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Abstract

Different hydrometeor retrieval schemes are explored based on the Weather Research and
Forecasting (WRF) model in the indirect assimilation of radar reflectivity for two real cases
occurred during June 2020 and August 2018. When retrieving hydrometeors from radar reflectivity,
there are two commonly used hydrometeor classification methods: “temperature-based” and
“background hydrometer-dependent” schemes. The hydrometeor proportions are usually
empirically assigned in the “temperature-based” method within different background temperature
intervals. Whereas, in the “background hydrometer-dependent” scheme, each type of the
hydrometeor is derived based on the portions estimated from the background field for different radar
reflectivity ranges. In this study, a blending scheme is designed to combine “temperature-based”
and “background hydrometer-dependent” methods adaptively to avoid errors caused by fixed
relationships and reduce uncertainties introduced by the background field itself. Three experiments,
EXP temp, EXP bg, and EXP_ temp-bg are conducted using the “temperature-based” method,
“background hydrometer-dependent” scheme, and blending scheme, respectively. It is found that,
adding the “background hydrometer-dependent” scheme facilitates the generation of accurate
hydrometeor species which will enhance the effectiveness of radar data assimilation. Besides, due
to the adaptive combination of “temperature-based” and “background hydrometer-dependent”
schemes, the EXP_temp-bg experiment yields the improved thermodynamic and dynamic structures,

which contributes to predict radar reflectivity and precipitation intensity more accurately.

Key words: Numerical weather prediction, Radar data assimilation, Hydrometeor retrieval.

1. Introduction

The initial condition is a crucial factor in enhancing the accuracy of numerical weather prediction
(NWP, Navon, 2009; Kain et al., 2010; Lopez, 2011; Xu et al., 2021). Compared to conventional
observations, doppler radar observations have extremely high temporal and spatial resolution, as
well as containing precipitating hydrometeor information (Zhao et al., 2012; Li et al., 2013; Kong
et al., 2020). Therefore, radar is one of the key platforms for obtaining proper initial conditions to

successfully predict convective storms (Lilly, 1990; Dawson et al., 2015; Gustafsson et al., 2018;
2
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Shen et al., 2020a; Xu et al., 2022; Chen et al., 2023). A number of efforts have been devoted to
assimilating radar data into mesoscale numerical models (Lindskog et al., 2004; Dowell et al., 2011;
Sun et al., 2014; Bick et al., 2016; Tong et al., 2020; Shen et al., 2016, 2019, 2022; Wan et al., 2024).
Radar observations have two fundamental variables: radar radial velocity (Vr) and radar
reflectivity (Z). Assimilating radar radial velocity is conducive to improving the dynamical structure
of the initial field. Numerous scholars are dedicated to researching radar radial velocity assimilation
(Gao et al., 2004; Simonin et al., 2014; Li et al., 2016; Shen et al., 2020b). Based on the three-
dimensional variational (3DVar) system of the fifth generation Pennsylvania State University-
NCAR Mesoscale Model (MMS5), Xiao et al. (2005) developed a radar radial velocity observation
operator, and investigated the impact of assimilating radar radial velocity on precipitation forecasts.
Besides, Wang et al. (2013b) employed the four-dimensional variational (4DVar) system to
assimilate radar radial velocity and reflectivity into the model for enhancing forecasting accuracy.
In contrast, assimilating radar reflectivity is more challenging than assimilating the radial wind,
on account of its highly nonlinear observation operator and close relationship with complex
microphysics (Borderies et al., 2019; Xu et al., 2019). Currently, there are two main methods for
assimilating radar reflectivity: direct assimilation and indirect assimilation. Xiao et al. (2007)
proposed a direct assimilation scheme for radar reflectivity based on the 3DVar system of MMS5.
The water content was classified according to phases using warm rain microphysical processes.
However, due to the absence of ice-phase particles, the scheme demonstrates limited effectiveness
in deep moist convection cases that are dominated by cold-cloud processes. To assimilate radar
reflectivity into NWP models more effectively, Gao and Stensrud (2012) proposed a hydrometeor
classification method based on the 3D Var system in the direct assimilation of radar reflectivity. The
results demonstrated that this classification method benefits to accelerate the convergence speed of
the analysis and reduce errors in the analysis. Compared to variational data assimilation methods,
Ensemble Kalman Filter (EnKF; Evensen, 1994) is a better choice for assimilating radar reflectivity
directly, since EnKF does not require consideration of the tangent or adjoint model of the
observation operator (Liu et al., 2019). Based on the EnKF method, Tong and Xue (2005)
assimilated the simulated radar observations from a supercell storm. The results indicated that

