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Abstract 10 

Populated coastal regions in the Mediterranean are known to be severely affected by extreme weather 11 
events. Generally, they are initiated over maritime regions, where a lack of in-situ observations is 12 
present, hampering the initial conditions estimations and hence, the forecast accuracy. To face this 13 
problem, Data Assimilation (DA) is used to improve the estimation of the initial conditions and their 14 
respective forecasts. Although comparisons between different DA methods have been performed at 15 
global scales, few studies are performed at high-resolution, focusing on extreme weather events 16 
triggered over the sea and enhanced by complex topographic regions. In this study, we investigate the 17 
role of assimilating different types of conventional and remote-sensing observations using the 18 
variational 3DVar and the ensemble-based EnKF, which are of the most common DA schemes used 19 
globally at National Weather Centers. To this aim, two different events are chosen because of both the 20 
different areas of occurrence and the triggering mechanisms. Both the 3DVar and the EnKF are used 21 
at convection permitting scales to improve the predictability of these two high-impact coastal extreme 22 
weather episodes, which were poorly predicted by numerical weather prediction models: (a) the heavy 23 
precipitation event IOP13 and (b) the intense Mediterranean Tropical-like cyclone Qendresa. Results 24 
show that the EnKF and 3DVar perform similarly for the IOP13 event for most of the verification 25 
metrics, although looking at the ROC and AUC scores, the EnKF clearly outperforms the 3DVar. 26 
However, the ensemble mean of the EnKF is in general worse than the 3DVar for Qendresa, although 27 
some of the ensemble members of the EnKF individually outperforms the 3DVar allowing for gaining 28 
information on the physics of the event and hence the benefits of using an ensemble-based DA scheme.  29 
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1. Introduction 46 

The Mediterranean basin is recognized as one of the geographical regions most frequently 47 
affected by high impact weather events in the world (Petterssen, 1956). The Mediterranean 48 
region has a natural disposition for these events because of its singular orographic features, 49 
which include having a relatively warm sea surrounded by complex terrain. This geographical 50 
configuration forces the warm and moist airflow to lift, favoring condensation and triggering 51 
convection. Hazardous weather events in this region, such as heavy precipitation (e.g., flash 52 
floods, snowstorms), cyclogenesis or windstorms (e.g., squall lines, tornadic thunderstorms), 53 
produce huge economic, injury and human losses in populated coastal regions (e.g., Romero et 54 
al., 1998b; Llasat and Sempere-Torres, 2001; Llasat et al., 2010; Jansa et al., 2014; Flaounas 55 
et al., 2016; Pakalidou and Karacosta, 2018; Amengual et al., 2021). Since 1900, more than 56 
500 billion Euros associated with total damages to the property and over 1.3 million fatalities 57 
related to hydrometeorological disasters has been registered for the EM-DAT international 58 
disaster database1. These effects underscore the critical need for accurate and rapid high-59 
resolution weather forecasting systems, aimed at extending the lead time for severe weather 60 
warnings, thereby enabling the implementation of effective mitigation strategies to reduce 61 
fatalities and economic losses. However, while the accuracy of weather forecasting has 62 
significantly improved in recent years, with better representation of physical processes and 63 
dynamics, accurate prediction of high impact weather events in terms of their location, timing, 64 
and intensity remains a major challenge for the scientific community (Stensrud et al., 2009; 65 
Mass et al., 2002; Bryan and Rotunno, 2005; Yano et al., 2018; Torcasio et al., 2021). For this 66 
reason, improving the forecast of high-impact weather events becomes an imperative goal. 67 

Deficiencies in the accurate prediction of the location (spatial and temporal), intensity and 68 
phenomenology of extreme weather events are tightly related to the accuracy of the initial 69 
conditions of the system (Wu et al., 2013). The initial conditions of the hazardous weather 70 
events affecting coastal populated regions, are typically poorly estimated, mainly because these 71 
weather systems originate over the sea, where there is a lack of in-situ observations. Enhanced 72 
representations of the initial conditions are typically achieved by blending information from 73 
observations into numerical models through sophisticated Data Assimilation (DA) techniques 74 
(Kalnay, 2003), which accounts not only for the nominal values of the observations and the 75 
model, but also accounts for their respective error statistics. DA has been widely used and 76 
applied for global numerical weather prediction (NWP) problems (e.g., Eliasen, 1954; Lorenc, 77 
1981; Le Dimet and Talagrand, 1986; Rabier et al., 2000, Whitaker et al., 2008, Carrassi et al., 78 
2018; Albergel, et al., 2020, among others). However, less attention has been paid to 79 
convective-scale NWP problems, especially those associated with small scale convective 80 
phenomena initiated over regions with sparse observational data coverage, such as the extreme 81 
weather events affecting coastal regions in the Mediterranean basin (Carrió et al., 2016; 82 
Amengual et al., 2017; Carrió et al., 2019; Lagasio et al., 2019; Amengual et al., 2021; 83 
Mazzarella et al., 2021; Torcasio et al., 2021, Capecchi et al., 2021). To improve forecasts of 84 
such extreme weather events, accurate high resolution numerical weather models which solve 85 
convective scale processes are required, as well as dense observations at high spatial and 86 
temporal resolution. These will provide accurate information regarding the convective systems 87 
themselves or their environmental conditions. One of the most important sources of convective 88 
scale information are ground weather radars that provide three-dimensional data related to the 89 
storms at high spatial (order of hundreds of meters) and temporal (order of few minutes) 90 
resolution. In addition, weather radars provide thermodynamic and dynamic information of 91 
thunderstorms, which are crucial to understand and forecast convective structures. Due to the 92 

 
1 https://www.emdat.be/ 
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high spatio-temporal variability of convective structures, a rapid update cycle of the initial state 93 
(i.e., analysis) using weather radar observations is required to reduce errors and keep physical 94 
balances in the initial conditions. Several studies have shown the positive impact in forecasting 95 
severe weather events by assimilating weather radar information (e.g., Xiao and Sun, 2007; 96 
Lee et al., 2010; Wheatley et al., 2012; Yussouf et al., 2015; Carrió et al., 2019; Mazzarella et 97 
al., 2021).  98 

During the last decades, different DA algorithms have been developed with the aim of 99 
improving weather forecasts making use of all available observations in the best possible way. 100 
In this context, most of the developed DA methods are based on exploiting Bayes’ Theorem 101 
(Lorenc, 1986) and making use of different types of approximations. Generally, DA algorithms 102 
can be classified into the following three Bayesian-based families: (a) Variational DA (e.g., 103 
3DVar (Barker et al., 2004) or 4DVar (Huang et al., 2009)); (b) Ensemble-based DA, which 104 
are based on the Ensemble Kalman Filter (EnKF; Evensen, 1994) and (c) Monte-Carlo DA 105 
methods. Variational DA minimizes a cost function to obtain the analysis (i.e., the best 106 
estimation of the initial conditions). More specifically, variational DA methods provide a 107 
(quasi) optimal analysis based on an imperfect forecast (prior state or background), a set of 108 
imperfect observations and their respective error statistics that are prescribed and assumed to 109 
be Gaussian, for simplicity. In addition, variational DA algorithms require a linearized and 110 
adjoint version of the numerical model, which can be very difficult to develop and maintain. 111 
This often involves the use of automatic differentiation tools or complex manual derivation, 112 
both of which are error-prone and time-consuming. On the other hand, the ensemble-based DA 113 
algorithms do not require the use of linearized or adjoint versions of the model, and they do 114 
not use prescribed error statistics. Instead, they compute the error statistics from an ensemble 115 
of forecasts, with the main property that these errors are evolving in time as the system evolves. 116 
The Monte-Carlo DA method allows the assimilation of observations described with non-117 
Gaussian errors. Particle filters (PF; Van Leeuwen, 2009; Poterjoy, 2016) are a clear example 118 
of Monte-Carlo DA algorithm. However, PFs are not well-suited for large multidimensional 119 
systems, such as the atmosphere, although a lot of improvements have been achieved recently. 120 
In the present study, we will focus on the most widely used DA schemes typically used in major 121 
operational weather centers, which are the variational and ensemble-based DA schemes, 122 
leaving the Monte-Carlo methods for future work. 123 

Although variational DA schemes have been used in numerical weather prediction for many 124 
years (Courtier et al., 1994; Park and Zupanski, 2003; Rawlins et al., 2007), allowing the 125 
assimilation of a wide range of different observations, they present a well-known limitation. 126 
This limitation is related to the use of a climatological background error covariance matrix to 127 
characterize the error statistics, which is kept constant along the assimilation window, where 128 
the different observations are distributed at different times. This weakness is specifically linked 129 
to the 3DVar method, which typically uses the National Meteorological Center (NMC) method 130 
(Parrish and Derber, 1992) to generate those static background error covariances using forecast 131 
differences over a period of time reasonably close to the event. The error statistics derived from 132 
such DA schemes are static, isotropic and nearly homogenous, misrepresenting the true error 133 
statistics in space and time, which are inherently flow-dependent, resulting in less accurate 134 
analysis. On the other hand, the EnKF DA scheme is designed to provide flow-dependent 135 
background error covariances. Some studies have shown the potential of the EnKF spreading 136 
information from the observations flow-dependently in comparison with the 3DVar (Yang et 137 
al., 2009; Gao et al., 2018). On the other hand, 3DVar techniques require less computational 138 
resources and there is no need to build an ensemble compared to EnKF or even simulate the 139 
model trajectory as in 4DVar. Therefore, the assimilation with 3DVar takes only a few tens of 140 
minutes, making this technique particularly suitable for operational purposes.  141 
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To resolve convective scale (i.e., grid spacing of a few kilometers) physical processes 142 
associated with extreme weather phenomena, high-resolution numerical simulations are 143 
required, as well as high resolution initial conditions. This turns in performing computational 144 
expensive high-resolution simulations, which poses a significant challenge by limiting the 145 
number of ensemble members that can be used in EnKF DA schemes, potentially hindering the 146 
estimation of the background error covariance matrix. Determining which DA method yields 147 
greater accuracy – 3DVar using an ad hoc background error covariance matrix versus EnKF 148 
with a flow-dependent low-rank background error covariance derived from a finite ensemble – 149 
remains challenging under constrained computational resources. 150 

