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Abstract 10 

Populated coastal regions in the Mediterranean are known to be severely affected by extreme weather 11 
events. Generally, they are initiated over maritime regions, where a lack of in-situ observations is 12 
present, hampering the initial conditions estimations and hence, the forecast accuracy. To face this 13 
problem, Data Assimilation (DA) is used to improve the estimation of the initial conditions and their 14 
respective forecasts. Although comparisons between different DA methods have been performed at 15 
global scales, few studies are performed at high-resolution, focusing on extreme weather events 16 
triggered over the sea and enhanced by complex topographic regions. In this study, we investigate the 17 
role of assimilating different types of conventional and remote-sensing observations using the 18 
variational 3DVar and the ensemble-based EnKF, which are of the most common DA schemes used 19 
globally at National Weather Centers. To this aim, two different events are chosen because of both the 20 
different areas of occurrence and the triggering mechanisms. Both the 3DVar and the EnKF are used 21 
at convection permitting scales to improve the predictability of these two high-impact coastal extreme 22 
weather episodes, which were poorly predicted by numerical weather prediction models: (a) the heavy 23 
precipitation event IOP13 and (b) the intense Mediterranean Tropical-like cyclone Qendresa. Results 24 
show that the EnKF and 3DVar perform similarly for the IOP13 event for most of the verification 25 
metrics, although looking at the ROC and AUC scores, the EnKF clearly outperforms the 3DVar. 26 
However, the ensemble mean of the EnKF is in general worse than the 3DVar for Qendresa, although 27 
some of the ensemble members of the EnKF individually outperforms the 3DVar allowing for gaining 28 
information on the physics of the event and hence the benefits of using an ensemble-based DA scheme.  29 
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1. Introduction 46 

The Mediterranean basin is recognized as one of the geographical regions most frequently 47 
affected by high impact weather events in the world (Petterssen, 1956). The Mediterranean 48 
region has a natural disposition for these events because of its singular orographic features, 49 
which include having a relatively warm sea surrounded by complex terrain. This geographical 50 
configuration forces the warm and moist airflow to lift, favoring condensation and triggering 51 
convection. Hazardous weather events in this region, such as heavy precipitation (e.g., flash 52 
floods, snowstorms), cyclogenesis or windstorms (e.g., squall lines, tornadic thunderstorms), 53 
produce huge economic, injury and human losses in populated coastal regions (e.g., Romero et 54 
al., 1998b; Llasat and Sempere-Torres, 2001; Llasat et al., 2010; Jansa et al., 2014; Flaounas 55 
et al., 2016; Pakalidou and Karacosta, 2018; Amengual et al., 2021). Since 1900, more than 56 
500 billion Euros associated with total damages to the property and over 1.3 million fatalities 57 
related to hydrometeorological disasters has been registered for the EM-DAT international 58 
disaster database1. These effects underscore the critical need for accurate and rapid high-59 
resolution weather forecasting systems, aimed at extending the lead time for severe weather 60 
warnings, thereby enabling the implementation of effective mitigation strategies to reduce 61 
fatalities and economic losses. However, while the accuracy of weather forecasting has 62 
significantly improved in recent years, with better representation of physical processes and 63 
dynamics, accurate prediction of high impact weather events in terms of their location, timing, 64 
and intensity remains a major challenge for the scientific community (Stensrud et al., 2009; 65 
Mass et al., 2002; Bryan and Rotunno, 2005; Yano et al., 2018; Torcasio et al., 2021). For this 66 
reason, improving the forecast of high-impact weather events becomes an imperative goal. 67 

Deficiencies in the accurate prediction of the location (spatial and temporal), intensity and 68 
phenomenology of extreme weather events are tightly related to the accuracy of the initial 69 
conditions of the system (Wu et al., 2013). The initial conditions of the hazardous weather 70 
events affecting coastal populated regions, are typically poorly estimated, mainly because these 71 
weather systems originate over the sea, where there is a lack of in-situ observations. Enhanced 72 
representations of the initial conditions are typically achieved by blending information from 73 
observations into numerical models through sophisticated Data Assimilation (DA) techniques 74 
(Kalnay, 2003), which accounts not only for the nominal values of the observations and the 75 
model, but also accounts for their respective error statistics. DA has been widely used and 76 
applied for global numerical weather prediction (NWP) problems (e.g., Eliasen, 1954; Lorenc, 77 
1981; Le Dimet and Talagrand, 1986; Rabier et al., 2000, Whitaker et al., 2008, Carrassi et al., 78 
2018; Albergel, et al., 2020, among others). However, less attention has been paid to 79 
convective-scale NWP problems, especially those associated with small scale convective 80 
phenomena initiated over regions with sparse observational data coverage, such as the extreme 81 
weather events affecting coastal regions in the Mediterranean basin (Carrió et al., 2016; 82 
Amengual et al., 2017; Mazzarella et al., 2021). To improve forecasts of such extreme weather 83 
events, accurate high resolution numerical weather models which solve convective scale 84 
processes are required, as well as dense observations at high spatial and temporal resolution. 85 
These will provide accurate information regarding the convective systems themselves or their 86 
environmental conditions. One of the most important sources of convective scale information 87 
are ground weather radars that provide three-dimensional data related to the storms at high 88 
spatial (order of hundreds of meters) and temporal (order of few minutes) resolution. In 89 
addition, weather radars provide thermodynamic and dynamic information of thunderstorms, 90 
which are crucial to understand and forecast convective structures. Due to the high spatio-91 
temporal variability of convective structures, a rapid update cycle of the initial state (i.e., 92 

 
1 https://www.emdat.be/ 
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analysis) using weather radar observations is required to reduce errors and keep physical 93 
balances in the initial conditions. Several studies have shown the positive impact in forecasting 94 
severe weather events by assimilating weather radar information (e.g., Xiao and Sun, 2007; 95 
Lee et al., 2010; Wheatley et al., 2012; Yussouf et al., 2015; Carrió et al., 2019; Mazzarella et 96 
al., 2021).  97 

During the last decades, different DA algorithms have been developed with the aim of 98 
improving weather forecasts making use of all available observations in the best possible way. 99 
In this context, most of the developed DA methods are based on exploiting Bayes’ Theorem 100 
(Lorenc, 1986) and making use of different types of approximations. Generally, DA algorithms 101 
can be classified into the following three Bayesian-based families: (a) Variational DA (e.g., 102 
3DVar (Barker et al., 2004) or 4DVar (Huang et al., 2009)); (b) Ensemble-based DA, which 103 
are based on the Ensemble Kalman Filter (EnKF; Evensen, 1994) and (c) Monte-Carlo DA 104 
methods. Variational DA minimizes a cost function to obtain the analysis (i.e., the best 105 
estimation of the initial conditions). More specifically, variational DA methods provide a 106 
(quasi) optimal analysis based on an imperfect forecast (prior state or background), a set of 107 
imperfect observations and their respective error statistics that are prescribed and assumed to 108 
be Gaussian, for simplicity. In addition, variational DA algorithms require a linearized and 109 
adjoint version of the numerical model, which can be very difficult to develop and maintain. 110 
This often involves the use of automatic differentiation tools or complex manual derivation, 111 
both of which are error-prone and time-consuming. On the other hand, the ensemble-based DA 112 
algorithms do not require the use of linearized or adjoint versions of the model, and they do 113 
not use prescribed error statistics. Instead, they compute the error statistics from an ensemble 114 
of forecasts, with the main property that these errors are evolving in time as the system evolves. 115 
The Monte-Carlo DA method allows the assimilation of observations described with non-116 
Gaussian errors. Particle filters (PF; Van Leewen, 2009; Poterjoy, 2016) are a clear example 117 
of Monte-Carlo DA algorithm. However, PFs are not well-suited for large multidimensional 118 
systems, such as the atmosphere, although a lot of improvements have been achieved recently. 119 
In the present study, we will focus on the most widely used DA schemes typically used in major 120 
operational weather centers, which are the variational and ensemble-based DA schemes, 121 
leaving the Monte-Carlo methods for future work. 122 

Although variational DA schemes have been used in numerical weather prediction for many 123 
years (Courtier et al., 1994; Park and Zupanski, 2003; Rawlins et al., 2007), allowing the 124 
assimilation of a wide range of different observations, they present a well-known limitation. 125 
This limitation is related to the use of a climatological background error covariance matrix to 126 
characterize the error statistics, which is kept constant along the assimilation window, where 127 
the different observations are distributed at different times. This weakness is specifically linked 128 
to the 3DVar method, which typically uses the National Meteorological Center (NMC) method 129 
(Parrish and Derber, 1992) to generate those static background error covariances using forecast 130 
differences over a period of time reasonably close to the event. The error statistics derived from 131 
such DA schemes are static, isotropic and nearly homogenous, misrepresenting the true error 132 
statistics in space and time, which are inherently flow-dependent, resulting in less accurate 133 
analysis. On the other hand, the EnKF DA scheme is designed to provide flow-dependent 134 
background error covariances. Some studies have shown the potential of the EnKF spreading 135 
information from the observations flow-dependently in comparison with the 3DVar (Yang et 136 
al., 2009; Gao et al., 2018). On the other hand, 3DVar techniques require less computational 137 
resources and there is no need to build an ensemble compared to EnKF or even simulate the 138 
model trajectory as in 4DVar. Therefore, the assimilation with 3DVar takes only a few tens of 139 
minutes, making this technique particularly suitable for operational purposes.  140 
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To solve convective scale (i.e., grid spacing of a few kilometers) physical processes associated 141 
with extreme weather phenomena, high-resolution numerical simulations are required. 142 
Performing computational expensive high-resolution simulations presents a significant 143 
challenge as it constrains the feasible number of ensemble members that can be used in EnKF 144 
DA schemes, and thus it could hamper significantly the estimation of the background error 145 
covariance matrix. In this context, which DA method is more suitable? The 3DVar using an ad 146 
hoc background error covariance matrix or the low-rank background error covariance matrix 147 
obtained from the EnKF?  148 

