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Abstract 29 

Different hydrometeor retrieval schemes are explored based on the Weather Research and 30 

Forecasting (WRF) model in the indirect assimilation of radar reflectivity for two real cases 31 

occurred during June 2020 and August 2018. When retrieving hydrometeors from radar reflectivity, 32 

there are two commonly used hydrometeor classification methods: “temperature-based” and 33 

“background hydrometer-dependent” schemes. The hydrometeor proportions are usually 34 

empirically assigned in the “temperature-based” method within different background temperature 35 

intervals. Whereas, in the “background hydrometer-dependent” scheme, each type of the 36 

hydrometeor is derived based on the portions estimated from the background field for different radar 37 

reflectivity ranges. In this study, a blending scheme is designed to combine “temperature-based” 38 

and “background hydrometer-dependent” methods adaptively to avoid errors caused by fixed 39 

relationships and reduce uncertainties introduced by the background field itself. Three experiments, 40 

EXP_temp, EXP_bg, and EXP_temp-bg are conducted using the “temperature-based” method, 41 

“background hydrometer-dependent” scheme, and blending scheme, respectively. It is found that, 42 

adding the “background hydrometer-dependent” scheme facilitates the generation of accurate 43 

hydrometeor species which will enhance the effectiveness of radar data assimilation. Besides, due 44 

to the adaptive combination of “temperature-based” and “background hydrometer-dependent” 45 

schemes, the EXP_temp-bg experiment yields the improved thermodynamic and dynamic structures, 46 

which contributes to predict radar reflectivity and precipitation intensity more accurately.  47 

 48 

Key words: Numerical weather prediction, Radar data assimilation, Hydrometeor retrieval. 49 

 50 

1. Introduction 51 

The initial condition is a crucial factor in enhancing the accuracy of numerical weather prediction 52 

(NWP, Navon, 2009; Kain et al., 2010; Lopez, 2011; Xu et al., 2021). Compared to conventional 53 

observations, doppler radar observations have extremely high temporal and spatial resolution, as 54 

well as containing precipitating hydrometeor information (Zhao et al., 2012; Li et al., 2013; Kong 55 

et al., 2020). Therefore, radar is one of the key platforms for obtaining proper initial conditions to 56 

successfully predict convective storms (Lilly, 1990; Dawson et al., 2015; Gustafsson et al., 2018; 57 
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Shen et al., 2020a; Xu et al., 2022; Chen et al., 2023). A number of efforts have been devoted to 58 

assimilating radar data into mesoscale numerical models (Lindskog et al., 2004; Dowell et al., 2011; 59 

Sun et al., 2014; Bick et al., 2016; Tong et al., 2020; Shen et al., 2016, 2019, 2022; Wan et al., 2024).  60 

Radar observations have two fundamental variables: radar radial velocity (Vr) and radar 61 

reflectivity (Z). Assimilating radar radial velocity is conducive to improving the dynamical structure 62 

of the initial field. Numerous scholars are dedicated to researching radar radial velocity assimilation 63 

(Gao et al., 2004; Simonin et al., 2014; Li et al., 2016; Shen et al., 2020b). Based on the three-64 

dimensional variational (3DVar) system of the fifth generation Pennsylvania State University-65 

NCAR Mesoscale Model (MM5), Xiao et al. (2005) developed a radar radial velocity observation 66 

operator, and investigated the impact of assimilating radar radial velocity on precipitation forecasts. 67 

Besides, Wang et al. (2013b) employed the four-dimensional variational (4DVar) system to 68 

assimilate radar radial velocity and reflectivity into the model for enhancing forecasting accuracy.  69 

In contrast, assimilating radar reflectivity is more challenging than assimilating the radial wind, 70 

on account of its highly nonlinear observation operator and close relationship with complex 71 

microphysics (Borderies et al., 2019; Xu et al., 2019). Currently, there are two main methods for 72 

assimilating radar reflectivity: direct assimilation and indirect assimilation. Xiao et al. (2007) 73 

proposed a direct assimilation scheme for radar reflectivity based on the 3DVar system of MM5. 74 

The water content was classified according to phases using warm rain microphysical processes. 75 

However, due to the absence of ice-phase particles, the scheme demonstrates limited effectiveness 76 

in deep moist convection cases that are dominated by cold-cloud processes. To assimilate radar 77 

reflectivity into NWP models more effectively, Gao and Stensrud (2012) proposed a hydrometeor 78 

classification method based on the 3DVar system in the direct assimilation of radar reflectivity. The 79 

results demonstrated that this classification method benefits to accelerate the convergence speed of 80 

the analysis and reduce errors in the analysis. Compared to variational data assimilation methods, 81 

