
Referee Comment 1 
 
The study explores the application of active learning to improve the accuracy of compound 
flood risk assessments while minimizing computational demands. The framework leverages 
the input-output uncertainty related to economic damages to minimize the number of 
required hydrodynamic and impact simulations. Compared to traditional equidistant 
sampling, the proposed active learning modeling framework shows lower RMSE with lower 
computational time. 

I would like to compliment the authors for a well-written manuscript. To the best of my 
knowledge, this is the first study to apply active learning techniques in the context of 
compound flooding, demonstrating an approach to advancing this area of research. I 
recommend this manuscript for publication after addressing the minor revisions outlined 
below. However, I am not qualified to evaluate the detailed technical aspects of active 
learning. 

The authors appreciate the positive and constructive comments provided by the first 
referee, which can only improve the quality of the manuscript. 

1. The authors used the “skew surge” parameter to represent the storm surge 
component of water levels. However, one of the key parameters for simulating 
flooding mentioned in the manuscript is the “duration” of the event. The skew surge 
is a measure of the storm surge integrated over a tidal cycle, and thus it has no 
duration associated with it. How are the authors defining the duration (or time series) 
of the skew surge? In addition, SFINCS needs a water level time series as boundary 
conditions to simulate coastal flooding, how do the authors generate a storm-tide 
hydrograph of these events using the skew surge (i.e. a single value over a tidal 
cycle)? Consider explaining more about these steps. 

The authors agree with the reviewer that the description of the skew surge was 
vague within the manuscript, which could lead into confusion with the quantification 
of the skew surge duration (S.Dur).  

As described in L 117-118, the skew surge is the difference between the highest still 
water level and high tide within a tidal period. This indeed results in a single value 
per tidal period. Because of the semi-diurnal tidal regime at the tidal gauge of 
Charleston Harbor, values for skew surge were measured every 12 hours. To define 
the skew surge time record, it was assumed the skew surge values were constant for 
the tidal period during which they were calculated. This causes a stepwise time 
record. Hence, the skew surge duration can increase in 12-hour increments from a 
starting value of 12 hours. 

The authors have made the following changes: 
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L 117 “To obtain the storm surge time series, Increased still water levels from storm 
surges induce a phase shift in the tidal signal, creating spurious peaks in the storm 
surge time record (Williams et al., 2016). Therefore, the skew surge is was 
considered. It is the difference between the highest still water level and the high tide 
within a tidal period (Williams et al., 2016; Couasnon et al., 2022; Diermanse et al., 
2023). A tidal period was taken as the time between two consecutive low tides. To 
recreate a time record with an hourly resolution, the skew surge values were 
assumed to be constant over their tidal period, which was approximately 12 hours for 
Charleston Harbor.” 

With this clarification, the authors believe the current text will clearly describe the 
generation of the water level time series boundary condition for SFINCS. L 143-144 
shows the S.Dur was quantified in 12-hour increments from 12 hours to a maximum 
of 6 days (see answer to comment 9) because the skew surge time series was 
measured every 12 hours.  

L 143 “The P.Dur and S.Dur were taken as the duration of the P.Mag and S.Mag to 
continuously remain above a critical value, within the ± three-day window used to 
quantify P.Mag. a minimal duration of six days. ” 

Furthermore, L 205-208 describes how S.Dur and S.Mag were combined to create a 
skew surge time series. The time series was then combined with a tidal time series 
and a Mean Sea Level (MSL) component to generate a water level time series for 
SFINCS.  

L 205 “The time series for the still water level was reconstructed by linearly 
superposing three components: the constant MSL equal to 0.2 meters (Sect. 2.1); a 
historical tidal time series from the HH tide empirical distribution associated with a 
given T.M ag; and the skew surge time series. A Gaussian distribution was used to 
reconstruct the time series for skew surge and precipitation. For skew surge, S.Mag 
and S.Dur were used.” 