Recently, a few DA studies at convective scale mainly focused just on the mature stage of the 149 
weather event have been carried out (e.g., Wheatley et al., 2015; Jones et al., 2016; Yussouf et 150 
al., 2020). However, investigating the mature stage means that the weather system is already 151 
developed and probably affecting the population. In such situations, the value of improving the 152 
atmospheric condition estimation using DA is very limited in terms of lead time, because there 153 
is no time left for warning the population and to take actions to reduce socio-economic impacts. 154 
In this context, very limited work has been done to assess the impact of DA in pre-convective 155 
systems to significantly improve the lead time, allowing warning systems to act as soon as 156 
possible. Here, we also investigate the role of the 3DVar and EnKF DA methods in improving 157 
pre-convective environment conditions of extreme weather events and how such improved pre-158 
convective conditions could lead to a forecast improvement with significant time in advance to 159 
warn the population to take actions. 160 

The following study aims at:  161 

(a) Assessing the impact of high-resolution 3DVar in comparison with a high-resolution EnKF 162 
system to predict small-scale extreme weather events initiated over different areas and with 163 
lack of in-situ observations. 164 

(b) Investigate the potential of using 3DVar and EnKF to enhance the accuracy of atmospheric 165 
conditions in the pre-convective environment, hours before the mature stage of convective 166 
systems are reached, thereby improving early prediction and warning capabilities for extreme 167 
weather events. 168 

(c) Quantify the impact of assimilating in-situ conventional observations in comparison to 169 
assimilating high spatial and temporal resolution data from remote sensing instruments.  170 

(d) Provide a quantitative assessment between the different DA schemes by means of using 171 
several statistical verification methods. 172 
 173 

It is important to emphasize that this study is not aimed to draw any statistically significant 174 
conclusion. Instead, we are interested in comparing the performance of EnKF and 3DVar in 175 
two distinct extreme weather events, each with its unique set of conditions and constraints. A 176 
heavy rainfall episode affecting coastal regions of Italy during October 2012 (IOP13; Pichelli 177 
et al., 2017) and a low-predictable Mediterranean Tropical-like cyclone (medicane) affecting 178 
Sicily, known as Qendresa (Pytharoulis et al., 2017; Pytharoulis, 2018; Cioni et al., 2018; Di 179 
Muzio et al., 2019), are used for this study. 180 

This paper is organized as follows. Section 2 briefly describes the meteorological 181 
characteristics of the two events used for comparing the impact of 3DVar and EnKF. In Section 182 
3 the observation dataset that will be assimilated by the different DA methods will be presented. 183 
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Section 4 briefly explains the main characteristics of the two DA algorithms that will be used 184 
in this study. Then, the numerical model configuration and the design of the different 185 
experiments for the two different case studies will be described in Section 5 and 6, respectively. 186 
Section 7 describes the verification methods used in this study. Results of the different 187 
numerical experiments for both meteorological situations are summarized in Section 8. Finally, 188 
conclusions are presented in Section 9. 189 

 190 

2. Brief Description of Case Studies 191 

Two different extreme weather systems, occurring in the Mediterranean region and affecting 192 
populated coastal regions, are considered in this study. The first extreme weather event was 193 
associated with heavy rainfall affecting central and northern Italy during October 2012 194 
(IOP13), while the second extreme weather event was associated with the Qendresa medicane 195 
affecting southern Sicily, Lampedusa, Pantelleria and Malta islands during November 2014. 196 
Both systems were poorly forecasted, and for this reason they are perfect candidates for this 197 
intercomparison study. 198 

 199 

2.1.  The IOP13 Heavy Precipitation Episode 200 

The IOP13 occurred during the First Special Observation Period (SOP1) of the international 201 
project Hydrological cycle in the Mediterranean Experiment (HyMeX; Drobinski et al., 2014), 202 
that was mainly designed to better understand heavy rainfall and flash flooding episodes 203 
occurring in the Mediterranean region. The heavy precipitation IOP13 event took place 204 
between 14 and 16 October 2012, and it was characterized by a frontal precipitation system 205 
associated with a deep upper-level trough extending from northern France towards northern 206 
Spain (Fig. 1). It initially affected southern France coastal areas, and afterward it also affected 207 
the northern and central parts of Italy. During 15 October, the Italian rain gauge network 208 
registered 24-hour accumulated precipitation with peaks reaching 60 mm in central Italy, 160 209 
mm in northeastern Italy and 120 mm in Liguria and Tuscany. During the night of 14 October, 210 
a cold front affected the Western Mediterranean region and during 15 October the system 211 
rapidly moved from France to Italy, advecting low-level moisture towards the western coast of 212 
Italy and Corsica, destabilizing the atmosphere and favoring deep moist convective activity. 213 
More details on the synoptic situation and observational data collected during IOP13 can be 214 
found in Ferretti et al., 2014. 215 
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216 
Figure 1. IOP13 ERA5 analyses: 500 hPa geopotential (solid black lines), 925 hPa temperature (dashed grey lines) 217 
and total column of water vapor (color shaded areas) at (a) 12 UTC 14 October and (b) 00 UTC 15 October 2012. 218 

 219 

2.2.  The Qendresa Tropical-Like Cyclone Episode 220 

Among the wide spectrum of maritime extreme weather events, tropical-like Mediterranean 221 
cyclones, a.k.a. medicanes (Emmanuel, 2005), draw particular attention to the community 222 
mainly because they share similar morphological characteristics with tropical cyclones. Given 223 
their tendency to impact densely populated and economically critical areas around the 224 
Mediterranean basin, enhancing the accuracy and reliability of medicanes forecasts has become 225 
an urgent priority. Here, we focus on the 7 October 2014 medicane (Qendresa; Cioni et al., 226 
2018) that affected the islands of Lampedusa, Pantelleria, Malta and the eastern coast of Sicily. 227 
This event was recognized by the community for its limited predictability (Carrió et al., 2017), 228 
making it a compelling case study for investigating the performance of the 3DVar and EnKF 229 
DA methods. In-situ observations located in Malta’s airport registered gust wind values 230 
exceeding 42.7 m s-1 and a sudden and deep pressure drop greater than 20 hPa in 6 hours. 231 
Satellite imagery during its mature phase showed a well-defined cloud-free eye surrounded by 232 
axisymmetric convective activity, which resembles the morphological properties of classic 233 
tropical cyclones. 234 

A deep upper-level trough associated with a cyclonic flow at mid-levels characterized the 235 
synoptic situation in the Western Mediterranean from 5 to 8 November 2014. The upper-level 236 
trough was associated with an intense PV streamer extending from Northern Europe to 237 
Southern Algeria, and the cyclonic flow at mid-levels was dominated by a strong ridge over 238 
the Atlantic and a deep trough moving along Western Europe. Late on 7 November, the upper-239 
level trough became negatively tilted, evolving into a deep upper-level cut-off low and the PV 240 
streamer disconnected from the northern nucleus (Fig. 2). A small well-defined spiral-to-241 
circular cloud shape formed just south of Sicily and evolved east-northeastward, reaching its 242 
maximum intensity over Malta, at midday. Finally, the cyclonic system dissipated as it crossed 243 
the Catania (eastern) coast of Sicily. More details on the synoptic situation and observational 244 
data collected during this event can be found in Carrió et al., 2017. 245 

 246 
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247 
Figure 2. Qendresa ERA5 analyses: 500 hPa geopotential (solid black lines), 500 hPa temperature (dashed grey 248 
lines) and 300 hPa Potential Vorticity (color shaded areas) at (a) 00 UTC 7 November and (b) 00 UTC 8 November 249 
2014. 250 

 251 

3. Observations Description 252 

In this study, different sources of remote-sensing and in-situ observations were available for 253 
the two case studies. Specifically, the following three types of observations were assimilated: 254 
(a) in-situ conventional data, (b) high temporal and spatial reflectivity data from two Doppler 255 
Weather Radars and (c) 3D wind speed and direction data derived from satellites. 256 

 257 

3.1. IOP13 Observations 258 

For the IOP13, in-situ conventional data and remote sensing observations from two Doppler 259 
Weather Radars were available. Moreover, conventional data were obtained from the NOAA’s 260 
Meteorological Assimilation Data Ingest System (MADIS), which has the main advantage of 261 
providing high-level quality-controlled data2 worldwide. In particular, pressure, temperature, 262 
humidity and horizontal wind speed and direction from in-situ instruments such as METARs, 263 
maritime buoys, rawinsondes and aircrafts (Fig. 3a). In addition to these conventional 264 
observations, reflectivity data from two Météo-France polarimetric S-band Doppler Weather 265 
Radars, were also available on the Gulf of Genoa. One located in Corsica Island (9.496ºE, 266 
42.129ºN) at 63 m ASL, known as Aleria, and the other located in southern France (4.502ºE, 267 
43.806ºN) at 76 m ASL, known as Nimes (Fig. 3a). These two radars, strategically positioned, 268 
ensure a good spatial coverage over the Ligurian Sea, the area where initiation and 269 
intensification of deep convection occurred, and provide key information about the 3D 270 
structure of the convective systems at high spatial and temporal resolution. The two radars 271 
perform 5 and 9 elevation scans every 5 minutes, respectively, and their data are available at 272 
the HyMeX’s official website (see https://www.hymex.org). Specifically, Aleria radar provides 273 
data at 5 elevation angles: 0.57º, 0.96º, 1.36º, 3.16º and 4.57º with a mean frequency of 2.8 274 
GHz. In comparison, Nimes radar provides data at 9 elevation angles: 0.58º, 1.17º, 1.78º, 2.38º, 275 
3.49º, 4.99º, 6.5º, 7.99º and 89.97º, also at the same frequency. It is worth mentioning that 276 
Aleria and Nimes radar reflectivity data are provided by the Météo-France operational radar 277 
network and undergo rigorous data quality control. This ensures that common radar error 278 
sources, such as signal attenuation, ground clutter or beam blocking, are meticulously identified 279 

