates a tailored multi-source and multi-scale input module, 
which is the key distinction from the original RCAN. This input module enables the integration of high-
resolution multispectral satellite images with low-resolution DEM data, leveraging the complementary 
information from both sources to reconstruct high-resolution DEMs with enhanced accuracy. 
Multispectral satellite images contain information captured across various spectral bands, including 
both visible light and invisible bands, which offer a wealth of information about surface materials, 
vegetation coverage, water bodies, and other landscape features (Carrão et al., 2008), making them 
ideal for compensating for the coarse information in low-resolution DEMs. By combining high-
resolution multispectral imagery with low-resolution elevation data, deep learning models can access 
a more comprehensive feature set, facilitating the reconstruction of detailed topographic information.” 

 



 

 

(line 135) Thank you for the suggestion, we will revise Figure 1 to emphasise the location of the multi-
source input module in the model structure, which now corresponds to the text: “The tailored multi-
source input module is integrated into the model structure before the first layer of the RCAN backbone 
structure (Error! Reference source not found.).” 

 

 

Comment: need to expand this section so it is more clear what your contribution/improvements are 
vs. the original RCAN framework.  

(line 145) Thank you for the comment on clarifying that the main difference between the proposed 
method and RCAN is the multi-source and multi-scale input module. This is clarified in the earlier 
sections as follows: “The proposed method, referred to as RCAN-Multispectral (RCAN-MS), 
incorporates a tailored multi-source and multi-scale input module, which is the key distinction from 
the original RCAN.” 

 

 

 

 

 

 

 
Fig. 1 The structure of the proposed DEM super-resolution model, MS-RCAN. Low-resolution DEM data and four-band 
multispectral satellite images are fused using a tailored multi-source and multi-scale input module to facilitate the reconstruction of 
high-resolution DEM data. 



 

 

(Table 1) Thank you for the comments on Table 1, we added citations to the corresponding dataset in 
the table, the revised version is as reported here below: 

 

NASA JPL (2013). NASA Shuttle Radar Topography Mission Global 1 arc second [Data set]. NASA EOSDIS Land Processes 
Distributed Active Archive Center. Retrieved from https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 
UK Environment Agency. (2023). LIDAR Composite DTM 2019 – 10m. Retrieved from 
https://www.data.gov.uk/dataset/8311f42d-bddd-4cd4-98a3-e543de5be4cb/lidar-composite-dtm-2019-10m 

(line 160) As suggested, we will add more information on the data sources as follows: 

“All the data in these two datasets are collected from publicly open sources, including SRTM, TanDEM-
X, and Sentinel-2, which have been widely adopted for remote sensing applications in urban 
environments (Wu, et al., 2019; Geiß et al., 2015; C. Li, et al., 2021). SRTM utilized dual radar antennas 
to collect interferometric radar data, which was then processed into digital topographic data with a 
resolution of 1 arc-second (Farr et al., 2007). TanDEM-X mission uses a single-pass interferometric 
synthetic aperture radar (InSAR) system to produce 12 m resolution global digital surface models. The 
Sentinel-2 satellites carry the Multi-Spectral Instrument (MSI), which captures imagery in 13 spectral 
bands, with the blue, green, red, and near-infrared bands having a 10m spatial resolution (Spoto et al., 
2012).” 

Thank you for the suggestions for improving Fig.2. We changed the colours of DEM maps to ensure a 
colour-blind-friendly appearance, and added north arrows, using the same colour scale for similar 
maps. We did not add a legend for multi-spectral images as they are presented in false colour mode 
with the composition of three bands. Additionally, we added a world map and marked the location of 
the two datasets. The modified figure is as follows: 

Table 1. Information on the DEM data and multispectral satellite images in two datasets for the tests of DEM super-resolution 
models 

  Dataset 1. 
England  

Dataset 2. 
Shenzhen & Hong Kong 

10m DEM 

Collection source 
LIDAR Composite DTM 2019, 

published by UK Environment Agency 
(2023)  

TanDEM-X, provided by German Aerospace 
Centre (DLR)) 

Spatial resolution Resampled from 2m to 10m resolution 
using a bilinear interpolation 

Resampled from 12m to 10m resolution using a 
bilinear interpolation 

Acquisition date  2019-09-01 2016-01-13 

30m DEM 
Collection source 

Shuttle Radar Topography Mission 
(SRTM), accessed from USGS 

EarthExplorer  

Shuttle Radar Topography Mission (SRTM) , 
accessed from USGS EarthExplorer 

Spatial resolution 1 arc-second (~ 30m) resolution 1 arc-second (~ 30m) resolution 
Acquisition date 2014-09-23 2014-09-23 

