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Abstract 30 

Different hydrometeor retrieval schemes are explored based on the Weather Research and 31 

Forecasting (WRF) model in the indirect assimilation of radar reflectivity for two real cases 32 

occurred during June 2020 and August 2018. When retrieving hydrometeors from radar reflectivity, 33 

there are two commonly used hydrometeor classification methods: “temperature-based” and 34 

“background hydrometer-dependent” schemes. The hydrometeor proportions are usually 35 

empirically assigned in the “temperature-based” method within different background temperature 36 

intervals. Whereas, in the “background hydrometer-dependent” scheme, each type of the 37 

hydrometeor is derived based on the portions estimated from the background field for different radar 38 

reflectivity ranges. In this study, a blending scheme is designed to combine “temperature-based” 39 

and “background hydrometer-dependent” methods adaptively to avoid errors caused by fixed 40 

relationships and reduce uncertainties introduced by the background field itself. Three experiments, 41 

EXP_temp, EXP_bg, and EXP_temp-bg are conducted using the “temperature-based” method, 42 

“background hydrometer-dependent” scheme, and blending scheme, respectively. It is found that, 43 

the blending scheme facilitates the generation of accurate hydrometeor species which will enhance 44 

the effectiveness of radar data assimilation. EXP_temp-bg is capable of analyzing radar reflectivity 45 

structures more accurately compared to both EXP_temp and EXP_bg. Besides, due to the adaptive 46 

combination of “temperature-based” and “background hydrometer-dependent” schemes, the 47 

EXP_temp-bg experiment predict the radar reflectivity structures and precipitation intensity more 48 

accurately.  49 

Key words: Numerical weather prediction, Radar data assimilation, Hydrometeor retrieval. 50 

 51 

1. Introduction 52 

The initial condition is a crucial factor in enhancing the accuracy of numerical weather prediction 53 

(Navon, 2009; Kain et al., 2010; Lopez, 2011; Xu et al., 2021). Compared to conventional 54 

observations, doppler radar observations have extremely high temporal and spatial resolution, as 55 

well as containing precipitating hydrometeor information (Zhao et al., 2012; Li et al., 2013; Kong 56 

et al., 2020). Therefore, radar is one of the key platforms for obtaining proper initial conditions to 57 

successfully predict convective storms (Lilly, 1990; Dawson et al., 2015; Gustafsson et al., 2018; 58 
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Shen et al., 2020a; Xu et al., 2022; Chen et al., 2023). A number of efforts have been devoted to 59 

assimilating radar data into mesoscale numerical models (Lindskog et al., 2004; Dowell et al., 2011; 60 

Sun et al., 2014; Bick et al., 2016; Tong et al., 2020; Shen et al., 2016, 2019, 2022; Wan et al., 2024).  61 

Radar observations have two fundamental variables: radar radial velocity (Vr) and radar 62 

reflectivity (Z). Assimilating radar radial velocity is conducive to improving the dynamical structure 63 

of the initial field. Numerous scholars are dedicated to researching radar radial velocity assimilation 64 

(Gao et al., 2004; Simonin et al., 2014; Li et al., 2016; Shen et al., 2020b). Based on the three-65 

dimensional variational (3DVar) system of the fifth generation Pennsylvania State University-66 

NCAR Mesoscale Model (MM5), Xiao et al. (2005) developed a radar radial velocity observation 67 

operator, and investigated the impact of assimilating radar radial velocity on precipitation forecasts. 68 

Besides, Wang et al. (2013b) employed the four-dimensional variational (4DVar) system to 69 

assimilate radar radial velocity and reflectivity into the model for enhancing forecasting accuracy.  70 

In contrast, assimilating radar reflectivity is more challenging than assimilating the radial wind, 71 

on account of its highly nonlinear observation operator and close relationship with complex 72 

microphysics (Borderies et al., 2019; Xu et al., 2019). Currently, there are two main methods for 73 

assimilating radar reflectivity: direct assimilation and indirect assimilation. Xiao et al. (2007) 74 

proposed a direct assimilation scheme for radar reflectivity based on the 3DVar system of MM5. 75 

The water content was classified according to phases using warm rain microphysical processes. 76 