 
2 See https://madis.ncep.noaa.gov/madis_qc.shtml for further details on the Quality Control techniques used. 
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and corrected. Radial velocity from Aleria and Nimes Doppler radars was also available, but 280 
because of the low reliability of the data (not quality controlled properly) it was not used in this 281 
study. 282 

Hence, the following observations were assimilated for this event: 283 

● Conventional in-situ data were hourly assimilated over the entire numerical domain 284 
considered (Fig. 3a). 285 

● Reflectivity data from two weather radar from Météo-France were assimilated every 15 286 
minutes (Fig. 3a). 287 

The high spatial resolution of the reflectivity data poses significant challenges for their direct 288 
assimilation, potentially leading to detrimental analysis related with signal aliasing and the 289 
violation of the uncorrelated observational error assumptions followed in the derivation of the 290 
3DVar and EnKF analysis equations. To mitigate the adverse effects associated with these 291 
issues, the Cressman Objective Analysis technique (Cressman, 1959) was used to interpolate 292 
raw radar observations to a regularly spaced 6 km horizontal grid, as suggested by previous 293 
work (i.e., Wheatley et al., 2015; Yussouf et al., 2015). It is important to note that reflectivity 294 
observations are typically obtained in polar coordinates, a prerequisite step before applying the 295 
Cressman interpolation involves converting them to a Cartesian coordinate system. We have 296 
performed several sensitivity tests using different grid space resolution (e.g., 3, 6, 9 km) and 297 
we found that using 6 km grid space produces the best analysis. To reduce spurious convective 298 
signals and remove excessive humidity the null-echo option, which allows assimilation of no 299 
precipitation echoes, has been adopted in 3DVAR experiment. 300 

 301 

302 
Figure 3. (a) IOP13 Episode: Spatial distribution of in-situ observations (gray and black markers) assimilated on 303 
the parent numerical domain during 24 h assimilation window from 00 UTC 14 October to 00 UTC 15 October 304 
2012. Doppler Weather Radars located at Nimes and Aleria and their coverage range, depicted in yellow and red 305 
circles, respectively. (b) Qendresa Episode: Spatial distribution of in-situ observations hourly assimilated during 306 
12 h assimilation window from 12 UTC 6 November to 00 UTC 7 November 2014. 307 

 308 

3.2. Qendresa Observations 309 

For the Qendresa episode, two different observational sources were available: (a) conventional 310 
in-situ observations and (b) satellite-derived observations. Conventional in-situ observations 311 
were obtained from MADIS database. However, only observations from buoys, METAR and 312 
rawinsonde were used for this case. It is essential to highlight that observation gaps persist 313 
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across large areas of the region, particularly over the sea (Fig. 3b), where Qendresa initiated 314 
and evolved. As for the IOP13, we were interested in Doppler Weather Radars data to enhance 315 
the intensity and trajectory forecasts of Qendresa. Unfortunately, Doppler Weather Radars 316 
were not available in the neighborhood  of the region where Qendresa initiated and evolved, 317 
but another source of observations, the so-called Rapid-Scan Atmospheric Motion Vectors 318 
(RSAMVs; Velden et al., 2017), which provides 3D wind information throughout the entire 319 
atmosphere (both speed and direction) at high spatial and temporal resolution (i.e., every 20-320 
min), were available for this event over the sea. This satellite product is obtained using the 321 
Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard the Meteosat 322 
Second Generation (MSG) satellite, which has a scanning frequency as low as 5 minutes. The 323 
final product is indeed obtained averaging 4 consecutive images.  324 

Hence, the following observations were assimilated for this event: 325 

● Conventional in-situ data from buoys, METAR and rawinsonde for the entire 326 
Mediterranean region were hourly assimilated. 327 

● Wind speed and direction from the Rapid-Scan Atmospheric Motion Vectors for the 328 
entire atmosphere at high spatial and temporal resolution were assimilated every 20 329 
minutes. 330 

Recent studies have shown that upper-level dynamics played a key role in the genesis and the 331 
development of Qendresa (Carrió et al., 2017; Carrió, 2022), so the assimilation of RSAMVs 332 
is expected to significantly improve its predictability. Here, the infrared channel from 333 
RSAMVs (10.8	𝜇𝑚), which contains information throughout the entire atmosphere, was 334 
selected to be assimilated (Fig. 4). However, before assimilating RSAMVs, a quality control 335 
check to reject non-physical and outlier observations that could deteriorate the quality of the 336 
analysis and the successive forecast was applied. In addition, to minimize the effect of having 337 
spatial correlated observation errors associated to high density observations, the “superobbing” 338 
technique consisting in reducing the data density through spatially averaging the observations 339 
within a predefined prism is applied (i.e., Pu et al., (2008); Romine et al., (2013); Honda et al., 340 
(2018)). Based on the most accurate analysis obtained by multiple sensitivity experiments (not 341 
shown) for Qendresa, the RSAMVs data are thinned using a prism with horizontal dimensions 342 
of 128x128 km2 and 25 hPa in the vertical dimension. 343 

 344 
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Figure 4. Raw EUMETSAT’s RSAMV observations depicted at different vertical levels by infrared channel 10.8 345 
𝜇𝑚 at 12 UTC on 7 November 2014 over the Mediterranean region. Wind information is only valid at the center 346 
of the wind vectors. 347 

 348 

Observations from aircraft (i.e., ACARS) were not assimilated in this case because preliminary 349 
assimilation tests indicated a worsening of the results and led to a poorer estimation of the 350 
atmospheric state. Buoys, METAR and rawinsonde observations covering the entire 351 
Mediterranean region were hourly assimilated. 352 

Finally, observational errors used for the assimilation of the observations associated with both  353 
IOP13 and Qendresa are motivated by Table 3 in Romine et al., (2013) with the following 354 
minor changes: METAR altimeter (1.5 hPa), marine altimeter (1.20 hPa), METAR and marine 355 
temperature (1.75 K) and RSAMV wind observations (1.4 m s-1). These minor changes are 356 
found to provide better data assimilation analysis for the IOP13 and Qendresa extreme weather 357 
events in the Mediterranean region. The remaining of the observation errors are the same as 358 
the ones in Romine et al., (2013). 359 

 360 

4. Data Assimilation Schemes 361 

In the present study, two widely used data assimilation algorithms are used for improving the 362 
forecast of extreme weather events initiated and developed over poorly observed maritime 363 
regions and affecting densely populated coastal areas. We refer to the Ensemble Adjustment 364 
Kalman Filter and the variational 3DVar data assimilation schemes, which are described 365 
below. 366 

 367 

a) The Ensemble Adjustment Kalman Filter (EnKF) 368 

 369 
The Ensemble Adjustment Kalman Filter (EAKF; Anderson 2001), which is implemented in 370 
the Data Assimilation Testbed Research (DART3), is used in this study as the former ensemble-371 
based data assimilation technique. The EAKF provides an optimal estimation, in the least 372 
square error sense, of the true probability distribution of the state of the atmosphere by merging 373 
two main sources of information: (a) the available observations and (b) an ensemble of 374 
forecasts (a.k.a. background) valid at the analysis time. In particular, the EAKF assimilates the 375 
observations serially. This means that the analysis ensemble obtained by the EAKF after the 376 
assimilation of the first observation at a given time is then used as the background for the next 377 
observation at the same analysis time. This is done recursively until all the observations valid 378 
at the same analysis time are finally assimilated.  379 

 380 
 381 
 382 
 383 

 
3 http://www.image.ucar.edu/DAReS/DART/ 
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In particular, for each observation 𝑗 from a set of 𝑝 observations valid at the same analysis time, 384 
the EAKF can be summarized with the 4 main steps described below: 385 

 386 
Step 1) Obtain the observed value 𝑦!", and the associated observation error variance, 𝑅!! 387 

Step 2) Update the ensemble mean  and ensemble members   of the observed variable 388 
using: 389 

 390 

 391 

 392 

Step 3) Find corresponding analysis ensemble for the observations and model variables using 393 
a linear regression step: 394 

 395 

 396 

Step 4) Let the analysis ensemble become the background ensemble for the next observation: 397 

 398 

In the above equations, K is the number of ensemble members, p the number of observations, 399 
n is the number of model variables, H is the observation operator (non-linear) and Z the 400 
ensemble perturbations about the mean. The superscripts “a” and “f” stand for the analysis and 401 
forecast, respectively. 402 

Ensemble covariances used in high-resolution simulations, such as the present study, where 403 
only a limited number of ensemble members is feasible, suffers from sampling error, resulting 404 
in the generation of spurious correlations that hamper the analysis (Hacker et al., 2007). The 405 
detrimental effects of these spurious correlations are mitigated by employing covariance 406 
localization functions that go to zero as the distance between the assimilated observation and 407 
the grid model point where the analysis occurs, increases (Houtekamer and Mitchell, 1998). In 408 
our case, a fifth-order piece-wise rational Gaussian localization function is used (Gaspari and 409 
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Cohn, 1999). For this study, after several sensitivity simulations it was found that using a half-410 
radius4 of 230 km in the horizontal and a half-radius of 4 km in the vertical for the horizontal 411 
and vertical localizations, respectively, results in the best performance of the DA scheme. 412 

