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Abstract 29 

Different hydrometeor retrieval schemes are explored based on the Weather Research and 30 

Forecasting (WRF) model in the indirect assimilation of radar reflectivity for two real cases 31 

occurred during June 2020 and August 2018. When retrieving hydrometeors from radar reflectivity, 32 

there are two commonly used hydrometeor classification methods: “temperature-based” and 33 

“background hydrometer-dependent” schemes. The hydrometeor proportions are usually 34 

empirically assigned in the “temperature-based” method within different background temperature 35 

intervals. Whereas, in the “background hydrometer-dependent” scheme, each type of the 36 

hydrometeor is derived based on the portions estimated from the background field for different radar 37 

reflectivity ranges. In this study, a blending scheme is designed to combine “temperature-based” 38 

and “background hydrometer-dependent” methods adaptively to avoid errors caused by fixed 39 

relationships and reduce uncertainties introduced by the background field itself. Three experiments, 40 

EXP_temp, EXP_bg, and EXP_temp-bg are conducted using the “temperature-based” method, 41 

“background hydrometer-dependent” scheme, and blending scheme, respectively. It is found that, 42 

adding the “background hydrometer-dependent” scheme facilitates the generation of accurate 43 

hydrometeor species which will enhance the effectiveness of radar data assimilation. Besides, due 44 

to the adaptive combination of “temperature-based” and “background hydrometer-dependent” 45 

schemes, the EXP_temp-bg experiment yields the improved thermodynamic and dynamic structures, 46 

which contributes to predict radar reflectivity and precipitation intensity more accurately.  47 

 48 

Key words: Numerical weather prediction, Radar data assimilation, Hydrometeor retrieval. 49 

 50 

1. Introduction 51 

The initial condition is a crucial factor in enhancing the accuracy of numerical weather prediction 52 

(NWP, Navon, 2009; Kain et al., 2010; Lopez, 2011; Xu et al., 2021). Compared to conventional 53 

observations, doppler radar observations have extremely high temporal and spatial resolution, as 54 

well as containing precipitating hydrometeor information (Zhao et al., 2012; Li et al., 2013; Kong 55 

et al., 2020). Therefore, radar is one of the key platforms for obtaining proper initial conditions to 56 

successfully predict convective storms (Lilly, 1990; Dawson et al., 2015; Gustafsson et al., 2018; 57 
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Shen et al., 2020a, 2025a; Xu et al., 2022; Chen et al., 2023). A number of efforts have been devoted 58 

to assimilating radar data into mesoscale numerical models (Lindskog et al., 2004; Dowell et al., 59 

2011; Sun et al., 2014; Bick et al., 2016; Tong et al., 2020; Shen et al., 2016, 2019, 2022, 2025b; 60 

Wan et al., 2024).  61 

Radar observations have two fundamental variables: radar radial velocity (Vr) and radar 62 

reflectivity (Z). Assimilating radar radial velocity is conducive to improving the dynamical structure 63 

of the initial field. Numerous scholars are dedicated to researching radar radial velocity assimilation 64 

(Gao et al., 2004; Simonin et al., 2014; Li et al., 2016; Shen et al., 2020b). Based on the three-65 

dimensional variational (3DVar) system of the fifth generation Pennsylvania State University-66 

NCAR Mesoscale Model (MM5), Xiao et al. (2005) developed a radar radial velocity observation 67 

operator, and investigated the impact of assimilating radar radial velocity on precipitation forecasts. 68 

Besides, Wang et al. (2013b) employed the four-dimensional variational (4DVar) system to 69 

assimilate radar radial velocity and reflectivity into the model for enhancing forecasting accuracy.  70 

In contrast, assimilating radar reflectivity is more challenging than assimilating the radial wind, 71 

on account of its highly nonlinear observation operator and close relationship with complex 72 

microphysics (Borderies et al., 2019; Xu et al., 2019). Currently, there are two main methods for 73 

assimilating radar reflectivity: direct assimilation and indirect assimilation. Xiao et al. (2007) 74 

proposed a direct assimilation scheme for radar reflectivity based on the 3DVar system of MM5. 75 

The water content was classified according to phases using warm rain microphysical processes. 76 

However, due to the absence of ice-phase particles, the scheme demonstrates limited effectiveness 77 

in deep moist convection cases that are dominated by cold-cloud processes. To assimilate radar 78 

reflectivity into NWP models more effectively, Gao and Stensrud (2012) proposed a hydrometeor 79 

classification method based on the 3DVar system in the direct assimilation of radar reflectivity. The 80 

results demonstrated that this classification method benefits to accelerate the convergence speed of 81 

the analysis and reduce errors in the analysis. Compared to variational data assimilation methods, 82 