However, due to the absence of ice phase particles, the positive impact is not promising in cases of 77 

deep moist convections generated through cold-cloud processes. To assimilate radar reflectivity into 78 

numerical weather prediction (NWP) models more effectively, Gao and Stensrud (2012) proposed 79 

a hydrometeor classification method based on the 3DVar system in the direct assimilation of radar 80 

reflectivity. The results demonstrated that this classification method benefits to accelerate the 81 

convergence speed of the analysis and reduce errors in the analysis. Compared to variational data 82 

assimilation methods, Ensemble Kalman Filter (EnKF; Evensen, 1994) is a better choice for 83 

assimilating radar reflectivity directly, since EnKF does not require consideration of the tangent or 84 

adjoint model of the observation operator (Liu et al., 2019). Based on the EnKF method, Tong and 85 

Xue (2005) assimilated the simulated radar observations from a supercell storm. The results 86 

indicated that directly assimilating radar reflectivity data has a positive impact on both analyses and 87 
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forecasts. Although the forward operator of reflectivity tends to be easily implemented in EnKF, its 88 

computational cost is too high to be widely applied in the scientific research and operational 89 

forecasting (Kong et al., 2018). 90 

To avoid the issue of high nonlinearity in radar reflectivity observation operators, the indirect 91 

assimilation method is often used in the NWP. Based on the Advance Regional Prediction System 92 

(ARPS), Hu et al. (2006) investigated the impact of cloud analysis using radar reflectivity on 93 

forecasting tornado storms. They found that cloud analysis helps to adjust the temperature, humidity 94 

fields, and hydrometeors within the clouds, thereby improving tornado predictions. Also, 95 

Schenkman et al. (2011) found that cloud analysis technology is able to adjust cloud variables to 96 

better suit the dynamic and thermal fields. However, cloud analysis schemes rely largely on 97 

uncertain empirical relationships, thus usually hardly suppressing the generation of spurious echoes. 98 

Using the 4DVar system, Sun and Crook (1997) proposed to assimilate rainwater mixing ratios 99 

retrieved from reflectivity instead of directly assimilating reflectivity, which seems to produce better 100 

analysis results. Based on the 3DVar system of WRF, Wang et al. (2013a) further demonstrated that 101 

assimilation of rainwater and estimated water vapor obtained from radar reflectivity reduces the 102 

linearization error of the radar reflectivity observation operator, thus improving precipitation 103 

forecasts. However, both indirect assimilation methods under the two variational frameworks are 104 

employed in the warm-rain scheme, which restricts their applications above troposphere or in the 105 

coexistence of liquid and ice particles. Shen et al. (2021) added hydrometeor control variables 106 

included ice-phase particles when indirectly assimilating radar reflectivity observations of 107 

Hurricane IKE, which enables track and intensity forecasts of the hurricane to be greatly improved.  108 

For the indirect assimilation of radar reflectivity, one of the challenges is how to correctly classify 109 

hydrometeors in observations. There are currently two methods to distinguish hydrometeor types. 110 

One is to classify hydrometeor types according to background temperature (hereafter called 111 

temperature-based) developed by Gao and Stensrud (2012), with fixed parameters and empirical 112 

relations. Another is the “background hydrometer-dependent” hydrometeor retrieval scheme (Chen 113 

et al., 2020, 2021). The “background hydrometer-dependent” method calculates hydrometeor 114 

weights in various thresholds from the model background field to better allocate radar reflectivity 115 

observation information. This approach avoids empirical thresholds and weighting coefficients 116 
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given in the “temperature-based” method, and benefits to improve the accuracy of hydrometeor 117 

retrievals. However, the “background hydrometer-dependent” scheme also relies on the accuracy of 118 

the background field itself. When the background field is similar to the observation, the “background 119 

hydrometer-dependent” method tends to provide accurate hydrometeor weights. On the other hand, 120 

when the background field differs significantly from the observation, the algorithm may not be 121 

suitable for appropriately allocating hydrometeors of the radar reflectivity observation. Considering 122 

their own limitations in either “temperature-based” or “background hydrometer-dependent” 123 

schemes, this study aims to adaptively combine two above methods of classifying hydrometeors to 124 

assimilate radar reflectivity more reasonably. 125 

In the study, the WRF-3DVar methods, observation operators, and different retrieval methods are 126 

included in the section 2. The section 3 shows experimental designs. The section 4 presents analysis 127 

and forecast results of all experiments. The conclusion is presented in the section 5. 128 

