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Abstract.  

Between 12 and 19 July 2021, a quasi-stationary atmospheric low-pressure system named "Bernd" caused intense precipitation 10 

on already saturated soil, resulting in severe flooding in Germany, Belgium, and the Netherlands. The Ahr River Valley in 

Rhineland-Palatinate was particularly affected, with approximately 42,000 residents impacted, around 8,800 buildings 

damaged, and 134 fatalities recorded. The flood in the Ahr River Valley significantly exceeded the scenarios outlined in official 

hazard maps, leaving decision-makers and the public unprepared. Substantial issues occurred with the content, issuance, and 

dissemination of warnings, thereby reducing the effectiveness of emergency response. We evaluate how human losses in the 15 

Ahr Valley might have differed under alternative flood early warning and evacuation (FEWE) scenarios, using the agent-based 

model (ABM) LifeSim. To run the model for the 2021 Ahr flood, we utilised a reconstructed modelled time series of water 

depth and flow velocities and estimated the FEWE timeline based on reports and a post-event survey of the affected population. 

For the reconstructed FEWE timeline, we identified the first flood warning approximately 13 hours before the peak of the 

flood upstream of the simulated domain. Only 17.5 % of those affected received a warning with evacuation instructions, with 20 

most becoming aware of evacuation necessities only after flooding had already reached them. Consequently, only about 34 % 

of the population evacuated their homes or were rescued. Regarding the life loss estimation, tThe median of life loss estimation 

of the reconstructed flood overestimates the actual life loss by 28.8 %. Simulations of alternative FEWE scenarios indicate a 

potential life loss reduction of up to 80 % with timely warning dissemination and increased population evacuation. However, 

scenarios in which the FEWE prompted the population to evacuate at the moment of the imminent hazard at their buildings 25 

result in higher human losses. In these cases, vertical evacuation within buildings is more effective. Using a life loss agent-

based modelABM, such as LifeSim, can support decisions on FEWEs and improve emergency response planning. 
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1 Introduction 

Floods represent the most prevalent natural disaster globally (CRED and UNISDR, 2018), and under a climate change scenario, 

their frequency, particularly of rare events, has increased (Wasko et al., 2021). In Germany, four flood events have been notable 30 

in terms of loss of life during the last 40 years. In August 2002, a record-breaking daily rainfall of 314 mm in 24 hours caused 

flash floods in the Bavarian and Saxon middle hills of Germany. This extreme weather event resulted in the activation of dam 

spillways, as well as the overtopping and breaching of embankments in many areas, leading to the deaths of 21 people (Kienzler 

et al., 2015). Between 31 May and 3 June 2013, precipitation of 346 mm fell on already saturated soil, affecting 12 of 

Germany's 16 federal states. Approximately 1,400 kilometres of river networks experienced 100-year flood discharges and 35 

some dike breaches, resulting in 14 fatalities (Thieken et al., 2022). From 26 May to 9 June 2016, a series of flash floods, 

including peaks of 100 mm in 2 hours in Braunsbach, a small village in Baden-Württemberg, caused significant damage to 

small and steep catchments, resulting in 11 fatalities (Thieken et al., 2022). In July 2021, the most devastating flood event 

occurred in terms of fatalities. In total, fewer people died in the 40 years between 1980 and 2020, with 159 victims 

(Papagiannaki et al., 2022), than in this single 2021 flood event, with 190 victims in Germany (Thieken et al., 2023a, b).  40 

The extraordinary severe event in July 2021 was caused by a quasi-stationary atmospheric low-pressure system named 

"Bernd". This system brought intense precipitation on already saturated soil, resulting in severe flooding in the western German 

states, mainly along the Ahr River, located in the Rhineland-Palatinate state. Hydrologically, the 2021 flood was extreme in 

terms of the rapid-onset of flooding, high flow velocities, and high water depths (Kron et al., 2022). Along the Ahr River, 

about 42,000 inhabitants were affected by the flood, about 8,800 buildings were damaged (DKKV, 2022), and 134 fatalities 45 

had occurred (Szönyi et al., 2022). 

The flood extent significantly exceeded what was outlined in official hazard maps, leaving decision-makers and the population 

unprepared. This lack of preparedness resulted in numerous issues with the warning content and its issuance and dissemination, 

compromising the efficiency of residents taking protective measures (Szönyi et al., 2022). A survey conducted after the event 

revealed that 29 % of Ahr Valley residents reported not receiving any warning, and among those who were warned, over 40 50 

% did not know what to do to protect themselves and their houses. Consequently, 84 % of residents were surprised by the 

magnitude of the flood (Thieken et al., 2023b). 

One of the most critical factors contributing to fatalities during floods is the effectiveness of flood early warning and evacuation 

(FEWE) systems (Petrucci, 2022; Yari et al., 2020). An optimal warning system should be robust, capable of early hazard 

identification, and equipped with efficient communication channels to promptly inform the population at risk (Kreibich et al., 55 

2021; Kuller et al., 2021). Additionally, an investment in enhancing the population's knowledge of appropriate actions and 

behaviours in response to flood risks is essential (Aerts et al., 2018; Berghäuser et al., 2023). This comprehensive approach 

could significantly mitigate the impact of floods and reduce the likelihood of fatalities.  

One method to assess the effectiveness of these FEWE systems is through life loss estimation models (Chen et al., 2023; Ge 

et al., 2022). In estimating fatalities from flood events, some methodologies incorporate behavioural assessments and 60 
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macroeconomic indicators to evaluate the impacts (Jongejan et al., 2005). However, assigning a monetary value to the loss of 

life is complex due to the intangible nature of this type of damage (Merz et al., 2010). Fatalities can also be indirectly related 

to flooding, occurring outside the inundated areas through incidents such as traffic accidents during evacuations or deaths due 

to post-flood stress. Despite these indirect impacts, most fatalities result from direct causes (Jonkman and Vrijling, 2008). 

Since predicting such behaviour is challenging, loss of life is generally classified solely as a direct type of damage. Therefore, 65 

the risk assessment addresses this metric directly and quantitatively without assigning a monetary value (Jonkman et al., 2003). 

Life loss estimation models can be categorised as either empirical or dynamic. The empirical approach integrates some 

characteristics of the flood event, such as depth, velocity, water rise rate, warning time, and other factors related to the exposure 

and vulnerability of the population, with a fatality rate. Various empirical models exist for different types of events, including 

coastal and riverine floods (Boyd et al., 2005; Brazdova and Riha, 2014; Jonkman et al., 2008, 2009; Penning-Rowsell et al., 70 

2005; Yazdani et al., 2023; Zhai et al., 2006), and dam breaks (Brown and Graham, 1988; DeKay and McClelland, 1993; Ge 

et al., 2021; Graham, 1999; Jiao et al., 2022; Mahmoud et al., 2020; Peng and Zhang, 2012; USBR, 2015). Dynamic models, 

often called agent-based models (ABMs), use a time-varying quantification of event characteristics correlated with flood 

exposure criteria and thresholds. These models provide a more detailed simulation of events by modelling individual behaviour 

and the causes of fatalities (Anshuka et al., 2022; Zhuo and Han, 2020). This detailed simulation is beneficial for evaluating 75 

FEWE systems, offering advantages over empirical models (Di Mauro et al., 2012; Shirvani and Kesserwani, 2021). 

Numerous agent-based models related to flood risk management have been developed (Anshuka et al., 2022). However, most 

of these models are designed for specific sites and types of floods and have been applied only in limited research contexts. As 

a result, only two models have been widely used in flood risk assessment (Lumbroso et al., 2023). The Life Safety Model 

(LSM) (Johnstone et al., 2005) was utilised to assess the impacts of FEWE in the 1953 Canvey Island flood (Lumbroso and 80 

Davison, 2018) and in the 2019 Brumadinho tailing dam break event (Lumbroso et al., 2021). The LifeSim model (Aboelata 

and Bowles, 2005) was employed to create a generalised life loss estimation model for dam breaks in Switzerland (Kalinina 

et al., 2021), for traffic management in Morocco (El Bilali et al., 2021), in a proposal for a probabilistic life loss estimation for 

densely populated areas in Morocco (El Bilali et al., 2022). Additionally, it was used to assess warning and evacuation 

procedures and their impacts in Brazil for the 2007 São Francisco tailings dam failure (Silva and Eleutério, 2023a) and for a 85 

hypothetical case in a high-density area (Silva and Eleutério, 2023b), as well as in order to evaluate the effects of numerous 

non-structural dam break floods in China (Wang et al., 2024). 