Figure A1 can also be used to visualize the process of generating boundary 
conditions for SFINCS with the six flood driver parameters. 
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2. The methodology for obtaining the skew surge time series is somewhat unclear (see 
L 112). Specifically, the paper does not specify how tidal levels were determined. 
Were NOAA-predicted tides used, or was a harmonic analysis performed on water 
level data? Additionally, when removing sea-level rise, the phrase “subtracting 1-year 
moving average from the skew surge time series” is unclear. 

To increase clarity in the methodology for obtaining the skew surge time recordt, the 
authors have made the following changes: 

L 111 “Data for the still water level and the tides in Charleston Harbor were obtained 
at an hourly resolution from the National Oceanic and Atmospheric Administration 
(NOAA), at the tide gauge location shown in Fig. 2 (Station ID: 8665530). The still 
water level time record contained the tidal, sea level rise, and non-tidal residual 
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components. The tidal time record was obtained from NOAA’s stationary harmonic 
analysis. The non-tidal residual component was assumed to be equivalent to the 
storm surge. The storm surge time record was calculated by subtracting the tidal 
time record from the still water level time record. Data for precipitation was obtained 
at an hourly resolution from the ERA5 reanalysis dataset (Hersbach et al., 2020) at 
the grid location of 32.75o North, 79.75o West (see Fig. 2). The ERA5 dataset has a 
spatial resolution of 0.25o, roughly equivalent to 30 kilometers. The time series 
record for the storm surge, tides, and precipitation have had an overlapping time 
record of 24 years and 4 months.” 

L 118 “We further removed the sea level rise by subtracting a 1-year moving average 
from the skew surge time series (Arns et al., 2013). Furthermore, to remove the sea 
level rise component, the 1-year moving average of the skew surge time record was 
subtracted from the skew surge time record (Arns et al., 2013). The latter was also 
sea level rise component was also used to identify the current sea level as 0.2 
meters above Mean Sea Level (MSL).” 

 

3. The uncertainty bands presented in Figure 6 indicate that, in some cases, the return 
value of a 1000-year event has narrower uncertainty compared to a 10-year event. 
Does this result only reflect the uncertainty associated with the surrogate damage 
model for each return period? It is given that a direct comparison of confidence 
intervals may not be valid among different numbers of stochastic variables, as the 
stopping criteria are based on uncertainty. Could the authors provide an additional 
explanation regarding the interpretation of these uncertainty bands? What 
information do they provide?  

The authors agree that little explanation is provided on the interpretability of the 
uncertainty bands of Fig. 6. 

The uncertainty bands in Fig. 6 show the 5% and 95% confidence intervals in the 
return values, which are provided by the TGP-LLM damage and uncertainty 
response to the d-dimensional space (i.e., the space created by stochastic 
variables). The purpose of showing the uncertainty bands in Fig. 6 is to give a more 
interpretable and visual idea of the significant differences between the different risk 
curves in d-dimensions compared to Figures A5 and A6, which only investigate the 
mean response of the TGP-LLM. The uncertainty can be used to show that the risk 
curve in two dimensions significantly differs from all other risk curves when the return 
period (RP) is larger than 10 years (see L 390). L 402 then gives an explanation to 
why this is the case. 

Various factors can drive the uncertainty in the damage response. These factors can 
be systematic or random. 
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Systematic uncertainty (i.e., bias) is present but is not shown in the uncertainty 
bands of Fig. 6. The main factors driving this uncertainty are: (1) the digital elevation 
model, which can cause the damage response to be sensitive to its resolution and 
accuracy (e.g., Xu et al., 2021) (see L 441); (2) the generation of boundary 
conditions; which makes the damage response sensitive to how compound flood 
drivers are parameterized, and subsequently simulated (e.g., Bates et al., 2021); (3) 
the hydrodynamic model, which can neglect certain physical processes, causing 
inaccuracies in the flood hazard (see L 434); and (4) the exposure and vulnerability, 
which can cause sensitivity in the damage response for a constant flood hazard 
(Jongman et al., 2012). The systematic uncertainty will vary based on the magnitude 
of the synthetic event. Hawker et al. (2024) achieve these results when comparing 
two digital elevation models. 