2. Methods 129 

2.1 The WRF-3DVar system 130 

Based on the incremental method proposed by Courtier et al. (1994), 3DVar uses the minimization 131 

algorithm to solve the objective function. The cost function is as follows:  132 

 𝐽𝐽 = 1
2

(𝒙𝒙 − 𝒙𝒙𝑏𝑏)𝑇𝑇𝑩𝑩−1(𝒙𝒙 − 𝒙𝒙𝑏𝑏) + 1
2

[𝒚𝒚𝑜𝑜 −𝑯𝑯(𝒙𝒙)]𝑇𝑇𝑹𝑹−1[𝒚𝒚𝑜𝑜 − 𝑯𝑯(𝒙𝒙)]. (1) 133 

The vectors 𝒙𝒙, 𝒙𝒙𝑏𝑏, and 𝒚𝒚𝑜𝑜 stand for analysis variables, background variables, and observation 134 

variables. 𝑩𝑩  is the background error covariance, which is calculated by the National 135 

Meteorological Center (NMC; Parrish and Derber, 1992) method. 𝑹𝑹  represents the observation 136 

error covariance. 𝑯𝑯 is the nonlinear observation operator.  137 

2.2 The radical velocity observation operator 138 

The radial velocity observation operator is as follows: 139 

𝑉𝑉𝑟𝑟 = 𝑢𝑢 𝑥𝑥−𝑥𝑥𝑖𝑖
𝑟𝑟𝑖𝑖

+ 𝑣𝑣 𝑦𝑦−𝑦𝑦𝑖𝑖
𝑟𝑟𝑖𝑖

+ (𝑤𝑤 − 𝒗𝒗𝑇𝑇) 𝑧𝑧−𝑧𝑧𝑖𝑖
𝑟𝑟𝑖𝑖

.  (2) 140 

𝑢𝑢, v, and 𝑤𝑤 denote the zonal, meridional, and vertical wind component, respectively. (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 141 

and (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 ) represent the radar position and observation position, respectively. 𝑟𝑟𝑖𝑖  is the 142 

distance between the radar and the observation. 𝒗𝒗𝑇𝑇 is the terminal speed.  143 
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2.3 The radar reflectivity observation operator 144 

According to Tong and Xue (2005), the radar reflectivity observation operator is as follows: 145 

                         𝑍𝑍 =  10 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑍𝑍𝑒𝑒) ,                       (3) 146 

                        𝑍𝑍𝑒𝑒 = 𝑍𝑍𝑒𝑒(𝑞𝑞𝑟𝑟) + 𝑍𝑍𝑒𝑒(𝑞𝑞𝑠𝑠) + 𝑍𝑍𝑒𝑒(𝑞𝑞𝑔𝑔) ,                     (4) 147 

                          𝑍𝑍𝑒𝑒(𝑞𝑞𝑥𝑥) = 𝑎𝑎𝑥𝑥(𝜌𝜌𝑞𝑞𝑥𝑥)1.75 .                          (5) 148 

𝑞𝑞𝑥𝑥 means hydrometeor mixing ratios. 𝑍𝑍𝑒𝑒(𝑞𝑞𝑥𝑥) (units: dBZ) is the equivalent reflectivity factor 149 

of rainwater, snow, and graupel. 𝑎𝑎𝑥𝑥  represents the fixed coefficient that is determined by the 150 

dielectric coefficient, density and intercept parameter of each hydrometeor. 𝛼𝛼𝑟𝑟 is 3.63×109. For 151 

snow and graupel, the coefficient is temperature dependent. When the environmental temperature 152 

is greater than 0℃, 𝛼𝛼𝑠𝑠 for wet snow is 4.26×1011 and 𝛼𝛼𝑔𝑔 for wet graupel is 9.08×109. When the 153 

temperature is below 0℃, 𝛼𝛼𝑠𝑠 for dry snow is 9.80×108 and 𝛼𝛼𝑔𝑔 for dry graupel is 1.09×109. 𝜌𝜌 is 154 

the air density. During the direct assimilation of radar reflectivity, the linearization errors are almost 155 

inevitable. 156 

The indirect method assimilates the retrieved hydrometeors from the radar reflectivity. Firstly, it 157 

is required to determine the proportion of each hydrometeor in radar reflectivity observation. At 158 

present, there are two methods to obtain the proportion of each hydrometeor.  159 