Ensemble Kalman Filter (EnKF; Evensen, 1994) is a better choice for assimilating radar reflectivity 82 

directly, since EnKF does not require consideration of the tangent or adjoint model of the 83 

observation operator (Liu et al., 2019). Based on the EnKF method, Tong and Xue (2005) 84 

assimilated the simulated radar observations from a supercell storm. The results indicated that 85 

directly assimilating radar reflectivity data has a positive impact on both analyses and forecasts. 86 
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Although the forward operator of reflectivity tends to be easily implemented in EnKF, its 87 

computational cost is too high to be widely applied in the scientific research and operational 88 

forecasting (Kong et al., 2018). 89 

To avoid the issue of high nonlinearity in radar reflectivity observation operators, the indirect 90 

assimilation method is often used in the NWP. Based on the Advance Regional Prediction System 91 

(ARPS), Hu et al. (2006) investigated the impact of cloud analysis using radar reflectivity on 92 

forecasting tornado storms. They found that cloud analysis helps to adjust the temperature, humidity 93 

fields, and hydrometeors within the clouds, thereby improving tornado predictions. Also, 94 

Schenkman et al. (2011) found that cloud analysis technology is able to adjust cloud variables to 95 

better suit the dynamic and thermal fields. However, cloud analysis schemes rely largely on 96 

uncertain empirical relationships, thus hardly suppressing the generation of spurious echoes. Using 97 

the 4DVar system, Sun and Crook (1997) proposed to assimilate rainwater mixing ratios retrieved 98 

from reflectivity instead of directly assimilating reflectivity, which seems to produce better analysis 99 

results. Based on the 3DVar system of WRF, Wang et al. (2013a) further demonstrated that 100 

assimilation of rainwater and estimated water vapor obtained from radar reflectivity reduces the 101 

linearization error of the radar reflectivity observation operator, thus improving precipitation 102 

forecasts. However, both indirect assimilation methods under the two variational frameworks are 103 

employed in the warm-rain scheme, which restricts their applications above troposphere or in the 104 

coexistence of liquid and ice particles. Shen et al. (2021) added hydrometeor control variables 105 

included ice-phase particles when indirectly assimilating radar reflectivity observations of 106 

Hurricane IKE, which enables track and intensity forecasts of the hurricane to be greatly improved.  107 

For the indirect assimilation of radar reflectivity, one of the challenges is how to correctly classify 108 

hydrometeors in observations. There are currently two methods to distinguish hydrometeor types. 109 

One is to classify hydrometeor types according to background temperature (hereafter called 110 

temperature-based) developed by Gao and Stensrud (2012), with fixed parameters and empirical 111 

relations. Another is the “background hydrometer-dependent” hydrometeor retrieval scheme (Chen 112 

et al., 2020, 2021). The “background hydrometer-dependent” method calculates hydrometeor 113 

weights in various thresholds from the model background field to better allocate radar reflectivity 114 

observation information. This approach avoids empirical thresholds and weighting coefficients 115 
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given in the “temperature-based” method, and benefits to improve the accuracy of hydrometeor 116 

retrievals. However, the “background hydrometer-dependent” scheme also relies on the accuracy of 117 

the background field itself. When the background field is similar to the observation, the “background 118 

hydrometer-dependent” method tends to provide accurate hydrometeor weights. On the other hand, 119 

when the background field differs significantly from the observation, the algorithm may not be 120 

suitable for appropriately allocating hydrometeors of the radar reflectivity observation. Considering 121 

their own limitations in either “temperature-based” or “background hydrometer-dependent” 122 

schemes, this study aims to adaptively combine two above methods of classifying hydrometeors to 123 

assimilate radar reflectivity more reasonably. 124 

In the study, section 2 describes the WRF-3DVar methods, radar observation operators, and a new 125 

hydrometeor retrieval method that adaptively combines the “temperature-based” and “background 126 

hydrometeor-dependent” methods. Based on two convective cases, three experiments are designed 127 

to investigate the impact of different hydrometeor retrieval schemes on assimilation and prediction, 128 

with the specific configurations presented in section 3. The section 4 presents analysis and forecast 129 

results of all experiments. The conclusion is presented in the section 5. 130 

2. Methods 131 

2.1 The WRF-3DVar system 132 

Based on the incremental method proposed by Courtier et al. (1994), 3DVar uses the minimization 133 

algorithm to solve the objective function. The cost function is as follows:  134 

𝐽 =
1

2
(𝐱 − 𝐱b)T𝐁−1(𝐱 − 𝐱b) +

1

2
[𝐻(𝐱) − 𝐲o]T𝐑−1[𝐻(𝐱) − 𝐲o].          (1) 135 

The vectors 𝐱, 𝐱b and 𝐲o stand for analysis variables, background variables, and observation 136 

variables. 𝐁  is the background error covariance, which is calculated by the National 137 

