High-Resolution Data Assimilation for Two Maritime Extreme Weather 1 Events: A comparison between 3DVar and EnKF. 2 3 4 Diego S. Carrió¹, Vincenzo Mazzarella², Rossella Ferretti² 5 6 ¹Meteorology Group, Department of Physics, University of the Balearic Islands, Palma, Spain 7 ²CETEMPS, Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila 67100, 8 Italy 9 10 Abstract 11 Populated coastal regions in the Mediterranean are known to be severely affected by extreme weather 12 events. Generally, they are initiated over maritime regions, where a lack of in-situ observations is 13 present, hampering the initial conditions estimations and hence, the forecast accuracy. To face this 14 problem, Data Assimilation (DA) is used to improve the estimation of the initial conditions and their 15 respective forecasts. Although comparisons between different DA methods have been performed at 16 global scales, few studies are performed at high-resolution, focusing on extreme weather events 17 triggered over the sea and enhanced by complex topographic regions. In this study, we investigate the 18 role of assimilating different types of conventional and remote-sensing observations using the 19 variational 3DVar and the ensemble-based EnKF, which are of the most common DA schemes used 20 globally at National Weather Centers. To this aim, two different events are chosen because of both the 21 different areas of occurrence and the triggering mechanisms. Both the 3DVar and the EnKF are used 22 at convection permitting scales to improve the predictability of these two high-impact coastal extreme 23 weather episodes, which were poorly predicted by numerical weather prediction models: (a) the heavy 24 precipitation event IOP13 and (b) the intense Mediterranean Tropical-like cyclone Qendresa. Results 25 show that the EnKF and 3DVar perform similarly for the IOP13 event for most of the verification 26 metrics, although looking at the ROC and AUC scores, the EnKF clearly outperforms the 3DVar. 27 However, the ensemble mean of the EnKF is in general worse than the 3DVar for Oendresa, although 28 some of the ensemble members of the EnKF individually outperforms the 3DVar allowing for gaining 29 information on the physics of the event and hence the benefits of using an ensemble-based DA scheme. 30 31 Correspondence: Diego S. Carrió, University of the Balearic Islands, 07122, Cra. Valldemossa km 7.5, 32 Balearic Islands, Palma (Spain) 33 34 Email: diego.carrio@uib.es 35 36 Keywords: Variational Data Assimilation (3DVar), ensemble data assimilation (EnKF), low-predictable 37 weather events, extreme weather events, high-resolution numerical forecasts. 38 39 40 41 42 43 44

46 1. Introduction

47 48

49

50 51

52

53

54 55

56 57

58

59

60

61

62

63 64

65

66 67

68

69

70

71

72

73

74

75

76

77 78

79

80

81 82

83

84 85

86

87 88

89

90 91

92

The Mediterranean basin is recognized as one of the geographical regions most frequently affected by high impact weather events in the world (Petterssen, 1956). The Mediterranean region has a natural disposition for these events because of its singular orographic features, which include having a relatively warm sea surrounded by complex terrain. This geographical configuration forces the warm and moist airflow to lift, favoring condensation and triggering convection. Hazardous weather events in this region, such as heavy precipitation (e.g., flash floods, snowstorms), cyclogenesis or windstorms (e.g., squall lines, tornadic thunderstorms), produce huge economic, injury and human losses in populated coastal regions (e.g., Romero et al., 1998b; Llasat and Sempere-Torres, 2001; Llasat et al., 2010; Jansa et al., 2014; Flaounas et al., 2016; Pakalidou and Karacosta, 2018; Amengual et al., 2021). Since 1900, more than 500 billion Euros associated with total damages to the property and over 1.3 million fatalities related to hydrometeorological disasters has been registered for the EM-DAT international disaster database¹. These effects underscore the critical need for accurate and rapid highresolution weather forecasting systems, aimed at extending the lead time for severe weather warnings, thereby enabling the implementation of effective mitigation strategies to reduce fatalities and economic losses. However, while the accuracy of weather forecasting has significantly improved in recent years, with better representation of physical processes and dynamics, accurate prediction of high impact weather events in terms of their location, timing, and intensity remains a major challenge for the scientific community (Stensrud et al., 2009; Mass et al., 2002; Bryan and Rotunno, 2005; Yano et al., 2018; Torcasio et al., 2021). For this reason, improving the forecast of high-impact weather events becomes an imperative goal.