Ensemble Kalman Filter (EnKF; Evensen, 1994) is a better choice for assimilating radar reflectivity 83 

directly, since EnKF does not require consideration of the tangent or adjoint model of the 84 

observation operator (Liu et al., 2019). Based on the EnKF method, Tong and Xue (2005) 85 

assimilated the simulated radar observations from a supercell storm. The results indicated that 86 
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directly assimilating radar reflectivity data has a positive impact on both analyses and forecasts. 87 

Although the forward operator of reflectivity tends to be easily implemented in EnKF, its 88 

computational cost is too high to be widely applied in the scientific research and operational 89 

forecasting (Kong et al., 2018). 90 

To avoid the issue of high nonlinearity in radar reflectivity observation operators, the indirect 91 

assimilation method is often used in the NWP. Based on the Advance Regional Prediction System 92 

(ARPS), Hu et al. (2006) investigated the impact of cloud analysis using radar reflectivity on 93 

forecasting tornado storms. They found that cloud analysis helps to adjust the temperature, humidity 94 

fields, and hydrometeors within the clouds, thereby improving tornado predictions. Also, 95 

Schenkman et al. (2011) found that cloud analysis technology is able to adjust cloud variables to 96 

better suit the dynamic and thermal fields. However, cloud analysis schemes rely largely on 97 

uncertain empirical relationships, thus hardly suppressing the generation of spurious echoes. Using 98 

the 4DVar system, Sun and Crook (1997) proposed to assimilate rainwater mixing ratios retrieved 99 

from reflectivity instead of directly assimilating reflectivity, which seems to produce better analysis 100 

results. Based on the 3DVar system of WRF, Wang et al. (2013a) further demonstrated that 101 

assimilation of rainwater and estimated water vapor obtained from radar reflectivity reduces the 102 

linearization error of the radar reflectivity observation operator, thus improving precipitation 103 

forecasts. However, both indirect assimilation methods under the two variational frameworks are 104 

employed in the warm-rain scheme, which restricts their applications above troposphere or in the 105 

coexistence of liquid and ice particles. Shen et al. (2021) added hydrometeor control variables 106 

included ice-phase particles when indirectly assimilating radar reflectivity observations of 107 

Hurricane IKE, which enables track and intensity forecasts of the hurricane to be greatly improved.  108 

For the indirect assimilation of radar reflectivity, one of the challenges is how to correctly classify 109 

hydrometeors in observations. There are currently two methods to distinguish hydrometeor types. 110 

One is to classify hydrometeor types according to background temperature (hereafter called 111 

temperature-based) developed by Gao and Stensrud (2012), with fixed parameters and empirical 112 

relations. Another is the “background hydrometer-dependent” hydrometeor retrieval scheme (Chen 113 

et al., 2020, 2021). The “background hydrometer-dependent” method calculates hydrometeor 114 

weights in various thresholds from the model background field to better allocate radar reflectivity 115 
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observation information. This approach avoids empirical thresholds and weighting coefficients 116 

given in the “temperature-based” method, and benefits to improve the accuracy of hydrometeor 117 

retrievals. However, the “background hydrometer-dependent” scheme also relies on the accuracy of 118 

the background field itself. When the background field is similar to the observation, the “background 119 

hydrometer-dependent” method tends to provide accurate hydrometeor weights. On the other hand, 120 

when the background field differs significantly from the observation, the algorithm may not be 121 

suitable for appropriately allocating hydrometeors of the radar reflectivity observation. Considering 122 

their own limitations in either “temperature-based” or “background hydrometer-dependent” 123 

schemes, this study aims to adaptively combine two above methods of classifying hydrometeors to 124 

assimilate radar reflectivity more reasonably. 125 

In the study, section 2 describes the WRF-3DVar methods, radar observation operators, and a new 126 

hydrometeor retrieval method that adaptively combines the “temperature-based” and “background 127 

hydrometeor-dependent” methods. Based on two convective cases, three experiments are designed 128 

to investigate the impact of different hydrometeor retrieval schemes on assimilation and prediction, 129 

with the specific configurations presented in section 3. The section 4 presents analysis and forecast 130 

results of all experiments. The conclusion is presented in the section 5. 131 

2. Methods 132 

2.1 The WRF-3DVar system 133 

Based on the incremental method proposed by Courtier et al. (1994), 3DVar uses the minimization 134 

algorithm to solve the objective function. The cost function is as follows:  135 

𝐽 =
1

2
(𝐱 − 𝐱b)T𝐁−1(𝐱 − 𝐱b) +

1

2
[𝐻(𝐱) − 𝐲o]T𝐑−1[𝐻(𝐱) − 𝐲o].          (1) 136 

The vectors 𝐱, 𝐱b and 𝐲o stand for analysis variables, background variables, and observation 137 

variables. 𝐁  is the background error covariance, which is calculated by the National 138 