2.3.1 The “Temperature-based” method  160 

In Gao and Stensrud (2012), the hydrometeor types in reflectivity are classified based on the 161 

background temperature. The specific values are as follows: 162 

                        𝐶𝐶𝑟𝑟 = 1,𝐶𝐶𝑠𝑠 = 𝐶𝐶𝑔𝑔 = 0,𝑇𝑇𝑏𝑏 > 5℃ ,                     ( 6 )         163 

         𝐶𝐶𝑟𝑟 = 𝑇𝑇𝑏𝑏+5
10

,𝐶𝐶𝑠𝑠 = (1− 𝐶𝐶𝑟𝑟) ∙ 𝛼𝛼𝑠𝑠
𝛼𝛼𝑠𝑠+𝛼𝛼𝑔𝑔

,𝐶𝐶𝑔𝑔 = (1− 𝐶𝐶𝑟𝑟) ∙ 𝛼𝛼𝑔𝑔
𝛼𝛼𝑠𝑠+𝛼𝛼𝑔𝑔

,−5℃ < 𝑇𝑇𝑏𝑏 < 5℃ ,         ( 7 )                                                  164 

                                     𝐶𝐶𝑟𝑟 = 0,𝐶𝐶𝑠𝑠 = 𝛼𝛼𝑠𝑠
𝛼𝛼𝑠𝑠+𝛼𝛼𝑔𝑔

,𝐶𝐶𝑔𝑔 = 𝛼𝛼𝑔𝑔
𝛼𝛼𝑠𝑠+𝛼𝛼𝑔𝑔

,𝑇𝑇𝑏𝑏 < −5℃ .                   ( 8 ) 165 

𝐶𝐶𝑟𝑟, 𝐶𝐶𝑠𝑠, and 𝐶𝐶𝑔𝑔 denote the weights of rainwater, snow, and graupel, respectively. 𝛼𝛼𝑟𝑟, 𝛼𝛼𝑠𝑠, and 166 

𝛼𝛼𝑔𝑔 represent the fixed coefficients of rainwater, snow, and graupel, respectively (Same as above). 167 

𝑇𝑇𝑏𝑏 is the background temperature.  168 

2.3.2 The “Background hydrometer-dependent” method 169 

It is found that hydrometeor weights derived from the background field vary with individual 170 
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weather conditions, which helps to reduce errors resulting from fixed coefficients in Chen et al. 171 

(2020, 2021). The specific process of calculating proportions is as follows: 172 

(1) Compute the average equivalent radar reflectivity of each hydrometeor in different reflectivity 173 

ranges and model layers based on the background field statistics. 174 

(2) Calculate the weight of each hydrometeor in the background field. 175 

(3) Divide radar reflectivity observations based on the weights derived from Step 2. If the 176 

background field has missing data, the calculated climatological mean for one month will be 177 

used instead. 178 

2.3.3 The blending method 179 

The blending method aims to utilize the two methods of partitioning hydrometeors accordingly 180 

to retrieve muti-hydrometer more reasonably in radar reflectivity indirect assimilation. The formulas 181 

are as follow:    182 

𝛽𝛽 = 𝛿𝛿𝑡𝑡2

𝛿𝛿𝑡𝑡2+𝛿𝛿𝑏𝑏
2 ,                              (9) 183 

𝐶𝐶𝑥𝑥 = 𝛽𝛽𝐶𝐶𝑥𝑥𝑏𝑏 + (1− 𝛽𝛽)𝐶𝐶𝑥𝑥𝑡𝑡.                         (10) 184 

𝛿𝛿𝑡𝑡2 represents the deviation between the hydrometeor content of the background field and the 185 

retrieved hydrometeor content based on the “temperature-based” scheme. 𝛿𝛿𝑏𝑏2  is the deviation 186 

between the hydrometeor content of the background field and the retrieved hydrometeor by the 187 

“background hydrometer-dependent” scheme. 𝐶𝐶𝑥𝑥𝑡𝑡  and 𝐶𝐶𝑥𝑥𝑏𝑏  are the weights calculated by the 188 

“temperature-based” and “background hydrometer-dependent” methods, respectively.  189 

3. Experimental design 190 

WRF v4.3 and its data assimilation system WRFDA v4.3 are used in this study. Two convective 191 

cases are studied in the study: 14 June in 2020 (called Case 1; Fig. 1a) and 6 August in 2018 (denoted 192 

as Case 2; Fig. 1b). The specific applications of physical parametrizations are as follows: the WRF 193 

Double-Moment 6-Class Microphysics (WDM6) scheme, the Rapid Radiative Transfer Model 194 

(RRTM) long wave radiation scheme (Mlawer et al., 1997), the Dudhia short-wave radiation scheme 195 

(Dudhia, 1989), the Yonsei University (YSU) boundary layer scheme (Hong et al., 2006), and the 196 