10m 
Multispectral 

Images 

Collection source Sentinel-2A Sentinel-2A 
Spatial resolution 10m resolution 10m resolution 

Bands Band 2 – Blue, Band 3 – Green, Band 4 
– Red, Band 8 - Near-infrared 

Band 2 – Blue, Band 3 – Green, Band 4 – Red, 
Band 8 - Near-infrared 

Acquisition date 2022-11-25 / 2023-01-21/ 2023-02-13 2023-12-25 

 



 

 

Comment: what did you do with the edge/leftover pixels? 

(line 170) We subsample patches in the areas with valid pixel values, therefore no leftover pixels were 
involved in the training process. 

 

Comment: missing a lot of description that are needed to make your method reproduceable (e.g., 
hyperparameters, data augmentation, framework (pytorch?), architecture/layer sizes) 

(line 175) we have responded in the above main comment section, in which we revised the manuscript 
to provide details regarding training settings and hyperparameters.  

 

 
Fig. 2 Overview of the two datasets for DEM Super-resolution. (a) the training, validation, and test sets of Dataset 1. (b) the training, 
validation, and test sets of Dataset 2 (see Table 1 for data source). 

 



 

Regarding the comment on the necessity of the pluvial flood simulation section, as addressed in the 
main comment section, a key contribution of this study is to quantify the impact of the super-resolution 
DEM, generated using the proposed deep-learning method, on hazard simulations. This quantification 
offers two main benefits: (i) Since the evaluation metric of super-resolution DEM may not necessarily 
reflect their effectiveness in geospatial applications, evaluating how DEMs generated through different 
methods perform in end applications, particularly in flood hazard modelling, can provide more 
comprehensive performance evaluation. (ii) For practitioners in the field of hazard applications, this 
section offers insight into whether the proposed deep-learning approach provides a cost-efficient 
solution for enhancing the accuracy and applicability of flood simulations. We added the above 
arguments in the manuscript as follows: 

(line 176) “The first stage was centred on assessing the performance of DEM Super-resolution methods 
in enhancing the resolution of the original DEM data, whereas the second stage was to quantify the 
effects of adopting the super-resolution DEM on enhancing pluvial flood simulations. This 
quantification offers two main benefits: (i) provides a more comprehensive performance evaluation on 
how DEMs generated through different methods perform in end applications; (ii) examines whether 
the proposed deep-learning approach provides a cost-efficient solution for improving flood 
simulations.” 

For the comments in section 3.2 Experiment setup, we provide the answers as follows (line 185): 

- Regarding the training setup of baseline models, we adopted the same training setup as the 
proposed method; 

- The models in the two case studies were trained separately, but using the consistent training 
setup described in the manuscript; 

- Regarding the selection of batch size and learning rate, we conducted experiments with 
various configurations of batch sizes and learning rates. The tests indicated that the chosen 
configuration achieved the best performance. Additionally, we employed an adaptive learning 
rate scheduler, which reduced the learning rate by a factor of 0.8 when the validation loss did 
not decrease for 50 epochs. 

Comment: I'd like to see a plot of MAE vs. epoch for all relevant models on both datasets. I think 
this will make the methods clearer. 

 
Fig. 3 Changes in the MAE values of all the tested models as training epochs increase for Dataset 1 (left) and Dataset 2 (right). 

 



As requested, we can add a figure to present MAE vs. epoch for all relevant models on both datasets 
as below: 

Comment on section 4.1 DEM Super-resolution: there are too many acronyms and numbers here 
for me to follow... unless you are pointing out something special.. just leave the info in the table.  
Or talk about 'percent change' if you want to be more quantitative. 