Recent convective-scale DA studies have primarily focused on the mature stage of weather 151 
events (e.g., Tong et al., 2005; Fujita et al., 2007; Dowell et al., 2021; Jones et al., 2013; 152 
Wheatley et al., 2015; Jones et al., 2016; Gao et al., 2016; Ballard et al., 2016; Gustafsson et 153 
al., 2018; Carrió et al., 2019; Mazzarella et al., 2020;  Yussouf et al., 2020; Federico et al., 154 
2021; Junjun et al., 2021; Janjić et al., 2022; Wang et al., 2022). However, at this stage, the 155 
system is already well-developed and likely impacting the population, limiting the 156 
effectiveness of DA in terms of forecast lead time. In such cases, the potential for early 157 
warnings and mitigation actions is significantly reduced, as there is little time left to respond 158 
and minimize socio-economic impacts. Despite its potential benefits, only a handful of studies 159 
have explored the impact of DA using high-resolution numerical models in the developing 160 
stage (e.g., Carrió et al., 2019; Carrió et al., 2022; Corrales et al., 2023), and even fewer have 161 
done so over data-sparse maritime regions, where early assimilation could be most valuable, 162 
providing advanced warnings and allowing decision-makers to act proactively. This study fills 163 
that gap by directly comparing two widely used DA techniques – 3DVar and EnKF – in high-164 
resolution, pre-convective assimilation experiments for two extreme weather events initiated 165 
over the sea affecting populated coastal regions in the Mediterranean basin. It is important to 166 
emphasize that this study does not aim to derive statistically significant conclusions. Instead, 167 
the main objective is to compare the performance of EnKF and 3DVar in two distinct extreme 168 
weather events, each characterized by unique atmospheric conditions and observational 169 
limitations. The two extreme weather events selected for this study are: (a) the heavy rainfall 170 
episode, IOP13, affecting coastal regions of Italy during October 2012 (Pichelli et al., 2017) 171 
and (b) the low-predictable Mediterranean Tropical-like cyclone (medicane), Qendresa, 172 
affecting Sicily in November 2014 (Pytharoulis et al., 2017; Pytharoulis, 2018; Cioni et al., 173 
2018; Di Muzio et al., 2019). 174 

On overall, this study aims at: 175 
 176 
(a) Assessing the impact of 3DVar in comparison with the EnKF system to predict small-scale 177 
extreme weather events initiated over maritime regions with lack of in-situ observations. 178 
 179 
(b) Compare the forecast impact from assimilating in-situ conventional observations in 180 
comparison to assimilating high spatial and temporal resolution data from remote sensing 181 
instruments. 182 
 183 
(c) Provide a quantitative assessment between the different DA schemes by means of using 184 
several statistical verification methods. 185 
 186 
This paper is organized as follows. Section 2 briefly describes the meteorological 187 
characteristics of the two events used for comparing the impact of 3DVar and EnKF. In Section 188 
3 the observation dataset that will be assimilated by the different DA methods will be presented. 189 
Section 4 briefly explains the main characteristics of the two DA algorithms that will be used 190 
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in this study. Then, the numerical model configuration and the design of the different 191 
experiments for the two different case studies will be described in Section 5 and 6, respectively. 192 
Section 7 describes the verification methods used in this study. Results of the different 193 
numerical experiments for both meteorological situations are summarized in Section 8. Finally, 194 
conclusions are presented in Section 9. 195 
 196 
2. Brief Description of Case Studies 197 
 198 
Two different extreme weather systems, occurring in the Mediterranean region and affecting 199 
populated coastal regions, are considered in this study. The first extreme weather event was 200 
associated with heavy rainfall affecting central and northern Italy during October 2012 201 
(IOP13), while the second extreme weather event was associated with the Qendresa medicane 202 
affecting southern Sicily, Lampedusa, Pantelleria and Malta islands during November 2014. 203 
Both systems were poorly forecasted, making them perfect candidates for this intercomparison 204 
study to assess the impact of data assimilation techniques. 205 
 206 
2.1.  The IOP13 Heavy Precipitation Episode 207 
 208 
The IOP13 occurred during the First Special Observation Period (SOP1) of the international 209 
project Hydrological cycle in the Mediterranean Experiment (HyMeX; Drobinski et al., 2014), 210 
that was mainly designed to better understand heavy rainfall and flash flooding episodes 211 
occurring in the Mediterranean region. The heavy precipitation IOP13 event took place 212 
between 14 and 16 October 2012, and it was characterized by a frontal precipitation system 213 
associated with a deep upper-level trough extending from northern France towards northern 214 
Spain (Fig. 1). It initially affected southern France coastal areas, and afterward it also affected 215 
the northern and central parts of Italy. During 15 October, the Italian rain gauge network 216 
registered 24-hour accumulated precipitation with peaks reaching 60 mm in central Italy, 160 217 
mm in northeastern Italy and 120 mm in Liguria and Tuscany. During the night of 14 October, 218 
a cold front affected the Western Mediterranean region and during 15 October the system 219 
rapidly moved from France to Italy, advecting low-level moisture towards the western coast of 220 
Italy and Corsica, destabilizing the atmosphere and favoring deep moist convective activity. 221 
More details on the synoptic situation and observational data collected during IOP13 can be 222 
found in Ferretti et al., 2014. 223 

224 
Figure 1. IOP13 ERA5 analyses: 500 hPa geopotential (solid black lines), 925 hPa temperature (dashed grey 225 
lines) and total column of water vapor (color shaded areas) at (a) 12 UTC 14 October and (b) 00 UTC 15 October 226 
2012. 227 
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2.2.  The Qendresa Tropical-Like Cyclone Episode 228 
 229 
Among the wide spectrum of maritime extreme weather events, tropical-like Mediterranean 230 
cyclones, a.k.a. medicanes (Emmanuel, 2005), draw particular attention to the community 231 
mainly because they share similar morphological characteristics with tropical cyclones. Given 232 
their tendency to impact densely populated and economically critical areas around the 233 
Mediterranean basin, enhancing the accuracy and reliability of medicanes forecasts has become 234 
an urgent priority. Here, we focus on the 7 October 2014 medicane (Qendresa; Cioni et al., 235 
2018) that affected the islands of Lampedusa, Pantelleria, Malta and the eastern coast of Sicily. 236 
This event was recognized by the community for its limited predictability (Carrió et al., 2017), 237 
making it a compelling case study for investigating the performance of the 3DVar and EnKF 238 
DA methods. In-situ observations located in Malta’s airport registered gust wind values 239 
exceeding 42.7 m s-1 and a sudden and deep pressure drop greater than 20 hPa in 6 hours. 240 
Satellite imagery during its mature phase showed a well-defined cloud-free eye surrounded by 241 
axisymmetric convective activity, which resembles the morphological properties of classic 242 
tropical cyclones. 243 
 244 
A deep upper-level trough associated with a cyclonic flow at mid-levels characterized the 245 
synoptic situation in the Western Mediterranean from 5 to 8 November 2014. The upper-level 246 
trough was associated with an intense PV streamer extending from Northern Europe to 247 
Southern Algeria, and the cyclonic flow at mid-levels was dominated by a strong ridge over 248 
the Atlantic and a deep trough moving along Western Europe. Late on 7 November, the upper-249 
level trough became negatively tilted, evolving into a deep upper-level cut-off low and the PV 250 
streamer disconnected from the northern nucleus (Fig. 2). A small well-defined spiral-to-251 
circular cloud shape formed just south of Sicily and evolved east-northeastward, reaching its 252 
maximum intensity over Malta, at midday. Finally, the cyclonic system dissipated as it crossed 253 
the Catania (eastern) coast of Sicily. More details on the synoptic situation and observational 254 
data collected during this event can be found in Carrió et al., 2017. 255 

 256 

257 
Figure 2. Qendresa ERA5 analyses: 500 hPa geopotential (solid black lines), 500 hPa temperature (dashed grey 258 
lines) and 300 hPa Potential Vorticity (color shaded areas) at (a) 00 UTC 7 November and (b) 00 UTC 8 259 
November 2014. 260 

 261 

 262 
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3. Observations Description 263 
 264 
In this study, a combination of remote-sensing and in-situ observations were assimilated for 265 
both case studies. Specifically, the following three types of observations were assimilated: (a) 266 
conventional in-situ data from surface meteorological stations, maritime buoys, rawinsondes 267 
and aircraft measurements, (b) high temporal and spatial reflectivity data from two Doppler 268 
Weather Radars and (c) satellite-derived 3D wind speed and direction data. A summary of the 269 
assimilated observations, including their data sources, assimilation frequency, coverage and 270 
additional processing is provided in Table 1. 271 
 272 

Event Observation Type Data Sources Assimilation 
Frequency 

Coverage Additional Processing 

IOP13 Conventional in-situ 
data 

MADIS (NOAA) Hourly Entire Domain Quality-controlled 

IOP13 Radar Reflectivity Météo-France Doppler 
Weather Radars 
(Aleria & Nimes) 

Every 15 
minutes 

Ligurian Sea & Gulf of 
Genoa 

Quality controlled and 
Interpolated using 
Cressman Objective 
Analysis (6 km grid) 

Qendresa Conventional in-situ 
data 

MADIS (NOAA) Hourly Mediterranean Region Quality-controlled 

Qendresa Satellite-Derived 
Winds (RSAMVs) 

EUMETSAT (SEVIRI 
instrument onboard 
MSG) 

Every 20 
minutes 

Entire atmosphere over 
the Mediterranean 
Region 

Quality-controlled, 
superobbing (128x128 
km, 25 hPa vertical) 