The uncertainty bands in Fig. 6 only show factors driving the random uncertainty. 
The main factors driving this uncertainty are directly related to the ability of the 
TGP-LLM to fit the damage response to the d-dimensional space. These factors are 
thus affected by: (1) the size of the d-dimensional space, and (2) the complexity of 
the damage response surface to the d-dimensional space (see L 372-376). The 
random uncertainty can be reduced by running additional simulations. However, 
since the TGP-LLM is regularized, it cannot fit the damage response perfectly, 
resulting in a portion of this uncertainty always being present (see L 342). 

One last factor that can be used to show uncertainty is the statistical uncertainty 
(e.g., Eilander et al., 2023). Here, it is not quantifiable as only one stochastic event 
set is included per d-dimensions. 

The uncertainty-based stopping criterion ensures the mean Active Learning Mackay 
(ALM) of non-simulated events is below a value for all dimensions (L 266). 
Nonetheless, differences in the width of the uncertainty bands can still occur. The 
authors attribute this to three reasons. 

Firstly, a smaller uncertainty can be associated with a synthetic event once 
simulated. Moreover, the uncertainty bands are associated with the return values, 
not the events. Thus, on the one hand, events with large return values will show 
smaller uncertainty. This is because (1) the events have been simulated (either in the 
initialization (L 260-262) or because there is a high ALM associated with the event), 
and (2) the uncertainty bands and the damages associated with a RP are likely 
associated with the same synthetic event as there are large differences in damages 
between consecutive RPs. On the other hand, events with RPs between 0.5 and 100 
years will show larger uncertainties. This is because (1) a large proportion of these 
events have not been simulated; (2) the logarithmic scale on this x-axis makes it 
difficult to visualize the uncertainty associated with specific RPs; and (3) the 
uncertainty associated with a simulated event will be placed at lower RPs, as the 
differences in damages between RPs will be small. 
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Secondly, the TGP-LLM can partition the d-dimensional space, which allows the 
TGP-LLM to model heteroskedasticity (see L 242-245). However, this does not affect 
Fig. 6, as the TGP-LLM did not have any partitions for all the d-dimensional spaces 
when the stopping criterion was met. 

Thirdly, the predictability of the damage by the TGP-LLM changes depending on the 
magnitude of the synthetic events and the number of dimensions considered. The 
less predictable a region of the d-dimensional space becomes, the higher the 
uncertainty. 

The authors made the following changes to the manuscript: 

L 386 “Additionally, since the TGP-LLM is a generative model (i.e., it captures and 
models the distribution of the output), the uncertainty 5% and 95% confidence 
interval associated with the surrogate damage model at the TGP-LLM damage 
response to the d-dimensional space is used to show the 5% and 95% confidence 
interval associated with each RP. can be computed by modeling the risk associated 
with the 5% and 95% confidence interval in damages for each event. Figure 6 shows 
that these uncertainty bands are independent of the number of dimensions.” 

L 390 “When considering tThe uncertainty bands of the TGP-LLM can be used to 
show, statistically significant differences between the model risk curve with in two 
dimensions and the risk curves in higher dimensions when the consistently 
underestimates the economic damages for RP > 10 years when compared to models 
in higher dimensions.” 