The assimilation of each observation results in a reduction of the ensemble spread, attributed 413 
to using a reduced-moderate ensemble size (Anderson and Anderson, 1999). To address this 414 
issue and help to maintain the spread, an adaptive inflation technique (Anderson and Collins, 415 
2007; Anderson et al., 2009) is applied to the prior ensemble before assimilating the 416 
observations. The adaptive inflation technique increases the spread of the ensemble without 417 
changing the mean. The inflation value has a probability density distribution described by a 418 
mean and a standard deviation. In this study, it was determined that initializing the mean value 419 
of inflation at 1.0 and using a standard deviation of 0.6, yields the best performance of the DA 420 
scheme. 421 

 422 

b) Three-dimensional Variational Data Assimilation (3DVar) 423 

The 3DVar technique, implemented in WRFDA (Barker et al., 2004), is adopted for the 424 
numerical simulations. The 3DVar aims to seek the best estimate of the initial conditions 425 
through the iterative minimization of a cost function: 426 

 427 

where B and R are the background and observation error matrices, respectively; x is the state 428 
vector;  is the observations,  is the first guess and H is the forward (non-linear) operator 429 
that converts data from model space to observation space. 430 

The solution of the above cost function J consists in finding a state xa (analysis), that minimizes 431 
the distance between the observations and the background field. However, in a model with 106 432 
degrees of freedom, the direct solution is computationally expensive. To reduce the complexity 433 
and calculate B-1 more efficiently, a pre-conditioning is applied by transforming the control 434 
variables, respectively, pseudo relative humidity, temperature, u, v, and surface pressure, as x 435 
− xb = 𝗨v, where v is the control variable and U the transformation operator. 436 

Regarding the assimilation of radar reflectivity, the observation operator from Sun and Crook 437 
(1997) is adopted: 438 

 439 

where Z is the reflectivity, 𝑞# is the rainwater mixing ratio, ρ the air density whereas the 440 
coefficients a and b are equal to 43.1 and 17.5, respectively. 441 
 442 
The background error covariance matrix B matrix plays a key role in the assimilation process 443 
by weighing and smoothing the information from observations and by ensuring a proper 444 
balance between the analysis fields. The National Meteorological Center method (NMC; 445 
Parrish and Derber, 1992) was used to model the B matrix. This method evaluates the 446 

 
4 The half-radius or cutoff term is defined here as 0.5 times the distance to where the impact of the observation 
assimilated go to zero. Multiplying the half-radius by 2 results in the maximum distance at which an observation 
can modify the model state. 
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differences, over a period of two weeks, between two short-term forecasts valid at the same 447 
time but with different lead time, 12h and 24h, respectively, to generate the forecast error 448 
covariance matrix B. Recently, several works (Wang et al., 2013; Li et al., 2016; Shen et al., 449 
2022; Ferrer Hernandez et al., 2022) show the benefit of using a slightly different approach for 450 
the B matrix (CV7) in assimilating radar reflectivity, besides in precipitation forecast accuracy. 451 
The CV7 differs from the others by using empirical orthogonal functions (EOFs) to represent 452 
the vertical covariance instead of a vertical recursive filter. Moreover, the control variables are 453 
in eigenvector space, and they are the following: u, v, temperature, pseudo relative humidity 454 
(RHs), and surface pressure (Ps). Therefore, CV7 option has been used to generate the B matrix 455 
for both case studies. In this study, the weak penalty constraint (WPEC) option (Li et al., 2015) 456 
implemented in WRFDA has been activated to improve the balance between the wind and 457 
thermodynamic state variables, enforcing the quasi-gradient balance on the analysis field. 458 

 459 

5. Model set-up 460 

The mesoscale Advanced Research Weather Research and Forecasting Model (WRF; 461 
Skamarock et al., 2008) version 3.7 is used in this study. WRF solves a fully compressible and 462 
non-hydrostatic set of equations, using a 𝜂 terrain-following hydrostatic-pressure vertical 463 
coordinate. The Arakawa C-grid staggering scheme and a third-order Runge-Kutta time-464 
integration, to improve the precision of the numerical solutions, are used. Because IOP13 and 465 
Qendresa episodes took place in different locations and with different conditions, two different 466 
model configurations were used. For the IOP13 episode, a one-way nested model configuration 467 
with the parent domain centered over the Western Mediterranean Sea, covering Central Europe 468 
and North Africa, with a horizontal grid-resolution of 15 km (168x247) and a nested domain 469 
centered over Gulf of Genoa with a horizontal grid-resolution of 3 km (250x250) were used 470 
(Fig. 5a). Both domains were characterized to have 51 vertical model levels, from surface to 471 
50 hPa, with higher density of levels in the lower part of the atmosphere than in the upper. For 472 
Qendresa, a two one-way nested model configuration is also used, but now the parent domain 473 
is centered over the Central Mediterranean Sea, covering most of the European region and the 474 
northern part of Africa (Fig. 5b), using a horizontal grid resolution of 15 km (245x245). The 475 
nested domain is centered over Sicily (Southern Italy) using a grid resolution of 3 km 476 
(253x253). Both numerical domains use a 51 terrain-following 𝜂 levels up to 50 hPa, as in the 477 
IOP13 case.  478 

For the EnKF DA experiments, initial and boundary conditions used to perform the simulations 479 
associated with IOP13 were obtained from the European Center of Medium Range Weather 480 
Forecasts Global Ensemble Prediction System (EPS-ECMWF), which stored meteorological 481 
fields using a horizontal and vertical spectral triangular truncation of T639L62 (i.e., ~32 km 482 
grid resolution in the horizontal). In particular, the EPS-ECMWF provides 51 different initial 483 
and boundary conditions from 50 perturbed ensemble members plus a control simulation. 484 
However, due to unfeasible computational resources required to run our numerical simulations 485 
at high grid resolution, here we will use an ensemble consisting of 36 members. This 486 
configuration is analogous to the one used at the internationally prestigious National Oceanic 487 
and Atmospheric Administration - National Severe Storms Laboratory (NOAA-NSSL) in 488 
Norman (Oklahoma, USA) to improve predictability of tornadoes. To obtain the desired 36-489 
member ensemble, a Principal Components Analysis and K-mean clustering technique were 490 
used together to select the 36 ensemble members from the EPS-ECMWF showing more 491 
dispersion over the entire numerical domain (see Garcies and Homar, 2009 and Carrió et al., 492 
2016 for more details using these techniques). To perform Qendresa DA simulations, the initial 493 
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and boundary conditions were obtained following the same methodology explained above for 494 
the IOP13 case, i.e., using an ensemble of 36 members obtained from the EPS-ECMWF. On 495 
the other hand, the initial and boundary conditions for 3DVar simulations are provided by the 496 
Integrated Forecast System (IFS) global model from the ECMWF, with a spatial resolution of 497 
0.1° x 0.1° and updated every 3 hours. 498 

499 
Figure 5. Mesoscale and storm-scale numerical domains used in this study for the (a) IOP13 and (b) Qendresa 500 
episodes, respectively. 501 
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 502 

To estimate the uncertainties of WRF, which is a necessary information for the EnKF, a 503 
multiphysics ensemble is built for both the IOP13 and Qendresa event (e.g., Stensrud et al., 504 
(2000); Wheatley et al., (2012)), where each ensemble member gets a different set of 505 
parameterizations (see Table 1). In particular, the diversity in our ensemble consists of (a) two 506 
short- and long-wave radiation schemes [Dudhia (Dudhia, 1989) and RRTMG (Iacono et al., 507 
2008)], (b) three cumulus parameterizations schemes [Kain-Fritsch (KF; Kain and Fritsch, 508 
1993; Kain, 2004), Tiedtke (Tiedtke, 1989) and Grell-Freitas (GF; Grell and Freitas, 2013)] 509 
and (c) three planetary boundary layer schemes [Yonsei University (YSU; Hong et al., 2006), 510 
Mellor-Yamada-Janjic (MYJ; Janjic, 1990, 2001), and Mellor-Yamada-Nakanishi-Niino level 511 
2.5 (MYNN2; Nakanishi and Niño, 2006, 2009)]. Two widely used physics parameterizations 512 
are adopted for the microphysical processes and land surface interactions, the New Thompson 513 
(Thompson et al., 2008) and Noah (Tewari et al., 2004) schemes, respectively. Note that the 514 
above-mentioned physical parameterizations are used for both the large-scale ensemble in the 515 
parent domain and the storm-scale ensemble in the nested domain, except for the cumulus 516 
parameterization that is only applied in the parent domain ensemble. On the other hand, for the 517 
WRF deterministic simulation using 3DVar, the microphysical processes are parametrized by 518 
using the New Thompson scheme, while a YSU scheme is adopted for PBL. Long- and short-519 
wave radiation are considered through a RRTMG and Dudhia scheme, respectively; while 520 
Kain-Fritsch scheme is used for the convection, except for the inner domain where it is 521 
explicitly resolved. 522 

 523 

Table 1: Multiphysics parameterizations used to generate the 36-member ensemble for the EnKF experiments in 524 
IOP13 and Qendresa episodes. PBL, SW and LW stand for planetary boundary layer, short-wave and long-wave, 525 
respectively. 526 

Multiphysic Configuration 

Ens. 
Memb. MP CU PBL Land 

Sfc 
SW/LW 

Rad. 
Ens. 

Memb. MP CU PBL Land 
Sfc 

SW/LW 
Rad.  