Meteorological Center (NMC; Parrish and Derber, 1992) method. 𝐑  represents the observation 139 

error covariance. 𝐻 is the nonlinear observation operator.  140 

2.2 The radical velocity observation operator 141 

The radial velocity observation operator is as follows: 142 

𝑉𝑟 = 𝑢
𝑥−𝑥𝑖

𝑟𝑖
+ 𝑣

𝑦−𝑦𝑖

𝑟𝑖
+ (𝑤 − 𝑣𝑇)

𝑧−𝑧𝑖

𝑟𝑖
.  (2) 143 
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𝑢, v, and 𝑤 denote the zonal, meridional, and vertical wind component, respectively. (𝑥, 𝑦, 𝑧) 144 

and (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) represent the radar position and observation position, respectively. 𝑟𝑖  is the 145 

distance between the radar and the observation. 𝑣𝑇 is the terminal speed.  146 

2.3 The radar reflectivity observation operator 147 

According to Tong and Xue (2005), the radar reflectivity observation operator is as follows: 148 

                         𝑍 =  10 ∗ log10(𝑍𝑒) ,                        (3) 149 

                        𝑍𝑒 = 𝑍𝑒(𝑞𝑟) + 𝑍𝑒(𝑞𝑠) + 𝑍𝑒(𝑞𝑔) ,                     (4) 150 

                          𝑍𝑒(𝑞𝑥) = 𝛼𝑥(𝜌𝑞𝑥)1.75.                          (5) 151 

𝑞𝑥 means hydrometeor mixing ratios. 𝑍𝑒(𝑞𝑥) (units: dBZ) is the equivalent reflectivity factor 152 

of rainwater, snow, and graupel. 𝛼𝑥  represents the fixed coefficient that is determined by the 153 

dielectric coefficient, density and intercept parameter of each hydrometeor. 𝛼𝑟 is 3.63×109. For 154 

snow and graupel, the coefficient is temperature dependent. When the environmental temperature 155 

is greater than 0℃, 𝛼𝑠 for wet snow is 4.26×1011 and 𝛼𝑔 for wet graupel is 9.08×109. When the 156 

temperature is below 0℃, 𝛼𝑠 for dry snow is 9.80×108 and 𝛼𝑔 for dry graupel is 1.09×109. 𝜌 is 157 

the air density. During the direct assimilation of radar reflectivity, the linearization errors are almost 158 

inevitable. Therefore, the indirect assimilation method is utilized in the study. The indirect method 159 

assimilates the retrieved water vapor and hydrometeors from the radar reflectivity observations. 160 

Following Wang et al. (2013), it is assumed that when the radar reflectivity exceeds a certain 161 

threshold, the relative humidity reaches 100%. The threshold is set to 30 dBZ in this study. The 162 

saturation water vapor at that point is then calculated and assimilated as a pseudo observation. 163 

For retrieving hydrometeors from radar reflectivity, it is required to determine the proportion of 164 

each hydrometeor in radar reflectivity observation. At present, there are two methods to obtain the 165 

proportion of each hydrometeor.  166 

2.3.1 The “Temperature-based” method  167 

In Gao and Stensrud (2012), the hydrometeor types in reflectivity are classified based on the 168 

background temperature. The specific values are as follows: 169 

                        𝐶𝑟 = 1, 𝐶𝑠 = 𝐶𝑔 = 0, 𝑇𝑏 > 5℃ ,                     ( 6 )         170 

         𝐶𝑟 =
𝑇𝑏+5

10
, 𝐶𝑠 = (1 − 𝐶𝑟) ∙

𝛼𝑠

𝛼𝑠+𝛼𝑔
, 𝐶𝑔 = (1 − 𝐶𝑟) ∙

𝛼𝑔

𝛼𝑠+𝛼𝑔
, −5℃ < 𝑇𝑏 < 5℃ ,         ( 7 )                                                  171 
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                                     𝐶𝑟 = 0, 𝐶𝑠 =
𝛼𝑠

𝛼𝑠+𝛼𝑔
, 𝐶𝑔 =

𝛼𝑔

𝛼𝑠+𝛼𝑔
, 𝑇𝑏 < −5℃ .                   ( 8 ) 172 

𝐶𝑟, 𝐶𝑠, and 𝐶𝑔 denote the weights of rainwater, snow, and graupel, respectively. 𝛼𝑟, 𝛼𝑠, and 173 

𝛼𝑔 represent the fixed coefficients of rainwater, snow, and graupel, respectively (Same as above). 174 

𝑇𝑏 is the background temperature.  175 

2.3.2 The “Background hydrometer-dependent” method 176 

It is found that hydrometeor weights derived from the background field vary with individual 177 

weather conditions, which helps to reduce errors resulting from fixed coefficients in Chen et al. 178 