directly assimilating radar reflectivity data has a positive impact on both analyses and forecasts.
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Although the forward operator of reflectivity tends to be easily implemented in EnKF, its
computational cost is too high to be widely applied in the scientific research and operational
forecasting (Kong et al., 2018).

To avoid the issue of high nonlinearity in radar reflectivity observation operators, the indirect
assimilation method is often used in the NWP. Based on the Advance Regional Prediction System
(ARPS), Hu et al. (2006) investigated the impact of cloud analysis using radar reflectivity on
forecasting tornado storms. They found that cloud analysis helps to adjust the temperature, humidity
fields, and hydrometeors within the clouds, thereby improving tornado predictions. Also,
Schenkman et al. (2011) found that cloud analysis technology is able to adjust cloud variables to
better suit the dynamic and thermal fields. However, cloud analysis schemes rely largely on
uncertain empirical relationships, thus hardly suppressing the generation of spurious echoes. Using
the 4DVar system, Sun and Crook (1997) proposed to assimilate rainwater mixing ratios retrieved
from reflectivity instead of directly assimilating reflectivity, which seems to produce better analysis
results. Based on the 3DVar system of WRF, Wang et al. (2013a) further demonstrated that
assimilation of rainwater and estimated water vapor obtained from radar reflectivity reduces the
linearization error of the radar reflectivity observation operator, thus improving precipitation
forecasts. However, both indirect assimilation methods under the two variational frameworks are
employed in the warm-rain scheme, which restricts their applications above troposphere or in the
coexistence of liquid and ice particles. Shen et al. (2021) added hydrometeor control variables
included ice-phase particles when indirectly assimilating radar reflectivity observations of
Hurricane IKE, which enables track and intensity forecasts of the hurricane to be greatly improved.

For the indirect assimilation of radar reflectivity, one of the challenges is how to correctly classify
hydrometeors in observations. There are currently two methods to distinguish hydrometeor types.
One is to classify hydrometeor types according to background temperature (hereafter called
temperature-based) developed by Gao and Stensrud (2012), with fixed parameters and empirical
relations. Another is the “background hydrometer-dependent” hydrometeor retrieval scheme (Chen
et al., 2020, 2021). The “background hydrometer-dependent” method calculates hydrometeor
weights in various thresholds from the model background field to better allocate radar reflectivity

observation information. This approach avoids empirical thresholds and weighting coefficients
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given in the “temperature-based” method, and benefits to improve the accuracy of hydrometeor
retrievals. However, the “background hydrometer-dependent” scheme also relies on the accuracy of
the background field itself. When the background field is similar to the observation, the “background
hydrometer-dependent” method tends to provide accurate hydrometeor weights. On the other hand,
when the background field differs significantly from the observation, the algorithm may not be
suitable for appropriately allocating hydrometeors of the radar reflectivity observation. Considering
their own limitations in either “temperature-based” or “background hydrometer-dependent”
schemes, this study aims to adaptively combine two above methods of classifying hydrometeors to
assimilate radar reflectivity more reasonably.

In the study, section 2 describes the WRF-3DVar methods, radar observation operators, and a new
hydrometeor retrieval method that adaptively combines the “temperature-based” and “background
hydrometeor-dependent” methods. Based on two convective cases, three experiments are designed
to investigate the impact of different hydrometeor retrieval schemes on assimilation and prediction,
with the specific configurations presented in section 3. The section 4 presents analysis and forecast

results of all experiments. The conclusion is presented in the section 5.