Table 1: Summary of assimilated observations for each case study, including observation type, data sources, 273 
assimilation frequency, spatial coverage and additional processing details. 274 
 275 
 276 
3.1. IOP13 Observations 277 
 278 
For the IOP13, we assimilated both in-situ conventional data and remote sensing observations 279 
from two Doppler Weather Radars. While Italy has a dense national network of radar and in-280 
situ stations, most of these datasets were not publicly available. To ensure reproducibility and 281 
accessibility, we exclusively used freely available data. For radar observations, we assimilated 282 
data from the only two radars providing coverage over the maritime region where the event 283 
initiated. Specifically, data from: (a) Aleria radar (9.496ºE, 42.129ºN, 63 m ASL), located on 284 
Corsica Island, and (b) Nimes radar (4.502ºE, 43.806ºN, 76 m ASL), located in southern France 285 
(Fig. 3a). These two Météo-France polarimetric S-band Doppler Weather Radars, strategically 286 
positioned, ensure a good spatial coverage over the Ligurian Sea, the area where triggering and 287 
intensification of deep convection occurred, and provide key information about the 3D 288 
structure of the convective systems at high spatial and temporal resolution. Aleria and Nimes 289 
radars perform 5 and 9 elevation scans every 5 minutes, respectively, and their data are 290 
available at the HyMeX’s official website (see https://www.hymex.org). Specifically, Aleria 291 
radar provides data at 5 elevation angles: 0.57º, 0.96º, 1.36º, 3.16º and 4.57º with a mean 292 
frequency of 2.8 GHz. In comparison, Nimes radar provides data at 9 elevation angles: 0.58º, 293 
1.17º, 1.78º, 2.38º, 3.49º, 4.99º, 6.5º, 7.99º and 89.97º, also at the same frequency. It is worth 294 
mentioning that Aleria and Nimes radar reflectivity data are provided by the Météo-France 295 
operational radar network and undergo rigorous data quality control. This ensures that common 296 
radar error sources, such as signal attenuation, ground clutter or beam blocking, are 297 
meticulously identified and corrected. Radial velocity from Aleria and Nimes Doppler radars 298 
was also available, but because of the low reliability of the data (not quality controlled properly) 299 

https://www.hymex.org/
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it was not used in this study. Additionally, conventional in-situ observations were obtained 300 
from NOAA’s Meteorological Assimilation Data Ingest System (MADIS), a global dataset that 301 
provides high-quality, quality-controlled meteorological observations. In particular, we 302 
assimilated pressure, temperature, humidity and horizontal wind speed and direction from in-303 
situ instruments such as METARs, maritime buoys, rawinsondes and aircrafts (Fig. 3a). 304 
 305 
Overall, the following observations were assimilated for this event: 306 
 307 

● Conventional in-situ data were hourly assimilated over the entire model domain (Fig. 308 
3a). 309 
 310 

● Reflectivity data from Aleria and Nimes weather radars were assimilated every 15 311 
minutes (Fig. 3a). 312 

 313 
The high spatial resolution of the reflectivity data poses significant challenges for their direct 314 
assimilation, potentially leading to detrimental analysis related with signal aliasing and the 315 
violation of the uncorrelated observational error assumptions followed in the derivation of the 316 
3DVar and EnKF analysis equations. To mitigate the adverse effects associated with these 317 
issues, the Cressman Objective Analysis technique (Cressman, 1959) was used to interpolate 318 
raw radar observations to a regularly spaced 6 km horizontal grid, as suggested by previous 319 
work (i.e., Wheatley et al., 2015; Yussouf et al., 2015). It is important to note that reflectivity 320 
observations are typically obtained in polar coordinates, a prerequisite step before applying the 321 
Cressman interpolation involves converting them to a Cartesian coordinate system. We have 322 
performed several sensitivity tests using different grid space resolution (e.g., 3, 6, 9 km) and 323 
we found that using 6 km grid space produces the best analysis. To reduce spurious convective 324 
signals and remove excessive humidity the null-echo option, which allows assimilation of no 325 
precipitation echoes, has been adopted in 3DVAR experiment. 326 
 327 

328 
Figure 3. (a) IOP13 Episode: Spatial distribution of in-situ observations (gray and black markers) assimilated 329 
on the parent numerical domain during 24 h assimilation window from 00 UTC 14 October to 00 UTC 15 October 330 
2012. Doppler Weather Radars located at Nimes and Aleria and their coverage range, depicted in yellow and red 331 
circles, respectively. (b) Qendresa Episode: Spatial distribution of in-situ observations hourly assimilated during 332 
12 h assimilation window from 12 UTC 6 November to 00 UTC 7 November 2014. 333 
 334 
 335 
 336 
 337 
 338 
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3.2. Qendresa Observations 339 
 340 
For the Qendresa event, two different observational sources were publicly available: (a) 341 
conventional in-situ observations and (b) satellite-derived observations. Conventional in-situ 342 
observations were obtained from MADIS database. However, only observations from buoys, 343 
METAR and rawinsonde were used for this case. It is essential to highlight that observation 344 
gaps persist across large areas of the region, particularly over the sea (Fig. 3b), where Qendresa 345 
initiated and evolved. As for the IOP13, we were interested in Doppler Weather Radars data to 346 
enhance the intensity and trajectory forecasts of Qendresa. Unfortunately, Doppler Weather 347 
Radars were not publicly available in the neighborhood of the region where Qendresa initiated 348 
and evolved. Instead, we used an alternative high-resolution data source, the so-called Rapid-349 
Scan Atmospheric Motion Vectors (RSAMVs; Velden et al., 2017). This dataset provides 3D 350 
wind information throughout the entire atmosphere (both speed and direction) at high spatial 351 
and temporal resolution (i.e., every 20-min). These observations were particularly valuable for 352 
capturing wind field structures over the sea, where conventional observations were sparse or 353 
unavailable. This satellite product is obtained using the Spinning Enhanced Visible and 354 
Infrared Imager (SEVIRI) instrument onboard the Meteosat Second Generation (MSG) 355 
satellite, which has a scanning frequency as low as 5 minutes. The final product is indeed 356 
obtained averaging 4 consecutive images.  357 
 358 
Hence, the following observations were assimilated for this event: 359 

 360 
● Conventional in-situ data from buoys, METAR and rawinsonde for the entire 361 

Mediterranean region were hourly assimilated. 362 
 363 

● Wind speed and direction from the Rapid-Scan Atmospheric Motion Vectors for the 364 
entire atmosphere at high spatial and temporal resolution were assimilated every 20 365 
minutes. 366 

Recent studies have shown that upper-level dynamics played a key role in the genesis and the 367 
development of Qendresa (Carrió et al., 2017; Carrió, 2022), so the assimilation of RSAMVs 368 
is expected to significantly improve its predictability. Here, the infrared channel from 369 
RSAMVs (10.8	𝜇𝑚), which contains information throughout the entire atmosphere, was 370 
selected to be assimilated (Fig. 4). However, before assimilating RSAMVs, a quality control 371 
check to reject non-physical and outlier observations, that could deteriorate the quality of the 372 
analysis and the successive forecast, was applied. In addition, to minimize the effect of having 373 
spatial correlated observation errors associated to high density observations, the “superobbing” 374 
technique consisting in reducing the data density through spatially averaging the observations 375 
within a predefined prism is applied (i.e., Pu et al., (2008); Romine et al., (2013); Honda et al., 376 
(2018)). Based on the most accurate analysis obtained by multiple sensitivity experiments (not 377 
shown) for Qendresa, the RSAMVs data are thinned using a prism with horizontal resolution 378 
of 128x128 km2 and 25 hPa in the vertical. 379 
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 380 
Figure 4. Raw EUMETSAT’s RSAMV observations depicted at different vertical levels by infrared channel 10.8 381 
𝜇𝑚 at 12 UTC on 7 November 2014 over the Mediterranean region. Wind information is only valid at the center 382 
of the wind vectors. 383 
 384 
 385 
Observations from aircraft (i.e., ACARS) were not assimilated in this case because preliminary 386 
assimilation tests indicated a worsening of the results and led to a poorer estimation of the 387 
atmospheric state. Buoys, METAR and rawinsonde observations covering the entire 388 
Mediterranean region were hourly assimilated. 389 

Finally, observational errors used for the assimilation of the observations associated with both  390 
IOP13 and Qendresa are motivated by Table 3 in Romine et al., (2013) with the following 391 
minor changes: METAR altimeter (1.5 hPa), marine altimeter (1.20 hPa), METAR and marine 392 
temperature (1.75 K) and RSAMV wind observations (1.4 m s-1). These minor changes are 393 
found to provide better data assimilation analysis for the IOP13 and Qendresa extreme weather 394 
events in the Mediterranean region. The remaining of the observation errors are the same as 395 
the ones in Romine et al., (2013). 396 

 397 

 398 
4. Data Assimilation Schemes 399 

 400 
In the present study, two widely used data assimilation algorithms are used for improving the 401 
forecast of extreme weather events initiated and developed over poorly observed maritime 402 
regions and affecting densely populated coastal areas. We refer to the Ensemble Adjustment 403 
Kalman Filter and the variational 3DVar data assimilation schemes, which are briefly 404 
described below. 405 
 406 

a) The Ensemble Adjustment Kalman Filter (EnKF) 407 
 408 
The Ensemble Adjustment Kalman Filter (EAKF; Anderson 2001), which is implemented in 409 
the Data Assimilation Testbed Research (DART2), is used in this study as the former ensemble-410 
based data assimilation technique. The EAKF provides an optimal estimation, in the least 411 

 
2 http://www.image.ucar.edu/DAReS/DART/ 

https://www.sciencedirect.com/science/article/pii/S0169809518304022#bb0345
https://www.sciencedirect.com/science/article/pii/S0169809518304022#bb0345
http://www.image.ucar.edu/DAReS/DART/


11 
 

square error sense, of the true probability distribution of the state of the atmosphere by merging 412 
two main sources of information: (a) the available observations and (b) an ensemble of 413 
forecasts (a.k.a. background) valid at the analysis time. In particular, the EAKF assimilates the 414 
observations serially. This means that the analysis ensemble obtained by the EAKF after the 415 
assimilation of the first observation at a given time is then used as the background for the next 416 
observation at the same analysis time. This is done recursively until all the observations valid 417 
at the same analysis time are finally assimilated.  418 

Ensemble covariances used in real case studies, where only a limited number of ensemble 419 
members is feasible, suffers from sampling error, resulting in the generation of spurious 420 
correlations that hamper the analysis (Hacker et al., 2007). The detrimental effects of these 421 
spurious correlations are mitigated by employing covariance localization functions that go to 422 
zero as the distance between the assimilated observation and the grid model point where the 423 
analysis occurs, increases (Houtekamer and Mitchell, 1998). In our case, a fifth-order piece-424 
wise rational Gaussian localization function is used (Gaspari and Cohn, 1999). For this study, 425 
after several sensitivity simulations it was found that using a half-radius3 of 230 km in the 426 
horizontal and a half-radius of 4 km in the vertical for the horizontal and vertical localizations, 427 
respectively, results in the best performance of the DA scheme. 428 