Deficiencies in the accurate prediction of the location (spatial and temporal), intensity and phenomenology of extreme weather events are tightly related to the accuracy of the initial conditions of the system (Wu et al., 2013). The initial conditions of the hazardous weather events affecting coastal populated regions, are typically poorly estimated, mainly because these weather systems originate over the sea, where there is a lack of *in-situ* observations. Enhanced representations of the initial conditions are typically achieved by blending information from observations into numerical models through sophisticated Data Assimilation (DA) techniques (Kalnay, 2003), which accounts not only for the nominal values of the observations and the model, but also accounts for their respective error statistics. DA has been widely used and applied for global numerical weather prediction (NWP) problems (e.g., Eliasen, 1954; Lorenc, 1981; Le Dimet and Talagrand, 1986; Rabier et al., 2000, Whitaker et al., 2008, Carrassi et al., 2018; Albergel, et al., 2020, among others). However, less attention has been paid to convective-scale NWP problems, especially those associated with small scale convective phenomena initiated over regions with sparse observational data coverage, such as the extreme weather events affecting coastal regions in the Mediterranean basin (Carrió et al., 2016; Amengual et al., 2017; Carrió et al., 2019; Lagasio et al., 2019; Amengual et al., 2021; Mazzarella et al., 2021; Torcasio et al., 2021, Capecchi et al., 2021). To improve forecasts of such extreme weather events, accurate high resolution numerical weather models which solve convective scale processes are required, as well as dense observations at high spatial and temporal resolution. These will provide accurate information regarding the convective systems themselves or their environmental conditions. One of the most important sources of convective scale information are ground weather radars that provide three-dimensional data related to the storms at high spatial (order of hundreds of meters) and temporal (order of few minutes) resolution. In addition, weather radars provide thermodynamic and dynamic information of thunderstorms, which are crucial to understand and forecast convective structures. Due to the

¹ https://www.emdat.be/

high spatio-temporal variability of convective structures, a rapid update cycle of the initial state (i.e., analysis) using weather radar observations is required to reduce errors and keep physical balances in the initial conditions. Several studies have shown the positive impact in forecasting severe weather events by assimilating weather radar information (e.g., Xiao and Sun, 2007; Lee et al., 2010; Wheatley et al., 2012; Yussouf et al., 2015; Carrió et al., 2019; Mazzarella et al., 2021).