The objective of this study is to assess the exceptionally high number of fatalities in the Ahr Valley during the flash flood of 

2021. With the help of an ABM, in particular, the effects of FEWE are analysed. Scenarios are used to develop 

recommendations for improved emergency communication and response. Given the extensive variety of flood types (Needham 90 

et al., 2016) and its widespread application in diverse contexts (e.g. flash floods, dike and dam breaches), the agent-based 

model LifeSim was chosen for this study. 

Section 2 outlines the data and methods, providing an overview of the agent-based model LifeSim and detailing its principal 

inputs and operational considerations. The reconstruction of the human consequences of the 2021 Ahr Valley flood is 



4 

 

examined, including flood modelling, exposure analysis, and flood early warning and evacuation procedures. The section 95 

concludes with an exploration of alternative warning and evacuation scenarios, as well as general parametrisation and 

considerations regarding using LifeSim. Section 3 presents and analyses the results of the LifeSim model for human 

consequence reconstruction and evaluates the impacts of the alternative FEWE scenarios. Section 4 highlights the main 

limitations of the simulations. Finally, Section 5 summarises the key findings of this study and suggests areas for further 

research. 100 

2 Data and Methods 

The concept for assessing the impact of flood early warning and evacuation (FEWE) on loss of life consists of two main parts 

(Fig. 1). First, (1) the reconstruction of the 2021 Ahr Valley flood is undertaken to compare the life loss estimation by the 

agent-based model LifeSim with the actual values. This involves updating an existing hydraulic model, creating a structure 

inventory with information on buildings and population, and reconstructing the warning and evacuation procedures. Second, 105 

(2) the impact of alternative scenarios of FEWE is assessed. Once the life loss model is adjusted to the actual case, two 

approaches are used to assess the effectiveness of FEWE: one focuses on the efficiency of communication and response using 

theoretical models of warning dissemination and the mobilisation time taken for the population to begin evacuation, and the 

other on the timing for issuing the first flood warning considering forecasting capabilities. 

 110 
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Figure 1: Overview of concept showing methodological components and data relationships for assessing the impacts of early warning 

and evacuation procedures on life loss estimation in relation to the 2021 Ahr Valley flood. 

2.1 LifeSim agent-based model to estimate direct flood fatalities 115 

LifeSim was initially proposed by Aboelata and Bowles (2005) and has since been integrated into a graphical interface by the 

United States Army Corps of Engineers. This model simulates various outcomes, with focus on direct life loss resulting from 

exposure to flood hazards, where the magnitude of life loss is influenced by hydrodynamic parameters and the success of the 

population in locating adequate shelter during flood events. The model is structured with a modular system in which the agent-

based approach allows the description and simulation of individual and group behaviours. These modules integrate 120 

hydrodynamic spatial and time dependent data and population characteristics data based on geographic information systems 

layers (USACE, 2020).  

The LifeSim model comprises four main modules. The first is the flood routine module, which encompasses a network 

representation of flood characteristics across the area over time. The shelter loss module, which assesses the exposure of the 

population that does not evacuate in structures during events, considers submersion and structural damage criteria. The warning 125 

and evacuation module that models the distribution and dynamics of the at-risk population following the warning issuance. 

Finally, the loss of life module which employs probability distributions of fatality rates derived from historical flood event 

data to estimate potential fatalities (USACE, 2020). A short description of each module related to life loss estimation is shown 

in the following paragraphs based on the LifeSim version 2.0 (USACE, 2021). 
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The flood routine module contains hydraulic data about the flood event, encompassing temporal developments of water depth 130 

and flow velocities.  

The submersion criteria of the shelter loss module are based on thresholds defined by a triangular distribution, determined by 

the water depth on the highest floor of a building. For the general population, these thresholds correspond to the ceiling level, 

while for individuals with mobility issues, they also pertain to the floor level. When access to the building''s roof is feasible, 

the threshold is related to the roof floor. If these thresholds are exceeded, the population is designated into the high-hazard 135 

zone, where a specific fatality rate is applied according to the life loss module. Mobility in the LifeSim routine is quantified 

using percentages from the 2017 United States census, indicating the proportion of individuals under 65 years with mobility 

difficulty and those over 65 years with similar issues. The stability criteria depends on the building''s construction type, with 

most criteria based on the consideration of Clausen and Clark (1990). If this stability threshold is reached, the building is 

considered to be collapsing, and all individuals inside are allocated to high-hazard zones, as in the submersion consideration. 140 

The process of warning and evacuation involves several milestones separated by time delays, as illustrated in Fig. 2. The 

timeline begins with the identification of an imminent hazard. The first delay occurs between the identification of the hazard 

and the decision to issue an evacuation order. Following the issuance of the warning, a second delay represents the time 

required to disseminate this warning. Once the population receives the warning, a third delay occurs before initiating protective 

action. These three delays have been identified and substantiated by research, supported by various studies and equations 145 

(Sorensen and Mileti, 2015a, b, c). LifeSim incorporates standard curves with an explicit range of uncertainty for these three 

delays. The uncertainty is inherently present in the delay curves for warning issuance, as probability distribution functions 

represent them. Cumulative probability functions represent the warning diffusion and mobilisation curves, accounting for the 

inherent uncertainty. After the evacuation is initiated, the LifeSim routine utilises several criteria and considerations to model 

the evacuation process and determine whether an agent successfully reaches a safe location. 150 

 

 

Figure 2: The milestones and respective times between them that represent the warning and evacuation timeline in the LifeSim 

model. 

The simulation of the evacuation dynamics employs the Greenshields traffic flow model (Mahmassani et al., 2009) to represent 155 

the effects of traffic density and road capacity on vehicle speed. This model has been adapted to introduce a minimum speed 

threshold determined by stop-and-go conditions. The Dijkstra (1959) optimisation algorithm defines the fastest path between 

the building and the pre-defined meeting point for route determination during evacuation. The quantity of vehicles is 

determined by their occupancy rate, as the user specifies. LifeSim model incorporates certain behavioural decisions of the 
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population, such as the non-evacuation depth, which represents the decision to leave or remain in a structure based on a specific 160 

water depth, and the willingness to enter flooded roads, indicating a driver''s choice to traverse them. Pedestrian evacuation is 

also considered, based on a pre-defined fraction of the population evacuating by vehicle and on foot. A constant velocity is 

used for pedestrian evacuation and does not account for traffic density. If vehicles or individuals are overtaken by flooding 

during evacuation, stability criteria based on Smith et al. (2017) and Shand et al. (2011) are applied, respectively. If these 

criteria are exceeded, the affected population is allocated to the high-hazard flood zone; if not, they are allocated to the low-165 

hazard zone. 

In the loss of life module, the high-hazard zone refers to situations where the likelihood of dying largely depends on chance, 

such as being swept downstream, trapped in a collapsing building, or submerged underwater. In contrast, the low-hazard zone 

denotes areas where risks exist but are minimal. Each zone is characterised by a probabilistic distribution based on historical 

cases. In each iteration of the probabilistic routine, a fatality rate is sampled for each specific agent from the hazard functions. 170 

Then, a random uniform number between 0 and 1 is assigned to each individual. If this uniform number exceeds the sampled 

fatality rate, the individual survives.  

The computation of risk is performed using Monte Carlo simulations, allowing various model parameters to be introduced 

with uncertainty, examining random and epistemic uncertainties. Consequently, the model''s output concerning the 

quantification of loss of life is probabilistic (USACE, 2020). 175 

Despite the challenges in acquiring data to understand event dynamics on an agent-based scale (Needham et al., 2016), 

validation efforts for Lifesim have successfully modelled several significant events. These include Hurricane Katrina in New 

Orleans, United States; the Kinugawa levee breach in Japan; the Malpasset Dam failure in France; the Kelly Barnes Dam 

failure in Georgia, United States; and the Oroville Dam spillway failure in California, United States (USACE, 2020).  

The LifeSim routine involves the initial preprocessing of hydraulic data, road networks, and buildings. Hydraulic data is 180 

processed to define the flood time series for each structure and road segment. This process uses the Ramer-Douglas-Peuker 

algorithm to reduce the number of data points in water depth and flow velocity hydrographs, optimising computational time 

and memory usage. For road networks, the fastest route between each node is pre-defined using Dijkstra (1959) algorithm. In 

the event of traffic jams and flooding on roads, which could necessitate rerouting, the optimal path may change during the 

simulation. Hydraulic properties are determined at the midpoint of each road segment. Each building is associated with a road 185 

segment, and the initial fastest path between the building and an associated safe location is calculated. 