Noah Land Surface Model (Chen and Dudhia, 2001) for land surface process scheme. No cumulus 197 

parameterization scheme is employed. As shown in Table 1, three data assimilation (DA) 198 

experiments are conducted to evaluate the effects of all retrieval methods in the study. For all three 199 
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DA experiments, the initial and lateral boundary conditions are provided by the NCEP Global 200 

Forecast System (GFS) data. Besides, the specific flowchart is presented in the Fig. 2.  201 

 202 

 203 

Table 1. The list of DA experiments. 204 

Experiments Hydrometeor retrieval methods 

EXP_temp The “temperature-based” method 

EXP_bg The “background hydrometer-dependent” method 

EXP_temp-bg The blending method 

 205 
Fig. 1. The simulated area of (a) Case 1 and (b) Case 2, with the detecting ranges of the Nanjing radar and 206 

Shenyang Radar. 207 

 208 
 Fig. 2. The assimilation flow charts of Case 1 and Case 2. 209 
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4. Experimental results 210 

4.1 14 June 2020 case 211 

Fig. 3 shows the observed reflectivity at 2300 UTC on 14 June, 0000 UTC, and 0100 UTC on 15 212 

June 2020. At the beginning, there are strong echoes in the southwestern boundary of Jiangsu 213 

Province. Subsequently, the strong convective band begins to expand in both eastward and westward 214 

directions, stretching to the central Anhui Province and Jiangsu Province. 215 

 216 

Fig. 3. The observed composite reflectivity fields (units: dBZ) at (a) 2300 UTC 14 June, (b) 0000 UTC, and (c) 217 

0100 UTC 15 June 2020. The black line a1-a2 in the Fig. 3b is the vertical cross section location of Fig. 4. 218 

Fig. 4 compares the Hydrometeor Classification Algorithm (HCA) based on dual-polarization 219 

radar observations with the hydrometeor retrieval results from the three experiments at 1500 UTC 220 

on June 14, 2020. The HCA diagram indicates that rainwater dominates the lower levels, while dry 221 

snow and graupel prevail at higher levels, with wet snow present near the melting layer. In the 222 

vertical cross sections of the three experiments (Figs. 4b, c, d), the overall distribution patterns of 223 

the retrieved hydrometeors appear reasonable, especially for rain and snow. Notably, the wet snow 224 

and graupel retrieved by EXP_temp-bg are more consistent with the HCA results compared to 225 

EXP_temp and EXP_bg. 226 

https://doi.org/10.5194/nhess-2024-203
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

 227 

Fig. 4. The vertical sections of (a) hydrometeor classification algorithm based on the dual-polarization radar 228 

observations and retrieved hydrometeors for (b) EXP_temp, (c) EXP_bg and (d) EXP_temp-bg along the black lines 229 

a1-a2 at 1500 UTC. The retrieved hydrometeors refer to rainwater mixing ratio (green contours; units: dBZ), dry 230 

snow mixing ratio (grey contours; units: dBZ), wet snow mixing ratio (cyan contours; units: dBZ), and graupel 231 

mixing ratio (shading; units: dBZ), respectively. 232 

To investigate the impact of the radar reflectivity DA based on the three hydrometeor retrieval 233 

methods, Fig. 5 shows the predicted composite reflectivity initiated at 0100 UTC 15 June. It is 234 

shown that the convective structure is divided into two parts (labeled C and D). From the 235 

observations (Fig. 3a), the combination of C and D is initially located in the western Jiangsu and 236 

eastern Anhui. Soon after, region D gradually separates from C and shifts eastward, displaying the 237 

reduced intensity and poor organization. At 0115 UTC, all DA experiments are able to capture region 238 
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C and region D, albeit with slightly weaker intensity compared to the observations. At 0130 UTC, 239 

the patterns of region C predicted by three experiments are depart from the observation, while the 240 

echoes for EXP_temp-bg exhibit the best organization. At 0145 UTC, the regions C in EXP_temp 241 

and EXP_bg show a poor agreement with the observations. In contrast, EXP_temp-bg provides 242 

more accurate forecast in terms of shape and intensity. At 0200 UTC, three experiments can predict 243 

region C and region D to some extent, but region D in EXP_temp-bg has most accurate echo pattern. 244 

In general, the blending scheme is conducive to improving the radar reflectivity forecast skill.  245 

 246 

Fig. 5. The composite reflectivity (shaded; units: dBZ) predicted by (e)-(h) EXP_temp (i)-(l) EXP_bg and (m)-(p) 247 