Assimilating observations inherently reduces analysis variance in both variational and Kalman 429 
filter frameworks. Small ensemble sizes tend to overly collapse the ensemble spread      430 
(Anderson and Anderson, 1999). To mitigate this under dispersion and maintain realistic 431 
ensemble variance, a spatially varying adaptive inflation technique (Anderson and Collins, 432 
2007; Anderson et al., 2009) is applied to the prior ensemble before assimilating the 433 
observations. This adaptive inflation technique increases the spread of the ensemble without 434 
changing the mean. The inflation value has a probability density distribution described by a 435 
mean and a standard deviation. In this study, it was determined that initializing the mean value 436 
of inflation at 1.0 and using a standard deviation of 0.6, yields the best performance of the DA 437 
scheme. 438 

 439 

b) Three-dimensional Variational Data Assimilation (3DVar) 440 
 441 
The 3DVar technique, implemented in WRFDA (Barker et al., 2004), is adopted for the 442 
numerical simulations. The 3DVar aims to seek the best estimate of the initial conditions 443 
through the iterative minimization of a cost function: 444 

 445 
 446 
where B and R are the background and observation error matrices, respectively; x is the state 447 
vector;  is the observations,  is the first guess and H is the forward (non-linear) operator 448 
that converts data from model space to observation space. 449 

The solution of the above cost function J consists in finding a state xa (analysis), that minimizes 450 
the distance between the observations and the background field. However, in a model with 106 451 

 
3 The half-radius or cutoff term is defined here as 0.5 times the distance to where the impact of the observation 
assimilated go to zero. Multiplying the half-radius by 2 results in the maximum distance at which an observation 
can modify the model state. 
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degrees of freedom, the direct solution is computationally expensive. To reduce the complexity 452 
and calculate B-1 more efficiently, a pre-conditioning is applied by transforming the control 453 
variables, respectively, pseudo relative humidity, temperature, u, v, and surface pressure, as x 454 
− xb = 𝗨v, where v is the control variable and U the transformation operator. 455 
 456 
The background error covariance matrix B matrix plays a key role in the assimilation process 457 
by weighing and smoothing the information from observations and by ensuring a proper 458 
balance between the analysis fields. The National Meteorological Center method (NMC; 459 
Parrish and Derber, 1992) was used to model the B matrix. This method evaluates the 460 
differences between two short-term forecasts valid at the same time but with different lead 461 
time, 12h and 24h, respectively, to generate the forecast error covariance matrix B. In this 462 
study, we build the 3DVar B matrix over a two-week period, in line with our operational 463 
experience running 3DVar and previous demonstrations of its benefits (Hung et al. 2023; 464 
Fitzpatrick et al., 2007; Mazzarella et al., 2020, 2021). To enhance B’s quality despite this 465 
relatively short sampling window, we activate the CV7 option in WRFDA. This option uses 466 
empirical orthogonal functions (EOFs) to represent vertical covariances instead of the 467 
traditional recursive filter, which has proven particularly beneficial for radar-reflectivity 468 
assimilation and subsequent precipitation forecast improvements (Wang et al., 2013; Li et al., 469 
2016; Shen et al., 2022; Ferrer Hernandez et al., 2022). In our configuration, the CV7 control 470 
variables (i.e., u, v, temperature, pseudo-relative humidity and surface pressure), are defined in 471 
EOF space, ensuring a compact yet accurate representation of error structures. We use the CV7 472 
option to generate the B matrix for both case studies. In addition, the weak penalty constraint 473 
(WPEC) option (Li et al., 2015) in WRFDA has also been activated to further improve the 474 
balance between the wind and thermodynamic state variables, enforcing the quasi-gradient 475 
balance on the analysis field.  476 
 477 
5. Model set-up 478 
 479 
The mesoscale Advanced Research Weather Research and Forecasting Model (WRF; 480 
Skamarock et al., 2008) version 3.7 is used in this study. WRF solves a fully compressible and 481 
non-hydrostatic set of equations, using a 𝜂 terrain-following hydrostatic-pressure vertical 482 
coordinate. The Arakawa C-grid staggering scheme and a third-order Runge-Kutta time-483 
integration, to improve the precision of the numerical solutions, are used. Because IOP13 and 484 
Qendresa episodes took place in different locations and with different conditions, two different 485 
model configurations were used. For the IOP13 episode, a one-way nested model configuration 486 
with the parent domain centered over the Western Mediterranean Sea, covering Central Europe 487 
and North Africa, with a horizontal grid-resolution of 15 km (168x247) and a nested domain 488 
centered over Gulf of Genoa with a horizontal grid-resolution of 3 km (250x250) were used 489 
(Fig. 5a).  51 vertical model levels, from surface to 50 hPa, with higher density of levels in the 490 
lower part of the atmosphere than in the upper for both domains were used. For Qendresa, a 491 
one-way nested model configuration is also used, but now the parent domain is centered over 492 
the Central Mediterranean Sea, covering most of the European region and the northern part of 493 
Africa (Fig. 5b), using a horizontal grid resolution of 15 km (245x245). The nested domain is 494 
centered over Sicily (Southern Italy) using a grid resolution of 3 km (253x253). Both numerical 495 
domains use a 51 terrain-following 𝜂 levels up to 50 hPa, as in the IOP13 case.  496 

For the EnKF DA experiments, initial and boundary conditions used to perform the simulations 497 
associated with IOP13 were obtained from the European Center of Medium Range Weather 498 
Forecasts Global Ensemble Prediction System (EPS-ECMWF), which stored meteorological 499 
fields using a horizontal and vertical spectral triangular truncation of T639L62 (i.e., ~32 km 500 
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grid resolution in the horizontal). In particular, the EPS-ECMWF provides 51 different initial 501 
and boundary conditions from 50 perturbed ensemble members plus a control simulation. 502 
However, due to unfeasible computational resources required to run our numerical simulations 503 
at high resolution, here we will use an ensemble consisting of 36 members. This configuration 504 
is analogous to the one used at the internationally prestigious National Oceanic and 505 
Atmospheric Administration - National Severe Storms Laboratory (NOAA-NSSL) in Norman 506 
(Oklahoma, USA) to improve predictability of tornadoes. To obtain the desired 36-member 507 
ensemble, a Principal Components Analysis and K-mean clustering technique were used 508 
together to select the 36 ensemble members from the EPS-ECMWF showing more dispersion 509 
over the entire numerical domain (see Garcies and Homar, 2009 and Carrió et al., 2016 for 510 
more details using these techniques). To perform Qendresa DA simulations, the initial and 511 
boundary conditions were obtained following the same methodology explained above for the 512 
IOP13 case, i.e., using an ensemble of 36 members obtained from the EPS-ECMWF. On the 513 
other hand, the initial and boundary conditions for 3DVar simulations are provided by the 514 
Integrated Forecast System (IFS) global model from the ECMWF, with a spatial resolution of 515 
0.1° x 0.1° and updated every 3 hours. 516 



14 
 

 517 
Figure 5. Meso- and storm-scale numerical domains used in this study for the (a) IOP13 and (b) Qendresa 518 
episodes, respectively. 519 
 520 
 521 
To estimate the uncertainties of WRF, which is a necessary information for the EnKF, a 522 
multiphysics ensemble is built for both the IOP13 and Qendresa event (e.g., Stensrud et al., 523 
(2000); Wheatley et al., (2012)), where each ensemble member gets a different set of 524 
parameterizations (see Table 2). In particular, the diversity in our ensemble consists of (a) two 525 
short- and long-wave radiation schemes [Dudhia (Dudhia, 1989) and RRTMG (Iacono et al., 526 
2008)], (b) three cumulus parameterizations schemes [Kain-Fritsch (KF; Kain and Fritsch, 527 
1993; Kain, 2004), Tiedtke (Tiedtke, 1989) and Grell-Freitas (GF; Grell and Freitas, 2013)] 528 
and (c) three planetary boundary layer schemes [Yonsei University (YSU; Hong et al., 2006), 529 
Mellor-Yamada-Janjic (MYJ; Janjic, 1990, 2001), and Mellor-Yamada-Nakanishi-Niino level 530 
2.5 (MYNN2; Nakanishi and Niño, 2006, 2009)]. Two widely used physics parameterizations 531 
are adopted for the microphysical processes and land surface interactions, the New Thompson 532 
(Thompson et al., 2008) and Noah (Tewari et al., 2004) schemes, respectively. Note that the 533 
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above-mentioned physical parameterizations are used for both the large-scale ensemble in the 534 
parent domain and the storm-scale ensemble in the nested domain, except for the cumulus 535 
parameterization that is only applied in the parent domain ensemble. On the other hand, for the 536 
WRF deterministic simulation using 3DVar, the microphysical processes are parametrized by 537 
using the New Thompson scheme, while a YSU scheme is adopted for PBL. Long- and short-538 
wave radiation are considered through a RRTMG and Dudhia scheme, respectively; while 539 
Kain-Fritsch scheme is used for the convection, except for the inner domain where it is 540 
explicitly resolved. 541 
 542 

Table 2: Multiphysics parameterizations used to generate the 36-member ensemble for the EnKF experiments in 543 
IOP13 and Qendresa episodes. PBL, SW and LW stand for planetary boundary layer, short-wave and long-wave, 544 
respectively. 545 

Multiphysic Configuration 

Ens. 
Memb MP CU PBL Land 

Sfc 
SW/LW 

Rad. 
Ens. 

Memb MP CU PBL Land 
Sfc 

SW/LW 
Rad.  