1 New 
Thompson KF YSU Noah Dudhia 19 New 

Thompson KF YSU Noah Dudhia 

2 New 
Thompson KF YSU Noah RRTMG 20 New 

Thompson KF YSU Noah RRTMG 

3 New 
Thompson KF MYJ Noah Dudhia 21 New 

Thompson KF MYJ Noah Dudhia 

4 New 
Thompson KF MYJ Noah RRTMG 22 New 

Thompson KF MYJ Noah RRTMG 

5 New 
Thompson KF MYNN2 Noah Dudhia 23 New 

Thompson KF MYNN2 Noah Dudhia 

6 New 
Thompson KF MYNN2 Noah RRTMG 24 New 

Thompson KF MYNN2 Noah RRTMG 

7 New 
Thompson GF YSU Noah Dudhia 25 New 

Thompson GF YSU Noah Dudhia 

8 New 
Thompson GF YSU Noah RRTMG 26 New 

Thompson GF YSU Noah RRTMG 

9 New 
Thompson GF MYJ Noah Dudhia 27 New 

Thompson GF MYJ Noah Dudhia 
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10 New 
Thompson GF MYJ Noah RRTMG 28 New 

Thompson GF MYJ Noah RRTMG 

11 New 
Thompson GF MYNN2 Noah Dudhia 29 New 

Thompson GF MYNN2 Noah Dudhia 

12 New 
Thompson GF MYNN2 Noah RRTMG 30 New 

Thompson GF MYNN2 Noah RRTMG 

13 New 
Thompson Tiedke YSU Noah Dudhia 31 New 

Thompson Tiedke YSU Noah Dudhia 

14 New 
Thompson Tiedke YSU Noah RRTMG 32 New 

Thompson Tiedke YSU Noah RRTMG 

15 New 
Thompson Tiedke MYJ Noah Dudhia 33 New 

Thompson Tiedke MYJ Noah Dudhia 

16 New 
Thompson Tiedke MYJ Noah RRTMG 34 New 

Thompson Tiedke MYJ Noah RRTMG 

17 New 
Thompson Tiedke MYNN2 Noah Dudhia 35 New 

Thompson Tiedke MYNN2 Noah Dudhia 

18 New 
Thompson Tiedke MYNN2 Noah RRTMG 36 New 

Thompson Tiedke MYNN2 Noah RRTMG 

 527 

6. Design of IOP13 and Qendresa Experiments 528 

To quantitatively assess the benefits of assimilating different types of observations using the 529 
3DVar and the EnKF DA schemes, a few numerical experiments are performed. A reference 530 
experiment without any data assimilation is carried out. Then, several numerical experiments 531 
using different types of observations for the assimilation are performed. Only conventional in-532 
situ observations are assimilated using the 3DVar and the EnKF, for the first set of experiments. 533 
All available observations (i.e., conventional, radar based and satellite derived data) are 534 
assimilated using both 3DVar and EnKF, for the second type of experiments. The comparison 535 
between these numerical experiments will provide information on which DA scheme and 536 
observation is performing better for these weather events. The DA experiments mainly consist 537 
of two phases: the first one is related to the data assimilation procedure, where different types 538 
of observations are assimilated by the variational 3DVar and the ensemble-based EnKF DA 539 
schemes; the second phase is associated with the free model run initialized using the initial 540 
conditions obtained during the first phase. The total forecast time is 24 h and 36 h for IOP13 541 
and Qendresa, respectively. For IOP13, a further simulation lasting 6-hour from 18 UTC 13 542 
October to 00 UTC 14 October 2012 (Carrió et al., 2019) is performed (Fig. 6) to reduce spin-543 
up problems related to the direct downscaling from global ECMWF analysis (32 km grid 544 
resolution) to the WRF parent domain used in our simulations (16 km grid resolution). This 545 
procedure improved the DA for IOP13, but it had a small impact for Qendresa. 546 

Therefore, the following model simulations were performed: 547 

● No Data Assimilation (NODA) 548 

● Only conventional in-situ observations are assimilated using the 3DVar and the EnKF 549 
(SYN) 550 

● All available observations (i.e., conventional, radar based and satellite derived data) are 551 
assimilated using both 3DVar and EnKF (CNTRL) 552 
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The comparison between SYN and CNTRL will allow for assessing the role of radar and/or 553 
satellite data, especially for the events originated in the area where observations are not 554 
available. Moreover, the assimilation of the radar and/or satellite will produce important 555 
information on the triggering phase of both events developing on the sea. 556 

 557 

6.1. CNTRL Experiments 558 

For IOP13, the CNTRL experiment is designed to assimilate both in-situ conventional and 559 
reflectivity observations from Aleria and Nimes Doppler weather radars. The assimilation of 560 
the reflectivity is expected to improve the forecast of this event by significantly improving the 561 
initial conditions over the sea, where convective activity initiated and evolved into deep 562 
convection affecting coastal populated areas of Italy. As briefly described in the previous 563 
section, this experiment consists of three stages: 1) the spin-up of the storm-scale domain is 564 
accounted for by running the WRF model during 6 hours from 18 UTC 13 October to 00 UTC 565 
14 October 2021. Note that for the 3DVar experiment, the spin-up is accounted by just 566 
initializing WRF with the deterministic analysis from the IFS ECMWF. However, for the EnKF 567 
counterpart, the spin-up is accounted by initializing the 36-member ensemble at 18 UTC 13 568 
October; 2) in-situ conventional observations were hourly assimilated during 24 hours from 00 569 
UTC 14 October to 00 UTC 15 October, meanwhile reflectivity observations were assimilated 570 
using a Rapid-Update Assimilation Cycle every 15 minutes during a period of 6 hours, from 571 
18 UTC 14 October to 00 UTC 15 October (Fig. 6b); and 3) a 24-h ensemble (deterministic) 572 
forecast until 00 UTC 16 October, using the recently obtained initial conditions, is performed 573 
by the EnKF (3DVar). 574 

For the Qendresa episode, CNTRL experiment is designed to assimilate both in-situ 575 
conventional and RSAMV observations. The assimilation of RSAMV observations is expected 576 
to improve the representation of the atmospheric circulation at upper-levels, whereas the 577 
assimilation of surface conventional observations is expected to enhance the one at low-levels. 578 
The Qendresa CNTRL experiment consists of two main phases: 1) in-situ conventional and 579 
satellite derived RSAMV observations are hourly and 20-min assimilated, respectively, during 580 
a 12-h period from 12 UTC 6 November to 00 UTC 7 November 2014 to end up with the last 581 
analysis at the end of the assimilation window (i.e., 00 UTC 7 November); 2) a free 36-h 582 
ensemble (deterministic) forecast is performed by the EnKF (3DVar) from 00 UTC 7 583 
November to 12 UTC 8 November 2014 (Fig. 6e). 584 

 585 

6.2. SYN Experiments 586 

For IOP13, the SYN experiment assesses the impact of in-situ conventional observations, 587 
which are crucial to characterize mesoscale atmospheric circulation. Analogous to the CNTRL, 588 
SYN follows the same three phases, but in the second phase only the hourly in-situ 589 
conventional observations from 00 UTC 14 October to 00 UTC 15 October 2012 are 590 
assimilated. The analysis obtained from the assimilation stage is used as initial conditions for 591 
running the free forecast for 24h, in the third phase (Fig. 6a).  592 

Similarly, also for Qendresa, in the SYN experiment only in-situ conventional observations are 593 
hourly assimilated for 12 hours, from 12 UTC 6 November to 00 UTC 7 November 2014 (Fig. 594 
6d). 595 

 596 
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 597 

6.3. NODA Experiments 598 

For the IOP13, NODA experiment is a direct downscaling from EPS-ECMWF boundary and 599 
initial conditions valid at 00 UTC 15 October to 00 UTC 16 October 2012. To the aim of 600 
simulating an operational framework, the NODA experiment starts at 00 UTC 15 October, 601 
instead of starting at 18 UTC 14 October (Fig. 6c). With this choice of the starting time, one 602 
could answer the question of which forecast system we should use to predict a 24-48 h forecast. 603 
Should we simply perform a simple downscaling using the last analysis obtained from a global 604 
model, or should we start our simulation with a previous analysis but now using DA at high 605 
temporal and spatial resolution to enhance the estimation of the initial conditions? The 606 
comparison among NODA, CNTRL and SYN will provide us with valuable information on the 607 
impact of assimilating different sources of observations. 608 

For Qendresa, NODA experiment is simply a direct downscaling of 36 hours from EPS-609 
ECMWF at 00 UTC 7 November to 12 UTC 8 November 2014 (Fig. 6f). Here again, it is 610 
important to note that the choice of starting NODA at 00 UTC 7 November instead of starting 611 
at 12 UTC 6 November was made intentionally to extract general conclusions applicable to an 612 
operational framework. 613 

 614 
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 615 

Figure 6. Schematic representation of the main numerical experiments performed in this study for the IOP13 and 616 
Qendresa episodes, respectively. SYN, CNTRL and NODA experiments for the IOP13 are shown in (a), (b) and 617 
(c) panels, respectively, meanwhile the ones corresponding to Qendresa are shown in (d), (e) and (f), respectively. 618 

 619 

7. Verification Methods 620 

To quantitatively evaluate the performance of the EnKF and the 3DVar and their impact on the 621 
short-term forecasting of these two extreme weather events, various verification scores are 622 
used. Given the different nature of the weather phenomena associated with these episodes, the 623 
selection of verification scores is tailored specifically to each event. For the IOP13 heavy 624 
precipitation event (Fig. 7a), the model verification was performed using the observed 625 
accumulated precipitation field over different time windows (e.g., 3 hours, 6 hours or 9 hours). 626 
More specifically, the accumulated precipitation was computed using observations from the 627 
Italian Department of Civil Protection. However, the spatial distribution of rain gauges is not 628 
homogenous and there are regions where a lack of rain gauges is present. To address these 629 
issues, three sub-regions are chosen where the heavy precipitation event was well recorded by 630 
the weather stations (see R1, R2 and R3 in Fig. 7b). Conversely, for the Qendresa tropical-like 631 
cyclone, a limited number of in-situ observations were present since it initiated and moved over 632 
the sea during its lifecycle, and radar-data were not available. Consequently, IR satellite 633 
imagery was the primary source of data to approximately estimate Qendresa’s trajectory (Fig. 634 
7c). Regarding the intensity of Qendresa, since the cyclone’s center passed over Malta island, 635 
reaching its minimum mean sea level pressure (MSLP) of 985 hPa, METAR data from Malta’s 636 
airport was also used to verify the cyclone’s intensity (Fig. 7d). 637 