EXP_temp-bg for the 1-h forecast beginning at 0100 UTC 15 June 2020, as compared to (a)-(d) the observed 248 

composite reflectivity. The labels C and D present the convection locations. 249 

Fig. 6 displays the vertical cross sections of the relative humidity, radar reflectivity, and wind 250 
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fields at 1501 UTC. After 1-hour forecast, the cross sections from all experiments indicate the 251 

presence of saturated water vapor columns near the strong echoes (around 32°N). Notably, 252 

EXP_temp-bg also reveals a robust updraft, facilitating the transport of water vapor from lower to 253 

upper levels. In comparison, EXP_temp-bg producess the most consistent thermal and dynamical 254 

conditions, resulting in most accurate forecast of the convection.  255 

 256 
Fig. 6. The cross sections of relative humidity (shading; units: %), radar reflectivity (black contours starting at 40 257 

dBZ; units: dBZ), and wind vectors for (a) EXP_temp, (b) EXP_bg and (c) EXP_temp-bg along the line a1-a2. 258 

These are 1-hour forecasts initialized at 1501 UTC. 259 

Fig. 7 shows the 3-h accumulated precipitation forecast from 1501 UTC to 1504 UTC on 15 June 260 

2020. As depicted in Fig. 7a, the primary precipitation zone is concentrated along the western 261 

boundary of Jiangsu Province, with accumulated precipitation exceeding 50mm. The precipitation 262 

intensity is overestimated for three DA experiments. However, EXP_temp-bg effectively suppresses 263 

two false precipitation areas, leading to the improved precipitation forecast. 264 
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 265 

Fig. 7. 3-h accumulated precipitation valid at 0100 UTC 15 June 2020. (a) the observation, (b) EXP_temp, (c) 266 

EXP_bg, and (d) EXP_temp-bg.   267 

To quantitatively assess the performance of different hydrometeor retrieval schemes, the equitable 268 

threat scores (ETS) are calculated for 0-3 h precipitation forecasts in EXP_temp, EXP_bg, and 269 

EXP_temp-bg (Fig. 8). It is evident that as the precipitation threshold increases, the ETS values for 270 

all three experiments decline progressively. Furthermore, EXP_temp and EXP_bg exhibit 271 

comparable ETS values under various precipitation thresholds. In contrast, EXP_temp-bg 272 

consistently outperforms both EXP_temp and EXP_bg for the entire 3-h forecast period, which 273 

implies that the integrated hydrometeor retrieval scheme is conducive to the assimilation of radar 274 

reflectivity observations. 275 
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 276 

Fig. 8. Equitable threat scores of hourly accumulated precipitation forecasts with five thresholds: (a) 0.1 mm, (b) 277 

2.5 mm, (c) 5 mm and (d) 10 mm from 2300 UTC 14 June to 0100 UTC 15 June. 278 

4.2 06 August 2018 case 279 

Fig. 9 presents the observed composite reflectivity at 1800UTC, 1900UTC, 2000UTC, and 280 

2100UTC on 06 August 2018. At 1800 UTC, there are a small number of strong radar echoes in the 281 

central part of Liaoning Province. At 1900UTC, these discrete strong echoes gradually converge in 282 

the center Liaoning, forming a well-organized structure. By 2000UTC, the convections continue to 283 

develop and form into “V” pattern echo. At 2100UTC, a distinct “T” shaped echo emerges in the 284 

observed area. 285 
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 286 
Fig. 9. The observed composite reflectivity fields (units: dBZ) at (a) 1800UTC, (b) 1900UTC, (c) 2000UTC and 287 

(d) 2100UTC 06 August 2018.  288 

Fig. 10 shows the radar reflectivity analysis fields and the vertical cross sections along the line 289 

ab from EXP_temp, EXP_bg, and EXP_temp-bg at 2100 UTC. As shown in Fig. 10a, a distinct “T” 290 

shaped echo emerges in the observed area. Generally, the composite reflectivity analyses of the 291 

experiments EXP_temp, EXP_bg, and EXP_temp-bg show a general agreement. From the observed 292 

vertical cross section, it seems that there exist three strong echo bands between 123.78°E and 293 

124.36°E. In order to display the differences between three DA experiments and the observation, 294 

the convective system located near 123.75°E is marked as A, the strong convection at 123.97°E -295 