We will revise this paragraph by emphasising just the most important numerical values and adding 
percentage changes. The revised paragraph is as follows: 

(line 215) “For Dataset 1, the RCAN-MS method demonstrates a marked improvement over the Bicubic 
method, reducing the MAE from 3.0 to 2.2 (-26.7%), and the MSE from 19.0 to 8.7 (-54.2%). This 
enhancement is also reflected in the values of PSNR (+9.9%) and SSIM (+34.8%), suggesting a 
substantially improved fit to the target high-resolution DEM. Similarly, Dataset 2 results reveal that 
RCAN-MS significantly outperforms the bicubic interpolation method, with the MAE sharply decreasing 
from 9.9 to 5.9 (-40.4%), and the MSE from 186.0 to 67.6 (-63.7%). The RCAN method, serving as the 
backbone method for RCAN-MS, shows better results than the other deep learning-based methods 
such as SRCNN and VDSR across both datasets, underscoring the superior performance of the RCAN-
based architecture in the task of DEM super-solution. Specifically, for Dataset 1, RCAN posts an MAE 
of 2.60 and an MSE of 12.9, which are better than those for SRCNN and VDSR. In Dataset 2, RCAN 
achieves an MAE of 6.4 and an MSE of 83.5, further confirming its robustness. The performance 
superiority of the proposed RCAN-MS method is evident across all metrics in both datasets, 
demonstrating its enhanced capability in generating high-fidelity super-resolution DEM data. This is 
exemplified by the significant reductions in MAE and MSE and the corresponding increase in PNSR and 
SSIM values, signifying its substantial improvements over the baseline methods.” 

Comment on Table 2: show units 

Thank you for this comment, we will add units for MAE and MSE in the table. However, PNSR is unitless 
ratio, and SSIM a similarity measure ranging from 0 to 1. The revised table can be as below: 

 

 

 

Table 2. Evaluation results of all the tested methods on two test sets with different geographical locations 

 
 Test set of Dataset 1.   Test set of Dataset 2.  

 MAE (m) MSE (m2) PNSR SSIM MAE (m) MSE (m2) PNSR SSIM 
bicubic 3.0078 19.0206 33.4055 0.4621 9.2924 163.0170 35.4505 0.6091 

SRCNN 2.7665 15.5027 34.2901 0.5776 6.8153 94.1950 37.8500 0.6794 

VDSR 2.6530 13.4866 34.8653 0.5737 6.6412 88.7638 38.1110 0.6811 

RCAN 2.5967 12.9453 35.0460 0.5975 6.4150 83.5288 38.3950 0.6838 

RCAN-
MS 2.1952 8.7102 36.7605 0.6205 5.8181 66.6251 39.3543 0.7411 

 



Comment regarding experimental results represented in Fig 5 and Fig 6: 

- use the same color pallete as your previous figure 

We would like to argue that, since the previous figure, Figure 2, adopts a color-blind friendly palette, 
the contrast of values difference is less visually detectable. Unlike Figure 2, which presents an overview 
of the two datasets, Figures 5 and 6 compare the super-resolution DEMs generated by different models, 
which contain subtle differences. To make the differences more distinctive, a color palette with multi-
hued transitions is more effective. Therefore, we use the ‘terrain’ color palette in Matplotlib for these 
two figures. 

- include the SRTM source image (I assume this will be identical to 'bicubic'.. so just ammend 
the axis title). and an optical image 

We will amend Figures 5 and 6 to include SRTM source images. 

- this figure (Figure 5) has a lot of redundant information as 

 
Fig. 4 Comparison of DEM maps in the test set of Dataset 1. generated by the proposed method, RCAN-MS, other baseline methods 
and the original high-resolution DEM map in Dataset 2. 

 



Thank you for pointing this out. We removed the scale bar on each subplot, and only kept one for all 
of them on the right side of the figure. 

- for the zoom/call-out, use a different colorscale so we can see what is going on 

Thank you for this suggestion. The primary objective of the zoom-in patch is to enlarge details within 
the tested area while maintaining consistency with the multi-hued color palette used for the main plots 
across both datasets. Our current approach ensures that variations remain detectable without 
introducing potential misinterpretations from an altered color scale. While applying a different color 
scale to the zoom-in plots might add additional contrast, it could also disrupt consistency and 
comparability. Given these considerations, we believe our current visualization effectively conveys the 
necessary details. 

- oh.. I see you are reporting the metrics separately for the patch.. is this needed? 

Table 2 provides the overall performance metrics for the entire test set, which may not capture 
differences in specific subareas. Therefore, to facilitate a meaningful comparison between these 
patches, we also report their corresponding metrics. This approach ensures that the patches are 
quantitatively comparable. 

 
Fig. 5 Comparison of DEM maps in the test set of Dataset 1. generated by the proposed method, RCAN-MS, other baseline methods 
and the original high-resolution DEM map in Dataset 1. 

 



- I think this whole paragarph could be replaced with "test patch performs similarly"... unless 
there is some performance difference we should be aware of.... this also seems like it can 
be removed (paragraph starting with ”The enlarged area of Dataset II….”) 