L 399 “The uncertainty bands in Fig. 6 show the uncertainty driven by the confidence 
of the TGP-LLM in modeling the damage response to a d-dimensional space. are 
independent of the number of dimensions of the model, as the stopping criterion is 
based on an uncertainty-based threshold. The uncertainty-based stopping criterion 
ensures the mean ALM for non-simulated events is at least a certain value for all 
dimensions. However, differences in the width of the confidence interval at different 
RPs can be expected because of the following three reasons. Firstly, the uncertainty 
associated with simulated events will be smaller. This is most noticeable at large 
RPs, where the density of events is lower in the d-dimensional space, making them 
more likely to be simulated. Moreover, the uncertainty and damage of a RP are likely 
to represent the same synthetic event, as the difference in damages between 
consecutive RPs is large. At smaller RPs, this is less noticeable as: (1) a large 
proportion of these events have not been simulated; (2) the logarithmic scale on this 
x-axis makes it difficult to visualize the uncertainty associated with specific RPs; and 
(3) the uncertainty and damage of a RP may not represent the same synthetic event 
because of small differences in damages between consecutive RPs. Secondly, the 
TGP-LLM can partition the d-dimensional space, which allows the TGP-LLM to 
model heteroskedasticity. However, this did not affect the uncertainty bands in Fig. 6, 
as the TGP-LLM did not have any partitions for all the d-dimensional spaces when 
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the stopping criterion was met. Thirdly, the predictability of the damage by the 
TGP-LLM changes depending on the magnitude of the synthetic events and the 
number of dimensions considered.  can be reduced by using a stricter stopping 
criterion, providing a larger confidence in the risk curve.  

A stricter stopping criterion will lead to a larger confidence in the risk curve, which 
could show a larger number of significant differences between the risk curves. 
However, this will come at the expense of a larger computational cost.” 

L 421 “Active learning allows for the number of numerical simulations to be 
minimized given an input-to-output relationship. The number of simulations will 
depend on how complex this relationship is, but as shown in Sect. 3.2, the TGP-LLM 
is still able to reach the stopping criterion for different outputs that have a different 
response to the flood drivers. A stricter stopping criterion can be used to achieve a 
higher confidence in the results. However, this will increase the computational cost. 
Furthermore, the stopping criterion may never be reached as the TGP-LLM is 
regularized.” 

 

4. L 207: Authors explain that they used a Gaussian distribution to reconstruct the 
water levels time series. It would be better to cite a previous study or provide a 
proper justification for this assumption. Same for the rainfall, how well does their 
simplification of the hydrograph and hyetographs represent real events? Additionally, 
how well we can represent real events using a constant rainfall (point estimate) over 
the entire domain or constant hydrographs along the coast? I think this is an 
important point that needs to be addressed at least as a limitation of the analysis 
presented. 

The authors agree that Gaussian distributions are not the best approach to modeling 
the boundary conditions of skew surge and precipitation events, as they are 
symmetrical, rigid, and monotonically increasing/decreasing before/after the 
maximum driver magnitude. 

An example of a state-of-the-art approach for the time series of the total water level 
boundary condition would be to use trapezoidal distributions (Poelhekke et al. 2016). 
These should be modified according to Anderson et al., 2019 to improve the 
representation of the boundary condition (Marra et al., 2023). These boundary 
conditions are flexible and unsymmetrical, providing a higher accuracy when 
comparing the synthetic events with the historical events. 

The authors used Gaussian distributions as the parameters are easily interpretable, 
and the number of parameters required to define one is minimized. Moreover, they 
can be easily applied to all flood drivers. This enhanced the interpretability of the 
results. The authors also believe that the generation of stochastic event sets is as 
important as the generation of the boundary conditions. The approach currently used 
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by Anderson et al. (2019) uses Gaussian copulas, which are less flexible than the 
vine copulas used by the authors. Therefore, while the state-of-the-art is more 
accurate at simulating historical events, the tradeoff for the interpretability and the 
dependence modeling was too large for the authors. 

Spatially homogeneous rainfall conditions underestimate the hazard associated with 
the pluvial driver if the precipitation magnitude exceeds a threshold (Wang et al. 
2022). To counteract this, a point estimate located at 32.75° North, 79.75° West (L 
114) was used, which was expected to have historical observations that show the 
most extreme observations according to NOAA (National Oceanic and Atmospheric 
Administration (NOAA), n.d.). 