1 New Thompson KF YSU Noah Dudhia 19 New Thompson KF YSU Noah Dudhia 

2 New Thompson KF YSU Noah RRTMG 20 New Thompson KF YSU Noah RRTMG 

3 New Thompson KF MYJ Noah Dudhia 21 New Thompson KF MYJ Noah Dudhia 

4 New Thompson KF MYJ Noah RRTMG 22 New Thompson KF MYJ Noah RRTMG 

5 New Thompson KF MYNN2 Noah Dudhia 23 New Thompson KF MYNN2 Noah Dudhia 

6 New Thompson KF MYNN2 Noah RRTMG 24 New Thompson KF MYNN2 Noah RRTMG 

7 New Thompson GF YSU Noah Dudhia 25 New Thompson GF YSU Noah Dudhia 

8 New Thompson GF YSU Noah RRTMG 26 New Thompson GF YSU Noah RRTMG 

9 New Thompson GF MYJ Noah Dudhia 27 New Thompson GF MYJ Noah Dudhia 

10 New Thompson GF MYJ Noah RRTMG 28 New Thompson GF MYJ Noah RRTMG 

11 New Thompson GF MYNN2 Noah Dudhia 29 New Thompson GF MYNN2 Noah Dudhia 

12 New Thompson GF MYNN2 Noah RRTMG 30 New Thompson GF MYNN2 Noah RRTMG 

13 New Thompson Tiedke YSU Noah Dudhia 31 New Thompson Tiedke YSU Noah Dudhia 

14 New Thompson Tiedke YSU Noah RRTMG 32 New Thompson Tiedke YSU Noah RRTMG 

15 New Thompson Tiedke MYJ Noah Dudhia 33 New Thompson Tiedke MYJ Noah Dudhia 

16 New Thompson Tiedke MYJ Noah RRTMG 34 New Thompson Tiedke MYJ Noah RRTMG 

17 New Thompson Tiedke MYNN2 Noah Dudhia 35 New Thompson Tiedke MYNN2 Noah Dudhia 

18 New Thompson Tiedke MYNN2 Noah RRTMG 36 New Thompson Tiedke MYNN2 Noah RRTMG 

 546 
 547 
6. Design of IOP13 and Qendresa Experiments 548 
 549 
To quantify the benefits of assimilating different observation types with the 3DVar and EnKF 550 
DA schemes, a suite of numerical experiments is designed. First, a reference experiment 551 
without any data assimilation (NODA), using the same model configuration employed for the 552 
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WRF experiments performed using 3DVar, is carried out at the regional scales considered in 553 
this study. Building on this, several numerical experiments, each differing only in the type of 554 
observations assimilated, to isolate and compare their impacts on forecast skill, are performed. 555 
Only conventional in-situ observations are assimilated using the 3DVar and the EnKF, for the 556 
first set of experiments (SYN). All available observations (i.e., conventional, radar based and 557 
satellite derived data) are assimilated using both 3DVar and EnKF, for the second type of 558 
experiments (CNTRL). The comparison between these numerical experiments will provide 559 
information on which DA scheme and observation is performing better for these weather 560 
events. The DA experiments mainly consist of two phases: the first one is related to the data 561 
assimilation procedure, where different types of observations are assimilated by the variational 562 
3DVar and the ensemble-based EnKF DA schemes; the second phase is associated with the 563 
free model run initialized using the initial conditions obtained during the first phase. The total 564 
forecast time is 24 h and 36 h for IOP13 and Qendresa, respectively. For IOP13, a further 565 
simulation lasting 6-hour from 18 UTC 13 October to 00 UTC 14 October 2012 (Carrió et al., 566 
2019) is performed (Fig. 6) to reduce spin-up problems related to the direct downscaling from 567 
global ECMWF analysis (32 km grid resolution) to the WRF parent domain used in our 568 
simulations (16 km grid resolution). This procedure improved the DA for IOP13, but it had a 569 
small impact for Qendresa. 570 

Therefore, the following model simulations were performed: 571 

● No Data Assimilation (NODA) 572 

● Only conventional in-situ observations are assimilated using the 3DVar and the EnKF 573 
(SYN) 574 

● All available observations (i.e., conventional, radar based and satellite derived data) are 575 
assimilated using both 3DVar and EnKF (CNTRL) 576 

The comparison between the DA experiments and NODA allows us to assess the impact of the 577 
DA procedure. On the other hand, the comparison between SYN and CNTRL will allow for 578 
assessing the role of radar and/or satellite data, especially for the events originated in the area 579 
where observations are not available. Moreover, the assimilation of the radar and/or satellite 580 
will produce important information on the triggering phase of both events developing on the 581 
sea. 582 
 583 
6.1. CNTRL Experiments 584 
 585 
For IOP13, the CNTRL experiment is designed to assimilate both in-situ conventional and 586 
reflectivity observations from Aleria and Nimes Doppler weather radars. The assimilation of 587 
the reflectivity is expected to improve the forecast of this event by significantly improving the 588 
initial conditions over the sea, where convective activity initiated and evolved into deep 589 
convection affecting coastal populated areas of Italy. As briefly described in the previous 590 
section, this experiment consists of three stages: 1) the spin-up of the storm-scale domain is 591 
accounted for by running the WRF model during 6 hours from 18 UTC 13 October to 00 UTC 592 
14 October 2012 (note that for the 3DVar experiment, the spin-up is accounted for by just  593 
initializing WRF with the deterministic analysis from the IFS ECMWF. However, for the EnKF 594 
counterpart, the spin-up is accounted by initializing the 36-member ensemble at 18 UTC 13 595 
October); 2) in-situ conventional observations were hourly assimilated during 24 hours from 596 
00 UTC 14 October to 00 UTC 15 October, meanwhile reflectivity observations were 597 
assimilated using a Rapid-Update Assimilation Cycle every 15 minutes during a period of 6 598 
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hours, from 18 UTC 14 October to 00 UTC 15 October (Fig. 6); 3) a 24-h ensemble 599 
(deterministic) forecast until 00 UTC 16 October, using the recently obtained initial conditions, 600 
is performed by the EnKF (3DVar). 601 

For the Qendresa episode, CNTRL experiment is designed to assimilate both in-situ 602 
conventional and RSAMV observations. The assimilation of RSAMV observations is expected 603 
to improve the representation of the atmospheric circulation at upper-levels, whereas the 604 
assimilation of surface conventional observations is expected to enhance the one at low-levels. 605 
The Qendresa CNTRL experiment consists of two main phases: 1) in-situ conventional and 606 
satellite derived RSAMV observations are hourly and 20-min assimilated, respectively, during 607 
a 12-h period from 12 UTC 6 November to 00 UTC 7 November 2014 to end up with the last 608 
analysis at the end of the assimilation window (i.e., 00 UTC 7 November); 2) a free 36-h 609 
ensemble (deterministic) forecast is performed by the EnKF (3DVar) from 00 UTC 7 610 
November to 12 UTC 8 November 2014 (Fig. 6e). 611 
 612 
 613 
6.2. SYN Experiments 614 
 615 
For IOP13, the SYN experiment assesses the impact of in-situ conventional observations, 616 
which are crucial to characterize mesoscale atmospheric circulation. Analogous to the CNTRL, 617 
SYN follows the same three phases, but in the second phase only the hourly in-situ 618 
conventional observations from 00 UTC 14 October to 00 UTC 15 October 2012 are 619 
assimilated. The analysis obtained from the assimilation stage is used as initial conditions for 620 
running the free forecast for 24h, in the third phase (Fig. 6).  621 
 622 
Similarly, also for Qendresa, in the SYN experiment only in-situ conventional observations are 623 
hourly assimilated for 12 hours, from 12 UTC 6 November to 00 UTC 7 November 2014 (Fig. 624 
6). 625 
 626 
 627 
6.3. NODA Experiments 628 
 629 
For the IOP13, NODA experiment is a direct downscaling from EPS-ECMWF boundary and 630 
initial conditions valid at 18 UTC 13 October to 00 UTC 16 October 2012 (Fig. 6). The 631 
comparison among NODA, CNTRL and SYN will provide us with valuable information on the 632 
impact of assimilating different sources of observations. 633 
 634 
For Qendresa, NODA experiment is simply a direct downscaling of 36 hours from EPS-635 
ECMWF at 00 UTC 7 November to 12 UTC 8 November 2014 (Fig. 6). Here again, it is 636 
important to note that the choice of starting NODA at 00 UTC 7 November instead of starting 637 
at 12 UTC 6 November was made intentionally to extract general conclusions applicable 638 
possibly to an operational framework. 639 

 640 
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 641 

 642 
Figure 6. Schematic representation of the main numerical experiments performed in this study for the IOP13 (top 643 
panel) and Qendresa (bottom panel) episodes, respectively. SYN, CNTRL and NODA experiments are illustrated 644 
for each case, highlighting their respective configurations and assimilation strategies.  645 
 646 
 647 
7. Verification Methods 648 

To quantitatively evaluate the performance of the EnKF and the 3DVar and their impact on the 649 
short-term forecast of these two extreme weather events, various verification scores are used. 650 
Given the different nature of the weather phenomena associated with these episodes, the 651 
selection of verification scores is tailored specifically to each event. For the IOP13 heavy 652 
precipitation event (Fig. 7a), the model verification was performed using the observed 653 
accumulated precipitation field over different time windows (e.g., 3 hours, 6 hours or 9 hours). 654 
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More specifically, the accumulated precipitation was computed using observations from the 655 
Italian Department of Civil Protection. However, the spatial distribution of rain gauges is not 656 
homogenous and there are regions where a lack of rain gauges is present. To address these 657 
issues, three sub-regions are chosen where the heavy precipitation event was well recorded by 658 
the weather stations (see R1, R2 and R3 in Fig. 7b). Conversely, for the Qendresa tropical-like 659 
cyclone, a limited number of in-situ observations were present since it initiated and moved over 660 
the sea during its lifecycle, and radar-data were not available. Consequently, IR satellite 661 
imagery was the primary source of data to approximately estimate Qendresa’s trajectory (Fig. 662 
7c). Regarding the intensity of Qendresa, since the cyclone’s center passed over Malta island, 663 
reaching its minimum mean sea level pressure (MSLP) of 985 hPa, METAR data from Malta’s 664 
airport was also used to verify the cyclone’s intensity (Fig. 7d). 665 
 666 

667 
Figure 7. (a) Example of the 12-h accumulated precipitation estimated values and their spatial distribution from 668 
the Italian Department of Civil Protection rain gauges. (b) Linear interpolation of 12-h accumulated precipitation 669 
values into the three target areas where verification has been performed. (c) Observed track of Qendresa 670 
medicane viewed from infrared satellite imagery. (d) Surface pressure (hPa) data obtained from the METAR 671 
station at Malta’s airport. 672 
 673 
 674 
To quantitatively assess the short-term (i.e., first 6-9 hours) precipitation forecast for the IOP13 675 
initialized using the analysis from the 3DVar and EnKF DA techniques, the Filtering Method, 676 
the Relative Operating Characteristics (ROC; Mason, 1982; Stanski et al., 1989; Swets, 1973) 677 
and the Taylor Diagrams (Taylor, 2001) were used. We avoid using the conventional point-678 
by-point approach, which has been shown to have serious limitations in the evaluation of high-679 
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grid spatial and temporal precipitation field resolutions (Roberts, 2003). More specifically, as 680 
Filtering Method we use the Fraction Skill Score (FSS; Roberts and Lean, 2008), which is 681 
commonly used to quantitatively assess precipitation. A preliminary interpolation of the 682 
forecast and the observations onto a common regular mesh of 3 km is performed to compute 683 
FSS. Then the comparison is carried out within a region of 3x3 grid cells around each grid cell. 684 
The FSS can be used to determine the scale over which a forecast system has sufficient skill 685 
(Mittermaier, 2010). The FSS ranges from 0 to 1, being 1 a perfect match between model and 686 
observations.  In addition to the ROC curves, the Area Under the ROC Curve (AUC; Stanski 687 
et al., 1989; Schwartz et al., 2010), which is also widely used to quantitatively assess the quality 688 
of weather forecasts, will be also used in this study. For a perfect forecast, AUC is equal to 1. 689 