Thank you for this suggestion, we will remove some numerical descriptions that present consistent 
performance with the overall evaluation on the test set, whereas we preferred to preserve the 
description related to the pluvial flood simulation. The revised paragraph is as below: 

(line 240) “Fig. 4 and Error! Reference source not found. present the two selected patches from the 
test sets of Datasets 1 and 2 for visual assessment of the performance of the super-resolution DEM 
maps, in which a subarea of exemplary patches is additionally enlarged for further visual comparison 
of details. The corresponding reference low-resolution DEM and high-resolution DEM map are also 
presented for comparison. The values of the evaluation metrics (i.e., MAE, MSR, PSNR, SSIM) are also 
summarised in the two figures. The ranking of the performance of all the tested methods is aligned 
with the overall evaluation of the test sets reported in Error! Reference source not found., suggesting t
hat RCAN offers a larger magnitude of enhancement than SRCNN and VDSR, and RCAN-MS stands out 
among all the tested methods, recording the lowest MAE and MSE values. These two exemplary 
patches of the test sets are employed for pluvial flood simulation in the following section. 

The enlarged area of Dataset 2 is situated at a relatively higher elevation in the patch (Error! R
eference source not found.). Despite the different geographical locations of the exemplary patches in 
the two datasets, the results of the DEM super-resolution test on Dataset 2 align with the results of 
Dataset 1. RCAN gained the second-best performance, and the proposed RCAN-MS also presents in the 
case of Dataset 2 the best performance among the models tested, highlighting its effectiveness in 
reconstructing fine-grained information and also capturing the complexity of terrain elevations.” 

- I don't think you're 1 patch comparison is enough evidence to claim that your model 
performs better in flat terrain. include some discussion of this limitation here. 

Thank you for pointing this out. We would like to clarify that the proposed model not only achieved the 
best performance on this single patch but also demonstrated superior overall performance on Dataset 
I, which generally features relatively flatter terrain compared to Dataset II. However, we agree that 
this does not definitively confirm its generalizability in flat terrains. Therefore, we will tone down the 
statement and added a discussion of potential limitations.  

(line 255) “In contrast to the exemplary patch from Dataset 2 (Fig. 6), the patch from Dataset 1 is 
characterized by a relatively flatter terrain (Fig. 5). Arguably, flatter areas could pose a greater 
challenge due to smaller variations in elevation, which are closer in magnitude to the vertical accuracy 
of the DEM, potentially increasing the likelihood of error. Given the superior overall performance of 
RCAN-MS in Dataset 1, this suggests its potential effectiveness in handling subtler elevation changes. 
However, the datasets only represent terrains from two geographical regions, which do not encompass 
the full diversity of terrain characteristics.” 

- Please add an evaluation of cross-validating the two datasets (i.e., use the Hong Kong model 
weights to make predicitions in England). This will better communicate the methods ability 
for transferability. 

Thank you for your suggestion. We acknowledge that an extended cross-validation between the two 
datasets may provide additional insights into model transferability. However, differences in data 
distribution, sensor resolution, and regional terrain features between the two datasets may introduce 
confounding factors that require further adaptations. In this sense, applying a model trained on one 
specific source domain directly to another without any adaptations (e.g., parameter tuning) could 



significantly impact performance, particularly given the distinct terrain characteristics of the two 
regions.  

We understand that extended cross-validation between models trained in different datasets would be 
a valuable approach for studies prioritising transferability. For instance, a truly generalisable model 
would require training on diverse datasets that minimize bias rather than relying on a single source 
domain. However, our primary focus in this study is to assess model performance within different 
datasets under consistent training conditions, ensuring applicability to various terrain characteristics. 
The experimental results on both datasets have met these objectives. 

Comment on Section 4.2 Pluvial flood simulation: I suggest moving all of this to the supplement 

As clarified in previous responses, we consider the pluvial flood simulation section as essential because 
it quantifies the impact of super-resolution DEMs on hazard modeling, complementing the evaluation 
metrics of DEM super-resolution and underlying the practical implications in hazard modelling. This 
section provides indeed practitioners with insights into the cost-effectiveness of the proposed deep-
learning approach for improving flood simulation accuracy. Therefore, we prefer to retain this section 
in the main text. 

 

Comment on Fig 9: need to make it more clear that these are popout boxes; use a different color for 
zero 

Thank you for this comment, we will amend the figures using white color for zero and made them 
clearer as pop-out boxes. The revised figures are as below: 

 

 
Fig. 6 Maps of pluvial flood inundation depth were simulated using super-resolution DEM data and compared with the 
original high-resolution DEM data in an exemplary patch of Dataset 1. 