99

100

101

102

103 104

105

106

107

108

109 110

111

112

113114

115

116117

118119

120

121

122123

124 125

126

127

128

129 130

131132

133

134 135

136

137138

139

140 141 During the last decades, different DA algorithms have been developed with the aim of improving weather forecasts making use of all available observations in the best possible way. In this context, most of the developed DA methods are based on exploiting Bayes' Theorem (Lorenc, 1986) and making use of different types of approximations. Generally, DA algorithms can be classified into the following three Bayesian-based families: (a) Variational DA (e.g., 3DVar (Barker et al., 2004) or 4DVar (Huang et al., 2009)); (b) Ensemble-based DA, which are based on the Ensemble Kalman Filter (EnKF; Evensen, 1994) and (c) Monte-Carlo DA methods. Variational DA minimizes a cost function to obtain the analysis (i.e., the best estimation of the initial conditions). More specifically, variational DA methods provide a (quasi) optimal analysis based on an imperfect forecast (prior state or background), a set of imperfect observations and their respective error statistics that are prescribed and assumed to be Gaussian, for simplicity. In addition, variational DA algorithms require a linearized and adjoint version of the numerical model, which can be very difficult to develop and maintain. This often involves the use of automatic differentiation tools or complex manual derivation, both of which are error-prone and time-consuming. On the other hand, the ensemble-based DA algorithms do not require the use of linearized or adjoint versions of the model, and they do not use prescribed error statistics. Instead, they compute the error statistics from an ensemble of forecasts, with the main property that these errors are evolving in time as the system evolves. The Monte-Carlo DA method allows the assimilation of observations described with non-Gaussian errors. Particle filters (PF; Van Leeuwen, 2009; Poterjoy, 2016) are a clear example of Monte-Carlo DA algorithm. However, PFs are not well-suited for large multidimensional systems, such as the atmosphere, although a lot of improvements have been achieved recently. In the present study, we will focus on the most widely used DA schemes typically used in major operational weather centers, which are the variational and ensemble-based DA schemes, leaving the Monte-Carlo methods for future work.

Although variational DA schemes have been used in numerical weather prediction for many years (Courtier et al., 1994; Park and Zupanski, 2003; Rawlins et al., 2007), allowing the assimilation of a wide range of different observations, they present a well-known limitation. This limitation is related to the use of a climatological background error covariance matrix to characterize the error statistics, which is kept constant along the assimilation window, where the different observations are distributed at different times. This weakness is specifically linked to the 3DVar method, which typically uses the National Meteorological Center (NMC) method (Parrish and Derber, 1992) to generate those static background error covariances using forecast differences over a period of time reasonably close to the event. The error statistics derived from such DA schemes are static, isotropic and nearly homogenous, misrepresenting the true error statistics in space and time, which are inherently flow-dependent, resulting in less accurate analysis. On the other hand, the EnKF DA scheme is designed to provide flow-dependent background error covariances. Some studies have shown the potential of the EnKF spreading information from the observations flow-dependently in comparison with the 3DVar (Yang et al., 2009; Gao et al., 2018). On the other hand, 3DVar techniques require less computational resources and there is no need to build an ensemble compared to EnKF or even simulate the model trajectory as in 4DVar. Therefore, the assimilation with 3DVar takes only a few tens of minutes, making this technique particularly suitable for operational purposes.

142 To resolve convective scale (i.e., grid spacing of a few kilometers) physical processes 143 associated with extreme weather phenomena, high-resolution numerical simulations are required, as well as high resolution initial conditions. This turns in performing computational 144 145 expensive high-resolution simulations, which poses a significant challenge by limiting the number of ensemble members that can be used in EnKF DA schemes, potentially hindering the 146 estimation of the background error covariance matrix. Determining which DA method yields 147 148 greater accuracy – 3DVar using an ad hoc background error covariance matrix versus EnKF 149 with a flow-dependent low-rank background error covariance derived from a finite ensemble – remains challenging under constrained computational resources. 150