2. Methods

2.1 The WRF-3DVar system

Based on the incremental method proposed by Courtier et al. (1994), 3D Var uses the minimization

algorithm to solve the objective function. The cost function is as follows:
1 _ 1 _
J=5&=xp) BT (x—Xp) + 5 [HX) — yo] 'RTHX) = yol. (1)
The vectors X, X, and y, stand for analysis variables, background variables, and observation
variables. B is the background error covariance, which is calculated by the National

Meteorological Center (NMC; Parrish and Derber, 1992) method. R represents the observation

error covariance. H is the nonlinear observation operator.

2.2 The radical velocity observation operator

The radial velocity observation operator is as follows:

Ty Y (w— ) R

V.=u —
T Ti Ti Ti

@

u, v, and w denote the zonal, meridional, and vertical wind component, respectively. (x, y, z)
5
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and (x;, y;, z;) represent the radar position and observation position, respectively. r; is the

distance between the radar and the observation. vy is the terminal speed.

2.3 The radar reflectivity observation operator

According to Tong and Xue (2005), the radar reflectivity observation operator is as follows:

Z = 10+logyo(Z.), (3)
Ze =Z7,(qy) +Z.(q) + Ze(qg)> 4)
Ze(Qx) = a’x(pr)ljs' (5

g, means hydrometeor mixing ratios. Z,(q,) (units: dBZ) is the equivalent reflectivity factor
of rainwater, snow, and graupel. a, represents the fixed coefficient that is determined by the
dielectric coefficient, density and intercept parameter of each hydrometeor. a, is 3.63x10°. For
snow and graupel, the coefficient is temperature dependent. When the environmental temperature
is greater than 0°C, a, for wet snow is 4.26x10"" and @, for wet graupel is 9.08x10°. When the
temperature is below 0°C, a; for dry snow is 9.80x10% and a, for dry graupel is 1.09x10°. p is
the air density. During the direct assimilation of radar reflectivity, the linearization errors are almost
inevitable. Therefore, the indirect assimilation method is utilized in the study. The indirect method
assimilates the retrieved water vapor and hydrometeors from the radar reflectivity observations.
Following Wang et al. (2013), it is assumed that when the radar reflectivity exceeds a certain
threshold, the relative humidity reaches 100%. The threshold is set to 30 dBZ in this study. The
saturation water vapor at that point is then calculated and assimilated as a pseudo observation.

For retrieving hydrometeors from radar reflectivity, it is required to determine the proportion of
each hydrometeor in radar reflectivity observation. At present, there are two methods to obtain the
proportion of each hydrometeor.

2.3.1 The “Temperature-based” method
In Gao and Stensrud (2012), the hydrometeor types in reflectivity are classified based on the

background temperature. The specific values are as follows:

¢, =1,C,=C,=0,T, >5%C, (6)
Tp+5 s o o
=2 ¢, = (1—cr)-%“T%,cg = (1—cr)-as”igag,—5 C<T,<5°C, (7)
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Cr = 0, Cs = Zs C, = %9

astag’ 9 agtay

Ty < —5°C. (8)

Cy, Cs, and C,; denote the weights of rainwater, snow, and graupel, respectively. a,, as, and
ay represent the fixed coefficients of rainwater, snow, and graupel, respectively (Same as above).
Tp is the background temperature.

2.3.2 The “Background hydrometer-dependent” method

It is found that hydrometeor weights derived from the background field vary with individual
weather conditions, which helps to reduce errors resulting from fixed coefficients in Chen et al.
(2020, 2021). The specific process of calculating proportions is as follows:

(1) Compute the average equivalent radar reflectivity of each hydrometeor (Z, ) in different

(krefy)
reflectivity ranges (ref;) and model layers (k) based on the background field statistics. The

reflectivity ranges are usually set as follows: ref; < 15dBZ, 15dBZ < ref, < 25dBZ,

25dBZ < ref; < 35dBZ, 35dBZ < ref, < 45dBZ, ref; = 45 dBZ.