Spatially heterogeneous rainfall and total water level boundary conditions are 
expected to increase the accuracy of the generated events if they can be correctly 
quantified (e.g., Apel et al., 2016; Bakker et al., 2022). However, the gain in accuracy 
is expected to be dependent on (1) the size of the hydrodynamic model, and (2) the 
accuracy and resolution of the data source. Thus, for Charleston County, the gain in 
accuracy is expected to be marginal. Moreover, spatially heterogeneous boundary 
conditions would require further parameterization of the boundary conditions, which 
would increase the problem's dimensionality and by extension, increase the 
computational time.  

Nonetheless, the choice of boundary condition will not affect the use of the 
conceptual framework as long as the damage response to the d-dimensional space 
is consistent for all synthetic events in the stochastic event set. 

Therefore, the authors have added the following text after L 430: 

“The choice of boundary condition will not affect the conclusions drawn from the 
conceptual framework as long as the damage response to the d-dimensional space 
is consistent for all synthetic events in the stochastic event set. Nonetheless, the 
current representation of the boundary conditions for the flood drivers is less 
accurate compared to the state-of-the-art (e.g., Apel et al., 2016; Bakker et al., 2022; 
Anderson et al., 2019; Marra et al., 2023). This is because (1) Gaussian distributions 
force the time series to be symmetrical, rigid, and monotonically 
increasing/decreasing before/after the peak magnitude of the event, and (2) spatially 
homogeneous boundary conditions do not represent historical events if the model 
domain is large and are based on the data from a point source. These boundary 
conditions were used because they minimize the number of parameters, ensure the 
results are interpretable, and can be applied to all flood drivers. Moreover, they 
facilitate the use of vine copulas, which offer more flexibility when inferring the 
natural variability.” 
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5. The authors use the SFINCS model, which was set up and validated in a previous 
study. While this provides a solid foundation, I believe it would be beneficial to 
include some additional key details about the model setup in this paper. For 
example, providing information on the model resolution, whether constant or spatially 
varying roughness was used, and how infiltration was handled (if included). 

The authors agree it is important to clarify the data and modeling choices used in the 
SFINCS model. 

The authors propose the following changes: 

L 203 “For more details on SFINCS, see Leijnse et al. (2021) and van Ormondt et al. 
(2024). For Charleston County, the SFINCS model had a 200x200-meter grid 
resolution. The native 1x1-meter resolution information for the topo bathymetry and 
land roughness were included with a subgrid lookup table. The topo bathymetry data 
was based on the Coastal National Elevation Database (CoNED; Danielson et al., 
2016; Cushing et al., 2022). For the spatially varying land roughness, the National 
Land Cover Database (NCLD; Homer et al., 2020) was used and reclassified to 
manning roughness values following Nederhoff et al. (2024). Drainage was handled 
with: (1) pumps located in the Charleston Central sub-county (Diermanse et al., 
2023), and (2) the Curve Number infiltration scheme, which was based on the United 
States General Soil Map (STATSGO2; U.S. Department of Agriculture, 2020) 
following Nederhoff et al. (2024). 

. For our application, only two boundary conditions were required: (1) the still water 
level at the coast, and (2) the precipitation.” 

 

6. L 134:  The description of applying a threshold to skew surge magnitude when it 
“co-occurred with a higher high tide” is confusing. Since the definition of skew surge 
inherently depends on the high tide (or higher high tide) in a tidal cycle, further 
clarification would benefit the reader. 

In addition to the additional text provided after L 117 to answer comment 1, the 
authors propose the following changes: 

L 134 “Charleston Harbor’s tidal record showed daily inequalities larger than 
semi-diurnal differences in S.Mags. Therefore, applying Peak Over Threshold (POT) 
to all S.Mags could have identified high-water events that were not extreme as they 
could co-occur with lower high T.Mags. Therefore, to only identify extreme 
high-water events, Peak Over Threshold (POT) was only applied to the S.Mag when 
it co-occurred with a Higher High (HH) T.Mag. This allowed for the identification of 
extreme high-water events. 
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7. L 3-5: The phrase “large flood hazard when compared to the sum of the individual 
drivers” could be explained better. 