(2020, 2021). The specific process of calculating proportions is as follows: 179 

(1) Compute the average equivalent radar reflectivity of each hydrometeor (𝑍𝑥(𝑘,𝑟𝑒𝑓𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) in different 180 

reflectivity ranges (𝑟𝑒𝑓𝑖) and model layers (k) based on the background field statistics. The 181 

reflectivity ranges are usually set as follows: 𝑟𝑒𝑓1 < 15 dBZ , 15 𝑑𝐵𝑍 ≤ 𝑟𝑒𝑓2 < 25 dBZ , 182 

25 dBZ ≤ 𝑟𝑒𝑓3 < 35 dBZ, 35 dBZ ≤ 𝑟𝑒𝑓4 < 45 dBZ, 𝑟𝑒𝑓5 ≥ 45 dBZ.  183 

(2) Calculate the weight (𝐶𝑥(𝑘,𝑟𝑒𝑓𝑖)
) of each hydrometeor in the background field. 184 

𝐶𝑥(𝑘,𝑟𝑒𝑓𝑖)
=  𝑍𝑥(𝑘,𝑟𝑒𝑓𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /𝑍𝑡𝑜𝑡𝑎𝑙(𝑘,𝑟𝑒𝑓𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,                        (9) 185 

𝑍𝑡𝑜𝑡𝑎𝑙(𝑘,𝑟𝑒𝑓𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑍𝑟(𝑘,𝑟𝑒𝑓𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  𝑍𝑠(𝑘,𝑟𝑒𝑓𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  𝑍𝑔(𝑘,𝑟𝑒𝑓𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  .                 (10) 186 

(3) Divide radar reflectivity observations based on the weights (𝐶𝑥(𝑘,𝑟𝑒𝑓𝑖)
) derived from Step 2. If 187 

the background field has missing data, the calculated climatological mean for one month will 188 

be used instead.  189 

2.3.3 The blending method 190 

The blending method aims to utilize the two methods of partitioning hydrometeors accordingly 191 

to retrieve muti-hydrometer more reasonably in radar reflectivity indirect assimilation. Firstly, 192 

calculate the standard deviation 𝜎  of each hydrometeor content in the model grid and its 193 

surrounding background grids. If the standard deviations of the retrieved hydrometeors of the two 194 

schemes are less than 2𝜎, it means that the retrieved hydrometeors are consistent with the local 195 

structure of the background. Therefore, the hydrometeor content is calculated by the following 196 

formulas:    197 

𝛽 =
𝛿𝑡

2

𝛿𝑡
2+𝛿𝑏

2 ,                             (11) 198 

𝐶𝑥 = 𝛽𝐶𝑥
𝑏 + (1 − 𝛽)𝐶𝑥

𝑡.                         (12) 199 
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𝛿𝑡
2 represents the deviation between the hydrometeor content of the background field and the 200 

retrieved hydrometeor content based on the “temperature-based” scheme. 𝛿𝑏
2  is the deviation 201 

between the hydrometeor content of the background field and the retrieved hydrometeor by the 202 

“background hydrometer-dependent” scheme. 𝐶𝑥
𝑡  and 𝐶𝑥

𝑏  are the weights calculated by the 203 

“temperature-based” and “background hydrometer-dependent” methods, respectively. 𝛽 means the 204 

proportion of the results calculated by “background hydrometer-dependent” method.  205 

3. Experimental design 206 

WRF v4.3 and its data assimilation system, WRFDA v4.3, are employed in this study. Two 207 

convective cases are investigated: 14 June 2020 (referred to as Case 1; Fig. 1a) and 6 August 2018 208 

(denoted as Case 2; Fig. 1b). For Case 1, the model domain consists of 500 × 471 grid points with 209 

a horizontal resolution of 3 km and 50 vertical levels. For Case 2, the domain comprises 723 × 691 210 

grid points, also with a 3 km horizontal resolution and 50 vertical levels. The physical 211 

parameterizations applied include the WRF Double-Moment 6-Class Microphysics (WDM6) 212 

scheme, the Rapid Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer et al., 213 

1997), the Dudhia shortwave radiation scheme (Dudhia, 1989), the Yonsei University (YSU) 214 

boundary layer scheme (Hong et al., 2006), and the Noah Land Surface Model (Chen and Dudhia, 215 

2001) for land surface processes. No cumulus parameterization scheme is used. As summarized in 216 

Table 1, three data assimilation (DA) experiments are conducted to evaluate the effects of all 217 

retrieval methods considered in this study. For all three DA experiments, the initial and lateral 218 

boundary conditions are provided by NCEP Global Forecast System (GFS) data. Additionally, the 219 

specific workflow is illustrated in Fig. 2. Radar observations for both cases undergo a series of 220 

preprocessing and quality control procedures, including anomaly detection and velocity de-aliasing. 221 