(2) Calculate the weight (C,. ) of each hydrometeor in the background field.

(kref)

Ztoml(k.rem = Zr(k.refl) + Zs(k.rem + Zg(k.refl)' (10)

(3) Divide radar reflectivity observations based on the weights (C, ) derived from Step 2. If

(kref;)
the background field has missing data, the calculated climatological mean for one month will
be used instead.

2.3.3 The blending method

The blending method aims to utilize the two methods of partitioning hydrometeors accordingly
to retrieve muti-hydrometer more reasonably in radar reflectivity indirect assimilation. Firstly,
calculate the standard deviation ¢ of each hydrometeor content in the model grid and its
surrounding background grids. If the standard deviations of the retrieved hydrometeors of the two
schemes are less than 2, it means that the retrieved hydrometeors are consistent with the local

structure of the background. Therefore, the hydrometeor content is calculated by the following

formulas:
_ &
ﬂ - 5§+512) ) (11)
Ce=BC2+ (1-p)CE (12)

8% represents the deviation between the hydrometeor content of the background field and the

7
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retrieved hydrometeor content based on the “temperature-based” scheme. 87 is the deviation
between the hydrometeor content of the background field and the retrieved hydrometeor by the
“background hydrometer-dependent” scheme. C{ and C? are the weights calculated by the
“temperature-based” and “background hydrometer-dependent” methods, respectively. f means the

proportion of the results calculated by “background hydrometer-dependent” method.

3. Experimental design

WRF v4.3 and its data assimilation system, WRFDA v4.3, are employed in this study. Two
convective cases are investigated: 14 June 2020 (referred to as Case 1; Fig. 1a) and 6 August 2018
(denoted as Case 2; Fig. 1b). For Case 1, the model domain consists of 500 x 471 grid points with
a horizontal resolution of 3 km and 50 vertical levels. For Case 2, the domain comprises 723 x 691
grid points, also with a 3 km horizontal resolution and 50 vertical levels. The physical
parameterizations applied include the WRF Double-Moment 6-Class Microphysics (WDM6)
scheme, the Rapid Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer et al.,
1997), the Dudhia shortwave radiation scheme (Dudhia, 1989), the Yonsei University (YSU)
boundary layer scheme (Hong et al., 2006), and the Noah Land Surface Model (Chen and Dudhia,
2001) for land surface processes. No cumulus parameterization scheme is used. As summarized in
Table 1, three data assimilation (DA) experiments are conducted to evaluate the effects of all
retrieval methods considered in this study. For all three DA experiments, the initial and lateral
boundary conditions are provided by NCEP Global Forecast System (GFS) data. Additionally, the
specific workflow is illustrated in Fig. 2. Radar observations for both cases undergo a series of
preprocessing and quality control procedures, including anomaly detection and velocity de-aliasing.
The observation errors for radar radial velocity and radar reflectivity are setto 2 m s ' and 5 dBZ,
respectively.

Table 1. The list of DA experiments.

Experiments Hydrometeor retrieval methods
EXP_temp The “temperature-based” method
EXP_bg The “background hydrometer-dependent” method
EXP_temp-bg The blending method
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Fig. 2. The assimilation flow charts of Case 1 and Case 2.
4. Experimental results

4.1 14 June 2020 case

Fig. 3 shows the observed reflectivity at 2300 UTC on 14 June, 0000 UTC, and 0100 UTC on 15
June 2020. At the beginning, there are strong echoes in the southwestern boundary of Jiangsu
Province. Subsequently, the strong convective band begins to expand in both eastward and westward

directions, stretching to the central Anhui Province and Jiangsu Province.