The authors agree that this particular phrase can confuse the readers. 

The spatially varying maximum water depth (or intensity) and frequency define the 
flood hazard. During a compound flood, the non-linear interactions between flood 
drivers lead to the generation of what is known as a ‘transition zone’ (Gori et al. 
2020). Because of this zone, the compound flood hazard is larger than the flood 
hazard created by taking the maximum of each flood hazard generated by its 
respective flood drivers occurring in isolation from one another. 

The authors propose the following changes: 

L 2 “Compound floods result from their co-occurrence and can generate a larger 
flood hazard when compared to the synthetic flood hazard generated by the 
respective flood drivers occurring in isolation from one another. sum of the individual 
drivers.” 

 

8. L 138: Is there a specific rationale for selecting a wider (14-day) de-clustering 
window? Justifying this choice would strengthen the methodology section. 

The authors admit the fourteen-day declustering time window is conservative 
compared to other studies using Peak Over Threshold (POT) along the United 
States East Coast, which report a declustering time window of approximately four 
days (e.g., Martin et al., 2024). For Charleston County, using a declustering time 
window of four days led to the identification of multiple extreme events embedded in 
events longer than four days. While the S.Mag was not extreme for more than four 
days, it remained at large magnitudes below the threshold of 0.32 meters between 
two identified extreme events. Therefore, a declustering time window of four days 
identified dependent events, which violated the independent and identically 
distributed assumption of extreme value theory.  

Fourteen days was chosen as it was the largest S.Dur identified before placing an 
upper bound on all driver durations (see answer to comment 9). This ensures all 
skew surge events were independent and identically distributed. 

The authors recommend the following changes to the manuscript: 

L 137 “A threshold of 0.32 meters relative to MSL and a declustering time window of 
fourteen days between each extreme S.Mag were chosen. The latter was based on 
the longest S.Dur before restricting the duration of events (see Sect. 2.2.2). This 
ensured consecutive extreme events were not embedded in events longer than the 
declustering time window.” 
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9. L 144: The manuscript suggests a minimum duration of 6 days for rainfall and skew 
surge events. Does it mean that there were no hours with rainfall less than 0.3 mm 
within 6 days during an event? So all the extreme events were simulated for at least 
6 days? Could the authors confirm and clarify? 

The authors would like to thank the referee for catching this typo in the manuscript, it 
should be the “maximum” duration and not “minimum”. The authors use the ± 
three-day window (used to quantify P.Mag at L 142) to place an upper bound on the 
skew surge and precipitation durations. This is to be consistent with how synthetic 
events are generated and by extension, limit the maximum possible runtime of 
SFINCS simulations. This led the skew surge and precipitation events to have a 
maximal (instead of minimal) duration of six days. For Charleston County, this only 
affects 9 out of 71 events for skew surge and does not affect any of the 71 
precipitation events. 

Therefore, the authors suggest the following changes to the text: 

L 141 “All six flood driver parameters had to be quantified for each extreme 
high-water event. POT was applied on S.Mag in Sect. 2.2.1. For P.Mag, the largest 
value that co-occurred within ± three days of all identified S.Mag extremes were 
used. For T.Mag, the co-occurring HH tide with all identified S.Mag extremes were 
used. The P.Dur and S.Dur were taken as the duration of the P.Mag and S.Mag to 
continuously remain above a critical value, within the ± three-day window used to 
quantify P.Mag. a minimal duration of six days. For precipitation and skew surge, the 
values used to define the duration were 0.3 millimeters per hour and 0.2 meters 
respectively. The P.Lag was defined as the difference in hours between the S.Mag 
and P.Mag for each extreme high-water event.” 