Meteorological Center (NMC; Parrish and Derber, 1992) method. 𝐑  represents the observation 138 

error covariance. 𝐻 is the nonlinear observation operator.  139 

2.2 The radical velocity observation operator 140 

The radial velocity observation operator is as follows: 141 

𝑉𝑟 = 𝑢
𝑥−𝑥𝑖

𝑟𝑖
+ 𝑣

𝑦−𝑦𝑖

𝑟𝑖
+ (𝑤 − 𝑣𝑇)

𝑧−𝑧𝑖

𝑟𝑖
.  (2) 142 

𝑢, v, and 𝑤 denote the zonal, meridional, and vertical wind component, respectively. (𝑥, 𝑦, 𝑧) 143 
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and (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) represent the radar position and observation position, respectively. 𝑟𝑖  is the 144 

distance between the radar and the observation. 𝑣𝑇 is the terminal speed.  145 

2.3 The radar reflectivity observation operator 146 

According to Tong and Xue (2005), the radar reflectivity observation operator is as follows: 147 

                         𝑍 =  10 ∗ log10(𝑍𝑒) ,                        (3) 148 

                        𝑍𝑒 = 𝑍𝑒(𝑞𝑟) + 𝑍𝑒(𝑞𝑠) + 𝑍𝑒(𝑞𝑔) ,                     (4) 149 

                          𝑍𝑒(𝑞𝑥) = 𝛼𝑥(𝜌𝑞𝑥)1.75.                          (5) 150 

𝑞𝑥 means hydrometeor mixing ratios. 𝑍𝑒(𝑞𝑥) (units: dBZ) is the equivalent reflectivity factor 151 

of rainwater, snow, and graupel. 𝛼𝑥  represents the fixed coefficient that is determined by the 152 

dielectric coefficient, density and intercept parameter of each hydrometeor. 𝛼𝑟 is 3.63×109. For 153 

snow and graupel, the coefficient is temperature dependent. When the environmental temperature 154 

is greater than 0℃, 𝛼𝑠 for wet snow is 4.26×1011 and 𝛼𝑔 for wet graupel is 9.08×109. When the 155 

temperature is below 0℃, 𝛼𝑠 for dry snow is 9.80×108 and 𝛼𝑔 for dry graupel is 1.09×109. 𝜌 is 156 

the air density. During the direct assimilation of radar reflectivity, the linearization errors are almost 157 

inevitable. Therefore, the indirect assimilation method is utilized in the study. The indirect method 158 

assimilates the retrieved water vapor and hydrometeors from the radar reflectivity observations. 159 

Following Wang et al. (2013), it is assumed that when the radar reflectivity exceeds a certain 160 

threshold, the relative humidity reaches 100%. The threshold is set to 30 dBZ in this study. The 161 

saturation water vapor at that point is then calculated and assimilated as a pseudo observation. 162 

For retrieving hydrometeors from radar reflectivity, it is required to determine the proportion of 163 

each hydrometeor in radar reflectivity observation. At present, there are two methods to obtain the 164 

proportion of each hydrometeor.  165 

2.3.1 The “Temperature-based” method  166 

In Gao and Stensrud (2012), the hydrometeor types in reflectivity are classified based on the 167 

background temperature. The specific values are as follows: 168 

                        𝐶𝑟 = 1, 𝐶𝑠 = 𝐶𝑔 = 0, 𝑇𝑏 > 5℃ ,                     ( 6 )         169 

         𝐶𝑟 =
𝑇𝑏+5

10
, 𝐶𝑠 = (1 − 𝐶𝑟) ∙

𝛼𝑠

𝛼𝑠+𝛼𝑔
, 𝐶𝑔 = (1 − 𝐶𝑟) ∙

𝛼𝑔

𝛼𝑠+𝛼𝑔
, −5℃ < 𝑇𝑏 < 5℃ ,         ( 7 )                                                  170 
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                                     𝐶𝑟 = 0, 𝐶𝑠 =
𝛼𝑠

𝛼𝑠+𝛼𝑔
, 𝐶𝑔 =

𝛼𝑔

𝛼𝑠+𝛼𝑔
, 𝑇𝑏 < −5℃ .                   ( 8 ) 171 

𝐶𝑟, 𝐶𝑠, and 𝐶𝑔 denote the weights of rainwater, snow, and graupel, respectively. 𝛼𝑟, 𝛼𝑠, and 172 

𝛼𝑔 represent the fixed coefficients of rainwater, snow, and graupel, respectively (Same as above). 173 