The observation errors for radar radial velocity and radar reflectivity are set to 2 m s
–1 and 5 dBZ, 222 

respectively.  223 

Table 1. The list of DA experiments. 224 

Experiments Hydrometeor retrieval methods 

EXP_temp The “temperature-based” method 

EXP_bg The “background hydrometer-dependent” method 
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EXP_temp-bg The blending method 

 225 

 226 

Fig. 1. The simulated area of (a) Case 1 and (b) Case 2, with the detecting ranges of the Nanjing radar and Shenyang 227 

Radar. Both radars are S-band Doppler radars with a maximum coverage range of 230 km. The radial velocity and 228 

reflectivity observations have range resolutions of 250 m and 1000 m, respectively. 229 

 230 

 Fig. 2. The assimilation flow charts of Case 1 and Case 2. 231 

4. Experimental results 232 

4.1 14 June 2020 case 233 

Fig. 3 shows the observed reflectivity at 2300 UTC on 14 June, 0000 UTC, and 0100 UTC on 15 234 

June 2020. At the beginning, there are strong echoes in the southwestern boundary of Jiangsu 235 

Province. Subsequently, the strong convective band begins to expand in both eastward and westward 236 

directions, stretching to the central Anhui Province and Jiangsu Province. 237 
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 238 

Fig. 3. The observed composite reflectivity fields (units: dBZ) at (a) 2300 UTC 14 June, (b) 0000 UTC, and (c) 239 

0100 UTC 15 June 2020. The black line a1-a2 in the Fig. 3b is the vertical cross section location of Fig. 4. 240 

Fig. 4 compares the Hydrometeor Classification Algorithm (HCA) based on dual-polarization 241 

radar observations with the hydrometeor retrieval results from the three experiments at 1500 UTC 242 

on June 14, 2020. The HCA diagram indicates that rainwater dominates the lower levels, while dry 243 

snow and graupel prevail at higher levels, with wet snow present near the melting layer. In the 244 

vertical cross sections of the three experiments (Figs. 4b, c, d), the overall distribution patterns of 245 

the retrieved hydrometeors appear reasonable, especially for rain and snow. Notably, the wet snow 246 

and graupel retrieved by EXP_temp-bg are more consistent with the HCA results compared to 247 

EXP_temp and EXP_bg. 248 

 249 
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 250 

Fig. 4. The vertical sections of (a) hydrometeor classification algorithm based on the dual-polarization radar 251 

observations and retrieved hydrometeors for (b) EXP_temp, (c) EXP_bg and (d) EXP_temp-bg along the black lines 252 

a1-a2 at 1500 UTC. The retrieved hydrometeors refer to rainwater mixing ratio (green contours; units: g/kg), dry 253 

snow mixing ratio (grey contours; units: g/kg), wet snow mixing ratio (cyan contours; units: g/kg), and graupel 254 

mixing ratio (shading; units: g/kg), respectively. 255 

To investigate the impact of the radar reflectivity DA based on the three hydrometeor retrieval 256 

methods, Fig. 5 shows the predicted composite reflectivity initiated at 0100 UTC 15 June. It is 257 

shown that the convective structure is divided into two parts (labeled C and D). From the 258 

observations (Fig. 3a), the combination of C and D is initially located in the western Jiangsu and 259 

eastern Anhui. Soon after, region D gradually separates from C and shifts eastward, displaying the 260 

reduced intensity and poor organization. At 0115 UTC, all DA experiments are able to capture region 261 
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C and region D, albeit with slightly weaker intensity compared to the observations. At 0130 UTC, 262 

the patterns of region C predicted by three experiments are depart from the observation, while the 263 

echoes for EXP_temp-bg exhibit the best organization. At 0145 UTC, the regions C in EXP_temp 264 

and EXP_bg show a poor agreement with the observations. In contrast, EXP_temp-bg provides 265 

more accurate forecast in terms of shape and intensity. At 0200 UTC, three experiments can predict 266 

region C and region D to some extent, but region D in EXP_temp-bg has most accurate echo pattern. 267 

In general, the blending scheme is conducive to improving the radar reflectivity forecast skill.  268 

 269 

Fig. 5. The composite reflectivity (shaded; units: dBZ) predicted by (e)-(h) EXP_temp (i)-(l) EXP_bg and (m)-(p) 270 