For Qendresa, the Whisker diagrams (Tukey, 1977) and the Probability Distribution of the 690 
Cyclone Center Occurrence (PCCO), which was based on the Kernel Density Estimation 691 
(KDE; Bowman and Azzalini, 1997; Scott, 2015; Silverman, 2018), were used to validate the 692 
simulations. More specifically, the KDE is used to compute the probability of having the center 693 
of the cyclone over the entire numerical domain. The main idea behind KDE is to place a 694 
“kernel” (i.e., a probability distribution function) at each data point, and then sum up the kernels 695 
to estimate the overall probability density function. The kernel is typically chosen to be a 696 
smooth function, such as a Gaussian, that decays to zero as the distance from the data point 697 
increases. The width of the kernel is controlled by a parameter called the bandwidth, which it 698 
turns out to be one of the limitations of the KDE technique. In this case, we found that the 699 
optimal bandwidth is 20 km, which is within the meso 𝛽 scale, i.e. a typical length scale for 700 
convective cells. Here, a 2-dimensional KDE will be applied over each cyclone center (lat, lon 701 
coordinates) identified for the different simulations (i.e., EnKF vs 3DVar). In this way, we will 702 
infer the most probable track of Qendresa for the different simulations, thereby identifying 703 
which is the best DA technique and which provides better estimations of Qendresa medicane’s 704 
track.   705 
 706 
 707 
8. Results  708 
 709 
As discussed in the previous section the above-mentioned verification techniques were applied 710 
for the two extreme events. The results are described in the following subsections. 711 
 712 
 713 
8.1. Statistical analysis: IOP13 Episode 714 
 715 
Because IOP13 was a heavy rainfall episode, to quantitatively assess the impact on the short-716 
range forecasts from assimilating both in-situ conventional and reflectivity observations from 717 
Doppler weather radars using the 3DVar and the EnKF DA algorithms, the accumulated 718 
precipitation field will be used.  719 
 720 
 721 
8.1.1. Filtering Method 722 
 723 
The FSS associated with the 3-h accumulated precipitation field is computed independently for 724 
the three sub-regions R1, R2 and R3, which are highlighted in Fig. 7b. These regions were 725 
chosen due to their higher observation density, allowing for a more reliable evaluation. The 726 
analysis is carried out using two precipitation thresholds: 5 mm·h-1 (moderate rainfall) and 10 727 
mm·h-1 (heavy rainfall). In general, except for R3, the comparison in terms of FSS (Fig. 8 a-f) 728 
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shows that at the initial forecast time and during the first 6 hours, DA simulations (EnKF and 729 
3DVar) outperform the NODA simulation (without assimilation). Among the DA simulation, 730 
EnKF generally outperforms 3DVar in R1 and R2, especially for the higher precipitation 731 
threshold (10 mm·h-1). As expected, CNTRL experiments for both 3DVar and EnKF provide 732 
higher FSS values compared to SYN experiments, where reflectivity observations were not 733 
considered. 734 
 735 
In R3, the results show an unexpected behavior when using the moderate threshold (5 mm·h-736 
1) (Fig. 8c), where NODA outperforms DA simulations during the first few hours. This 737 
anomaly could be attributed to three factors: (1) the use of a moderate precipitation threshold, 738 
which may not capture significant precipitation differences; (2) minimal precipitation in R3 739 
during the initial forecast hours, since the deep convection system had not yet reached this 740 
region; and (3) the location of R3 near the domain edges, where it relies solely on in-situ 741 
observations for assimilation corrections, as it falls outside the radar coverage area.                                                                                      742 
This interpretation is reinforced when examining the higher precipitation threshold (10 mm·h-743 
1) (Fig. 8f), where all methods exhibit similarly poor skill in the early forecast hours, indicating 744 
that precipitation is still too weak to be meaningfully assessed. However, after 6-9 hours, as 745 
expected, DA simulations outperform NODA in all sub-regions. 746 
 747 
To be noticed, the CNTRL simulations do not consistently show better FSS scores than SYN 748 
simulations during the first hours, for R1. This could be due to the short-lived impact of radar 749 
reflectivity assimilation, which in past studies has been shown to last no longer than 2-4 hours 750 
for 3DVar and EnKF, respectively. These findings align with previous studies, which reported 751 
similar behavior regarding the transient impact of reflectivity DA (Carrió et al., 2016; Carrió 752 
et al., 2019). 753 
 754 
Finally, we also computed the Root Mean Squared Error (RMSE) for the precipitation field 755 
over the first 24 hours of free forecast for both DA and NODA experiments (Fig. 8g-i). For 756 
3DVar and NODA, RMSE is calculated from the deterministic forecast, while for EnKF, it is 757 
computed from the ensemble mean precipitation field. Overall, DA experiments exhibit lower 758 
(better) RMSE scores compared to NODA, confirming the positive impact of data assimilation 759 
on forecast accuracy. Among the DA experiments, EnKF consistently outperforms 3DVar in 760 
all regions, suggesting a better representation of precipitation variability and improved initial 761 
conditions. 762 
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 763 
Figure 8. Upper panels: Evolution of the FSS during the first 24-h hours of free forecasts for 3-h accumulated 764 
precipitation in the Italian sub-regions: R1 (first column), R2 (second column) and R3 (third column). Two 765 
thresholds are used: > 5 mm·h-1 (first row) and > 10 mm·h-1 (second row). Lower panels: Evolution of the RMSE 766 
associated with each experiment during the first 24 hours of free forecast in the different sub-regions. Simulations 767 
assimilating both conventional and radar observations (CNTRL) and simulations assimilating only conventional 768 
observations (SYN) associated with the 3DVar and the EnKF are shown here. As a reference, NODA results are 769 
also included. 770 
 771 
 772 
 773 
8.1.2. ROC and AUC 774 
 775 
To strengthen how skillful are the different simulations performed by the 3DVar and the EnKF, 776 
the Receiver Operating Characteristic (ROC) curve is used. The probability of exceeding a 777 
given threshold is computed and verified against dichotomous observations. The ROC curve is 778 
computed as follows: the model variable is interpolated to the observation locations and if the 779 
model variable exceeds a given threshold, that model grid point is assigned a value of 1. On 780 
the contrary, if the model value does not exceed that threshold, the assigned value is 0. The 781 
same method is applied for the observations. Then, using these dichotomous values, the Hit 782 
Rate and False Alarm scores are computed. This process is repeated, varying the threshold 783 
value. Gathering the Hit Rate and False Alarm scores for the different thresholds, we obtain 784 
the ROC curve. For the 3DVar, we get the Hit Rate and False Alarm scores by simply 785 
interpolating the model values to the observation locations and apply the threshold criteria 786 
explained above. In the case of the EnKF, the ensemble mean is used as the field to be 787 
interpolated to the observation locations. The area under the ROC curve (AUC), which 788 
measures the ability of the system to discriminate between the occurrence or nonoccurrence of 789 
the event, is also computed.  790 
 791 
For the sake of brevity and because the results from the three sub-regions are similar, the ROC 792 
curve and AUC are computed, accounting for all the observations within the inner domain. 793 
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Specifically, to compute the ROC curves, we use the 3-hour (from 00 UTC - 03 UTC 15 Oct) 794 
and 6-hour (from 00 UTC - 06 UTC 15 Oct) accumulated precipitation fields from the model 795 
simulation and the observed values registered by the rain gauges, using 1 mm and 10 mm as 796 
thresholds (Fig. 9). 797 
 798 
Overall, DA experiments outperform the NODA runs for both the 3-hour and 6-hour 799 
accumulated precipitations, as shown by higher ROC curves and larger AUC values. Among 800 
the DA approaches, the EnKF consistently outperforms 3DVar, with greater benefits observed 801 
at the 10 mm threshold (i.e., bottom row of Fig. 9). This improvement highlights the advantages 802 
of radar reflectivity assimilation within an ensemble-based framework, especially for more 803 
intense precipitation events. To better understand this result, we closely analysed the 1-h and 804 
6-h accumulated precipitation fields obtained from the EnKF (CNTRL) and the 3DVar 805 
(CNTRL) comparing them against corresponding observations (see Fig. A1 and Fig. A2 in the 806 
Appendix). The 1-h accumulated precipitation (Fig. A1) shows that the EnKF localizes with 807 
high accuracy the regions where the most intense precipitation was observed, that is near 808 
Tuscany and northern Italy. Also, 3DVar correctly reproduces the rainfall in the regions 809 
affected by observed precipitation, although the maximum amounts are centered over Liguria, 810 
instead of near Tuscany. In addition, the 3DVar is also showing a tongue area of weak 811 
precipitation from Liguria to northern Italy, that does not fit with the observations. 812 
Consequently, while small differences exist between 3DVar and EnKF in the 1-h accumulated 813 
precipitation field, the low magnitude of accumulated precipitation values leads to no 814 
substantial differences in ROC verification scores. However, in the case of the 6-h accumulated 815 
precipitation (Fig. A2), the 3DVar overestimates accumulated precipitation near Liguria, 816 
Tuscany and northern Italy than the observed ones. Moreover, 3DVar is also misplacing the 817 
locations of the precipitation for some places. On the contrary, the EnKF locates with enough 818 
accuracy the regions where the accumulated precipitation was actually observed and properly 819 
estimates the observed intensity. Consequently, ROC curve for the 6-hour accumulated 820 
precipitation obtained from the EnKF produced a much better score than the 3DVar. We 821 
hypothesize that this difference could be associated with the static/climatological background 822 
error covariance matrix used by the 3DVar. Because of the fast changes in the flow associated 823 
with the IOP13 case, using a climatological background error covariance could not be as good 824 
as using a flow-dependent background error covariance matrix, which is used in the EnKF.  825 
 826 
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 827 
Figure 9. ROC curves and AUC associated with the 3DVar (red and pink colors), EnKF (blue and cyan colors) 828 
and NODA (green color) for the 3-hour accumulated precipitation using (a) 1 mm and (b) 10 mm threshold and 829 
6-hour accumulated precipitation using (c) 1 mm and (d) 10 mm threshold, computed over the entire inner domain. 830 
Note: all experiments employ the same set of probability thresholds; any apparent differences in the number of 831 
plotted points arise from clustering of ROC values at similar thresholds, not from differing data counts. 832 
 833 
 834 
8.1.3. Taylor Diagrams 835 
 836 
To strengthen the comparison of the DA schemes, the Taylor Diagram is used. This tool 837 
provides us additional information about the skill of each ensemble member in the EnKF. Here, 838 
we compute the Taylor diagram for the 6-hour and 24-hour accumulated precipitation fields, 839 
which represents the forecast ranges where the observations assimilated have more impact. 840 
Overall, results show that the NODA experiment generally exhibits the lowest correlation and 841 
largest discrepancy in standard deviation relative to observations, emphasizing that DA 842 
significantly improves the representation of precipitation fields, especially for high-impact 843 
weather events. Among the different DA approaches, the 3DVar and the EnKF ensemble mean 844 
provide comparable results, with correlations ranging from approximately 0.50 to 0.61, similar 845 
RMSE and standard deviation that are symmetrically distributed around the observed 846 
reference. Notably, 3DVar tends to overestimate the standard deviation, while the EnKF 847 
ensemble mean tends to underestimate it (Fig. 10). A key advantage of EnKF lies in its 848 
individual ensemble members, some of which exhibit better performance than the 3DVar run. 849 
Although the mean difference between EnKF and 3DVar is small, the ensemble-based 850 
approach provides additional insight through its member-by-member variability. Specifically, 851 
ensemble members using the Grell-Freitas cumulus parameterization coupled with the Yonsei 852 
University planetary boundary layer scheme exhibit higher correlation and standard deviations 853 
similar to the observations in this study. Conversely, ensemble members associated with the 854 
lower scores are those using Kain-Fritsch for the cumulus parameterization and the Mellor-855 
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Yamada-Janjic for the planetary boundary layer scheme. These findings underscore the 856 
potential of multi-physics ensembles to capture diverse physical representations of convective 857 
processes, thereby enhancing forecast accuracy. 858 