The model then simulates each iteration, representing a complete simulation of the warning and evacuation dynamics and their 

consequences. Iterations are associated with a seed number to ensure reproducibility of the sampling model. For each iteration, 

LifeSim samples uncertainty parameters such as the warning and evacuation module input times and curves, as well as 

attributes of people and structures. With the sampling set, the dynamic simulation proceeds, and at the end, the exposure for 190 

each agent is determined. Individuals who were not sampled to receive a warning or take proactive action perform independent 

time vertical evacuations, relocating to the highest floor, attic, or roof of their building, depending on the sampled attributes 

of the building. Those who evacuate by car or on foot are subject to sampled evacuation parameters, including willingness to 
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enter the flood and stability criteria. Once exposure conditions are defined, the fatality rate association routine is applied to 

determine the final condition of each individual. This process is repeated for each iteration, resulting in a probabilistic life loss 195 

estimation. 

2.2 Ahr Valley 2021 flood  

Between July 12 and 19, a quasi-stationary atmospheric low-pressure system named "Bernd" brought extreme rainfall to 

several regions in Europe. The most impacted areas included the federal states of Rhineland-Palatinate (RLP) (Fig. 3a) and 

North Rhine-Westphalia (NRW) in western Germany as well as adjacent regions in Belgium, Luxembourg, and the 200 

Netherlands. In Germany, saturated soil from May and June precipitation, which exceeded the average by 10–40%, coupled 

with an average of 127 mm of rainfall in 72 hours from 12 to 14 July in some catchments, resulted in up to 33 billion euros in 

damage and 191 fatalities. Specifically, the Ahr Valley (Fig. 3b) in RLP suffered with about 42,000 affected people and 8,800 

damaged buildings, resulting in up to 20 billion euros in economic losses and 134 fatalities. The steep slopes of the Ahr Valley 

caused torrential flows and elevated water levels, with the flow at the Altenahr gauge, upstream of the most affected area (Fig. 205 

3c), increasing from less than 10 m3 s-1 up to 700–1200 m3 s-1 within a few hours (DKKV, 2022; Kron et al., 2022; Szönyi et 

al., 2022). A reconstructed water level hydrograph showed a peak of 10.2 meters, significantly higher than the forecasted 5.74 

meters, with the discrepancy attributed mainly to forecast uncertainties but also to the clogging of bridges downstream of the 

Altenahr gauge (Apel et al., 2022). 

 210 
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Figure 3: Overview of the Ahr Valley and its most impacted area by 2021 flood. (a) Germany Federal States, highlighting Rhineland-

Palatinate and the location of the Ahr Valley catchment. (b) Ahr Valley catchment with drainage system and hillshade base map. (c) 

Satellite image and local administrative units of the downstream portion and most impacted area of the Ahr Valley, between the 215 

cities of Altenahr and Sinzig, at the confluence with the Rhine River. Data sources: Germany Federal states and local administrative 

units: GeoBasic DE / BKG (2023); Rivers and Ahr catchment: Global dataset of drainage systems (He et al., 2024). 

2.2.1 Flood hazard modelling 

The 2D raster model RIM2D (Apel et al., 2022; Ghomash et al., 2024; Vorogushyn et al., 2024) was used to simulate the 2021 

flood event. This simulation updated the model set by Apel et al. (2022), refining the digital elevation model (DEM) resolution 220 

from 10 to 5 meters (Ghomash et al., 2024). This enhancement improves the accuracy of the results, reducing biases related to 

resolution impacts on flood characteristics and consequences (Brussee et al., 2021; Bryant et al., 2023). Finer resolutions (e.g., 

1 and 2 meters) were also tested but had a negligible impact on flood risk estimation, including the risk of loss of life (Ghomash 

et al., 2024). Based on these findings, the 5m resolution DEM was selected as the optimal balance between model accuracy 
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and simulation efficiency.This enhancement improves the accuracy of the results, reducing biases related to resolution impacts 225 

on flood characteristics and consequences . 

The model domain encompassed the reach between the towns of Altenahr and Sinzig, about 30 kilometres, where the Ahr 

River flows into the Rhine River (Fig. 3c). Land use classification was sourced from Mundialis 2020 (Riembauer et al., 2021), 

with Manning’'s roughness values as follows: sealed surface areas (𝜂 = 0.02, for simulating flow over tarmac or concrete in 

built-up areas), forest (𝜂 = 0.2), and other classes, including the river channel and floodplains (𝜂 = 0.03). The roughness values 230 

were calibrated using the Euclidean Distance objective function, considering flood extent, flood depth in floodplains, and flood 

dynamics within the river channel.  Regions of the DEM overlaid by building footprints from the OpenStreetMap database 

were excluded from the hydraulic routine to represent urban flow dynamics more accurately (Apel et al., 2022). 

The reconstructed water level hydrograph at the Altenahr gauge, showing a maximum water depth of 10.2 meters, was used 

as the upstream boundary condition. A comparison between the maximum water depth layer (Fig. 4a) and 75 reported water 235 

depths revealed a bias of 0.46 meters and a root mean square error of 0.97 meters. To calculate this error metric, a 7.5 meter 

buffer was applied around the reported markers to gather information from adjacent pixels. The mean depth of inundated pixels 

within this buffer was then considered. It is important to note that the reported water depths correspond to different vertical 

datums, including street level, pedestrian walkways, and doorsteps. Therefore, such differences were anticipated due to the 

inherent vertical datum uncertainty and the uncalibrated nature of the simulation. The simulated flow velocities (Fig. 4b) are 240 

consistent with expectations for such a dynamic event, ranging from 2 to 5 m s-1 in the river course and 0.1 to 2 m s-1 in built-

up areas (Apel et al., 2022). The maximum simulated water depth predominantly occurred between 12:00 a.m. and 4:00 a.m. 

CEST on July 15 (Fig. 4c). 

LifeSim hydrodynamic module directly accepts input data from simulations conducted using hydraulic models such as HEC-

RAS and FLO-2D. For the simulations executed using RIM2D output, the insertion of water depth and flow velocities data 245 

was performed through multiple layers, each representing different time intervals and containing parameter values. A 15-

minute time series of water depth and flow velocities layers was used as input for the flood routine of the LifeSim model.  
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Figure 4: Flood characteristics of the 2021 Ahr Valley flood simulated with RIM2D at a resolution of five meters. (a) Maximum 250 

water depth. (b) Maximum flow velocities. (c) Time of maximum water depth. 

2.2.2 Exposure at buildings scale 

In order to apply the life loss model LifeSim, data for each building is required (e.g. number of floors, foundation height, and 

occupancy type). Similarly, data concerning the number of exposed people and their ages (e.g. more or less than 65 years old) 

is required. This detailed information was obtained using a combination of available data from OpenStreetMap, HANZE 2.0.3 255 

(Historical Analysis of Natural HaZards in Europe) (Paprotny, 2023), the 2011 German census, and the Singh et al. (2024) 

survey results database consolidated after the 2021 event.  

Population information was sourced from the 100 meter resolution grids of HANZE 2.0.3 for 2020 (Paprotny, 2023). The 

HANZE 2.0.3 population data at this resolution was derived from a disaggregation technique applied to the 1km resolution 

population data from the 2011 European GEOSTAT database. This disaggregation considered proportional distribution based 260 
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on identified man-made structures, such as buildings, impervious surfaces, roads, and streets. In order to model population 

growth, a rate of change was used at the Nomenclature of Territorial Units for Statistics (NUTS) 3 level (Paprotny and Mengel, 

2023).  

Building In order to allocate population inside buildings, building footprint polygons were obtained delineated from the 

OpenStreetMap 2021 database, excluding buildings without human occupation potential, such as garages, parking facilities, 265 

and toilets. We performed a proportional distribution of the population based on building size. Since we only used considered 

buildings to allocate the population, excluding other man-made structures, we noticed some grids with a 100 meter population 

resolution in HANZE 2.0.3 lacked buildings overlaying them (Paprotny and Mengel, 2023).  In order to address this issue, we 

first aggregated the 100 meter resolution population data to thea 1km resolution. Then, we performed a redistribution 

toredistributed the to thea 100 meter grid, weighted by the HANZE 2.0.3 population at this resolution, but only considering 270 

grids with the selected buildings. This approach ensures ensured that there is was no grid population without the selected 

buildings.  

In order to allocate the population within the selected buildings, we performed a weighted distribution of the redistributed 

population from the 100 meter grid, using building size as the weighting factor. After allocating the population to the buildings, 

the building centroids were moved to the nearest pixel of the RIM2D simulation, as the hydraulic routing has cut out the 275 

building footprints (see section 2.2.1). 