236
237

238

239

240

241

242

243

244

245

246

247

35°N 1 35°N 35°N 1

33°N{ e 33°N 33°N+

31°N+ 31°N+

M7°E M9°E  121°E 17°E M9°E  121°E 117°E  119°E  121°E

Reflectivit% ‘dBZi

5 15 25 35 45 55 65
Fig. 3. The observed composite reflectivity fields (units: dBZ) at (a) 2300 UTC 14 June, (b) 0000 UTC, and (c)
0100 UTC 15 June 2020. The black line al-a2 in the Fig. 3b is the vertical cross section location of Fig. 4.

Fig. 4 compares the Hydrometeor Classification Algorithm (HCA) based on dual-polarization
radar observations with the hydrometeor retrieval results from the three experiments at 1500 UTC
on June 14, 2020. The HCA diagram indicates that rainwater dominates the lower levels, while dry
snow and graupel prevail at higher levels, with wet snow present near the melting layer. In the
vertical cross sections of the three experiments (Figs. 4b, ¢, d), the overall distribution patterns of
the retrieved hydrometeors appear reasonable, especially for rain and snow. Notably, the wet snow
and graupel retrieved by EXP temp-bg are more consistent with the HCA results compared to

EXP_temp and EXP bg.
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observations and retrieved hydrometeors for (b) EXP_temp, (¢) EXP bg and (d) EXP_temp-bg along the black lines
al-a2 at 1500 UTC. The retrieved hydrometeors refer to rainwater mixing ratio (green contours; units: dBZ), dry
snow mixing ratio (grey contours; units: dBZ), wet snow mixing ratio (cyan contours; units: dBZ), and graupel
mixing ratio (shading; units: dBZ), respectively.

To investigate the impact of the radar reflectivity DA based on the three hydrometeor retrieval
methods, Fig. 5 shows the predicted composite reflectivity initiated at 0100 UTC 15 June. It is
shown that the convective structure is divided into two parts (labeled C and D). From the
observations (Fig. 3a), the combination of C and D is initially located in the western Jiangsu and
eastern Anhui. Soon after, region D gradually separates from C and shifts eastward, displaying the

reduced intensity and poor organization. At 0115 UTC, all DA experiments are able to capture region
11
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C and region D, albeit with slightly weaker intensity compared to the observations. At 0130 UTC,
the patterns of region C predicted by three experiments are depart from the observation, while the
echoes for EXP_temp-bg exhibit the best organization. At 0145 UTC, the regions C in EXP_temp
and EXP_bg show a poor agreement with the observations. In contrast, EXP_temp-bg provides
more accurate forecast in terms of shape and intensity. At 0200 UTC, three experiments can predict
region C and region D to some extent, but region D in EXP_temp-bg has most accurate echo pattern.

In general, the blending scheme is conducive to improving the radar reflectivity forecast skill.
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EXP_temp-bg for the 1-h forecast beginning at 0100 UTC 15 June 2020, as compared to (a)-(d) the observed

composite reflectivity. The labels C and D present the convection locations.
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Fig. 6 displays the vertical cross sections of the relative humidity, radar reflectivity, and wind
fields at 1501 UTC. After 1-hour forecast, the cross sections from all experiments indicate the
presence of saturated water vapor columns near the strong echoes (around 32°N). Notably,
EXP_temp-bg also reveals a robust updraft, facilitating the transport of water vapor from lower to
upper levels. In comparison, EXP_temp-bg produces the most consistent thermal and dynamical

conditions, resulting in most accurate forecast of the convection.
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Fig. 6. The cross sections of relative humidity (shading; units: %), radar reflectivity (black contours starting at 40
dBZ; units: dBZ), and wind vectors for (a) EXP_temp, (b) EXP_bg and (c) EXP_temp-bg along the line al-a2. These
are 1-hour forecasts initialized at 1501 UTC.