 859 

 860 

Figure 10. Taylor diagram comparing the performance of 3DVar (red), EnKF (blue) and NODA (green) for the 861 
6-hour (left panel) and 24-hour (right panel) accumulated precipitation, valid at 06 UTC 15 October 2012. 862 
 863 
 864 
8.2. Statistical analysis: Qendresa event  865 
 866 
In tropical cyclone forecasting, two key factors are typically evaluated: (a) the intensity and (b) 867 
the trajectory followed by the cyclone. Therefore, to assess the impact of assimilating both in-868 
situ conventional and remote RSAMV observations using the 3DVar and the EnKF, we focus 869 
on these two factors for the Qendresa event. 870 
 871 
 872 
8.2.1. Whisker Diagrams 873 
 874 
For this event, the lack of in-situ observations over maritime regions poses a main challenge to 875 
properly verify the triggering and intensification of cyclones. Fortunately, the Qendresa 876 
medicane crossed just over Malta island, where a pressure drop greater than 20 hPa in 6 h, was 877 
registered by METAR at Malta airport, reaching a minimum of surface pressure of 985 hPa. 878 
Therefore, this METAR is used to quantitatively assess the skill of the NODA simulation and 879 
the various DA approaches. To compare the surface pressure registered at Malta with the 880 
different simulations, the full cyclone trajectory is used, and the grid point closest to Malta 881 
airport is selected. Specifically, the surface pressure time series measured by METAR is 882 
compared with the NODA run and the different DA simulations from 3DVar and EnKF, such 883 
as the 3DVar_SYN, 3DVar_CNTRL, EnKF_SYN, and the EnKF_CNTRL (Fig. 11). 884 
 885 
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 886 
Figure 11. Temporal surface pressure evolution at the closes grid point to Malta for the (a) SYN and (b) CNTRL 887 
experiments associated with the EnKF (blue), 3DVar (red) and NODA (green), compared to the observed surface 888 
pressure registered by METARs in Malta’s airport (black line). 889 
 890 
 891 
Overall, results indicate that NODA simulation captures the timing of the observed pressure 892 
drop more accurately than the DA runs, suggesting that the large-scale dynamics are adequately 893 
represented even without data assimilation (Fig. 11). However, NODA underestimates the 894 
intensity of the medicane’s central pressure. 895 
 896 
Among the DA simulations, assimilating in-situ conventional observations enables some EnKF 897 
ensemble members to outperform NODA in both timing and intensity, whereas 3DVar shows 898 
limitations in capturing the event timing and central pressure depth (Fig. 11a). Additionally, 899 
the ensemble mean of the EnKF_SYN accurately fits the observations during the first hours of 900 
the forecast, from 00 UTC to 13 UTC 7 November (Fig. 11a), performing slightly better than 901 
3DVAR_SYN. However, during the intensification phase, the ensemble mean of the 902 
EnKF_SYN barely shows the intensification of Qendresa, reaching minimum MSLP values of 903 
1002 hPa. On the contrary, the 3DVar_SYN simulation depicts the intensification of the 904 
medicane, by deepening the MSLP and reaching values of 992 hPa, although a time shift of 3 905 
hours is found (i.e., 15 UTC 7 November) (Fig. 11a). Finally, during the dissipation phase of 906 
Qendresa, the ensemble mean of EnKF_SYN is performing a bit better than the 3DVar_SYN 907 
(Fig. 11a). These results highlight a notable limitation of the EnKF when applied to low-908 
predictable weather events, such as Qendresa. The low predictability of Qendresa and the high 909 
sensitivity to physical parameterizations produce substantial spread in ensemble behavior: 910 
some members capture the cyclone’s closed circulation and track reasonably well, while others 911 
fail to develop a coherent low-pressure core, instead producing only disorganized or weak 912 
convective cells. Consequently, these poorly performing members may entirely miss the 913 
medicane’s formation or misplace its center, leading to large errors in both track and intensity 914 
forecasts.  In this situation, our small-to-moderate ensemble size exacerbates sampling error, 915 
yielding spurious background error covariances that degrade analysis accuracy in the EnKF. 916 
These errors become particularly problematic when the numerical model mispredicts the event, 917 
since the ensemble members no longer provide a reliable representation of flow-dependent 918 
uncertainty. On the other hand, a climatological/static background error covariance matrix, like 919 
the one used in the 3DVar could produce better results than ensemble members, as we see in 920 
Fig. 11a where we compared the 3DVar (red line) with the EnKF ensemble mean analysis (blue 921 
line). Also, it is important to note that although the ensemble mean of the EnKF_SYN is not 922 
correctly reproducing the intensification of Qendresa, some of the ensemble members very well 923 
reproduce the observed MSLP both in deepening and timing. This suggests that using an 924 
ensemble system, even having the above-mentioned problems, is still more useful than using 925 
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only a fully deterministic system such as the 3DVar, which cannot provide information about 926 
the uncertainties of the system. Therefore, we can speculate that for extreme weather events 927 
with low numerical predictability, a better approach could be using a hybrid error covariance 928 
model, where the forecast error covariance matrix is obtained linearly combining ensemble-929 
based covariance with static climatological error covariances (Hamill and Snyder (2000); 930 
Lorenc (2003); Clayton et al., 2013; Carrió et al., 2021). The impact of using hybrid DA to 931 
improve this kind of small-scale extreme weather events could be of great interest in the 932 
weather forecast community, although it is beyond the scope of this study. For this reason, the 933 
authors leave as future work the benefits of using hybrid error covariance models to improve 934 
the forecast of extreme weather events in the Mediterranean basin. 935 
 936 
Then, we evaluated the impact of assimilating both in-situ conventional and RSAMV 937 
observations on the accuracy of Qendresa intensity forecast (Fig. 11b). In this case, the results 938 
of the two experiments show large similarities (Fig. 11a, b). In terms of the 3DVar, the MSLP 939 
signature is basically the same, without showing a clear signal of improvement or diminishing, 940 
suggesting that the assimilation of RSAMVs is not enough to significantly improve the low 941 
level relevant dynamical structures associated with the genesis and intensification of Qendresa. 942 
However, in terms of the EnKF a clear improvement for a few members is found, even if it is 943 
not affecting the mean value. Indeed, some of the ensemble members depicted an intense 944 
cyclone far from the time when it was observed (approx. at 18 UTC 7 November), were 945 
corrected reducing spurious cyclones and the deepening of at least one ensemble member close 946 
to the observed value (Fig. 11b). It can be observed that in the EnKF_CNTRL, there are more 947 
ensemble members depicting a deep cyclone at the observed time than in the case of the 948 
EnKF_SYN, showing the benefits of assimilating RSAMVs to improve the intensification 949 
estimation of Qendresa. 950 
 951 
To quantitatively assess the performance of NODA and the different DA experiments, we use 952 
the lagged correlation technique computed between the model MSLP signatures and the 953 
observations. This technique allows us to measure how the shape of the surface pressure 954 
evolution obtained from the different simulations fits the shape of the observed MSLP, taking 955 
also into account temporal shifting. The correlation is computed for the NODA, 3DVar, and 956 
for each ensemble member from the EnKF. These results are shown using Whisker plots (Fig. 957 
12), where a correlation of one indicates that the specific model field has the same ‘V’ pressure 958 
shape evolution as the observation, and that the minimum for both is found at the same time. 959 
The results show that the NODA simulation exhibits the highest correlation values among all 960 
the simulations, reaching its maximum correlation when no time-shifting is applied. For the 961 
3DVar_SYN, the correlation is maximum and approximately equal to one when a 1-hour delay 962 
is produced by the forecasts (Fig. 12a). Whiskers from EnKF_SYN show that none of the 963 
ensemble members overcomes the maximum correlation value found in 3DVar_SYN. 964 
However, when the assimilation of RSAMVs is added to the in-situ conventional observations, 965 
it is found that the maximum correlation value associated with 3DVar_CNTRL using 2h of 966 
delay applied to the forecasts, is surpassed by some of the ensemble members of the 967 
EnKF_CNTRL, when a 3 or 4 hour of delay is applied (Fig. 12b). 968 
 969 