Age can significantly relate to flood fatalities mainly due to mobility issues (Vinet et al., 2012). In the LifeSim routine, age 

influences the probability of mobility issues and the corresponding submergence threshold criteria. In order to . incorporate 

this information, age demographics from the 2011 German census, provided at a 1 km grid resolution, were used to classify 

the population in the Ahr Valley region. On average, 24.2% of the population within the selected grids is over 65 years old.In 280 

order to consider this vulnerability index for defining the thresholds for submergence criteria, the age demographics from the 

2011 German census, provided at a 1km grid resolution, were utilised to classify the population in the Ahr Valley region. An 

average of 24.2 % of the population of the selected grids in the region is over 65 years old.  

 

Some crucial building characteristics  required for the LifeSim model (e.g. number of floors, foundation height and possibility 285 

of accessing the attic) were unavailable in the abovementioned HANZE 2.0.3 and the 2011 German census databases. 

Consequently, data was supplemented by a post-event survey of flood affected residents (Singh et al., 2024). The survey data 

contains 277 responses from residents of Rhineland-Palatinate state. The number of floors was determined based on the 

proportion of survey responses, assuming that buildings with higher population densities are more likely to have more floors. 

For example, 0.4 % of responses indicated that a building had seven floors, the maximum reported. Therefore, the 0.4 % of 290 

buildings with the highest population density were assigned seven floors. Foundation height, defined as the elevation difference 

between the street and the ground floor, was estimated using responses that provided information on floodwater reaching the 

ground floor. By comparing estimated water levels inside and outside buildings, an average foundation height of 0.57 meters 

was determined and applied to all buildings. Additionally, it was estimated that 36.5% of buildings have attic access.The 
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number of floors was determined based on the proportion of the responses, under the assumption that buildings with higher 295 

population densities per unit area are more likely to have more floors. Foundation heights, defined as the height between street 

elevation and the ground floor, were derived from answers with information on water levels reaching the ground floor during 

floods. By comparing estimated water levels inside and outside buildings, an average foundation height of 0.57 meters was 

determined, which was approximated to 2 feet for use in the LifeSim model. Furthermore, based on this data, it was estimated 

that 36.5 % of buildings have access to an attic. 300 

Building stability criteria was the defined as ‘engineered’ according to LifeSim, based on the considerations outlined by 

Clausen and Clark (1990). For this specific criteria, two curves are considered based on the product of water depth and flow 

velocity, with a uniform range of uncertainty: the lower curve threshold is set at 7 m2 s-1, representing traditional and smaller 

constructions,  and the upper curve threshold at 10 m2 s-1, representing high-quality constructions.. In the LifeSim routine, a 

building collapses if the thresholds of the sampled curve are reached and the flow velocities exceed 2 m s-1. 305 

Road networks were imported directly from OpenStreetMap, and safe evacuation places were located outside the inundation 

zones to simulate the dynamics of an actual evacuation event. Figure 5Figure 5 illustrates the population distribution within 

buildings at a 100 meter resolution, along with road networks and designated safe places. Buildings within the grids that 

intersected the 100 meter buffer zone of the inundated boundary were utilised for LifeSim simulations. A total of 10,461 

buildings were included, housing 24,076 individuals under 65 years old and 9,467 individuals aged 65 and over. 310 
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Figure 5: Overview of exposure at building scale. Population counts aggregated at a 100 meter grid resolution, buildings and road 

network along the Ahr Valley, simulated flood extent, and safe places. Data sources: 100 meter grid: HANZE 2.0.3 (Paprotny, 2023). 315 

Roads and buildings: © OpenStreetMap contributors 2021. Distributed under the Open Data Commons Open Database License 

(ODbL) v1.0. 

2.2.3 Early warning and evacuation 

In Germany, the National German Weather Service (DWD) is responsible for issuing warnings related to extreme weather 

events, whereas the federal states legally mandate flood warnings (Kron et al., 2022). Regarding the 2021 flood event, the 320 

DWD issued the initial weather warning on July 12 at noon CEST. The first flood warning for the Ahr River and its tributaries 

was released on July 14, just before noon CEST, reaching approximately 22,000 people. This warning alerted residents to a 

rapid water level rise and potential flooding within the next 24 hours. Numerous additional weather and flood warnings were 

disseminated throughout July 14. For instance, at 11 p.m. CEST, a warning was issued to Sinzig, Bad Neuenahr-Ahrweiler 

and adjacent places residents living within 50 meters of the Ahr River to evacuate their buildings. This significantly 325 

underestimated the hazard, as fatalities were later reported in buildings located up to 250 meters from the river. Despite the 
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numerous warnings, the effectiveness of the alert system was severely compromised by miscommunications along the warning 

chain and a general lack of confidence in the unprecedented severity of the flood In relation to the analysed 2021 flood event, 

the DWD issued the initial weather warning on July 12 at noon CEST. The first flood warning was released by (the Ahr Valley 

district) on July 14 just before noon CEST, to roughly 22,000 people. Numerous additional weather and flood warnings were 330 

disseminated throughout the event. Despite these efforts, the effectiveness of the warning system was significantly affected by 

misunderstandings throughout the warning chain and a lack of confidence in the unprecedented severity of this flood event 

(Szönyi et al., 2022). 

The information provided by the survey conducted by Singh et al. (2024) about the Ahr Valley''s warning and evacuation 

procedures was used for the description of the timeline in LifeSim (Fig. 2). As the survey had a unit geographic scale of federal 335 

state and the flood occurred at different areas and times between 12 and 19 July 2021 in the states, we applied a filter to use 

only responses from Rhineland-Palatinate (RLP) stateRPL individuals affected during the same time window as the high water 

levels in the simulated domain. Out of 277 responses from the RPL RLP state, 246 were considered. These respondents 

reported the occurrence of hazards at their homes between 3 p.m. CEST on July 14 and 9 a.m. CEST on July 15. The first 

flood warning, adopted for this study, was reported at noon CEST on July 14, representing a notification issued 13 hours before 340 

the water level peaked at the Alterahr gauge at 1 a.m. CEST on July 15. As a result, the warning issuance delay in the LifeSim 

timeline was excluded from the analysis since it occurred before this milestone and would not affect the simulations. 

To depict the diffusion of this first warning in the context of the LifeSim routine, we considered the reported lead times from 

individuals who noted that the warning they received was either a call for evacuation or contained information pertinent to 

evacuation. The reported time of hazard occurrence at the buildings was subtracted by the lead time to establish the first 345 

warning time for each individual. In instances where no lead time was reported, or the warning lacked evacuation instructions, 

individuals were assumed to be warned at the moment of their reported hazard occurrence at their building. Notably, 57.0 % 

of those affected by the main event reported receiving a warning. However, only 17.5 % received a warning that included 

explicit evacuation instructions. Some reported no lead time among those who received evacuation instructions, resulting in 

only 13.8 % of the surveyed people receiving an explicit evacuation warning before the flood reached them. 350 

Figure 6a illustrates the warning diffusion process based on these assumptions and analyses. Given that the hazard occurrence 

question was framed in hourly ranges, the curves depicts these ranges, which were inserted as a uniform distribution in the 

model. Additionally, the reported lead times were aligned with the first warning issued by the federal state at noon CEST on 

July 14. Most individuals were warned or became aware from the night of July 14 and the early morning of July 15, correlating 

with the most frequently surveyed times of hazard occurrence. 355 

Regarding the mobilisation time, we considered the reported time it took individuals to take protective action after receiving 

the warning or becoming aware of the hazard. In the survey, the protective actions included several mitigation measures and 

were not solely focused on evacuation. In order to represent the evacuation dynamics of the event, we considered only 

responses from individuals who left their homes before or during the flood, as well as those who were rescued. Approximately 

34 % of the surveyed population left their homes or were rescued, with 6.9 % taking immediate action, 5.3 % reporting a delay 360 
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in mobilisation, and 22.0 % not specifying when they began protective measures. In order to account for the uncertainty among 

the 22.0% who did not report a response time, we applied a uniform uncertainty range % providing no response related to the 

time to start taking protective measures. We considered a curve range with a uniform uncertainty to account for the uncertainty 

among those 22.0 % who did not respond (Fig. 66b). This range included an upper curve representing the fastest mobilisation, 

assuming immediate action for this group, and a lower curve representing the slowest mobilisation, considering six hours (the 365 

maximum reported delay).  