𝑇𝑏 is the background temperature.  174 

2.3.2 The “Background hydrometer-dependent” method 175 

It is found that hydrometeor weights derived from the background field vary with individual 176 

weather conditions, which helps to reduce errors resulting from fixed coefficients in Chen et al. 177 

(2020, 2021). The specific process of calculating proportions is as follows: 178 

(1) Compute the average equivalent radar reflectivity of each hydrometeor (𝑍𝑥(𝑘,𝑟𝑒𝑓𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) in different 179 

reflectivity ranges (𝑟𝑒𝑓𝑖) and model layers (k) based on the background field statistics. The 180 

reflectivity ranges are usually set as follows: 𝑟𝑒𝑓1 < 15 dBZ , 15 𝑑𝐵𝑍 ≤ 𝑟𝑒𝑓2 < 25 dBZ , 181 

25 dBZ ≤ 𝑟𝑒𝑓3 < 35 dBZ, 35 dBZ ≤ 𝑟𝑒𝑓4 < 45 dBZ, 𝑟𝑒𝑓5 ≥ 45 dBZ.  182 

(2) Calculate the weight (𝐶𝑥(𝑘,𝑟𝑒𝑓𝑖)
) of each hydrometeor in the background field. 183 

𝑍𝑡𝑜𝑡𝑎𝑙(𝑘,𝑟𝑒𝑓𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑍𝑟(𝑘,𝑟𝑒𝑓𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  𝑍𝑠(𝑘,𝑟𝑒𝑓𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  𝑍𝑔(𝑘,𝑟𝑒𝑓𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  .                 (10) 184 

(3) Divide radar reflectivity observations based on the weights (𝐶𝑥(𝑘,𝑟𝑒𝑓𝑖)
) derived from Step 2. If 185 

the background field has missing data, the calculated climatological mean for one month will 186 

be used instead.  187 

2.3.3 The blending method 188 

The blending method aims to utilize the two methods of partitioning hydrometeors accordingly 189 

to retrieve muti-hydrometer more reasonably in radar reflectivity indirect assimilation. Firstly, 190 

calculate the standard deviation 𝜎  of each hydrometeor content in the model grid and its 191 

surrounding background grids. If the standard deviations of the retrieved hydrometeors of the two 192 

schemes are less than 2𝜎, it means that the retrieved hydrometeors are consistent with the local 193 

structure of the background. Therefore, the hydrometeor content is calculated by the following 194 

formulas:    195 

𝛽 =
𝛿𝑡

2

𝛿𝑡
2+𝛿𝑏

2 ,                             (11) 196 

𝐶𝑥 = 𝛽𝐶𝑥
𝑏 + (1 − 𝛽)𝐶𝑥

𝑡.                         (12) 197 

𝛿𝑡
2 represents the deviation between the hydrometeor content of the background field and the 198 
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retrieved hydrometeor content based on the “temperature-based” scheme. 𝛿𝑏
2  is the deviation 199 

between the hydrometeor content of the background field and the retrieved hydrometeor by the 200 

“background hydrometer-dependent” scheme. 𝐶𝑥
𝑡  and 𝐶𝑥

𝑏  are the weights calculated by the 201 

“temperature-based” and “background hydrometer-dependent” methods, respectively. 𝛽 means the 202 

proportion of the results calculated by “background hydrometer-dependent” method.  203 

3. Experimental design 204 

WRF v4.3 and its data assimilation system, WRFDA v4.3, are employed in this study. Two 205 

convective cases are investigated: 14 June 2020 (referred to as Case 1; Fig. 1a) and 6 August 2018 206 

(denoted as Case 2; Fig. 1b). For Case 1, the model domain consists of 500 × 471 grid points with 207 

a horizontal resolution of 3 km and 50 vertical levels. For Case 2, the domain comprises 723 × 691 208 

grid points, also with a 3 km horizontal resolution and 50 vertical levels. The physical 209 

parameterizations applied include the WRF Double-Moment 6-Class Microphysics (WDM6) 210 

scheme, the Rapid Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer et al., 211 

1997), the Dudhia shortwave radiation scheme (Dudhia, 1989), the Yonsei University (YSU) 212 

boundary layer scheme (Hong et al., 2006), and the Noah Land Surface Model (Chen and Dudhia, 213 

2001) for land surface processes. No cumulus parameterization scheme is used. As summarized in 214 

Table 1, three data assimilation (DA) experiments are conducted to evaluate the effects of all 215 

retrieval methods considered in this study. For all three DA experiments, the initial and lateral 216 

boundary conditions are provided by NCEP Global Forecast System (GFS) data. Additionally, the 217 

specific workflow is illustrated in Fig. 2. Radar observations for both cases undergo a series of 218 

preprocessing and quality control procedures, including anomaly detection and velocity de-aliasing. 219 