Fig. 7 shows the 3-h accumulated precipitation forecast from 1501 UTC to 1504 UTC on 15 June
2020. As depicted in Fig. 7a, the primary precipitation zone is concentrated along the western
boundary of Jiangsu Province, with accumulated precipitation exceeding 50mm. The precipitation
intensity is overestimated for three DA experiments. However, EXP_temp-bg effectively suppresses

two false precipitation areas, leading to the improved precipitation forecast.
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To quantitatively assess the performance of different hydrometeor retrieval schemes, the equitable
threat scores (ETS) are calculated for 0-3 h precipitation forecasts in EXP temp, EXP bg, and

EXP_temp-bg (Fig. 8). The specific calculation formula of ETS is as follows:

A-R
BTS = ipre® ()
R = (A+C)><(A+B), (14)
A+B+C+D

where A, B, C, and D are the number of hits, the false alarms, the misses, and the correct
negatives. The R means the probability to have a correct forecast by chance.

It is evident that as the precipitation threshold increases, the ETS values for all three experiments
decline progressively. Furthermore, EXP_temp and EXP_bg exhibit comparable ETS values under
various precipitation thresholds. In contrast, EXP temp-bg consistently outperforms both

EXP_temp and EXP_bg for the entire 3-h forecast period, which implies that the integrated

14
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Fig. 8. Equitable threat scores of hourly accumulated precipitation forecasts with five thresholds: (a) 0.1 mm, (b) 2.5

mm, (c) 5 mm and (d) 10 mm from 2300 UTC 14 June to 0100 UTC 15 June.

4.2 06 August 2018 case

Fig. 9 presents the observed composite reflectivity at 1800UTC, 1900UTC, 2000UTC, and

2100UTC on 06 August 2018. At 1800 UTC, there are a small number of strong radar echoes in the

central part of Liaoning Province. At 1900UTC, these discrete strong echoes gradually converge in

the center Liaoning, forming a well-organized structure. By 2000UTC, the convections continue to

develop and form into “V” pattern echo. At 2100UTC, a distinct “T” shaped echo emerges in the

observed area.
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Fig. 9. The observed composite reflectivity fields (units: dBZ) at (a) 1800UTC, (b) 1900UTC, (c) 2000UTC and (d)
2100UTC 06 August 2018.

Fig. 10 shows the radar reflectivity analysis fields and the vertical cross sections along the line
ab from EXP_temp, EXP_bg, and EXP_temp-bg at 2100 UTC. As shown in Fig. 10a, a distinct “T”
shaped echo emerges in the observed area. Generally, the composite reflectivity analyses of the
experiments EXP temp, EXP bg, and EXP temp-bg show a general agreement. From the observed
vertical cross section, it seems that there exist three strong echo bands between 123.78°E and
124.36°E. In order to display the differences between three DA experiments and the observation,
the convective system located near 123.75°E is marked as A, the strong convection at 123.97°E -
124.17°E is named as B, and the strong echo region at 124.17°E -124. 36°E is labelled as C. Notably,
part A in the experiment EXP_temp departs from the observation, while EXP_bg and EXP_temp-
bg capture it more closely. It seems EXP_temp-bg combines the echo characteristics of both
EXP_temp and EXP_bg in part A. For part B, though all three DA experiments exhibit a general
agreement with the observation, their intensity is weaker than that in the observation. All three

experiments capture the overall structure of C.
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Fig. 10. The composite reflectivity at 2100 UTC for (a) observation, (b) EXP_temp, (¢c) EXP_bg, (d) EXP_temp-bg,
accompanied by the vertical cross sections for (e) observation, (f) EXP_temp, (g) EXP_bg, (h) EXP_temp-bg along
the line ab. The vertical cross section location at 2100UTC is shown by the line ab in the Fig. 10a. The labels in the
Fig. 10e present the convection locations.