Regarding the evacuation dynamics, the mean family size on the NUTS 3 scale was used to estimate buildings where all 

residents were warned and mobilised simultaneously. Specifically, buildings housing more than three people were identified, 

as it was assumed that in such cases, the warning and mobilisation of the population do not occur simultaneously. This criterion 

was also used to define the size of the evacuating group. 370 

The evacuation mode fraction, whether by vehicle or on foot, is a user-defined input in LifeSim. In order to determine this 

fraction and represent the evacuation dynamics during the 2021 flood event, we conducted multiple runs, adjusting the 

evacuation mode by 10 % in each run. The fraction that produced the closest match to the observed ratio of fatalities occurring 

indoors versus during evacuation was selected. Specifically, 68.5 % of the fatalities occurred indoors or possibly more, given 

the uncertainty regarding victims discovered outside (Rhein and Kreibich, 2024). We found that an evacuation mode fraction 375 

of 80 % by vehicle and 20 % on foot most closely matched the indoor fatality ratio, with 69.3 %. Consequently, this fraction 

was chosen to represent the reconstruction scenario (see Fig. S1 and Table S1 in the supplementary material section 1). 

 

 

Figure 6: Reconstruction of warning diffusion and mobilisation times in the Ahr Valley 2021 flood based on the post-event survey 380 

with flood affected residents. (a) Warning diffusion curves: cumulative proportion of the population who were warned or became 
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aware of the hazard after the first flood warning. (b) Mobilisation curves: cumulative proportion of the population who initiated an 

outdoor evacuation after receiving or becoming aware of the hazard. 

2.2.4 Alternative scenarios of early warning and evacuation  

The simulation of alternative warning and evacuation scenarios can illustrate the impact of warning procedures on loss of life 385 

(Lumbroso et al., 2021; Lumbroso and Davison, 2018; Silva and Eleutério, 2023a, b; Wang et al., 2024). For the 2021 Ahr 

Valley flood, we develop and assess alternative scenarios using two approaches. First, we propose scenarios that alter the 

warning diffusion and mobilisation curves, drawing on historical cases referenced in the LifeSim recommendations. This 

approach aimed to represent how different strategies of warning dissemination, as well as varying levels of public perception 

and preparedness, could impact the number of fatalities without changing the time of first warning issuance. Secondly, we 390 

analysed the effect of the timing of the first flooding warning, taking into account the water depth forecasting capabilities for 

the region. 

In order to check the effects of warning diffusion and mobilisation curves, we defined three distinct scenarios, each with its 

own unique characteristics and implications. The optimal scenario (A1.1) represents a highly effective warning system, 

employing multiple channels for fast and extensive alert dissemination, with frequent repetition and a well-prepared, trained 395 

population. The intermediate scenario (A1.2) features a moderately effective warning system, with a mix of technologies and 

a population with some awareness of the risks. However, deficiencies in emergency planning affect the likelihood of a high 

mobilisation rate in a short time. The suboptimal scenario (A1.3) involves a warning system that is less effective, with limited 

technologies and infrequent warning issuances, hindering fast dissemination. In this scenario, most of the population is unlikely 

to perceive the threat, and their response is largely improvised. The curves used in these scenarios were proposed by Sorensen 400 

and Mileti (2015b, c). The supplementary material (see supplementary material section 2) provides a detailed description of 

the equations and their coefficients, as proposed by these authors. 

The proposed warning diffusion curves, categorised as ‘fast’, ‘moderate’, and ‘slow’ for daytime scenarios, were utilised in 

this study. These curves incorporate uncertainty modelled through a triangular distribution. The range extends from the upper 

bound of the “fast” curve, reflecting rapid dissemination similar to the observed in the 1980 eruption-induced mudflow of the 405 

Toutle River, Washington, in the USA, to the lower bound of the “slow” curve, which aligns with the behaviour seen in the 

1987 Nanticoke chemical accident, Pennsylvania, in the USA (Sorensen and Mileti, 2015b).  

Additionally, the proposed mobilisation curves for "preparedness good and perception likely,", "preparedness poor and 

perception likely," and "preparedness poor and perception unlikely" were employed. These curves also utilise a triangular 

distribution. The uncertainty bounds are derived from the fastest response case of the Confluence (USA) hazardous material 410 

flow in 1987, which defined the upper bound for "preparedness good and perception likely," and the slowest case in the 

database, which corresponded to a similar event in Pittsburgh (USA) in the same year, defining the lower bound for 

"preparedness poor and perception unlikely". Furthermore, Equation S2 is supplemented by maximum mobilisation rates over 

different time periods, specifically up to 8, 24, and 74 hours. The two slower response curves have the same coefficients, but 
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different maximum mobilisation rates. These rates represent the maximum population likely to take protective action, with 415 

higher mobilisation rates anticipated for longer durations and more optimal scenarios of perception and preparedness (Sorensen 

and Mileti, 2015c).  

Two additional scenarios were evaluated by integrating the theoretically proposed and empirical curves (Fig. 67) for the 2021 

flood. These scenarios represent a suboptimal warning system, contextualised within empirical curves for warning diffusion 

(A1.4) and mobilisation (A1.5). This approach enables the analysis of the impact of each delay in the occurred warning timeline 420 

process. The suboptimal curves are employed in these scenarios to reflect the realism of the 2021 event characterised by a 

deficient warning system. Figure 7 illustrates the combination of the diffusion and mobilisation process curves for each 

scenario, including the reconstruction scenario designated as reconstructed flood early warning and evacuation (RFEWE). 

Table S2 presents the utilised curves, their respective coefficients, and mobilisation rates for each scenario. 

The reconstruction scenario exhibits a more significant delay and lower mobilisation rates in protective action following the 425 

first warning issuance than the two worst alternative scenarios, A1.4 and A1.5. Most individuals becoming became aware of 

the hazard only at the time of its occurrence, despite receiving the first warning 13 hours before the peak of the flood, and the 

low rate of mobilisation were specific characteristics of this event that were not observed in the other events used in the curves 

proposed in LifeSim. Hence, an even more extreme alternative scenario (A1.6), theoretically worse than the reconstruction, 

was assessed by simulating only vertical evacuation, excluding any outside evacuation. 430 
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Figure 7: Combination of the warning diffusion and mobilisation curves for each alternative scenario of early warning and 

evacuation in the first approach. RFEWE (reconstructed scenario of the 2021 flood), A1.1 (optimal scenario), A1.2 (intermediate 

scenario), A1.3 (suboptimal scenario), A1.4 (suboptimal with empirical warning diffusion curve), and A1.5 (suboptimal with 435 

empirical mobilisation curve). 

In order to assess the timing of the first warning, we employed a uniform distribution to represent the range of possible and 

reliable times for the first flood warning during the 2021 event. Forecasting techniques indicate that it would be possible to 

anticipate, with a 75 % probability, that the water level at the Altenahr gauge would exceed the four meter threshold, 

corresponding to a 100 year event, 17 hours before the peak. This probability would increase to 100% from eight hours before 440 

the peak (Najafi et al., 2024). Thus, the potential times for issuing the first warning were considered to fall within a nine hour 

window, between 8 a.m. and 5 p.m. CEST on July 14. In this second approach, potential desired times for early warnings that 

significantly impacted the estimations could be identified (Silva and Eleutério, 2023b). Additionally, the identification of early 

warnings that could result in traffic jams and, consequently, more people being caught by the flood during evacuation could 

be comprehensive (El Bilali et al., 2021). 445 

When combined with the second approach of analysing different timings for the first warning issuance, the reconstructed 

empirical warning dissemination (Fig. 6a) does not represent a realistic scenario. Most surveyed people did not receive an 

evacuation warning; hence, most of the points on the curve were based on the time of reported hazard occurrence at the 

surveyed buildings. Using this empirical curve for early warnings issued later than 13 hours before the peak at the Altenahr 

gauge would suggest that most people would be warned only after the hazard had occurred. Conversely, issuing warnings 450 

earlier than 13 hours before the peak does not align with the dissemination dynamics observed in 2021. Therefore, for warning 

diffusion and mobilisation delays in the second approach of alternative scenarios, we employed the optimal and suboptimal 

scenario curves proposed in the first part. This allows for examining the influence of varying warning issuance times on 

estimating loss of life. Additionally, we included a scenario using the slow theoretical warning dissemination and the empirical 

mobilisation. Table 1 summarises the alternative scenarios and their respective warning and evacuation parameterisation 455 

considerations. The scenarios for the second approach are designated as A2.1 for the optimal scenario, A2.2 for the suboptimal 

scenario, and A2.3 for the suboptimal scenario with the empirical mobilisation curve. 

 

Table 1: Overview of all alternative scenarios for early warning and evacuation, considering the timing of the first flood warning 

issuance, warning diffusion, and mobilisation curves. A1: First approach, analysing warning diffusion and evacuation curves 460 

alongside the actual timing of the first flood warning. A2: Second approach, focusing on the time window for the first warning 

issuance based on forecasting capabilities. Numbers in brackets indicate the time window for issuing the first flood warning. 