Recent convective-scale DA studies have primarily focused on the mature stage of weather events (e.g., Tong et al., 2005; Fujita et al., 2007; Dowell et al., 2021; Jones et al., 2013; Wheatley et al., 2015; Jones et al., 2016; Gao et al., 2016; Ballard et al., 2016; Gustafsson et al., 2018; Carrió et al., 2019; Mazzarella et al., 2020; Yussouf et al., 2020; Federico et al., 2021; Junjun et al., 2021; Janjić et al., 2022; Wang et al., 2022). However, at this stage, the system is already well-developed and likely impacting the population, limiting the effectiveness of DA in terms of forecast lead time. In such cases, the potential for early warnings and mitigation actions is significantly reduced, as there is little time left to respond and minimize socio-economic impacts. Despite its potential benefits, only a handful of studies have explored the impact of DA using high-resolution numerical models in the developing stage (e.g., Carrió et al., 2019; Carrió et al., 2022; Corrales et al., 2023), and even fewer have done so over data-sparse maritime regions, where early assimilation could be most valuable, providing advanced warnings and allowing decision-makers to act proactively. This study fills that gap by directly comparing two widely used DA techniques – 3DVar and EnKF – in highresolution, pre-convective assimilation experiments for two extreme weather events initiated over the sea affecting populated coastal regions in the Mediterranean basin. It is important to emphasize that this study does not aim to derive statistically significant conclusions. Instead, the main objective is to compare the performance of EnKF and 3DVar in two distinct extreme weather events, each characterized by unique atmospheric conditions and observational limitations. The two extreme weather events selected for this study are: (a) the heavy rainfall episode, IOP13, affecting coastal regions of Italy during October 2012 (Pichelli et al., 2017) and (b) the low-predictable Mediterranean Tropical-like cyclone (medicane), Qendresa, affecting Sicily in November 2014 (Pytharoulis et al., 2017; Pytharoulis, 2018; Cioni et al., 2018; Di Muzio et al., 2019).

175 On overall, this study aims at:

151

152153

154

155

156

157

158 159

160

161

162 163

164

165 166

167

168 169

170

171 172

173174

176

177

178 179

180 181

182

183 184

185 186 187

188

189 190 (a) Assessing the impact of 3DVar in comparison with the EnKF system to predict small-scale extreme weather events initiated over maritime regions with lack of *in-situ* observations.

(b) Compare the forecast impact from assimilating *in-situ* conventional observations in comparison to assimilating high spatial and temporal resolution data from remote sensing instruments.

(c) Provide a quantitative assessment between the different DA schemes by means of using several statistical verification methods.

This paper is organized as follows. Section 2 briefly describes the meteorological characteristics of the two events used for comparing the impact of 3DVar and EnKF. In Section 3 the observation dataset that will be assimilated by the different DA methods will be presented. Section 4 briefly explains the main characteristics of the two DA algorithms that will be used

in this study. Then, the numerical model configuration and the design of the different experiments for the two different case studies will be described in Section 5 and 6, respectively. Section 7 describes the verification methods used in this study. Results of the different numerical experiments for both meteorological situations are summarized in Section 8. Finally, conclusions are presented in Section 9.

2. Brief Description of Case Studies

Two different extreme weather systems, occurring in the Mediterranean region and affecting populated coastal regions, are considered in this study. The first extreme weather event was associated with heavy rainfall affecting central and northern Italy during October 2012 (IOP13), while the second extreme weather event was associated with the Qendresa medicane affecting southern Sicily, Lampedusa, Pantelleria and Malta islands during November 2014. Both systems were poorly forecasted, making them perfect candidates for this intercomparison study to assess the impact of data assimilation techniques.

2.1. The IOP13 Heavy Precipitation Episode

The IOP13 occurred during the *First Special Observation Period* (SOP1) of the international project *Hydrological cycle in the Mediterranean Experiment* (HyMeX; Drobinski et al., 2014), that was mainly designed to better understand heavy rainfall and flash flooding episodes occurring in the Mediterranean region. The heavy precipitation IOP13 event took place between 14 and 16 October 2012, and it was characterized by a frontal precipitation system associated with a deep upper-level trough extending from northern France towards northern Spain (Fig. 1). It initially affected southern France coastal areas, and afterward it also affected the northern and central parts of Italy. During 15 October, the Italian rain gauge network registered 24-hour accumulated precipitation with peaks reaching 60 mm in central Italy, 160 mm in northeastern Italy and 120 mm in Liguria and Tuscany. During the night of 14 October, a cold front affected the Western Mediterranean region and during 15 October the system rapidly moved from France to Italy, advecting low-level moisture towards the western coast of Italy and Corsica, destabilizing the atmosphere and favoring deep moist convective activity. More details on the synoptic situation and observational data collected during IOP13 can be found in Ferretti et al., 2014.