The observation errors for radar radial velocity and radar reflectivity are set to 2 m s
–1 and 5 dBZ, 220 

respectively.  221 

Table 1. The list of DA experiments. 222 

Experiments Hydrometeor retrieval methods 

EXP_temp The “temperature-based” method 

EXP_bg The “background hydrometer-dependent” method 

EXP_temp-bg The blending method 

 223 
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 224 

Fig. 1. The simulated area of (a) Case 1 and (b) Case 2, with the detecting ranges of the Nanjing radar and Shenyang 225 

Radar. Both radars are S-band Doppler radars with a maximum coverage range of 230 km. The radial velocity and 226 

reflectivity observations have range resolutions of 250 m and 1000 m, respectively. 227 

 228 

 Fig. 2. The assimilation flow charts of Case 1 and Case 2. 229 

4. Experimental results 230 

4.1 14 June 2020 case 231 

Fig. 3 shows the observed reflectivity at 2300 UTC on 14 June, 0000 UTC, and 0100 UTC on 15 232 

June 2020. At the beginning, there are strong echoes in the southwestern boundary of Jiangsu 233 

Province. Subsequently, the strong convective band begins to expand in both eastward and westward 234 

directions, stretching to the central Anhui Province and Jiangsu Province. 235 
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 236 

Fig. 3. The observed composite reflectivity fields (units: dBZ) at (a) 2300 UTC 14 June, (b) 0000 UTC, and (c) 237 

0100 UTC 15 June 2020. The black line a1-a2 in the Fig. 3b is the vertical cross section location of Fig. 4. 238 

Fig. 4 compares the Hydrometeor Classification Algorithm (HCA) based on dual-polarization 239 

radar observations with the hydrometeor retrieval results from the three experiments at 1500 UTC 240 

on June 14, 2020. The HCA diagram indicates that rainwater dominates the lower levels, while dry 241 

snow and graupel prevail at higher levels, with wet snow present near the melting layer. In the 242 

vertical cross sections of the three experiments (Figs. 4b, c, d), the overall distribution patterns of 243 

the retrieved hydrometeors appear reasonable, especially for rain and snow. Notably, the wet snow 244 

and graupel retrieved by EXP_temp-bg are more consistent with the HCA results compared to 245 

EXP_temp and EXP_bg. 246 

 247 
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 248 

Fig. 4. The vertical sections of (a) hydrometeor classification algorithm based on the dual-polarization radar 249 

observations and retrieved hydrometeors for (b) EXP_temp, (c) EXP_bg and (d) EXP_temp-bg along the black lines 250 

a1-a2 at 1500 UTC. The retrieved hydrometeors refer to rainwater mixing ratio (green contours; units: dBZ), dry 251 

snow mixing ratio (grey contours; units: dBZ), wet snow mixing ratio (cyan contours; units: dBZ), and graupel 252 

mixing ratio (shading; units: dBZ), respectively. 253 

To investigate the impact of the radar reflectivity DA based on the three hydrometeor retrieval 254 

methods, Fig. 5 shows the predicted composite reflectivity initiated at 0100 UTC 15 June. It is 255 

shown that the convective structure is divided into two parts (labeled C and D). From the 256 

observations (Fig. 3a), the combination of C and D is initially located in the western Jiangsu and 257 

eastern Anhui. Soon after, region D gradually separates from C and shifts eastward, displaying the 258 

reduced intensity and poor organization. At 0115 UTC, all DA experiments are able to capture region 259 
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C and region D, albeit with slightly weaker intensity compared to the observations. At 0130 UTC, 260 

the patterns of region C predicted by three experiments are depart from the observation, while the 261 

echoes for EXP_temp-bg exhibit the best organization. At 0145 UTC, the regions C in EXP_temp 262 

and EXP_bg show a poor agreement with the observations. In contrast, EXP_temp-bg provides 263 

more accurate forecast in terms of shape and intensity. At 0200 UTC, three experiments can predict 264 

region C and region D to some extent, but region D in EXP_temp-bg has most accurate echo pattern. 265 

In general, the blending scheme is conducive to improving the radar reflectivity forecast skill.  266 

 267 

 268 

Fig. 5. The composite reflectivity (shaded; units: dBZ) predicted by (e)-(h) EXP_temp (i)-(l) EXP_bg and (m)-(p) 269 

EXP_temp-bg for the 1-h forecast beginning at 0100 UTC 15 June 2020, as compared to (a)-(d) the observed 270 

composite reflectivity. The labels C and D present the convection locations. 271 
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Fig. 6 displays the vertical cross sections of the relative humidity, radar reflectivity, and wind 272 

fields at 1501 UTC. After 1-hour forecast, the cross sections from all experiments indicate the 273 

presence of saturated water vapor columns near the strong echoes (around 32°N). Notably, 274 