To examine how different retrieval methods modify the hydrometeor distributions, the rainwater,
snow and graupel mixing ratio cross sections are presented in Fig. 11. Rainwater occurs below the
freezing level, while snow and graupel particles primarily exist above the freezing level. The
distribution of low-level rainwater in EXP_temp-bg is similar to that in EXP_bg. The proportion of
snow and graupel is a fixed coefficient in the EXP_temp, resulting in similar vertical distributions
as shown in Fig. 11a. For schemes associated with the background, the weights assigned to different
hydrometeors vary dynamically with the background field. Therefore, the fixed coefficient does not
exist in the other two experiments (EXP_bg and EXP_temp-bg). Additionally, both EXP_bg and
EXP_temp-bg have significantly higher snow and graupel content than EXP_temp. Fig. 11 shows
three strong centers of graupel particles corresponding to three strong reflectivity bands in the Fig.
10. By comparing the three groups of the DA experiments, it is apparent that EXP_bg has the highest
strong-center value, while EXP_temp has the lowest. Moreover, the distribution of high-altitude
hydrometeors in EXP_temp-bg combines the features of EXP_temp and EXP_bg. To conclude, the

hydrometeor vertical distributions are closely related to the radar reflectivity structure as expected.
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Fig. 11. The vertical cross sections of rainwater mixing ratio (green contours), snow mixing ratio (blue contours),
graupel mixing ratio (shading) at 2100 UTC for the experiments (a) EXP_temp, (b) EXP_bg, (c) EXP_temp-bg. The
position of the cross sections is located at the line ab of the Fig. 10a.

Fig. 12 displays the vertical cross sections of the pseudo-equivalent potential temperature (Ose),
wind components, and reflectivity at 2100 UTC for EXP_temp, EXP bg, and EXP temp-bg. All
three data assimilation (DA) experiments exhibit a high-low-high vertical distribution of Ose. It
suggests that the vertical structure of the atmosphere is unstable in this region, with dry conditions
prevailing in the upper levels and moist conditions in the lower levels. This type of vertical structure
is favorable for the development of severe convective weather events. In the middle layer, there is
a zone with relatively high 8se value for EXP_bg and EXP_temp-bg. Specifically, a warm-core
structure is identified near 123.85°N, accompanied by strong upward motion. This results in the
release of unstable energy indicate that a severe convective system is continuously developing.
Additionally, compared with EXP_bg, EXP_temp-bg yields a more extensive and deeper updraft

column.
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Fig. 12. The vertical sections of pseudo-equivalent potential temperature (shaded; units: K), velocity vectors (units:
m/s; the vertical velocity has been multiplied by 10) at 2100 UTC for (a) EXP_temp, (b) EXP_bg and (c) EXP_temp-
bg. The position of the cross sections is located at the line ab of the Fig. 10a.

Fig. 13 shows 1-h, 3-h, and 5-h forecasts initialized at 2100 UTC 06 August 2018 for EXP_temp,
EXP bg, and EXP_temp-bg. As can be seen from the observation, the strong echo is located near
42°N at the beginning and has a tendency to slowly develop to the east. For the sake of clarity, the
strong echo zone is divided into two parts: part A and part B. At 2200 UTC 06 August, the forecasts
of three DA experiments for part B are inconsistent with the observation in terms of the intensity.
The part A predicted by EXP_bg and EXP_temp-bg shows a general agreement with the observation,
while the radar reflectivity forecast of EXP_temp departs from the observation. At 0000 UTC 07
August, EXP_bg and EXP_temp-bg yield an improved forecast for part A and B as compared with
EXP_temp, in terms of the intensity and organization. However, there is a southeast bias in part A
predicted by both EXP_bg and EXP_temp-bg. Compared to EXP_bg, EXP_temp-bg provides more
accurate predictions for part B. As shown by the observation at 0200 UTC 07 August, the predicted
A in EXP_temp-bg shows closer alignment with the observation than that in EXP temp and
EXP_bg. For part B, three sets of experiments all depart from the observation. Overall, EXP_temp-

bg demonstrates superior prediction skills in terms of the radar reflectivity.
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Fig. 13. The composite reflectivity (shaded; units: dBZ) predicted by (d)-(f) EXP_temp (g)-(i) EXP_bg and (j)-(1)

o

EXP_temp-bg, as compared to (a)-(c) the observed composite reflectivity. The corresponding times from left to right
are 2200 UTC 06 August (left), 0000 UTC 07 August (middle) and at 0200 UTC 07 August (right), respectively. The
labels A and B present the convection locations.