124.17°E is named as B, and the strong echo region at 124.17°E -124. 36°E is labelled as C. Notably, 296 

part A in the experiment EXP_temp departs from the observation, while EXP_bg and EXP_temp-297 

bg capture it more closely. Furtherly, the strong echo band analyzed by EXP_temp-bg indicates a 298 

wider coverage than the one obtained from EXP_bg in part A. For part B, though all three DA 299 

experiments exhibit a general agreement with the observation, their intensity is weaker than that in 300 

the observation. It is found that EXP_temp-bg analyzes a strong center with reflectivity values 301 
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greater than 45dBZ for part B. All three experiments capture the overall structure of C. It seems 302 

EXP_temp-bg combines the echo characteristics of both EXP_temp and EXP_bg in part C. On the 303 

whole, EXP_temp-bg displays the advantages of fusion for most situations, matching best with the 304 

observations.305 

 306 

Fig. 10. The composite reflectivity at 2100 UTC for (a) observation, (b) EXP_temp, (c) EXP_bg, (d) EXP_temp-307 

bg, accompanied by the vertical cross sections for (e) observation, (f) EXP_temp, (g) EXP_bg, (h) EXP_temp-bg 308 

along the line ab. The vertical cross section location at 2100UTC is shown by the line ab in the Fig. 10a. The labels 309 

in the Fig. 10e present the convection locations. 310 

To examine how different retrieval methods modify the hydrometeor distributions, the rainwater, 311 

snow and graupel mixing ratio cross sections are presented in Fig. 11. Rainwater occurs below the 312 

freezing level, while snow and graupel particles primarily exist above the freezing level. The 313 

distribution of low-level rainwater in EXP_temp-bg is similar to that in EXP_bg. The proportion of 314 

snow and graupel is a fixed coefficient in the EXP_temp, resulting in similar vertical distributions 315 

as shown in Fig. 11a. However, it does not exist in the other two experiments with the “background 316 

hydrometer-dependent” scheme. Additionally, both EXP_bg and EXP_temp-bg have significantly 317 

higher snow and graupel content than EXP_temp. Fig. 11 shows three strong centers of graupel 318 

particles corresponding to three strong reflectivity bands in the Fig. 10. By comparing the three 319 

groups of the DA experiments, it is apparent that EXP_bg has the highest strong-center value, while 320 

EXP_temp has the lowest. Moreover, the distribution of high-altitude hydrometeors in EXP_temp-321 
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bg combines the features of EXP_temp and EXP_bg. To conclude, the hydrometeor vertical 322 

distributions are closely related to the radar reflectivity structure as expected.  323 

 324 

Fig. 11. The vertical cross sections of rainwater mixing ratio (green contours), snow mixing ratio (blue contours), 325 

graupel mixing ratio (shading) at 2100 UTC for the experiments (a) EXP_temp, (b) EXP_bg, (c) EXP_temp-bg.  326 

Fig. 12 displays the vertical cross sections of the pseudo-equivalent potential temperature (θse), 327 

wind components, and reflectivity at 2100 UTC for EXP_temp, EXP_bg, and EXP_temp-bg. In the 328 

three DA experiments, there exists a high θse zone in the lower layers (below 3 km), which shows 329 

that a certain amount of energy has accumulated near the ground level. The area between 3 and 9 330 

kilometers is characterized by a low θse zone, with the lowest value being below 343 K. Another 331 

high θse zone exists above 10 kilometers. The results suggest that the vertical structure of the 332 

atmosphere is unstable in this region, with dry conditions prevailing in the upper levels and moist 333 

conditions in the lower levels. This type of vertical structure is favorable for the development of 334 

severe convective weather events.  335 

In the middle layer, there is a zone with relatively high θse value for EXP_bg and EXP_temp-bg. 336 

Specifically, a warm-core structure is identified near 123.85°N, accompanied by strong upward 337 

motion. This results in the release of unstable energy indicate that a severe convective system is 338 

continuously developing. Additionally, compared with EXP_bg, EXP_temp-bg yields a more 339 

extensive and deeper updraft column. 340 
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 341 

Fig. 12. The vertical sections of pseudo-equivalent potential temperature (shaded; units: K), velocity vectors (U, 342 

W) at 2100 UTC for (a) EXP_temp, (b) EXP_bg and (c) EXP_temp-bg.  343 

Fig. 13 shows 1-h, 3-h, and 5-h forecasts valid at 2100 UTC 06 August 2018 for EXP_temp, 344 

EXP_bg, and EXP_temp-bg. As can be seen from the observation, the strong echo is located near 345 

42°N at the beginning and has a tendency to slowly develop to the east. For the sake of clarity, the 346 

strong echo zone is divided into two parts: part A and part B. At 2200 UTC 06 August, the forecasts 347 

of three DA experiments for part B are inconsistent with the observation in terms of the intensity. 348 