 

10. L 352: Please specify whether the given time durations refer to the computational 
time required “per simulation” or the total time for simulating all events. 

The authors agree that the term “computational time” is used loosely after L 346 to 
describe the computational time of the overall process or that of different 
components. 

Therefore, throughout the text, after L 346, the term “overall computational time” has 
been used to clarify the manuscript. This is now more in line with the abstract. For 
example: 

L 77 “Therefore, this study aims to explore active learning to improve the 
quantification of compound flood risk assessments while limiting the increase in 
overall computational time.” 

L 346 “Figure 4 shows the computational time associated with both approaches 
when they sample from the testing event set. The overall computational time can be 
split into three components: (1) Delft-FIAT, (2) SFINCS, and (3) TGP-LLM. For both 
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approaches, Delft-FIAT is the component that requires the largest computational 
time. This is caused by the Delft-FIAT model being poorly optimized for Charleston 
County as it preprocesses the exposure data before each simulation. The added 
computational time for the active learning approach due to the TGP-LLM is relatively 
small as the number of simulations is small (2.3 minutes). Therefore, the number of 
simulations is the main factor influencing the overall computational time. For our 
experiment, the overall computational time was reduced by a factor of four (95.4 vs. 
23.6 minutes).” 

L 358 “For each, the overall computational time is subdivided into three components: 
(1) Delft-FIAT, (2) SFINCS, and (3) TGP-LLM. A horizontal red line is provided as a 
reference, showing the overall computational time of the equidistant sampling 
approach with two dimensions. Henceforth, this will be referred to as either the 
equidistant sampling computational time, or the reference computational time.” 

 

11. In Figure 2, ensure that the colors representing coastal and inland counties are 
correct. 

The authors appreciate the referee for finding this typo. Fig. 2 has now been 
updated. 

 

 

12 



Referee Comment 2 

The paper is well structured, clear and complete in all its parts. Although I am not an expert 
in active learning, I believe that the different assumptions and the application of the models 
are scientifically sound. 

I believe the methodology is original and I think the paper can be published with some 
minimal technical corrections. 

The authors appreciate the constructive and positive feedback received from the second 
referee, which will improve the quality of the manuscript. 

In the course of the text there is more reference to the output of the procedure. I think I 
understood that it refers to different geographical areas. If so, I ask the authors to specify 
explicitly in the text 

The authors attempted to show that the methodology can be applied to any general output 
(geographic location, risk metric, etc.) throughout the text. However, the authors understand 
this can cause a lack of clarity when interpreting the results. 

To improve on this, the authors have improved the explanation of the output in its first two 
mentions: 

L 89 “4. Use a surrogate model to select simulations (synthetic events) with active learning 
and model the input-to-output (i.e., flood driver parameters to damages associated with a 
geographic location) relationship associated with a stochastic event set (Sect. 2.4).” 

L 219 “Here, the damages associated with different geographic locations (or referred to as 
outputs hereinafter) were also investigated.” 

The authors have improved the reminders at different sections in the text and believe these 
are sufficient to interpret the results: 

L 338 “On the other hand, the active learning approach explores the uncertainty related to 
the output (i.e., damages related to a geographic location) of simulations already 
performed.” 

L 355 “These simplifications can take various forms, but we only investigate two of these 
are investigated: (1) the inclusion of additional stochastic variables; and (2) the increaseing 
in the number of outputs (i.e., damages related to different geographic locations). 
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Caption of Fig. 5 “Computational time required for different approaches as a function of 
outputs (i.e., damages related to different geographic locations) and number of stochastic 
variables (dimensions).” 

The authors have also changed the following line to reduce any confusion: 

L 449 “This simplification is not required for the active learning approach as the social 
consequences can be included as an different type of additional output in the round-robin 
schedule of the TGP-LLM.” 

Please authors check the colors of the legend in figure 2 

The authors appreciate the referee for finding this typo. The legend in Fig. 2 has been 
updated. 
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