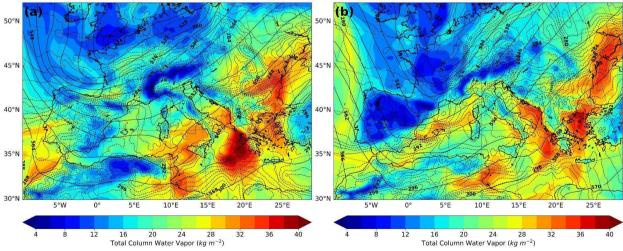


Figure 1. *IOP13 ERA5 analyses: 500 hPa geopotential (solid black lines), 925 hPa temperature (dashed grey lines) and total column of water vapor (color shaded areas) at (a) 12 UTC 14 October and (b) 00 UTC 15 October 2012.*

2.2. The Qendresa Tropical-Like Cyclone Episode

Among the wide spectrum of maritime extreme weather events, tropical-like Mediterranean cyclones, a.k.a. medicanes (Emmanuel, 2005), draw particular attention to the community mainly because they share similar morphological characteristics with tropical cyclones. Given their tendency to impact densely populated and economically critical areas around the Mediterranean basin, enhancing the accuracy and reliability of medicanes forecasts has become an urgent priority. Here, we focus on the 7 October 2014 medicane (Qendresa; Cioni et al., 2018) that affected the islands of Lampedusa, Pantelleria, Malta and the eastern coast of Sicily. This event was recognized by the community for its limited predictability (Carrió et al., 2017), making it a compelling case study for investigating the performance of the 3DVar and EnKF DA methods. *In-situ* observations located in Malta's airport registered gust wind values exceeding 42.7 m s⁻¹ and a sudden and deep pressure drop greater than 20 hPa in 6 hours. Satellite imagery during its mature phase showed a well-defined cloud-free eye surrounded by axisymmetric convective activity, which resembles the morphological properties of classic tropical cyclones.

A deep upper-level trough associated with a cyclonic flow at mid-levels characterized the synoptic situation in the Western Mediterranean from 5 to 8 November 2014. The upper-level trough was associated with an intense PV streamer extending from Northern Europe to Southern Algeria, and the cyclonic flow at mid-levels was dominated by a strong ridge over the Atlantic and a deep trough moving along Western Europe. Late on 7 November, the upper-level trough became negatively tilted, evolving into a deep upper-level cut-off low and the PV streamer disconnected from the northern nucleus (Fig. 2). A small well-defined spiral-to-circular cloud shape formed just south of Sicily and evolved east-northeastward, reaching its maximum intensity over Malta, at midday. Finally, the cyclonic system dissipated as it crossed the Catania (eastern) coast of Sicily. More details on the synoptic situation and observational data collected during this event can be found in Carrió et al., 2017.

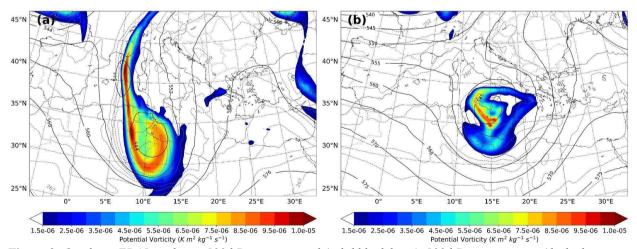


Figure 2. Qendresa ERA5 analyses: 500 hPa geopotential (solid black lines), 500 hPa temperature (dashed grey lines) and 300 hPa Potential Vorticity (color shaded areas) at (a) 00 UTC 7 November and (b) 00 UTC 8 November 2014.

264 265 266 267 268 269 270

271

272

3. Observations Description

In this study, a combination of remote-sensing and *in-situ* observations were assimilated for both case studies. Specifically, the following three types of observations were assimilated: (a) conventional *in-situ* data from surface meteorological stations, maritime buoys, rawinsondes and aircraft measurements, (b) high temporal and spatial reflectivity data from two Doppler Weather Radars and (c) satellite-derived 3D wind speed and direction data. A summary of the assimilated observations, including their data sources, assimilation frequency, coverage and additional processing is provided in Table 1.