The part A predicted by EXP_bg and EXP_temp-bg shows a general agreement with the observation, 349 

while the radar reflectivity forecast of EXP_temp departs from the observation. At 0000 UTC 07 350 

August, EXP_bg and EXP_temp-bg yield an improved forecast for part A and B as compared with 351 

EXP_temp, in terms of the intensity and organization. However, there is a southeast bias in part A 352 

predicted by both EXP_bg and EXP_temp-bg. Compared to EXP_bg, EXP_temp-bg provides more 353 

accurate predictions for part B. As shown by the observation at 0200 UTC 07 August, the predicted 354 

A in EXP_temp-bg shows closer alignment with the observation than that in EXP_temp and 355 

EXP_bg. For part B, three sets of experiments all depart from the observation. Overall, EXP_temp-356 

bg demonstrates superior prediction skills in terms of the radar reflectivity. 357 
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 358 

Fig. 13. The composite reflectivity (shaded; units: dBZ) predicted by (d)-(f) EXP_temp (g)-(i) EXP_bg and (j)-(l) 359 

EXP_temp-bg, as compared to (a)-(c) the observed composite reflectivity. The corresponding times from left to 360 

right are 2200 UTC 06 August (left), 0000 UTC 07 August (middle) and at 0200 UTC 07 August (right), 361 

respectively. The labels A and B present the convection locations. 362 

Fig. 14 shows 6-h accumulated precipitation of the three DA experiments from 2100 UTC 06 363 

https://doi.org/10.5194/nhess-2024-203
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



20 

 

August to 0300 UTC 07 August 2018. According to the observation, heavy rainfall is mainly 364 

concentrated in the northeastern part of Liaoning, with precipitation amount exceeding 100 mm. All 365 

three experiments underestimate the extent of the precipitation in this event, especially in the range 366 

of 25 mm to 50 mm. Moreover, there is a certain deviation between the predicted and observed 367 

locations. As shown in Fig. 9c and d, the patterns of heavy precipitation areas are similar in EXP_bg 368 

and EXP_temp-bg. EXP_bg and EXP_temp-bg are notably better than EXP_temp in predicting the 369 

rainfall for the threshold 50mm. EXP_temp-bg displays the best forecasting skill in terms of the 370 

heavy rainfall area. 371 

 372 

Fig. 14. 6-h accumulated precipitation valid at 2100 UTC 06 August 2018. (a) the observation, (b) EXP_temp, (c) 373 

EXP_bg, and (d) EXP_temp-bg. 374 

5. The conclusion 375 

The study proposes an adaptive hydrometeor retrieval scheme within the WRF-3DVar system, 376 

which combines “temperature-based” and “background hydrometer-dependent” methods to 377 

enhance the analyses and forecasts for the strong convections. In the indirect assimilation of radar 378 
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reflectivity, it is vital to correctly divide hydrometeor information in radar reflectivity. On the basis 379 

of two retrieval methods proposed by Gao and Stensrud (2012) and Chen et al. (2020, 2021), the 380 

blending scheme is developed to minimize the limitations brought by both methods so as to improve 381 

the assimilation and prediction skills. 382 

The above three hydrometeor retrieval schemes are evaluated for two strong convective processes 383 

occurred during June 2020 and August 2018. Three DA experiments (EXP_temp, EXP_bg, and 384 

EXP_temp-bg) are conducted by using the “temperature-based”, “background hydrometer-385 

dependent”, and blending methods, respectively. The analysis results reveal that the blending 386 

method is effective to improve the radar reflectivity structures for severe convections. Based on the 387 

other two DA experiments, EXP_temp-bg further improves hydrometeor structures and properly 388 

allocates the proportion of each hydrometeor, which is responsible for more reasonable hydrometeor 389 

distributions. Also, EXP_temp-bg provides more reasonable dynamic and thermal structures 390 

compared with EXP_temp and EXP_bg. EXP_temp-bg shows advantages in the precipitation 391 

prediction skills due to the reasonable spatial distribution and proportion of each hydrometeor. 392 

Compared to conventional Doppler weather radars, dual-polarization radar observations provide 393 

more accurate identification of the three-dimensional microphysical structures within precipitation 394 

systems. Consequently, dual-polarization radar data will be considered for hydrometeor retrievals 395 

in our future studies, aiming to further enhance the forecast skills for severe weathers.  396 
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