EXP_temp-bg also reveals a robust updraft, facilitating the transport of water vapor from lower to 275 

upper levels. In comparison, EXP_temp-bg produces the most consistent thermal and dynamical 276 

conditions, resulting in most accurate forecast of the convection.  277 

 278 

 279 

Fig. 6. The cross sections of relative humidity (shading; units: %), radar reflectivity (black contours starting at 40 280 

dBZ; units: dBZ), and wind vectors for (a) EXP_temp, (b) EXP_bg and (c) EXP_temp-bg along the line a1-a2. These 281 

are 1-hour forecasts initialized at 1501 UTC. 282 

Fig. 7 shows the 3-h accumulated precipitation forecast from 1501 UTC to 1504 UTC on 15 June 283 

2020. As depicted in Fig. 7a, the primary precipitation zone is concentrated along the western 284 

boundary of Jiangsu Province, with accumulated precipitation exceeding 50mm. The precipitation 285 

intensity is overestimated for three DA experiments. However, EXP_temp-bg effectively suppresses 286 

two false precipitation areas, leading to the improved precipitation forecast. 287 

 288 
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 289 

Fig. 7. 3-h accumulated precipitation initialized at 0100 UTC 15 June 2020. (a) the observation, (b) EXP_temp, (c) 290 

EXP_bg, and (d) EXP_temp-bg.   291 

To quantitatively assess the performance of different hydrometeor retrieval schemes, the equitable 292 

threat scores (ETS) are calculated for 0-3 h precipitation forecasts in EXP_temp, EXP_bg, and 293 

EXP_temp-bg (Fig. 8). The specific calculation formula of ETS is as follows: 294 

ETS =
A−R

A+B+C−R
,                          (13) 295 

R =
(A+C)×(A+B)

A+B+C+D
,                          (14) 296 

where A , B , C , and D  are the number of hits, the false alarms, the misses, and the correct 297 

negatives. The R means the probability to have a correct forecast by chance. 298 

It is evident that as the precipitation threshold increases, the ETS values for all three experiments 299 

decline progressively. Furthermore, EXP_temp and EXP_bg exhibit comparable ETS values under 300 

various precipitation thresholds. In contrast, EXP_temp-bg consistently outperforms both 301 

EXP_temp and EXP_bg for the entire 3-h forecast period, which implies that the integrated 302 
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hydrometeor retrieval scheme is conducive to the assimilation of radar reflectivity observations. 303 

 304 

Fig. 8. Equitable threat scores of hourly accumulated precipitation forecasts with five thresholds: (a) 0.1 mm, (b) 2.5 305 

mm, (c) 5 mm and (d) 10 mm from 2300 UTC 14 June to 0100 UTC 15 June. 306 

4.2 06 August 2018 case 307 

Fig. 9 presents the observed composite reflectivity at 1800UTC, 1900UTC, 2000UTC, and 308 

2100UTC on 06 August 2018. At 1800 UTC, there are a small number of strong radar echoes in the 309 

central part of Liaoning Province. At 1900UTC, these discrete strong echoes gradually converge in 310 

the center Liaoning, forming a well-organized structure. By 2000UTC, the convections continue to 311 

develop and form into “V” pattern echo. At 2100UTC, a distinct “T” shaped echo emerges in the 312 

observed area. 313 
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 314 

Fig. 9. The observed composite reflectivity fields (units: dBZ) at (a) 1800UTC, (b) 1900UTC, (c) 2000UTC and (d) 315 

2100UTC 06 August 2018.  316 

Fig. 10 shows the radar reflectivity analysis fields and the vertical cross sections along the line 317 

ab from EXP_temp, EXP_bg, and EXP_temp-bg at 2100 UTC. As shown in Fig. 10a, a distinct “T” 318 

shaped echo emerges in the observed area. Generally, the composite reflectivity analyses of the 319 

experiments EXP_temp, EXP_bg, and EXP_temp-bg show a general agreement. From the observed 320 

vertical cross section, it seems that there exist three strong echo bands between 123.78°E and 321 

124.36°E. In order to display the differences between three DA experiments and the observation, 322 

the convective system located near 123.75°E is marked as A, the strong convection at 123.97°E -323 

124.17°E is named as B, and the strong echo region at 124.17°E -124. 36°E is labelled as C. Notably, 324 

part A in the experiment EXP_temp departs from the observation, while EXP_bg and EXP_temp-325 

bg capture it more closely. It seems EXP_temp-bg combines the echo characteristics of both 326 