Fig. 14 shows 6-h accumulated precipitation of the three DA experiments from 2100 UTC 06
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August to 0300 UTC 07 August 2018. According to the observation, heavy rainfall is mainly
concentrated in the northeastern part of Liaoning, with precipitation amount exceeding 100 mm. All
three experiments underestimate the extent of the precipitation in this event, especially in the range
of 25 mm to 50 mm. Moreover, there is a certain deviation between the predicted and observed
locations. As shown in Fig. 14c and d, the patterns of heavy precipitation areas are similar in
EXP bg and EXP temp-bg. EXP bg and EXP temp-bg are notably better than EXP temp in
predicting the rainfall for the threshold 50mm. EXP_temp-bg displays the best forecasting skill in

terms of the heavy rainfall area.

44°N

44°N

42°N

40°N

38°N e — T ; 38N puetst — . .
118°E  120°E 122°E 124°E 126°E 118°E  120°E 122°E 124°E 126°E

44°N

44°N

42°N- 42°N-

40°N 40°N +

38°N — ; - 38°N He
118°E  120°E 122°E 124°E 126°E  118°E

120 122°F 120°E 126°F
6-h accumulated precipitation (mm)
0.0 0.1 10.0 25.0 50.0 100.0 250.0
Fig. 14. 6-h accumulated precipitation initialized at 2100 UTC 06 August 2018. (a) the observation, (b) EXP_temp,
(c) EXP_bg, and (d) EXP_temp-bg.

Figure 15 shows ETS values of 1-h accumulated precipitation for EXP_temp, EXP_bg, and
EXP_temp-bg. For the threshold of 2.5 mm/h, the precipitation forecasts of EXP_temp-bg generally
exhibit superior quality. The EXP temp experiment consistently shows the lowest ETS scores
among the three experiments. At the threshold of 10 mm/h, the ETS score of EXP_temp-bg

gradually increases in the later stages of the forecast. These results indicate that the blending method
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is able to improve precipitation forecast skill.
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Fig. 15. ETS of three DA experiments for the thresholds of (a)lmm/h, (b)3mm/h and (¢)Smm/h.

5. The conclusion

The study proposes an adaptive hydrometeor retrieval scheme within the WRF-3DVar system,
which combines “temperature-based” and “background hydrometer-dependent” methods to
enhance the analyses and forecasts for the strong convections. In the indirect assimilation of radar
reflectivity, it is vital to correctly divide hydrometeor information in radar reflectivity. On the basis
of two retrieval methods proposed by Gao and Stensrud (2012) and Chen et al. (2020, 2021), the
blending scheme is developed to minimize the limitations brought by both methods so as to improve
the assimilation and prediction skills.

The above three hydrometeor retrieval schemes are evaluated for two strong convective processes
occurred during June 2020 and August 2018. Three DA experiments (EXP temp, EXP_bg, and
EXP temp-bg) are conducted by using the “temperature-based”, “background hydrometer-
dependent”, and blending methods, respectively. The analysis results reveal that the blending
method is effective to improve the radar reflectivity structures for severe convections. Based on the
other two DA experiments, EXP_temp-bg further improves hydrometeor structures and properly
allocates the proportion of each hydrometeor, which is responsible for more reasonable hydrometeor
distributions. Also, EXP_temp-bg provides more reasonable dynamic and thermal structures
compared with EXP_temp and EXP_bg. EXP temp-bg shows advantages in the precipitation
prediction skills due to the reasonable spatial distribution and proportion of each hydrometeor.

Compared to conventional Doppler weather radars, dual-polarization radar observations provide
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more accurate identification of the three-dimensional microphysical structures within precipitation
systems. Consequently, dual-polarization radar data (e.g. differential reflectivity, specific
differential phase, correlation coefficient) will be considered for identifying the hydrometeor types

more accurately, aiming to enhance the effectiveness of radar data assimilation.
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