Alternative 

scenario 

Time for issuing 

the first flood 

warning before 

peak at Altenahr 

gauge (h) 

Warning 

diffusion 
Mobilisation  
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A1.1 13 Fast 
Preparedness good  

perception likely 

A1.2 13 Moderate 
Preparedness poor  

perception likely 

A1.3 13 Slow 
Preparedness poor  

perception unlikely 

A1.4 13 Empirical 
Preparedness poor  

perception unlikely 

A1.5 13 Slow Empirical 

A1.6 13 No outside evacuation 

A2.1 𝑈~(8,17) Fast 
Preparedness good  

perception likely 

A2.2 𝑈~(8,17) Slow 
Preparedness poor  

perception unlikely 

A2.3 𝑈~(8,17) Slow Empirical 

2.2.5 Parametrisation and key considerations for using the LifeSim model 

The LifeSim version 2.1.3 (USACE, 2023) was employed to assess fatalities resulting from the 2021 Ahr Valley flood. A total 

of 2,000 iterations was sufficient to achieve convergence of the quantiles, standard deviation, and skewness for the probabilistic 465 

outcomes in scenarios with a deterministic first warning issuance time (see Fig. S2 in the supplementary material section 3). 

For scenarios with a variable time range for first warning issuance, 18,000 iterations were conducted, representing 

approximately 2,000 iterations for each hourly range. Statistical tests, including those developed by Dunn (1964), Kruskal and 

Wallis (1952) and Mann and Whitney (1947), were performed to compare the differences in estimated fatalities across various 

scenarios.  470 

 

Table 2Table 2 provides an overview of the considerations within each LifeSim module used in the analysis.  

 

Table 2: Summary of LifeSim module inputs and parameters for life loss simulations in the 2021 Ahr Valley flood. 

Module Input/parameter Description 

Flood routine Hydraulic data RIM2D flood model of Apel et al. (2022) updated to a resolution of 5 meters. 

Loss of shelter 

Buildings 
Selection of 2021 OpenStreetMap buildings footprint and their characteristics from post-event 

survey (Singh et al., 2024). 

Population 
Number of people by HANZE 2.0.3 for 2020 (Paprotny, 2023) and age proportion from the 

2011 German Census. 

Building stability 
Thresholds for engineered constructions as proposed by USACE (2020) based on Clausen and 

Clark (1990). 
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People 

submergence 

Water depth thresholds for the highest reachable floor of the buildings, considering age to the 

defined proportion of people with some mobility issue. 

Warning and  

evacuation 

First flooding 

warning 

Reconstruction: At noon CEST on July 14 (Szönyi et al., 2022). Alternative scenarios: U~(8,17) 

hours before peak water depth at the Altenahr gauge. 

Warning diffusion 

delay 

Reconstruction: Post-event survey answers on warning information, lead time and hazard 

occurrence. Defined as the uniform distribution between two curves as the reported hazard 

occurrence time answers are defined by a range of hours. Alternative scenarios: Theorical 

scenarios based on Sorensen and Mileti (2015b). 

Mobilisation delay 
Reconstruction: Post-event survey answers on evacuation, rescue, and time to start protective 

measures. Alternative scenarios: Theorical scenarios based on Sorensen and Mileti (2015c). 

Road network OpenStreetMap. 

Safe evacuation 

places 
Set outside the simulated flood extent along the Ahr River.  

Evacuation route Optimal path defined by Dijkstra (1959) algorithm. 

Evacuation delay 
Vehicle speed defined by OpenStreetMap road classification and modified Greenshields traffic 

flow model (Mahmassani et al., 2009). Constant speed of 6.44 km h-1 for pedestrians. 

Exposure to caught 

people 

Stability criteria defined by USACE (2020) and based on Smith et al. (2017) for vehicles and 

Shand et al. (2011) for people. 

Evacuation 

parameters 

80 % evacuation by vehicles and 20 % on foot. People warned and started evacuation 

simultaneously in buildings with fewer than four people, based on the mean family size from 

the 2011 German Census. 

Loss of life Fatality rates 
Probability distributions for two hazard zones defined by USACE (2020) based on historical 

cases. 

 475 

The modelling domain excluded 15 victims from the upstream cities of Ahrbrück, Dümpelfeld, Müsch, and Dorsel. Among 

the reported fatalities within the domain, one was associated with a pre-impact case where an individual died of a heart attack 

due to exhaustion, and another was a post-impact case where an individual was caught in a collapsing building and 

subsequently died in a hospital (Rhein and Kreibich, 2024).  

Thus, for the comparative analysis, we excluded the 15 victims from upstream cities and the pre-impact fatalities. The 480 

remaining post-impact fatalities, which could be directly attributed to the flood, were included. This adjustment resulted in a 

comparison value of 118 victims for evaluating life loss estimations. The comparisons between the estimated and reported 

fatality locations were limited to indoor cases due to uncertainties regarding the actual accident locations of victims found 

outside buildings. 

3 Results and discussion 485 

3.1 Life loss estimation of the Ahr Valley flood in 2021 

The LifeSim median estimate for the number of fatalities is 152, which is 28.8 % higher than the actual total of 118. The 

simulation uncertainties span from 140 to 162 fatalities, corresponding to the first and third quartiles, respectively. The extreme 



24 

 

range, defined by the minimum and maximum estimated values, spans from 99 to 202 fatalities, resulting in a range of 103 

fatalities. A median of fatalities inside the buildings is 69.3 % of the total estimation, aligning with the reported 68.5 % (Rhein 490 

and Kreibich, 2024). 

One reason for the variability in estimations is the sampling of the warning diffusion and mobilisation curve. Figure 8 illustrates 

this influence, showing points near 0.00 meaning iterations where the population is warned or starts the evacuation more slowly 

(similar to the right curves in Fig. 6), while points nearing 1.00 depict faster responses (similar to the left curves in Fig. 6). In 

general, the warning diffusion has a similar correlation with the estimated fatalities compared to the mobilisation (R = -0.29 495 

and R = -0.31, respectively) and this can be observed by analysing the central tendency of the fatalities in different regions of 

the sampling curves. The same estimated fatalities values for warning diffusion and mobilisation levels occur due to the 

influence of other probabilistic parameters in the model, such as submergence thresholds and stability criteria. 

For the warning diffusion, iterations with the sampling curve in the upper quarter (0.75 to 1.00), corresponding to most of the 

population being warned between 9 hours and 10 hours 30 minutes after the first warning issuance (Fig. 66a), result in a median 500 

estimate of 145 fatalities. In contrast, iterations with sampling curves in the lower quarter (0.00 to 0.25), where most of the 

population becomes aware between 13 hours 30 minutes and 15 hours after the first warning issuance, result in a median 

estimate of 157 fatalities (Fig. 8a). Regarding mobilisation, the upper quarter, representing immediate action by 23.4 % to 28.9 

% of the population (Fig. 66b), has a median of 143 fatalities. Conversely, the lower quarter, representing immediate action 

by 6.9 % to 12.4 % of the population, yields a median of 158 fatalities (Fig. 8b). Furthermore, a joint analysis of warning 505 

diffusion and mobilisation underscores the general influence of these input uncertainties. Iterations with sampling curves 

exclusively in the upper quarter yield a median of 135 fatalities, indicating an overestimation reduction to 14.4 % of the 

estimated fatalities compared to the actual value of 118 (Fig. 8c).  

 

 510 

Figure 8: Relation between estimated fatalities and (a) warning diffusion, (b) mobilisation, (c) both processes curve samples for the 

2021 Ahr Valley flood. Points near 0.00 indicate slower warning dissemination and initiation of evacuation, while points near 1.00 

indicate a faster response. 
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The reported indoor fatalities were 48 (59 %), 15 (19 %), 10 (12 %), 6 (7 %), and 2 (3 %) for the Local Administrative Units 

(LAUs) of Bad Neuenahr-Ahrweiler, Sinzig, Dernau, Altenahr and Mayschoss, respectively (Rhein and Kreibich, 2024). The 515 

mean of the simulations is 59 (57 %), 0 (0 %), 16 (15 %), 11 (11 %), and 15 (14 %) for the same places, with 3 (3 %) more 

fatalities in Rech. For Bad Neuenahr-Ahrweiler, the model represents the proportion of fatalities. However, it overestimates 

fatalities for upstream LAUs and underestimates them for Sinzig. This discrepancy may be attributed to the generalisation of 

the warning and evacuation procedures across the entire modelling domain. During the simulation, the cumulative sampling 

of the population warned and mobilised is randomly distributed among the buildings within this domain. This likely results in 520 

some people being warned later than in the actual event in upstream regions and earlier than in the actual event in downstream 

regions, thus failing to represent the actual spatial and temporal distribution of the population that began evacuation. Figure 9 

depicts the spatial distribution of the mean estimated fatalities, aggregated at a 500 meter grid resolution. 
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Figure 9: Mean of indoor estimated fatalities for the 2021 Ahr Valley flood at a 500 meter grid resolution. Data source: Germany 

local administrative units: GeoBasic DE / BKG (2023); 500 meter grid resolution: GeoGitter GeoBasis-DE / BKG (2020). 