EXP_temp-bg for the 1-h forecast beginning at 0100 UTC 15 June 2020, as compared to (a)-(d) the observed 271 

composite reflectivity. The labels C and D present the convection locations. 272 

Fig. 6 displays the vertical cross sections of the relative humidity, radar reflectivity, and wind 273 
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fields at 1501 UTC. After 1-hour forecast, the cross sections from all experiments indicate the 274 

presence of saturated water vapor columns near the strong echoes (around 32°N). Notably, 275 

EXP_temp-bg also reveals a robust updraft, facilitating the transport of water vapor from lower to 276 

upper levels. In comparison, EXP_temp-bg produces the most consistent thermal and dynamical 277 

conditions, resulting in most accurate forecast of the convection.  278 

 279 

 280 

Fig. 6. The cross sections of relative humidity (shading; units: %), radar reflectivity (black contours starting at 40 281 

dBZ; units: dBZ), and wind vectors for (a) EXP_temp, (b) EXP_bg and (c) EXP_temp-bg along the line a1-a2. These 282 

are 1-hour forecasts initialized at 1501 UTC. 283 

Fig. 7 shows the 3-h accumulated precipitation forecast from 1501 UTC to 1504 UTC on 15 June 284 

2020. As depicted in Fig. 7a, the primary precipitation zone is concentrated along the western 285 

boundary of Jiangsu Province, with accumulated precipitation exceeding 50mm. The precipitation 286 

intensity is overestimated for three DA experiments. However, EXP_temp-bg effectively suppresses 287 

two false precipitation areas, leading to the improved precipitation forecast. 288 

 289 
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 290 

Fig. 7. 3-h accumulated precipitation initialized at 0100 UTC 15 June 2020. (a) the observation, (b) EXP_temp, (c) 291 

EXP_bg, and (d) EXP_temp-bg.   292 

To quantitatively assess the performance of different hydrometeor retrieval schemes, the equitable 293 

threat scores (ETS) are calculated for 0-3 h precipitation forecasts in EXP_temp, EXP_bg, and 294 

EXP_temp-bg (Fig. 8). The specific calculation formula of ETS is as follows: 295 

ETS =
A−R

A+B+C−R
,                          (13) 296 

R =
(A+C)×(A+B)

A+B+C+D
,                          (14) 297 

where A , B , C , and D  are the number of hits, the false alarms, the misses, and the correct 298 

negatives. The R means the probability to have a correct forecast by chance. 299 

It is evident that as the precipitation threshold increases, the ETS values for all three experiments 300 

decline progressively. Furthermore, EXP_temp and EXP_bg exhibit comparable ETS values under 301 

various precipitation thresholds. In contrast, EXP_temp-bg consistently outperforms both 302 

EXP_temp and EXP_bg for the entire 3-h forecast period, which implies that the integrated 303 
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hydrometeor retrieval scheme is conducive to the assimilation of radar reflectivity observations. 304 

 305 

Fig. 8. Equitable threat scores of hourly accumulated precipitation forecasts with four thresholds: (a) 0.1 mm, (b) 306 

2.5 mm, (c) 5 mm and (d) 10 mm from 2300 UTC 14 June to 0100 UTC 15 June. 307 

4.2 06 August 2018 case 308 

Fig. 9 presents the observed composite reflectivity at 1800UTC, 1900UTC, 2000UTC, and 309 

2100UTC on 06 August 2018. At 1800 UTC, there are a small number of strong radar echoes in the 310 

central part of Liaoning Province. At 1900UTC, these discrete strong echoes gradually converge in 311 

the center Liaoning, forming a well-organized structure. By 2000UTC, the convections continue to 312 

develop and form into “V” pattern echo. At 2100UTC, a distinct “T” shaped echo emerges in the 313 

observed area. 314 
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 315 

Fig. 9. The observed composite reflectivity fields (units: dBZ) at (a) 1800UTC, (b) 1900UTC, (c) 2000UTC and (d) 316 

2100UTC 06 August 2018.  317 

Fig. 10 shows the radar reflectivity analysis fields and the vertical cross sections along the line 318 

ab from EXP_temp, EXP_bg, and EXP_temp-bg at 2100 UTC. As shown in Fig. 10a, a distinct “T” 319 

shaped echo emerges in the observed area. Generally, the composite reflectivity analyses of the 320 

experiments EXP_temp, EXP_bg, and EXP_temp-bg show a general agreement. From the observed 321 

vertical cross section, it seems that there exist three strong echo bands between 123.78°E and 322 

124.36°E. In order to display the differences between three DA experiments and the observation, 323 

the convective system located near 123.75°E is marked as A, the strong convection at 123.97°E -324 

124.17°E is named as B, and the strong echo region at 124.17°E -124. 36°E is labelled as C. Notably, 325 

part A in the experiment EXP_temp departs from the observation, while EXP_bg and EXP_temp-326 

bg capture it more closely. It seems EXP_temp-bg combines the echo characteristics of both 327 