 



 

Comment on Section 5. Discussion: 

- “pepper-and-salt noise effects” need to talk about this in the introduction 

Thank you for this comment. We would like to clarify that the "pepper-and-salt noise effects" 
mentioned here refer to issues observed in the super-resolution DEM data generated by RCAN, one of 
the baseline models. This is not a common issue for this model, nor is it a characteristic of the original 
data. Therefore, we believe it is more appropriate to discuss this in the discussion section rather than 
in the introduction. To avoid any misunderstanding, we have revised the sentence for better clarity. 
The revised version is as follows: 

(line 305) “Such superior performance is due to learning from multi-source inputs, particularly the 
incorporation of high-resolution multispectral satellite images, enabling it to achieve fine-resolution 
details, while mitigating the pepper-and-salt noises in the super-resolution DEM generated by RCAN 
but avoiding over-smoothing in SRCNN and VDSR.” 

- “in RCAN-MS, the improvement effect of the multi-source input on DEM super-resolution is 
likely due to the additional feature extracted from multispectral information” didn't you 
show this? This is why you need to provide more information on your baseline models. 

We wish to clarify that “the additional features” here refer to the multi-spectral satellite images that 
are employed as part of the input for RCAN-MS, this has been explained in the previous sections. To 
avoid unambiguity, we will revise this description for better clarity as follows: 

(line 306) “in RCAN-MS, the improvement effect of the multi-source input on DEM super-resolution is 
likely due to the input from multispectral information, which provides additional features to facilitate 
the estimation of the reflectance of varying land cover types.” 

- “in principle better performance in DEM super-resolution does not necessarily guarantee an 
improvement in flood simulation accuracy” This is an interesting point, and a good 

 
Fig. 7 Maps of pluvial flood inundation depth were simulated using super-resolution DEM data and compared with the 
original high-resolution DEM data in an exemplary patch of Dataset 2. 

 



argument for including some sort of hydrologic metrics in your evaluation (as you did with 
the pluvial flooding). However, I still think this is a minor point... esp as it only supports the 
conclusion of your traditional metrics. 

Thank you for pointing this out. As clarified in earlier responses to this concern, besides supporting 
traditional metrics, an important contribution of having the section on pluvial flood simulation is to 
quantify the extent to which super-resolution DEM generated by the proposed model can improve 
flood simulation, compared with other baseline models. This not only can highlight the effectiveness 
of the method in hazard simulation applications, but also provide important reference for practitioners 
to consider and evaluate the cost-effective of this approach in similar applications. 

- “only incorporated 4-band multispectral satellite images as additional features, other 
terrain-related features (e.g., slope, aspect) that may bring further improvement to model 
performance were not tested in this study” this isn't really a limitation.. more about future 
work 

Thank you for this comment. We will revise this paragraph to merge into the section of discussion on 
future work. The revised content is as follows: 

(line 335) “In future work, further tests could focus on investigating the impact of including additional 
features on model performance. This study takes advantage of multi-scale and multi-source input data 
for DEM super-resolution but only incorporates 4-band multispectral satellite images as additional 
features. Other terrain-related features (e.g., slope, aspect) that may improve model performance 
were not tested. Thus, future work can explore the impact of terrain-related features on enhancing 
model performance, as well as examine the performance of the proposed methods with different 
downscaling factors, where higher-resolution DEM data is available as training targets.” 

- “In future work…” this is better placed in the conclusion section. 

We believe this discussion of future studies is better suited for the discussion section rather than the 
conclusion. As the discussion of future studies here is more connected with the above-described 
limitations, putting it in the discussion section allows for a critical reflection on the limitations and 
highlights areas for further exploration. Meanwhile, we tend to have the conclusion section focus on 
summarizing the key findings and main takeaways. Introducing future work in the conclusion may 
detract from the focus on the study results. 

 

Comment: Need to have a very good reason to not share your code. Esp. considering all the authors 
seem to come from publicly funded institutions. I can not complete the review without seeing the 
code. 

As responded in the previous section of the main comments, we agree with openly sharing the code 
and data, except for the high-resolution DEM data for Dataset 2. This information can be added in the 
manuscript as follows: 

“Except for the data from TanDEM-X, which requires a proposal submission and approval for data 
acquisition, all other data and codes are openly accessible here: 
https://zenodo.org/records/14868516” 

 