3.2 Life loss estimation of alternative scenarios with improved early warning and evacuation  

The reconstructed warning and mobilisation curves indicate a greater delay compared to the alternative scenarios (Fig. 7). 530 

Despite the rapid-onset nature of the flood, the reconstructed warning diffusion curve exhibits a trend similar to that of a slow-

onset event. Approximately 80 % of the population is warned between 9 and 15 hours after the first alert (Fig. 66a), mirroring 
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patterns observed in slow-onset hazard events such as Hurricanes Katrina (2005) and Rita (2005), and the Boston water 

contamination (2010) (Lindell et al., 2021). In contrast, in the recommendations curves in LifeSim, which are based on 

historical cases, the warning diffusion times range from 15 minutes for the fastest to 3 hours for slower ones for the same rate 535 

(USACE, 2020). For the mobilisation time, the only comparable event in the LifeSim database is the 1987 Pittsburgh (USA) 

hazardous material flow, the worst case of protective action times, where about 40 % of the population took protective action 

approximately 5 hours after becoming aware of the hazard (USACE, 2020).   

Figure 10 illustrates outcomes from the Lifesim model concerning the initial approach to evaluating alternative scenarios, 

specifically examining the impacts of warning diffusion and mobilisation curves. The optimal (A1.2), intermediate (A1.2), and 540 

suboptimal (A1.3) scenarios show significantly lower reductions in life loss (p < 0.001), indicating that the actual scenario 

(RFEWE) fares worse than theoretical scenarios. Simulation uncertainties range from 22 to 39, 54 to 74, and 85 to 111 

fatalities, representing the interquartile range across these scenarios. Among these scenarios, the A1.3, with a median of 98 

fatalities, is the closest to approximate compared to RFEWE. However, the distribution of fatalities within buildings and during 

evacuation does not mirror the actual event, where 68.5 % of fatalities occurred indoors. 545 

The most critical scenario in terms of estimated fatalities, A1.4, incorporates empirical warning dissemination and a poor 

preparedness/unlikely perception mobilisation curve. While fatalities within buildings are comparable to RFEWE (86–103 

versus 98–112 for the interquartile range), fatalities during evacuation are significantly higher, ranging from 83 to 105, more 

than double the values of 39 to 54 for RFEWE. Since most individuals became aware shortly before the hazard occurred with 

empirical warning diffusion, an optimal mobilisation strategy could potentially worsen the situation by increasing the number 550 

of people outside buildings when the flood reaches them. 

Scenario A1.5 employs a slower theoretical warning diffusion curve in conjunction with empirical mobilisation, highlighting 

the deficiencies in warning dissemination observed during the 2021 flood. The worst theoretical dissemination curve reduces 

the interquartile estimated fatality range of 78 to 95. This reduction is primarily due to a higher rate of the population initiating 

evacuation promptly after the first warning compared to scenarios RFEWE and A1.4. As shown in Fig. 7, approximately 34 555 

% of the population mobilises within 8 hours when considering all possible samplings in the warning and evacuation 

simulation. 

Scenario A1.6 examines a strategy where the population moves to the highest building floors instead of evacuating outside. 

This approach has an interquartile estimated fatalities range of 111 to 133 for the first and third quartiles, exclusively indoors. 

The findings suggest that for individuals who receive a warning or become aware of the hazard shortly before its occurrence, 560 

seeking safety within their buildings is more advantageous than attempting an outside evacuation. 
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Figure 10: Estimated fatalities for the alternative early warning and evacuation scenarios focus on evaluating the warning diffusion 

and mobilisation curves. RFEWE (reconstructed scenario of the 2021 flood), A1.1 (optimal scenario), A1.2 (intermediate scenario), 565 

A1.3 (suboptimal scenario), A1.4 (suboptimal with empirical warning diffusion curve), A1.5 (suboptimal with empirical mobilisation 

curve), and A1.6 (without outside evacuation). 

Figure 11 presents estimations of potential loss of life relative to the time preceding the water level peak at the Alteranhr gauge, 

which occurred at 1 a.m. CEST on July 15, marking the issuance of the first flood warning based on forecasting capabilities. 

The colours indicate the statistical significance level of differences in estimated fatalities, aggregated by hour, between hourly 570 

intervals and their anticipated hour range. Concurrently, at the same warning issuance time, uncertainties within the LifeSim 

approach, such as the warning diffusion and mobilisation curves, probabilistic fatality rates and structural stability criteria for 

buildings, vehicles, and individuals, may contribute to variations in the estimated fatalities range. 

In scenario A2.1, characterised by optimal warning diffusion and mobilisation, the interquartile range of fatalities decreases 

from 40–74 to 18–32 during the 8–9 hour and 16–17 hour intervals before 1 a.m. CEST on 15 July. The analysis identifies a 575 

slight statistically significant difference (0.01 < p < 0.05) between the 13–14 hour and 14–15 hour intervals, with the 

interquartile range of 19–35 fatalities. This is followed by two other slightly significant differences between the earlier 

intervals. These findings suggest that issuing a warning at least 13 hours in advance is likely optimal for reducing fatalities. 

However, issuing warnings as early as possible appears crucial for effectiveness, as a non-significant level of statistical 

difference (p > 0.05) is not observed in the comparisons between the hour ranges.  580 

In scenario A2.2, characterised by suboptimal warning diffusion and mobilisation, fatalities decrease from an interquartile 

range of 138–174 to 66–85 across the extreme hour ranges. This scenario exhibits a similar pattern to scenario A2.1, with a 
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further reduction in the interquartile range to 74–95 during the 13–14 hour interval. These results underscore the critical 

importance of issuing warnings as early as possible to mitigate the potential loss of life in this scenario effectively. 

In the suboptimal scenario with the empirical mobilisation curve (A2.3), estimated fatalities decrease from an interquartile 585 

range of 102–128 to 39–82 across extreme hour ranges. Fatalities increase from the first extreme hour range to the 10–11 hour 

interval, with an interquartile range of 103–147, indicating that warnings issued within this interval result in more people being 

caught during evacuation. This outcome can be attributed to the combined effect of warning diffusion and mobilisation, the 

same as scenario A1.5 in Fig. 7, where the higher rise in the number of people on the streets occurs approximately three hours 

after the warning is issued, coinciding with the peak of the flood. Following this interval, significant reductions in fatalities (p 590 

< 0.001) are observed until stabilisation begins approximately 15 hours before the flood peak, suggesting that this is an optimal 

time for issuing the first flood warning. This scenario underscores the inadequacy of warning dissemination during the 2021 

event and its impact on the estimated consequences. Even for later warning issuance times and the same mobilisation 

behaviour, this scenario can result in lower estimated fatalities, with a median estimate of 115 fatalities, 24.3 % lower than the 

RFEWE scenario, when the warning is issued between 8–9 hours before the peak. 595 

 

 

Figure 11: Estimated fatalities for the alternative early warning and evacuation scenarios focus on evaluating the time of the first 

flood warning, highlighting the significance level of the statistical difference between estimated fatalities during the one-hour interval 

and the previous hour range. A2.1 (optimal warning diffusion and mobilisation), A2.2 (suboptimal warning diffusion and 600 

mobilisation), and A2.3 (optimal warning diffusion and empirical mobilisation). 
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3.3 Discussion of limitations 

The LifeSim approach utilises Monte Carlo simulation to address epistemic and aleatory uncertainties. However, when 

interpreting scenarios, analysing and considering other limitations and uncertainties related to specific inputs and model 

assumptions is essential. 605 

Although the flood hazard simulation provided a reasonable representation of water depths, flow velocities, and maximum 

arrival times, even slight variations in the hydrodynamic model could lead to high sensitivity in LifeSim outcomes, depending 

on the case study. For instance, a test simulation adjusting the water depth time series by subtracting the bias value of 0.46 

meters from all pixels across all layers in the hydraulic simulation resulted in a reduced fatality estimate, with the median value 

decreasing to 126, i.e.— 17% lower than the reconstructed scenario. It is important to note that the reported water depths used 610 

to calculate the bias correspond to different vertical datums, including street level, pedestrian walkways, and doorsteps. 