EXP_temp and EXP_bg in part A. For part B, though all three DA experiments exhibit a general 328 

agreement with the observation, their intensity is weaker than that in the observation. All three 329 

experiments capture the overall structure of C.  330 
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 331 

 332 

Fig. 10. The composite reflectivity at 2100 UTC for (a) observation, (b) EXP_temp, (c) EXP_bg, (d) EXP_temp-bg, 333 

accompanied by the vertical cross sections for (e) observation, (f) EXP_temp, (g) EXP_bg, (h) EXP_temp-bg along 334 

the line ab. The vertical cross section location at 2100UTC is shown by the line ab in the Fig. 10a. The labels in the 335 

Fig. 10e present the convection locations. 336 

To examine how different retrieval methods modify the hydrometeor distributions, the rainwater, 337 

snow and graupel mixing ratio cross sections are presented in Fig. 11. Rainwater occurs below the 338 

freezing level, while snow and graupel particles primarily exist above the freezing level. The 339 

distribution of low-level rainwater in EXP_temp-bg is similar to that in EXP_bg. The proportion of 340 

snow and graupel is a fixed coefficient in the EXP_temp, resulting in similar vertical distributions 341 

as shown in Fig. 11a. For schemes associated with the background, the weights assigned to different 342 

hydrometeors vary dynamically with the background field. Therefore, the fixed coefficient does not 343 

exist in the other two experiments (EXP_bg and EXP_temp-bg). Additionally, both EXP_bg and 344 

EXP_temp-bg have significantly higher snow and graupel content than EXP_temp. Fig. 11 shows 345 

three strong centers of graupel particles corresponding to three strong reflectivity bands in the Fig. 346 

10. By comparing the three groups of the DA experiments, it is apparent that EXP_bg has the highest 347 

strong-center value, while EXP_temp has the lowest. Moreover, the distribution of high-altitude 348 

hydrometeors in EXP_temp-bg combines the features of EXP_temp and EXP_bg. To conclude, the 349 

hydrometeor vertical distributions are closely related to the radar reflectivity structure as expected.  350 
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 351 

 352 

Fig. 11. The vertical cross sections of rainwater mixing ratio (green contours), snow mixing ratio (blue contours), 353 

graupel mixing ratio (shading) at 2100 UTC for the experiments (a) EXP_temp, (b) EXP_bg, (c) EXP_temp-bg. The 354 

position of the cross sections is located at the line ab of the Fig. 10a. 355 

Fig. 12 displays the vertical cross sections of the pseudo-equivalent potential temperature (θse), 356 

wind components, and reflectivity at 2100 UTC for EXP_temp, EXP_bg, and EXP_temp-bg. All 357 

three data assimilation (DA) experiments exhibit a high-low-high vertical distribution of θse. It 358 

suggests that the vertical structure of the atmosphere is unstable in this region, with dry conditions 359 

prevailing in the upper levels and moist conditions in the lower levels. This type of vertical structure 360 

is favorable for the development of severe convective weather events. In the middle layer, there is 361 

a zone with relatively high θse value for EXP_bg and EXP_temp-bg. Specifically, a warm-core 362 

structure is identified near 123.85°N, accompanied by strong upward motion. This results in the 363 

release of unstable energy indicate that a severe convective system is continuously developing. 364 

Additionally, compared with EXP_bg, EXP_temp-bg yields a more extensive and deeper updraft 365 

column. 366 

 367 
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 368 

Fig. 12. The vertical sections of pseudo-equivalent potential temperature (shaded; units: K), velocity vectors (units: 369 

m/s; the vertical velocity has been multiplied by 10) at 2100 UTC for (a) EXP_temp, (b) EXP_bg and (c) EXP_temp-370 

bg. The position of the cross sections is located at the line ab of the Fig. 10a. 371 

Fig. 13 shows 1-h, 3-h, and 5-h forecasts initialized at 2100 UTC 06 August 2018 for EXP_temp, 372 

EXP_bg, and EXP_temp-bg. As can be seen from the observation, the strong echo is located near 373 

42°N at the beginning and has a tendency to slowly develop to the east. For the sake of clarity, the 374 

strong echo zone is divided into two parts: part A and part B. At 2200 UTC 06 August, the forecasts 375 

of three DA experiments for part B are inconsistent with the observation in terms of the intensity. 376 

The part A predicted by EXP_bg and EXP_temp-bg shows a general agreement with the observation, 377 

while the radar reflectivity forecast of EXP_temp departs from the observation. At 0000 UTC 07 378 

August, EXP_bg and EXP_temp-bg yield an improved forecast for part A and B as compared with 379 