EXP_temp and EXP_bg in part A. For part B, though all three DA experiments exhibit a general 327 

agreement with the observation, their intensity is weaker than that in the observation. All three 328 

experiments capture the overall structure of C.  329 
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 330 

 331 

Fig. 10. The composite reflectivity at 2100 UTC for (a) observation, (b) EXP_temp, (c) EXP_bg, (d) EXP_temp-bg, 332 

accompanied by the vertical cross sections for (e) observation, (f) EXP_temp, (g) EXP_bg, (h) EXP_temp-bg along 333 

the line ab. The vertical cross section location at 2100UTC is shown by the line ab in the Fig. 10a. The labels in the 334 

Fig. 10e present the convection locations. 335 

To examine how different retrieval methods modify the hydrometeor distributions, the rainwater, 336 

snow and graupel mixing ratio cross sections are presented in Fig. 11. Rainwater occurs below the 337 

freezing level, while snow and graupel particles primarily exist above the freezing level. The 338 

distribution of low-level rainwater in EXP_temp-bg is similar to that in EXP_bg. The proportion of 339 

snow and graupel is a fixed coefficient in the EXP_temp, resulting in similar vertical distributions 340 

as shown in Fig. 11a. For schemes associated with the background, the weights assigned to different 341 

hydrometeors vary dynamically with the background field. Therefore, the fixed coefficient does not 342 

exist in the other two experiments (EXP_bg and EXP_temp-bg). Additionally, both EXP_bg and 343 

EXP_temp-bg have significantly higher snow and graupel content than EXP_temp. Fig. 11 shows 344 

three strong centers of graupel particles corresponding to three strong reflectivity bands in the Fig. 345 

10. By comparing the three groups of the DA experiments, it is apparent that EXP_bg has the highest 346 

strong-center value, while EXP_temp has the lowest. Moreover, the distribution of high-altitude 347 

hydrometeors in EXP_temp-bg combines the features of EXP_temp and EXP_bg. To conclude, the 348 

hydrometeor vertical distributions are closely related to the radar reflectivity structure as expected.  349 
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 350 

 351 

Fig. 11. The vertical cross sections of rainwater mixing ratio (green contours), snow mixing ratio (blue contours), 352 

graupel mixing ratio (shading) at 2100 UTC for the experiments (a) EXP_temp, (b) EXP_bg, (c) EXP_temp-bg. The 353 

position of the cross sections is located at the line ab of the Fig. 10a. 354 

Fig. 12 displays the vertical cross sections of the pseudo-equivalent potential temperature (θse), 355 

wind components, and reflectivity at 2100 UTC for EXP_temp, EXP_bg, and EXP_temp-bg. All 356 

three data assimilation (DA) experiments exhibit a high-low-high vertical distribution of θse. It 357 

suggests that the vertical structure of the atmosphere is unstable in this region, with dry conditions 358 

prevailing in the upper levels and moist conditions in the lower levels. This type of vertical structure 359 

is favorable for the development of severe convective weather events. In the middle layer, there is 360 

a zone with relatively high θse value for EXP_bg and EXP_temp-bg. Specifically, a warm-core 361 

structure is identified near 123.85°N, accompanied by strong upward motion. This results in the 362 

release of unstable energy indicate that a severe convective system is continuously developing. 363 

Additionally, compared with EXP_bg, EXP_temp-bg yields a more extensive and deeper updraft 364 

column. 365 

 366 
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 367 

Fig. 12. The vertical sections of pseudo-equivalent potential temperature (shaded; units: K), velocity vectors (units: 368 

m/s; the vertical velocity has been multiplied by 10) at 2100 UTC for (a) EXP_temp, (b) EXP_bg and (c) EXP_temp-369 

bg. The position of the cross sections is located at the line ab of the Fig. 10a. 370 

Fig. 13 shows 1-h, 3-h, and 5-h forecasts initialized at 2100 UTC 06 August 2018 for EXP_temp, 371 

EXP_bg, and EXP_temp-bg. As can be seen from the observation, the strong echo is located near 372 

42°N at the beginning and has a tendency to slowly develop to the east. For the sake of clarity, the 373 

strong echo zone is divided into two parts: part A and part B. At 2200 UTC 06 August, the forecasts 374 

of three DA experiments for part B are inconsistent with the observation in terms of the intensity. 375 

The part A predicted by EXP_bg and EXP_temp-bg shows a general agreement with the observation, 376 

while the radar reflectivity forecast of EXP_temp departs from the observation. At 0000 UTC 07 377 

August, EXP_bg and EXP_temp-bg yield an improved forecast for part A and B as compared with 378 