Event	Observation Type	Data Sources	Assimilation Frequency	Coverage	Additional Processing		
IOP13	Conventional in-situ data	MADIS (NOAA)	Hourly	Entire Domain	Quality-controlled		
IOP13	Radar Reflectivity	Météo-France Doppler Weather Radars (Aleria & Nimes)	Every 15 minutes	Ligurian Sea & Gulf of Genoa	Quality controlled and Interpolated using Cressman Objective Analysis (6 km grid)		
Qendresa	Conventional in-situ data	MADIS (NOAA)	Hourly	Mediterranean Region	Quality-controlled		
Qendresa	Satellite-Derived Winds (RSAMVs)	EUMETSAT (SEVIRI instrument onboard MSG)	Every 20 minutes	Entire atmosphere over the Mediterranean Region	Quality-controlled, superobbing (128x128 km, 25 hPa vertical)		

Table 1: Summary of assimilated observations for each case study, including observation type, data sources, assimilation frequency, spatial coverage and additional processing details.

275276277

278279

280 281

282

283

284

285

286 287

288

289

290

291

292293

294

295296

297

298

299

273

274

3.1. IOP13 Observations

For the IOP13, we assimilated both *in-situ* conventional data and remote sensing observations from two Doppler Weather Radars. While Italy has a dense national network of radar and insitu stations, most of these datasets were not publicly available. To ensure reproducibility and accessibility, we exclusively used freely available data. For radar observations, we assimilated data from the only two radars providing coverage over the maritime region where the event initiated. Specifically, data from: (a) Aleria radar (9.496°E, 42.129°N, 63 m ASL), located on Corsica Island, and (b) Nimes radar (4.502°E, 43.806°N, 76 m ASL), located in southern France (Fig. 3a). These two Météo-France polarimetric S-band Doppler Weather Radars, strategically positioned, ensure a good spatial coverage over the Ligurian Sea, the area where triggering and intensification of deep convection occurred, and provide key information about the 3D structure of the convective systems at high spatial and temporal resolution. Aleria and Nimes radars perform 5 and 9 elevation scans every 5 minutes, respectively, and their data are available at the HyMeX's official website (see https://www.hymex.org). Specifically, Aleria radar provides data at 5 elevation angles: 0.57°, 0.96°, 1.36°, 3.16° and 4.57° with a mean frequency of 2.8 GHz. In comparison, Nimes radar provides data at 9 elevation angles: 0.58°, 1.17°, 1.78°, 2.38°, 3.49°, 4.99°, 6.5°, 7.99° and 89.97°, also at the same frequency. It is worth mentioning that Aleria and Nimes radar reflectivity data are provided by the Météo-France operational radar network and undergo rigorous data quality control. This ensures that common radar error sources, such as signal attenuation, ground clutter or beam blocking, are meticulously identified and corrected. Radial velocity from Aleria and Nimes Doppler radars was also available, but because of the low reliability of the data (not quality controlled properly)

it was not used in this study. Additionally, conventional *in-situ* observations were obtained from NOAA's Meteorological Assimilation Data Ingest System (MADIS), a global dataset that provides high-quality, quality-controlled meteorological observations. In particular, we assimilated pressure, temperature, humidity and horizontal wind speed and direction from *in-situ* instruments such as METARs, maritime buoys, rawinsondes and aircrafts (Fig. 3a).

Overall, the following observations were assimilated for this event:

- Conventional *in-situ* data were hourly assimilated over the entire model domain (Fig. 3a).
- Reflectivity data from Aleria and Nimes weather radars were assimilated every 15 minutes (Fig. 3a).