 638 
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639 
Figure 7. (a) Example of the 12-h accumulated precipitation estimated values and their spatial distribution from 640 
the Italian Department of Civil Protection rain gauges. (b) Linear interpolation of 12-h accumulated precipitation 641 
values into the three target areas where verification has been performed. (c) Observed track of Qendresa medicane 642 
viewed from infrared satellite imagery. (d) Surface pressure (hPa) data obtained from the METAR station at 643 
Malta’s airport. 644 

 645 

To quantitatively assess the short-term (i.e., first 6-9 hours) precipitation forecast for the IOP13 646 
initialized using the analysis from the 3DVar and EnKF DA techniques, the Filtering Method, 647 
the Relative Operating Characteristics (ROC; Mason, 1982; Stanski et al., 1989; Swets, 1973) 648 
and the Taylor Diagrams (Taylor, 2001) were used. We avoid using the conventional point-649 
by-point approach, which has been shown to have serious limitations in the evaluation of high-650 
grid spatial and temporal precipitation field resolutions (Roberts, 2003). More specifically, as 651 
Filtering Method we use the Fraction Skill Score (FSS; Roberts and Lean, 2008), which is 652 
commonly used to quantitatively assess precipitation. A preliminary interpolation of the 653 
forecast and the observations onto a common regular mesh of 3 km is performed to compute 654 
FSS. Then the comparison is carried out within a region of 3x3 grid cells around each grid cell. 655 
The FSS can be used to determine the scale over which a forecast system has sufficient skill 656 
(Mittermaier, 2010). The FSS ranges from 0 to 1, being 1 a perfect match between model and 657 
observations.  In addition to the ROC curves, the Area Under the ROC Curve (AUC; Stanski 658 
et al., 1989; Schwartz et al., 2010), which is also widely used to quantitatively assess the quality 659 
of weather forecasts, will be also used in this study. For a perfect forecast, AUC is equal to 1. 660 

For Qendresa, the Whisker diagrams (Tukey, 1977) and the Probability Distribution of the 661 
Cyclone Center Occurrence (PCCO), which was based on the Kernel Density Estimation 662 
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(KDE; Bowman and Azzalini, 1997; Scott, 2015; Silverman, 2018), were used to validate the 663 
simulations. More specifically, the KDE is used to compute the probability of having the center 664 
of the cyclone over the entire numerical domain. The main idea behind KDE is to place a 665 
“kernel” (i.e., a probability distribution function) at each data point, and then sum up the kernels 666 
to estimate the overall probability density function. The kernel is typically chosen to be a 667 
smooth function, such as a Gaussian, that decays to zero as the distance from the data point 668 
increases. The width of the kernel is controlled by a parameter called the bandwidth, which it 669 
turns out to be one of the limitations of the KDE technique. In this case, we found that the 670 
optimal bandwidth is 20 km, which is within the meso 𝛽 scale, i.e. a typical length scale for 671 
convective cells. Here, a 2-dimensional KDE will be applied over each cyclone center (lat, lon 672 
coordinates) identified for the different simulations (i.e., EnKF vs 3DVar). In this way, we will 673 
infer the most probable track of Qendresa for the different simulations, thereby identifying 674 
which is the best DA technique and which provides better estimations of Qendresa medicane’s 675 
track.   676 

 677 

8. Results  678 

To quantitatively estimate the impact on the short-range forecast from assimilating the different 679 
types of observations considered in this study, using the 3DVar and the EnKF, the 680 
abovementioned verification techniques were applied for the two extreme events. Because of 681 
the differences in their features, we used the Filtering method, the Relative Operating 682 
Characteristics (ROC) and Area Under the ROC curve and the Taylor diagrams for IOP13, 683 
and the Whisker diagrams and the Probability Distribution of Cyclone Center Occurrence for 684 
Qendresa. The results are described in the following subsections. 685 

 686 

8.1. Statistical analysis: IOP13 Episode 687 

Because IOP13 was a heavy rainfall episode, to quantitatively assess the impact on the short-688 
range forecasts from assimilating both in-situ conventional and reflectivity observations from 689 
Doppler weather radars using the 3DVar and the EnKF DA algorithms, the accumulated 690 
precipitation field will be used here.  691 

 692 

8.1.1. Filtering Method 693 

The FSS associated with the accumulated precipitation field is computed independently for the 694 
three sub-regions R1, R2 and R3 highlighted in Fig. 7b, where the density of observation was 695 
higher, using as threshold 1 mm·h-1. In general, the comparison in terms of FSS (Fig. 8 a-c) 696 
shows that EnKF outperforms 3DVar during the first 7 hours of free forecast in the three sub-697 
regions. As it was expected, the CNTRL experiments for both the EnKF and 3DVar outperform 698 
the SYN experiments, where reflectivity observations were not considered. Moreover, Fig. 8a 699 
shows that the 3DVar-CNTRL provides the worst scores, except for the first few hours of 700 
simulation where 3DVar-CNTRL performs better than 3DVar-SYN. This is because the 701 
information ingested from the radar using the 3DVar in that region is lasting no longer than 2 702 
hours. Something similar happens with the EnKF after 4 hours. These results would agree with 703 
past studies, showing similar behaviors (Carrió et al., 2016; Carrió et al., 2019). 704 

 705 
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706 
Figure 8. Upper panels: Evolution of the FSS during the first 7 hours of free forecast in the Italian sub-regions (a) 707 
R1, (b) R2 and (c) R3, using a threshold > 1 mm·h-1. Lower panels: Evolution of the RMSE during the first 24 708 
hours of free forecast in the sub-regions (d) R1, (e) R2 and (f) R3. Simulations assimilating both conventional and 709 
radar observations (CNTRL) and simulations assimilating only conventional observations (SYN) associated with 710 
the 3DVar and the EnKF are shown here. 711 

 712 

In addition to the FSS, we also compute the typical and widely used root-mean-squared-error 713 
(RMSE) on the precipitation field for the first 24 hours for both EnKF and 3DVar simulations. 714 
In general, the EnKF provides the lowest (best) RMSE scores, with respect to 3DVar. Also, 715 
note that the impact of the assimilation of reflectivity observations does not last more than 4-6 716 
hours, in accordance with past studies. 717 

8.1.2. ROC and AUC 718 

To strengthen how skillful are the different simulations performed by the 3DVar and the EnKF, 719 
the Receiver Operating Characteristic (ROC) curve is used. The probability of exceeding a 720 
given threshold is computed and verified against dichotomous observations. The ROC curve is 721 
computed as follows: the model variable is interpolated to the observation locations and if the 722 
model variable exceeds a given threshold, that model grid point is assigned a value of 1. On 723 
the contrary, if the model value does not exceed that threshold, the assigned value is 0. The 724 
same method is applied for the observations. Then, using these dichotomous values, the Hit 725 
Rate and False Alarm scores are computed. This process is repeated, varying the threshold 726 
value. Gathering the Hit Rate and False Alarm scores for the different thresholds, we obtain 727 
the ROC curve. For the 3DVar, we get the Hit Rate and False Alarm scores by simply 728 
interpolating the model values to the observation locations and apply the threshold criteria 729 
explained above. In the case of the EnKF, the ensemble mean is used as the field to be 730 
interpolated to the observation locations. The area under the ROC curve (AUC), which 731 
measures the ability of the system to discriminate between the occurrence or nonoccurence of 732 
the event, is also computed.  733 

For the sake of brevity and because the results from the three sub-regions are similar, the ROC 734 
and the area under the ROC curve are computed, accounting for all the observations within the 735 
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inner numerical domain. Specifically, to compute the ROC curves, we use the 3-hour (from 00 736 
UTC - 03 UTC 15 Oct) and 6-hour (from 00 UTC - 06 UTC 15 Oct) accumulated precipitation 737 
fields from the numerical model and the observed values registered by the rain gauges, using 1 738 
mm and 10 mm as thresholds (Fig. 9). 739 

Results show that EnKF clearly outperforms 3DVar for the different accumulated precipitation 740 
rates and thresholds, depicting larger values of AUCs. An even bigger improvement is obtained 741 
using a larger threshold (i.e., bottom row of Fig. 9) for EnKF, where the benefits of assimilating 742 
radar observations are noticeable, in comparison with 3DVar. To better understand this result, 743 
we inspected in more detail the 1-h and 6-h accumulated precipitation fields obtained from the 744 
EnKF (CNTRL) and the 3DVar (CNTRL) and we compared those fields against the 745 
corresponding observations (see Fig. A1 in the Appendix). The 1-h accumulated precipitation 746 
(first row, Fig. A1) shows that the EnKF is localizing with high accuracy the regions where the 747 
most intense precipitation was observed, that is near Tuscany and northern Italy. Also, 3DVar 748 
correctly reproduces the rainfall in the regions affected by observed precipitation, although the 749 
maximum amounts are centered over Liguria, instead of near Tuscany. In addition, the 3DVar 750 
is also showing a tongue area of weak precipitation from Liguria to northern Italy, that does 751 
not fit with the observations. Hence, although there are some differences between 3DVar and 752 
EnKF for the 1-h accumulated precipitation field, because the accumulated precipitation values 753 
are small, the ROC verification scores from the EnKF and 3DVar do not differ significantly. 754 
However, in the case of the 6-h accumulated precipitation (second row, Fig. A1), the 3DVar 755 
produces higher values of accumulated precipitation near Liguria, Tuscany and northern Italy 756 
than the observed ones. Moreover, 3DVar is also misplacing the locations of the precipitation 757 
for some places. On the contrary, the EnKF can (a) locate with enough accuracy the regions 758 
where the accumulated precipitation was actually observed, (b) properly estimate the observed 759 
intensity and (c) avoid spatial errors associated with the location where the precipitation was 760 
produced. This is why ROC for the 6-hour accumulated precipitation obtained from the EnKF 761 
produced a much better score than the 3DVar. We hypothesize that this difference could be 762 
associated with the static/climatological background error covariance matrix used by the 763 
3DVar. Because of the fast changes in the flow associated with the IOP13 case, using a 764 
climatological background error covariance could not be as good as using a flow-dependent 765 
background error covariance matrix, which is used in the EnKF.  766 
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767 
Figure 9. ROC curves and AUC associated with the 3DVar (red colors) and EnKF (blue colors) for the 3-hour 768 
accumulated precipitation using (a) 1 mm and (b) 10 mm threshold and 6-hour accumulated precipitation using 769 
(c) 1 mm and (d) 10 mm threshold, computed over the entire inner domain. 770 