EXP_temp, in terms of the intensity and organization. However, there is a southeast bias in part A 379 

predicted by both EXP_bg and EXP_temp-bg. Compared to EXP_bg, EXP_temp-bg provides more 380 

accurate predictions for part B. As shown by the observation at 0200 UTC 07 August, the predicted 381 

A in EXP_temp-bg shows closer alignment with the observation than that in EXP_temp and 382 

EXP_bg. For part B, three sets of experiments all depart from the observation. Overall, EXP_temp-383 

bg demonstrates superior prediction skills in terms of the radar reflectivity. 384 
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 385 

Fig. 13. The composite reflectivity (shaded; units: dBZ) predicted by (d)-(f) EXP_temp (g)-(i) EXP_bg and (j)-(l) 386 

EXP_temp-bg, as compared to (a)-(c) the observed composite reflectivity. The corresponding times from left to right 387 

are 2200 UTC 06 August (left), 0000 UTC 07 August (middle) and at 0200 UTC 07 August (right), respectively. The 388 

labels A and B present the convection locations. 389 

Fig. 14 shows 6-h accumulated precipitation of the three DA experiments from 2100 UTC 06 390 
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August to 0300 UTC 07 August 2018. According to the observation, heavy rainfall is mainly 391 

concentrated in the northeastern part of Liaoning, with precipitation amount exceeding 100 mm. All 392 

three experiments underestimate the extent of the precipitation in this event, especially in the range 393 

of 25 mm to 50 mm. Moreover, there is a certain deviation between the predicted and observed 394 

locations. As shown in Fig. 14c and d, the patterns of heavy precipitation areas are similar in 395 

EXP_bg and EXP_temp-bg. EXP_bg and EXP_temp-bg are notably better than EXP_temp in 396 

predicting the rainfall for the threshold 50mm. EXP_temp-bg displays the best forecasting skill in 397 

terms of the heavy rainfall area. 398 

 399 

Fig. 14. 6-h accumulated precipitation initialized at 2100 UTC 06 August 2018. (a) the observation, (b) EXP_temp, 400 

(c) EXP_bg, and (d) EXP_temp-bg. 401 

Figure 15 shows ETS values of 1-h accumulated precipitation for EXP_temp, EXP_bg, and 402 

EXP_temp-bg. For the threshold of 2.5 mm/h, the precipitation forecasts of EXP_temp-bg generally 403 

exhibit superior quality. The EXP_temp experiment consistently shows the lowest ETS scores 404 

among the three experiments. At the threshold of 10 mm/h, the ETS score of EXP_temp-bg 405 

gradually increases in the later stages of the forecast. These results indicate that the blending method 406 
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is able to improve precipitation forecast skill. 407 

 408 

Fig. 15. ETS of three DA experiments for the thresholds of (a)1mm/h, (b)3mm/h and (c)5mm/h. 409 

5. The conclusion 410 

The study proposes an adaptive hydrometeor retrieval scheme within the WRF-3DVar system, 411 

which combines “temperature-based” and “background hydrometer-dependent” methods to 412 

enhance the analyses and forecasts for the strong convections. In the indirect assimilation of radar 413 

reflectivity, it is vital to correctly divide hydrometeor information in radar reflectivity. On the basis 414 

of two retrieval methods proposed by Gao and Stensrud (2012) and Chen et al. (2020, 2021), the 415 

blending scheme is developed to minimize the limitations brought by both methods so as to improve 416 

the assimilation and prediction skills. 417 

The above three hydrometeor retrieval schemes are evaluated for two strong convective processes 418 

occurred during June 2020 and August 2018. Three DA experiments (EXP_temp, EXP_bg, and 419 

EXP_temp-bg) are conducted by using the “temperature-based”, “background hydrometer-420 

dependent”, and blending methods, respectively. The analysis results reveal that the blending 421 

method is effective to improve the radar reflectivity structures for severe convections. Based on the 422 

other two DA experiments, EXP_temp-bg further improves hydrometeor structures and properly 423 

allocates the proportion of each hydrometeor, which is responsible for more reasonable hydrometeor 424 

distributions. Also, EXP_temp-bg provides more reasonable dynamic and thermal structures 425 

compared with EXP_temp and EXP_bg. EXP_temp-bg shows advantages in the precipitation 426 

prediction skills due to the reasonable spatial distribution and proportion of each hydrometeor. 427 

Compared to conventional Doppler weather radars, dual-polarization radar observations provide 428 
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more accurate identification of the three-dimensional microphysical structures within precipitation 429 

systems. Consequently, dual-polarization radar data (e.g. differential reflectivity, specific 430 

differential phase, correlation coefficient) will be considered for identifying the hydrometeor types 431 

more accurately, aiming to enhance the effectiveness of radar data assimilation. 432 
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