28 
 

970 
Figure 12. Whisker plots depict the lagged correlation values between the observations and the EnKF (blue 971 
boxes), the 3DVar (red stars) and NODA (green stars) for the (a) SYN and (b) CNTRL experiments. The 972 
correlation is computed considering that the observed V-shape pressure signature associated with the 973 
observations is shifted 4 hours to the left and 4 hours to the right. 974 
 975 
 976 
8.2.2. Probability Distribution of Cyclone Center Occurrence 977 
 978 
Due to the difficulty to accurately predict the observed trajectory of Qendresa (Pytharoulis et 979 
al., 2018), the impact of assimilating different kinds of observations on the trajectory of the 980 
medicane is investigated. 981 
 982 
Results indicate that the NODA simulation fails to accurately capture the track of Qendresa, 983 
especially its recurvature towards Sicily after leaving Malta, as evidenced by satellite imagery. 984 
In contrast, the 3DVar_SYN accurately captures the track of Qendresa during the first hours 985 
(Fig. 13b). However, after Qendresa leaves Malta, the trajectory simulated by 3DVar_SYN 986 
diverges from the observed track, shifting north-eastwards and failing to capture the track-loop 987 
observed in satellite imagery. To quantify the benefits of assimilating in-situ conventional 988 
observations using the 3DVar or the EnKF, the probability of occurrence of a cyclone following 989 
the track observed via satellite imagery is computed. For instance, 3DVar_SYN underestimates 990 
the probability of cyclone occurrence east of Sicily, where Qendresa made landfall while 991 
looping (Fig. 13b). On the other hand, some EnKF_SYN ensemble members show a cyclone 992 
trajectory shifted significantly southward, while others reproduce the loop trajectory missed by 993 
the NODA forecast (Fig. 13a). In addition, the probability of Qendresa occurrence eastwards 994 
Sicily, is in this case larger than 3DVar_SYN, showing the benefits of using the EnKF against 995 
the 3DVar (Fig. 13a). Moreover, the EnKF_SYN ensemble trajectories, in general, follow a 996 
‘V’ shape (i.e., first moving towards the southeast, then moving to the east and finally moving 997 
towards the northeast) similar to the trajectory observed via satellite imagery. Although the 998 
shape of most of the EnKF_SYN trajectories agree with the observations, a consistent 999 
southeastward displacement is evident in their location. 1000 
 1001 
If both in-situ conventional and RSAMV observations are assimilated, some of the ensemble 1002 
members from the EnKF_CNTRL shows more accurate trajectories in comparison with 1003 
EnKF_SYN: the loop trajectory is closer to the observed region of eastern Sicily (Fig. 13c).  1004 
An improvement of the 3DVar_CNTRL trajectory by increasing the probability of cyclone 1005 
occurrence following the observed track is observed, especially eastern of Sicily. However, 1006 
3DVar experiments are not able to reproduce the looping trajectory observed via satellite 1007 
imagery (Fig. 13b-d). Hence, EnKF outperforms 3DVar showing some of the ensemble 1008 
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members depicting a loop trajectory, although shifted southwards and producing a probability 1009 
of cyclone occurrence lower than the 3DVAR ones. 1010 

Both the EnKF and the 3DVar still have difficulties in depicting accurately the track observed 1011 
by Qendresa, even after the assimilation of in-situ conventional and RSAMV observations. 1012 
Because RSAMVs are useful in describing dynamical features on the upper levels of the 1013 
atmosphere, we hypothesize that ingesting them via DA may not be sufficient to correct key 1014 
low-level dynamical features. In this case, the assimilation of surface wind observations may 1015 
help to even improve these results. However, this is beyond the scope of this study and the 1016 
authors leave this question as future work, where other sources of information from satellites 1017 
will be assimilated to improve low-level thermodynamic aspects of extreme weather events, 1018 
such as medicanes. 1019 
 1020 
 1021 

 1022 
 1023 

Figure 13. Probability of cyclone center occurrence (within 20 km) computed using Gaussian KDE for (a) NODA, 1024 
(b) EnKF (SYN), (c) 3DVar (SYN), (d) EnKF (CNTRL) and (e) 3DVar (CNTRL), from 11 UTC 7 November to 12 1025 
UTC 8 November 2014. Qendresa’s trajectory observed via satellite imagery is depicted in black.  1026 
 1027 
 1028 
9. Summary and Conclusions 1029 
 1030 
This study provides a quantitative assessment of the impact of two widely used DA techniques 1031 
– 3DVar and EnKF – on the predictability of maritime extreme weather events. The focus is 1032 
on evaluating their potential to improve forecast lead time by assimilating observations during 1033 
the developing stage, as opposed to the mature stage, which affords limited time for 1034 
preparedness and response. To evaluate the performance of 3DVar and EnKF, we analyze two 1035 
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high-impact weather events triggered over the sea and later affected densely populated coastal 1036 
regions. These two extreme weather events are known as (a) the high precipitation event 1037 
registered during the 13th Intensive Observation Period (IOP13) affecting the western, northern 1038 
and central parts of Italy, and (b) the intense Tropical-like Mediterranean Cyclone (medicane) 1039 
known as Qendresa, that affected the islands of Pantelleria, Lampedusa, Malta and Sicily. 1040 
These weather events pose a serious challenge for the numerical weather prediction community 1041 
due to their low predictability, resulting from their initialization over the sea, where in-situ 1042 
observations are sparse and initial conditions are poorly estimated. Furthermore, their evolution 1043 
over complex terrain regions introduces additional forecasting challenges. 1044 
 1045 
For these two extreme weather events, both 3DVar and EnKF DA methods were applied, with 1046 
the type and number of assimilated observations varying based on the data availability. For 1047 
Qendresa, we assimilated (a) hourly in-situ conventional observations and (b) wind speed and 1048 
wind direction profiles of the entire atmosphere (RSAMVs) derived from geostationary 1049 
satellites every 20-min, providing high spatial and temporal resolution observations covering 1050 
the Central Mediterranean Sea, where Qendresa initiated and evolved. On the other hand, for 1051 
the IOP13, we assimilated (a) hourly in-situ conventional observations and (b) 15-min 3D 1052 
reflectivity observations from two type-C Doppler Weather Radars. 1053 
 1054 
Because of the different thermodynamic characteristics associated with Qendresa and IOP13, 1055 
a set of different verification metrics were used for each of these extreme weather events. The 1056 
Filtering method (FSS and RMSE), the ROC/AUC and the Taylor diagram were used to verify 1057 
the numerical simulations from 3DVar and EnKF associated with IOP13. In the case of 1058 
Qendresa, we used the Whisker diagrams and the Probability Distribution of Cyclone Center 1059 
Occurrence verification scores. For the IOP13, both the Filtering method and Taylor diagram 1060 
verification show that EnKF slightly outperforms 3DVar, although the differences are not 1061 
significant. In addition, it was observed that the assimilation of spatial and temporal high-1062 
resolution reflectivity observations significantly improved the forecast for both 3DVar and 1063 
EnKF, showing the key role of this type of observation. On the other hand, the ROC and AUC 1064 
scores clearly show that EnKF outperforms 3DVar. For the Qendresa event, while the ensemble 1065 
mean of EnKF underestimates the intensity of the medicane compared to 3DVar, some 1066 
individual EnKF ensemble members produce more accurate results than 3DVar. This 1067 
behaviour suggests how important it is using an ensemble forecast system to predict extreme 1068 
weather events at high spatial and temporal resolution. Regarding the cyclone’s trajectory, the 1069 
EnKF provides a more realistic representation of the Qendresa’s observed path.  1070 
 1071 
Although the EnKF technique has shown in general better performance against the 3DVar for 1072 
the two extreme weather events analyzed in this study, it is also important to account for the 1073 
computational resources required by each method. The EnKF requires approximately 36 times 1074 
more model integrations per cycle than 3DVar’s single forecast, in addition to the overhead of 1075 
computing ensemble updates. This makes the 3DVar appealing because it is much faster and 1076 
cheaper than the EnKF, and it makes this technique particularly suitable for operational 1077 
purposes at the small weather forecast centers. 1078 
 1079 
An interesting result of this study is that, for highly non‐Gaussian extreme events the 1080 
deterministic 3DVar forecast can occasionally outperform the EnKF ensemble mean in terms 1081 
of point forecasts (e.g., minimum central pressure), because averaging across ensemble 1082 
members tends to smooth out the tails of a skewed probability distribution. In contrast, 1083 
probabilistic metrics like ROC/AUC consistently favor the EnKF, reflecting its superior ability 1084 
to capture forecast uncertainty. We attribute these contrasting behaviors to the different 1085 
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approaches to background error covariances: 3DVar employs a static covariance, while EnKF 1086 
uses a flow‐dependent covariance estimated from a finite ensemble. To combine the strengths 1087 
of both methods, a hybrid error covariance approach—where the forecast error covariance 1088 
matrix is formed by linearly blending the EnKF’s ensemble‐derived covariances with the 1089 
3DVar’s static climatological covariances—may offer improved forecast skill for convective‐1090 
scale extreme events. 1091 
 1092 
Further work will investigate the impact of using hybrid DA schemes in comparison to standard 1093 
3DVar or EnKF. In this scenario, it is expected that the hybrid error covariance matrix will be 1094 
more precise than the one derived from the ensemble members or from climatology, which on 1095 
their own are not able to reproduce key aspects of challenging extreme weather events. High 1096 
temporal and spatial observations from Doppler Weather radars, such as reflectivity and radial 1097 
wind velocities, will be assimilated for this case to obtain accurate analysis and thus, improve 1098 
the short-range forecast of this catastrophic flash-flood event. In addition, it is important to 1099 
highlight that satellite-based data assimilation provides a significant opportunity for enhancing 1100 
convective-scale forecasting, particularly in data-sparse maritime regions such as the 1101 
Mediterranean, where the formation of extreme weather events like tropical-like cyclones is 1102 
increasingly impacting densely populated areas. Future studies integrating high-resolution 1103 
satellite observations, such as cloud top heights, thermodynamic profiles or cloud properties, 1104 
could further enhance the accuracy of convective-scale predictions, improving early warning 1105 
capabilities and disaster preparedness. 1106 
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Fig. A1. 1-h accumulated precipitation computed from 00-06 UTC 15 October 2012 associated with Observations 1188 
(first column), NODA (second column), EnKF (CNTRL) (third column) and 3DVar (CNTRL) (fourth column).  1189 
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1192 
Fig. A2. 6-h accumulated precipitation computed from 00-06 UTC 15 October 2012 associated with (a) 1193 
Observations, (b) NODA, (c)EnKF (CNTRL), (d) 3DVar (CNTRL). 1194 
 1195 
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