 771 

8.1.3. Taylor Diagrams 772 

To strengthen the comparison of the DA schemes, the Taylor Diagram is used. This tool 773 
provides us with extra information about the skill of each ensemble member in the case of the 774 
EnKF. Here, we compute the Taylor diagram over the 6-hour accumulated precipitation field, 775 
which is the range where the observations assimilated have more impact on the forecast. 776 
Results show that the 3DVar and the ensemble mean of the EnKF provide similar results, with 777 
similar correlations (0.50-0.61), similar root mean squared error and standard deviation that are 778 
distributed symmetrically about the observation value, with the 3DVar overestimating the 779 
standard deviation and the EnKF underestimating it (Fig. 10). However, if we consider each 780 
ensemble member, we can observe that there is a cluster of the ensemble members of the EnKF 781 
that provide better scores than the 3DVar. Although the difference between the EnKF and the 782 
3DVar in this case is small, we can point out that the EnKF provides additional information 783 
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from their individual ensemble members. For instance, the individual ensemble members 784 
showing higher correlation and standard deviation similar to the observations for this study are 785 
the ones using Grell-Freitas cumulus parameterization in combination with the Yonsei 786 
University planetary boundary layer scheme. Ensemble members associated with the lower 787 
scores are those using Kain-Fritsch for the cumulus parameterization and the Mellor-Yamada-788 
Janjic for the planetary boundary layer scheme. 789 

 790 

 791 

Figure 10. Taylor diagram performed by the 3DVar (reds) and EnKF (blues) for the 6-hour accumulated 792 
precipitation valid at 06 UTC 15 October 2012. 793 

 794 

8.2. Statistical analysis: Qendresa event  795 

Typically, two key factors are investigated for Tropical cyclone forecasts: (a) the intensity and 796 
(b) the trajectory followed by the cyclone. Therefore, to assess the impact of assimilating both 797 
in-situ conventional and remote RSAMV observations using the 3DVar and the EnKF, these 798 
two factors are considered.  799 

 800 

 801 

 802 

 803 
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8.2.1. Whisker Diagrams 804 

For this event, the lack of in-situ observations over maritime regions poses a main challenge to 805 
properly verify the triggering and intensification of cyclones. Fortunately, the Qendresa 806 
medicane crossed just over Malta island, where a pressure drop greater than 20 hPa in 6 h, was 807 
registered by METARs at Malta airport, reaching a minimum of surface pressure of 985 hPa. 808 
Therefore, this METAR is used to quantitatively assess the skill of the different DA 809 
simulations. To compare the surface pressure registered at Malta with the different simulations, 810 
the full cyclone trajectory is used, and the grid point closest to Malta airport is selected. Finally, 811 
the surface pressure time series associated with that model grid point is compared with the 812 
values registered at Malta airport. Specifically, the surface pressure time series measured by 813 
METAR is compared with the different DA simulations from 3DVar and EnKF, such as the 814 
3DVar_SYN, 3DVar_CNTRL, EnKF_SYN, and the EnKF_CNTRL (Fig. 11). 815 

 816 

817 
Figure 11. Temporal surface pressure evolution at the closes grid point to Malta for the (a) SYN and (b) CNTRL 818 
experiments associated with the EnKF (blue lines) and 3DVar (red lines), compared to the observed surface 819 
pressure registered by METARs in Malta’s airport (black line). 820 

 821 

Results from the assimilation of in-situ conventional observations show that the ensemble mean 822 
of the EnKF_SYN accurately fits the observations during the first hours of the forecast, from 823 
00 UTC to 13 UTC 7 November (Fig. 11a), performing slightly better than 3DVAR_SYN. 824 
However, during the intensification phase, the ensemble mean of the EnKF_SYN barely shows 825 
the intensification of Qendresa, reaching minimum MSLP values of 1002 hPa. On the contrary, 826 
the 3DVar_SYN simulation depicts the intensification of the medicane, by deepening the 827 
MSLP and reaching values of 992 hPa, although a time shift of 3 hours is found (i.e., 15 UTC 828 
7 November) (Fig. 11a). Finally, during the dissipation phase of Qendresa, the ensemble mean 829 
of EnKF_SYN is performing a bit better than the 3DVar_SYN (Fig. 11a). This interesting 830 
result clearly shows a limitation of the EnKF when applied to low-predictable weather events, 831 
such as Qendresa. The low predictability and the high sensitivity to the different physical 832 
parameterization schemes used for the forecast of this kind of event, lead to a very different 833 
behavior of each ensemble member. Consequently, some members could completely fail in the 834 
prediction of the weather event. In this situation, our small-to-moderate ensemble will probably 835 
produce a poor flow-dependent background error covariance matrix, which is key in DA, 836 
resulting in an analysis ensemble with large spread, for which ensemble mean will be smoothed 837 
out significantly. On the other hand, in such situations, we could think of using a 838 
climatological/static background error covariance matrix, as the one used in the 3DVar. If this 839 
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climatological background error covariance matrix is obtained with a large enough statistical 840 
sample, it could produce much better results than using the flow-dependent background error 841 
covariance computed with ensemble members that are not accurate enough, as we see in Fig. 842 
11a when we compared the 3DVar (red line) with the EnKF ensemble mean analysis (blue 843 
line). Also, it is important to note that although the ensemble mean of the EnKF_SYN is not 844 
correctly reproducing the intensification of Qendresa, some of the ensemble members 845 
accurately reproduce the observed MSLP both in deepening and timing. This suggests that 846 
using an ensemble system, even having the above-mentioned problems, is still more useful than 847 
using only a fully deterministic system such as the 3DVar, which cannot provide information 848 
about the uncertainties of the system. Therefore, we can speculate that for extreme weather 849 
events with low numerical predictability, a better approach could be using a Hybrid error 850 
covariance model, where the forecast error covariance matrix is obtained linearly combining 851 
ensemble-based covariance with static climatological error covariances (Hamill and Snyder 852 
(2000); Lorenc (2003); Clayton et al., 2013; Carrió et al., 2021). The impact of using hybrid 853 
DA to improve this kind of small-scale extreme weather events could be of great interest in the 854 
weather forecast community, although it is beyond the scope of this study. For this reason, the 855 
authors leave as future work the benefits of using hybrid error covariance models to improve 856 
the forecast of extreme weather events in the Mediterranean basin. 857 

Then, we evaluated the impact of assimilating both in-situ conventional and RSAMV 858 
observations in the improvement of Qendresa intensity forecast. In this case, the results show 859 
large similarities with the assimilation of only in-situ observations (Fig. 11b). In terms of the 860 
3DVar, the MSLP signature is basically the same, without showing a clear signal of 861 
improvement or diminishing, suggesting that the assimilation of RSAMVs is not enough to 862 
significantly improve the low level relevant dynamical structures associated with the genesis 863 
and intensification of Qendresa. However, in terms of the EnKF a clear improvement for a few 864 
members is found, even if it is not affecting the mean value. Indeed, some of the ensemble 865 
members depicting an intense cyclone far from the time when it was observed (approx. at 18 866 
UTC 7 November), were corrected reducing spurious cyclones and the deepening of at least 867 
one ensemble member close to the observed value (Fig. 11b). It can be observed that in the 868 
EnKF_CNTRL, there are more ensemble members depicting a deep cyclone at the observed 869 
time than in the case of the EnKF_SYN, showing the benefits of assimilating RSAMVs to 870 
improve the intensification estimation of Qendresa. 871 

To quantitatively assess the performance of the different DA experiments, we use the lagged 872 
correlation technique computed between the model MSLP signatures and the observations. 873 
This technique allows us to measure how the shape of the surface pressure evolution obtained 874 
from the different simulations fits the shape of the observed MSLP, taking also into account 875 
temporal shifting. The correlation is computed for the deterministic 3DVar, and for each 876 
ensemble member from the EnKF. These results are shown using Whisker plots (Fig. 12). 877 
Notice that a correlation of one means that the specific model field has the same ‘V’ pressure 878 
shape evolution as the observation, and that the minimum for both is found at the same time. 879 
For the 3DVar_SYN, the correlation is maximum and approximately equal to one when 1-hour 880 
delay is applied to forecasts (Fig. 12a). Whiskers from EnKF_SYN show that none of the 881 
ensemble members overcomes the maximum correlation value found in 3DVar_SYN. 882 
However, when the assimilation of RSAMVs is added to the in-situ conventional observations, 883 
it is found that the maximum correlation value associated with 3DVar_CNTRL using 2h of 884 
delay applied to the forecasts, is surpassed by some of the ensemble members of the 885 
EnKF_CNTRL, when a 3 or 4 hour of delay is applied (Fig. 12b). 886 
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887 
Figure 12. Whisker plots depicting the lagged correlation values between the observations and the EnKF (blue 888 
boxes) and the 3DVar (red stars) for the (a) SYN and (b) CNTRL experiments. The correlation is computed 889 
considering that the observed V-shape pressure signature associated with the observations is shifted 4 hours to the 890 
left and 4 hours to the right. 891 