The high spatial resolution of the reflectivity data poses significant challenges for their direct assimilation, potentially leading to detrimental analysis related with signal aliasing and the violation of the uncorrelated observational error assumptions followed in the derivation of the 3DVar and EnKF analysis equations. To mitigate the adverse effects associated with these issues, the *Cressman Objective Analysis* technique (Cressman, 1959) was used to interpolate raw radar observations to a regularly spaced 6 km horizontal grid, as suggested by previous work (i.e., Wheatley et al., 2015; Yussouf et al., 2015). It is important to note that reflectivity observations are typically obtained in polar coordinates, a prerequisite step before applying the Cressman interpolation involves converting them to a Cartesian coordinate system. We have performed several sensitivity tests using different grid space resolution (e.g., 3, 6, 9 km) and we found that using 6 km grid space produces the best analysis. To reduce spurious convective signals and remove excessive humidity the *null-echo* option, which allows assimilation of no precipitation echoes, has been adopted in 3DVAR experiment.

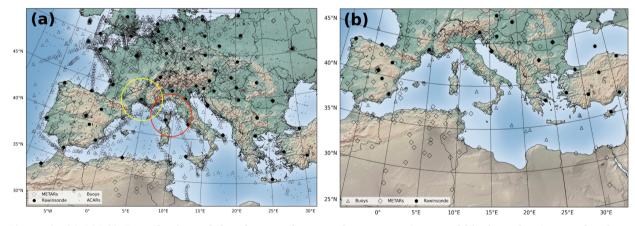


Figure 3. (a) IOP13 Episode: Spatial distribution of in-situ observations (gray and black markers) assimilated on the parent numerical domain during 24 h assimilation window from 00 UTC 14 October to 00 UTC 15 October 2012. Doppler Weather Radars located at Nimes and Aleria and their coverage range, depicted in yellow and red circles, respectively. (b) Qendresa Episode: Spatial distribution of in-situ observations hourly assimilated during 12 h assimilation window from 12 UTC 6 November to 00 UTC 7 November 2014.

3.2. Qendresa Observations

For the Oendresa event, two different observational sources were publicly available: (a) conventional in-situ observations and (b) satellite-derived observations. Conventional in-situ observations were obtained from MADIS database. However, only observations from buoys, METAR and rawinsonde were used for this case. It is essential to highlight that observation gaps persist across large areas of the region, particularly over the sea (Fig. 3b), where Oendresa initiated and evolved. As for the IOP13, we were interested in Doppler Weather Radars data to enhance the intensity and trajectory forecasts of Qendresa. Unfortunately, Doppler Weather Radars were not publicly available in the neighborhood of the region where Oendresa initiated and evolved. Instead, we used an alternative high-resolution data source, the so-called Rapid-Scan Atmospheric Motion Vectors (RSAMVs; Velden et al., 2017). This dataset provides 3D wind information throughout the entire atmosphere (both speed and direction) at high spatial and temporal resolution (i.e., every 20-min). These observations were particularly valuable for capturing wind field structures over the sea, where conventional observations were sparse or unavailable. This satellite product is obtained using the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard the Meteosat Second Generation (MSG) satellite, which has a scanning frequency as low as 5 minutes. The final product is indeed obtained averaging 4 consecutive images.

Hence, the following observations were assimilated for this event:

• Conventional *in-situ* data from buoys, METAR and rawinsonde for the entire Mediterranean region were hourly assimilated.

• Wind speed and direction from the *Rapid-Scan Atmospheric Motion Vectors* for the entire atmosphere at high spatial and temporal resolution were assimilated every 20 minutes.