Moreover, this test represents an extreme generalisation of the bias across the entire domain, preliminary assessing the life loss 

model's sensitivity concerning the hydrodynamic simulation for this case study. 

Furthermore, other uncertainties and factors could significantly influence life loss estimation.Although the flood hazard 

simulation provided an acceptable representation of water depths, flow velocities, and maximum arrival times, uncertainties 615 

and considerations could significantly affect life loss estimations. The hydraulic model does not account for bridges within the 

simulated domain, potentially altering flood characteristics due to possible clogging, particularly affecting nearby buildings, 

as observed during the actual flood event. Additionally, building footprints were excluded from the digital elevation model, 

turning it into a digital surface model to enhance urban flow simulation. For the loss of life estimation, the highest hazard of 

the adjacent pixels was chosen. This may introduce a bias towards higher fatalities. However, if this is the case has to be tested 620 

by an analysis using the lowest or mean hazard around the buildings. 

The detailed information required for buildings elements in LifeSim results in numerous hypotheses, as obtaining such detailed 

data is often challenging. Upscaling 100 meter resolution population data to buildings, weighted by building footprint size, 

can inaccurately associate more population with large areas that actually have a lower population capacity than smaller ones 

due to verticalisation. Moreover, specific occupancy patterns and individual characteristics are complex to represent using 625 

open data. For example, 12 of 15 fatalities in Sinzig were related to people in an inpatient residence, who were not able to 

leave the building by themselves. Additionally, some building footprints may pertain to commercial or other non-residential 

sectors, introducing further uncertainty since the population data used only accounts for residential individuals. The impact of 

this consideration is less significant during nighttime hazards compared to daytime scenarios when population distribution 

varies based on the sectoral distribution of buildings. Furthermore, attributes such as the number of building floors are 630 

determined by the post-event survey, potentially lacking accurate representation due to non-representative sampling. 

The lack of representative survey sampling can also impact the reconstruction of warning and evacuation processes. 

Additionally, the reconstruction of these curves for the 2021 Ahr Valley flood aimed to represent the time spent between the 

warning issuance and the initiation of proactive evacuation actions. Several filters were applied to the survey data to isolate 
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responses related explicitly to evacuation, as the survey initially encompassed a broader context of mitigation measures. 635 

Notably, 83 % of respondents recognise the need for self-protection only at the moment of the hazard occurrence, which can 

impact comparative analysis with historical cases, given that the warning diffusion curve is not based on an official warning 

channel. The content of the warning and the perception of personal impacts significantly influence the mobilisation times 

(Lindell et al., 2020). The lack of detailed evacuation information, received by only 17.5 % of respondents, combined with 84 

% being surprised by the flood, likely contributes to the low mobilisation rate. This rate might improve if the population 640 

received timely warnings and clear instructions, as 76 % of respondents stated they clearly understood what actions to take.. 

Even when applying a filter to the survey to account for people directly impacted by the main event in the simulated domain, 

generalising the warning and evacuation process in this domain can lead to overestimating fatalities in upstream regions. The 

generalisation is necessary due to the lack of precise building location data for survey respondents. ThTheis overestimation 

arises because there is a 2 to 3 hour difference between the arrival time of the flood in upstream cities compared to downstream 645 

areas, and most people were warned only at the momentwhen the flood reached them. As a resultTherefore, individuals in 

upstream regions may have taken earlier action than the model sampling. 

Furthermore, alternative scenarios were developed to incorporate realistic elements into theoretical models and their 

parameterisation proposed by Sorensen and Mileti (2015b, c). However, most of the cases used to propose the parameterisation 

of these theoretical models are based on older events primarily focused on the context of the United States. Incorporating 650 

recent flood events from diverse locations could enhance the representation of realistic scenarios.  

Concerning evacuation dynamics, summarising flood values using the mid-point could distort actual parameter values along 

roads, especially over extended road length. Additionally, LifeSim does not consider prior vehicle conditions on road networks, 

which could significantly impact the representation of traffic jams, particularly in high-density areas. 

4 Conclusions  655 

The agent-based model (ABM) LifeSim is used to evaluate the impact of warning system procedures on life loss estimates 

during the 2021 Ahr Valley flood. 2021 Ahr Valley flood is used as a case study for assessing the applicability of the life loss 

estimation agent-based model (ABM) LifeSim. After defining the reconstruction scenario, we evaluated the impact of 

alternative scenarios for flood early warning and evacuation. The median of the probabilistic LifeSim model results 

overestimates actual fatalities by 28.8 % within the same simulated domain. Nonetheless, the output maintains a consistent 660 

proportion of indoor to outdoor fatalities. The distribution of fatalities along the Ahr Valley is overestimated in upstream 

regions and underestimated in downstream regions. This discrepancy is attributed mainly to generalising the early warning 

and evacuation processes within the simulated domain, which may lead to variations in evacuation start times across different 

regions compared to the actual event, particularly in these extreme domain areas. 

The 2021 Ahr Valley flood warning diffusion had a significant delay and lower mobilisation rates in protective actions 665 

following the first flood warning issuance compared to the worst theoretical alternative scenarios. The median of estimated 
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fatalities could be reduced by 80 % in an optimal theoretical scenario of warning diffusion and mobilisation (scenario A1.1 in 

Fig. 10). However, under the actual conditions of warning dissemination, where most of the population was either just warned 

or became aware when the flood reached them, higher mobilisation rates could result in increased fatalities. In such situations, 

seeking safe places on the upper floors of buildings is a more effective protective action, as in scenarios without outside 670 

evacuation, the median of estimated fatalities is lower than in the reconstructed scenario. 

The early flood warning reported 13 hours before the water level peak in the upstream domain appears to be the critical window 

to effectively reduce fatalities in scenarios with theoretical warning dissemination and evacuation. Thus the existing flood 

warning system provides information in due time. The problem is rather the information content (spatially distributed water 

depth forecasts are missing), warning dissemination, and the reaction of the population to the warnings. The presented 675 

simulation of early flood warning times underscores the significant impact of the actual poor dissemination during the 2021 

event. Even with later warning issuance times, if accompanied by better warning diffusion and the same mobilisation behaviour 

as observed in the actual event, fatalities could be reduced by 24.3 % (scenario A2.3 in Fig. 11). 

Using life loss ABMs in flood risk assessments can enhance the evaluation of flood hazards and the effectiveness of warning 

systems. Dynamic simulations over time and space offer valuable insights into optimal intervention timings and critical regions 680 

for implementing mitigation measures. The LifeSim model can incorporate both epistemic and random uncertainties, resulting 

in probabilistic rather than deterministic outcomes. However, several critical aspects of uncertainty must be acknowledged. 

Efforts are recommended to better represent the variations in warning diffusion and evacuation responses in the specific case 

study, with benefits incorporating the different responses across various impacted zones. Additionally, ABMs require high-

resolution data, which can be challenging to obtain accurately. Comparing these models with empirical ones could enhance 685 

the understanding of their differences, as empirical models can be deployed more swiftly, offering faster outcomes in 

forecasting and nowcasting scenarios. 

Code availability 

LifeSim model is available on the Risk Management Center website of the Institute for Water Resources, which is part of the 

United States Army Corps of Engineers (https://www.rmc.usace.army.mil/Software/LifeSim/). RIM2D is available for non-690 

commercial use at https://git.gfz-potsdam.de/hydro/rfm/rim2d under the European Union Public Licence v. 1.2. Permission to 

the repository is granted upon request to heiko.apel@gfz-potsdam.de. 

Data availability 

RIM2D data, including time series of water depth and flow velocities, are available upon reasonable request to the author and 

will be made publicly accessible through the GFZ Data Services repository upon the paper publication. The Mundialis 2020 695 

Land cover dataset can be accessed at https://www.mundialis.de/en/germany-2020-land-cover-based-on-sentinel-2-data/. The 

https://www.rmc.usace.army.mil/Software/LifeSim/
https://git.gfz-potsdam.de/hydro/rfm/rim2d
https://www.mundialis.de/en/germany-2020-land-cover-based-on-sentinel-2-data/


32 

 

OpenStreetMap road network and buildings data are available from © OpenStreetMap contributors 2021, distributed under 

the Open Data Commons Open Database License (ODbL) v1.0. HANZE 2.0.3 data can be accessed at 

https://doi.org/10.5281/zenodo.7885990. Results from the 2011 German Census at a 1 kilometer grid level are available at 

https://www.zensus2022.de/EN/What-is-the-census/grid_cells_results_2011.html, and detailed tables can be found at 700 

https://ergebnisse.zensus2022.de/datenbank/online/statistic/1000X/details. Survey data is available upon reasonable request to 

the Geography and Disaster Risk Research Lab, University of Potsdam. 
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