 892 

8.2.2. Probability Distribution of Cyclone Center Occurrence 893 

Due to the difficulty to accurately predict the observed trajectory of Qendresa (Pytharoulis et 894 
al., 2018), the impact of assimilating different kinds of observations on the trajectory of the 895 
medicane is investigated. 896 

The 3DVar_SYN is capturing with enough accuracy the track of Qendresa during the first 897 
hours (Fig. 13b). However, for 3DVar_SYN the trajectory of Qendresa leaving Malta diverges 898 
from the observed trajectory, moving north-eastwards without showing the track-loop signal 899 
observed by satellite imagery. To quantify the benefits of assimilating in-situ conventional 900 
observations using the 3DVar or the EnKF, the probability of occurrence of a cyclone following 901 
the track observed via satellite imagery is computed. For instance, we can see that the 902 
probability of cyclone occurrence eastwards Sicily, where Qendresa made landfall while it was 903 
doing a loop, is too small according to 3DVar_SYN (Fig. 13b). On the other hand, some of the 904 
ensemble members depict a cyclone trajectory for EnKF_SYN that is largely shifted 905 
southward, whereas some of them reproduce the loop trajectory that deterministic numerical 906 
weather models miss performing (Fig. 13a). In addition, the probability of Qendresa occurrence 907 
eastwards Sicily, is in this case larger than for 3DVar_SYN, showing the benefits of using the 908 
EnKF against the 3DVar (Fig. 13a). Moreover, the EnKF_SYN ensemble trajectories, in 909 
general, follow a ‘V’ shape (i.e., first moving towards the southeast, then moving to the east 910 
and finally moving towards the northeast) similar to the trajectory observed via satellite 911 
imagery. Although the shape of most of the EnKF_SYN trajectories agree with the 912 
observations, the location is not accurate, showing a general shift towards the southeast. 913 

If both in-situ conventional and RSAMV observations are assimilated, some of the ensemble 914 
members from the EnKF_CNTRL shows more accurate trajectories in comparison with 915 
EnKF_SYN: the loop trajectory is close to the observed region of eastern Sicily (Fig. 13c).  An 916 
improvement of the 3DVar_CNTRL trajectory by increasing the probability of cyclone 917 
occurrence following the observed track is observed, especially eastern of Sicily. However, 918 
3DVar experiments are not able to reproduce the looping trajectory observed via satellite 919 
imagery (Fig. 13b-d). Hence, EnKF outperforms 3DVar showing some of the ensemble 920 
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members depicting a loop trajectory, although shifted southwards and producing a probability 921 
of cyclone occurrence smaller than the 3DVAR ones. 922 

Both the EnKF and the 3DVar still have difficulties in depicting accurately the track observed 923 
by Qendresa, even after the assimilation of in-situ conventional and RSAMV observations. 924 
Because RSAMVs are more useful in describing dynamical features on the upper levels of the 925 
atmosphere, we hypothesize that ingesting them via DA may not be enough to correct key low-926 
level dynamical features. In this case, the assimilation of surface wind observations may help 927 
to even improve these results. However, this is beyond the scope of this study and the authors 928 
leave this question as future work, where other sources of information from satellites will be 929 
assimilated to improve low-level thermodynamic aspects of extreme weather events, such as 930 
medicanes. 931 

 932 

 933 

Figure 13. Probability of cyclone center occurrence computed using Gaussian KDE for (a) EnKF (SYN), (b) 934 
3DVar (SYN), (c) EnKF (CNTRL) and (d) 3DVar (CNTRL), from 11 UTC 7 November to 12 UTC 8 November 935 
2014. Qendresa’s trajectory observed via satellite imagery is depicted in black.  936 

 937 

 938 
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9. Summary and Conclusions 939 

In this study, we quantitatively assess the impact of two high-resolution DA techniques. Here, 940 
we focus on the impact of assimilating observations to improve warning lead times of extreme 941 
weather events. While previous studies often assimilate observations during the mature stage 942 
of a weather event, when it is fully developed and no time for action remains, here the 943 
observations are assimilated hours before the mature stage of the convective system is reached, 944 
during the pre-convective stage. This approach enhances the accuracy of the pre-convective 945 
environment, thereby increasing the time available for reaction and preparedness. To 946 
quantitatively evaluate their forecast skill in improving the predictability of maritime events, 947 
two extreme weather events triggered over the sea affecting populated coastal regions are used. 948 
Nowadays, these weather events represent a serious challenge for the numerical weather 949 
prediction community in terms of their accurate predictability, due to their initialization over 950 
the sea, which are regions with a lack of in-situ observations, and thus their initial conditions 951 
are poorly estimated. Furthermore, these convective systems evolved towards complex terrain 952 
regions, increasing the predictability challenges. These two extreme weather events are known 953 
as (a) the high precipitation event registered during the 13th Intensive Observation Period 954 
(IOP13) affecting the western, northern and central parts of Italy, and (b) the intense Tropical-955 
like Mediterranean Cyclone (medicane) known as Qendresa, that affected the islands of 956 
Pantelleria, Lampedusa, Malta and Sicily. 957 

The two DA methods compared in this study for IOP13 and Qendresa are the variational 3DVar 958 
and the ensemble-based EnKF, which are currently used in operational National Weather 959 
Services worldwide. For the two events, both DA methods are used, and the type and number 960 
of assimilated observations changes depending on the data availability. For Qendresa, we 961 
assimilated (a) hourly in-situ conventional observations and (b) wind speed and wind direction 962 
profiles of the entire atmosphere (RSAMVs) derived from geostationary satellites every 20-963 
min, providing high spatial and temporal resolution observations covering the Central 964 
Mediterranean Sea, where Qendresa initiated and evolved. On the other hand, for the IOP13, 965 
we assimilated (a) hourly in-situ conventional observations and (b) 15-min 3D reflectivity 966 
observations from two type-C Doppler Weather Radars. 967 

Because of the different thermodynamic characteristics associated with Qendresa and IOP13, 968 
a set of different verification metrics were used for each of these extreme weather events. The 969 
Filtering method (FSS and RMSE), the ROC/AUC and the Taylor diagram were used to verify 970 
the numerical simulations from 3DVar and EnKF associated with IOP13. In the case of 971 
Qendresa, we used the Whisker diagrams and the Probability Distribution of Cyclone Center 972 
Occurrence verification scores. For the IOP13 event, the Filtering method and the Taylor 973 
diagram verification scores indicate that the skill performance of the 3DVar and the EnKF is 974 
similar, although the EnKF slightly overcomes the 3DVar. In addition, it was observed that the 975 
assimilation of spatial and temporal high-resolution reflectivity observations significantly 976 
improved the forecast for both 3DVar and EnKF, showing the key role of this type of 977 
observation. On the other hand, the ROC and AUC scores clearly show that EnKF outperforms 978 
3DVar. For the Qendresa event, although the ensemble mean of EnKF provides the worst 979 
results, in terms of the intensity of the medicane with respect to 3DVar, some of the EnKF 980 
ensemble members provide better results than 3DVar. This result suggests how important it is 981 
using an ensemble forecast system to predict extreme weather events at high spatial and 982 
temporal resolution. In terms of the trajectory of the cyclone, it is also shown that using the 983 
EnKF provides a more realistic insight of the real trajectory Qendresa followed.  984 
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Although the EnKF technique has shown in general better performance against the 3DVar for 985 
the two extreme weather events analyzed in this study, it is also important to account for the 986 
computational resources required to use them. In this sense, the 3DVar requires much less 987 
computational resources than the EnKF because it does not need to build an ensemble of 988 
considerable size, and it does not need either to simulate model trajectories between the 989 
assimilation of a set of observations at time t1 and the subsequent set of observations valid at 990 
t2. This makes the 3DVar appealing because it is much faster and cheaper than the EnKF, and 991 
it makes this technique particularly suitable for operational purposes at the small weather 992 
forecast centers. 993 

Another interesting result that we have shown in this study is that depending on the level of 994 
predictability of the weather event and its sensitivity to numerical physical parameterizations 995 
used to build our ensemble, the 3DVar performs better than the EnKF ensemble mean. We 996 
speculated that this is linked to the way the background error covariances from these two 997 
methods are built. Based on this, we suppose that a better approach could be using Hybrid error 998 
covariance models, where the forecast error covariance matrix is obtained linearly combining 999 
the ensemble-based error covariance from the EnKF and the static climatological error 1000 
covariance matrix from the 3DVar. Further work will investigate the impact of using hybrid 1001 
DA schemes in comparison to use standard 3DVar or EnKF. As a case study, a catastrophic 1002 
and deadly flash flood event affecting the Balearic Islands will be used to quantitatively assess 1003 
the skill performance of the hybrid DA scheme against the EnKF and a more advanced version 1004 
of the 3DVar, which is known as the 4DVar. In this case, most of the ensemble members of the 1005 
EnKF did not reproduce the convective cells that later resulted in the flash flood episode. This 1006 
is a key problem in current ensemble-based DA research. In this scenario, it is expected that 1007 
the hybrid error covariance matrix will be more precise than the one derived from the ensemble 1008 
members or from climatology, which on their own are not properly reproducing key aspects of 1009 
this extreme weather episode. High temporal and spatial observations from Doppler Weather 1010 
radars, such as reflectivity and radial wind velocities, will be assimilated for this case to obtain 1011 
accurate analysis and thus, improve the short-range forecast of this catastrophic flash-flood 1012 
event. 1013 
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Appendix 1409 

1410 
Fig. A1. 1-h accumulated precipitation computed from 00-01 UTC 15 October 2012 associated with (a) 1411 
Observations, (b) EnKF (CNTRL) and (c) 3DVar (CNTRL). 6-h accumulated precipitation computed from 00-1412 
06 UTC 15 October 2012 associated with (d) Observations, (e) EnKF (CNTRL), (f) 3DVar (CNTRL). 1413 
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