EXP_temp, in terms of the intensity and organization. However, there is a southeast bias in part A 380 

predicted by both EXP_bg and EXP_temp-bg. Compared to EXP_bg, EXP_temp-bg provides more 381 

accurate predictions for part B. As shown by the observation at 0200 UTC 07 August, the predicted 382 

A in EXP_temp-bg shows closer alignment with the observation than that in EXP_temp and 383 

EXP_bg. For part B, three sets of experiments all depart from the observation. Overall, EXP_temp-384 

bg demonstrates superior prediction skills in terms of the radar reflectivity. 385 
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 386 

Fig. 13. The composite reflectivity (shaded; units: dBZ) predicted by (d)-(f) EXP_temp (g)-(i) EXP_bg and (j)-(l) 387 

EXP_temp-bg, as compared to (a)-(c) the observed composite reflectivity. The corresponding times from left to right 388 

are 2200 UTC 06 August (left), 0000 UTC 07 August (middle) and at 0200 UTC 07 August (right), respectively. The 389 

labels A and B present the convection locations. 390 

Fig. 14 shows 6-h accumulated precipitation of the three DA experiments from 2100 UTC 06 391 
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August to 0300 UTC 07 August 2018. According to the observation, heavy rainfall is mainly 392 

concentrated in the northeastern part of Liaoning, with precipitation amount exceeding 100 mm. All 393 

three experiments underestimate the extent of the precipitation in this event, especially in the range 394 

of 25 mm to 50 mm. Moreover, there is a certain deviation between the predicted and observed 395 

locations. As shown in Fig. 14c and d, the patterns of heavy precipitation areas are similar in 396 

EXP_bg and EXP_temp-bg. EXP_bg and EXP_temp-bg are notably better than EXP_temp in 397 

predicting the rainfall for the threshold 50mm. EXP_temp-bg displays the best forecasting skill in 398 

terms of the heavy rainfall area. 399 

 400 

Fig. 14. 6-h accumulated precipitation initialized at 2100 UTC 06 August 2018. (a) the observation, (b) EXP_temp, 401 

(c) EXP_bg, and (d) EXP_temp-bg. 402 

Figure 15 shows ETS values of 1-h accumulated precipitation for EXP_temp, EXP_bg, and 403 

EXP_temp-bg. For the threshold of 2.5 mm/h, the precipitation forecasts of EXP_temp-bg generally 404 

exhibit superior quality. The EXP_temp experiment consistently shows the lowest ETS scores 405 

among the three experiments. At the threshold of 10 mm/h, the ETS score of EXP_temp-bg 406 

gradually increases in the later stages of the forecast. These results indicate that the blending method 407 
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is able to improve precipitation forecast skill. 408 

 409 

Fig. 15. ETS of three DA experiments for the thresholds of (a)2.5mm/h, (b)10mm/h (a)1mm/h, (b)3mm/h and 410 

(c)5mm/h. 411 

5. The conclusion 412 

The study proposes an adaptive hydrometeor retrieval scheme within the WRF-3DVar system, 413 

which combines “temperature-based” and “background hydrometer-dependent” methods to 414 

enhance the analyses and forecasts for the strong convections. In the indirect assimilation of radar 415 

reflectivity, it is vital to correctly divide hydrometeor information in radar reflectivity. On the basis 416 

of two retrieval methods proposed by Gao and Stensrud (2012) and Chen et al. (2020, 2021), the 417 

blending scheme is developed to minimize the limitations brought by both methods so as to improve 418 

the assimilation and prediction skills. 419 

The above three hydrometeor retrieval schemes are evaluated for two strong convective processes 420 

occurred during June 2020 and August 2018. Three DA experiments (EXP_temp, EXP_bg, and 421 

EXP_temp-bg) are conducted by using the “temperature-based”, “background hydrometer-422 

dependent”, and blending methods, respectively. The analysis results reveal that the blending 423 

method is effective to improve the radar reflectivity structures for severe convections. Based on the 424 

other two DA experiments, EXP_temp-bg further improves hydrometeor structures and properly 425 

allocates the proportion of each hydrometeor, which is responsible for more reasonable hydrometeor 426 

distributions. Also, EXP_temp-bg provides more reasonable dynamic and thermal structures 427 

compared with EXP_temp and EXP_bg. EXP_temp-bg shows advantages in the precipitation 428 

prediction skills due to the reasonable spatial distribution and proportion of each hydrometeor. 429 
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Compared to conventional Doppler weather radars, dual-polarization radar observations provide 430 

more accurate identification of the three-dimensional microphysical structures within precipitation 431 

systems. Consequently, dual-polarization radar data (e.g. differential reflectivity, specific 432 

differential phase, correlation coefficient) will be considered for identifying the hydrometeor types 433 

more accurately, aiming to enhance the effectiveness of radar data assimilation. 434 
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