Recent studies have shown that upper-level dynamics played a key role in the genesis and the development of Qendresa (Carrió et al., 2017; Carrió, 2022), so the assimilation of RSAMVs is expected to significantly improve its predictability. Here, the infrared channel from RSAMVs ($10.8 \, \mu m$), which contains information throughout the entire atmosphere, was selected to be assimilated (Fig. 4). However, before assimilating RSAMVs, a quality control check to reject non-physical and outlier observations, that could deteriorate the quality of the analysis and the successive forecast, was applied. In addition, to minimize the effect of having spatial correlated observation errors associated to high density observations, the "superobbing" technique consisting in reducing the data density through spatially averaging the observations within a predefined prism is applied (i.e., Pu et al., (2008); Romine et al., (2013); Honda et al., (2018)). Based on the most accurate analysis obtained by multiple sensitivity experiments (not shown) for Qendresa, the RSAMVs data are thinned using a prism with horizontal resolution of $128x128 \, \mathrm{km}^2$ and $25 \, \mathrm{hPa}$ in the vertical.

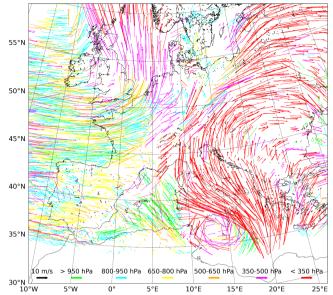


Figure 4. Raw EUMETSAT's RSAMV observations depicted at different vertical levels by infrared channel 10.8 μ m at 12 UTC on 7 November 2014 over the Mediterranean region. Wind information is only valid at the center of the wind vectors.

Observations from aircraft (i.e., ACARS) were not assimilated in this case because preliminary assimilation tests indicated a worsening of the results and led to a poorer estimation of the atmospheric state. Buoys, METAR and rawinsonde observations covering the entire Mediterranean region were hourly assimilated.

Finally, observational errors used for the assimilation of the observations associated with both IOP13 and Qendresa are motivated by Table 3 in Romine et al., (2013) with the following minor changes: METAR altimeter (1.5 hPa), marine altimeter (1.20 hPa), METAR and marine temperature (1.75 K) and RSAMV wind observations (1.4 m s⁻¹). These minor changes are found to provide better data assimilation analysis for the IOP13 and Qendresa extreme weather events in the Mediterranean region. The remaining of the observation errors are the same as the ones in Romine et al., (2013).

4. Data Assimilation Schemes

In the present study, two widely used data assimilation algorithms are used for improving the forecast of extreme weather events initiated and developed over poorly observed maritime regions and affecting densely populated coastal areas. We refer to the *Ensemble Adjustment Kalman Filter* and the variational *3DVar* data assimilation schemes, which are briefly described below.

a) The Ensemble Adjustment Kalman Filter (EnKF)

The Ensemble Adjustment Kalman Filter (EAKF; Anderson 2001), which is implemented in the Data Assimilation Testbed Research (DART²), is used in this study as the former ensemble-based data assimilation technique. The EAKF provides an optimal estimation, in the least

² http://www.image.ucar.edu/DAReS/DART/

square error sense, of the true probability distribution of the state of the atmosphere by merging two main sources of information: (a) the available observations and (b) an ensemble of forecasts (a.k.a. *background*) valid at the analysis time. In particular, the EAKF assimilates the observations serially. This means that the analysis ensemble obtained by the EAKF after the assimilation of the first observation at a given time is then used as the *background* for the next observation at the same analysis time. This is done recursively until all the observations valid at the same analysis time are finally assimilated.

Ensemble covariances used in real case studies, where only a limited number of ensemble members is feasible, suffers from sampling error, resulting in the generation of spurious correlations that hamper the analysis (Hacker et al., 2007). The detrimental effects of these spurious correlations are mitigated by employing covariance localization functions that go to zero as the distance between the assimilated observation and the grid model point where the analysis occurs, increases (Houtekamer and Mitchell, 1998). In our case, a fifth-order piecewise rational Gaussian localization function is used (Gaspari and Cohn, 1999). For this study, after several sensitivity simulations it was found that using a half-radius³ of 230 km in the horizontal and a half-radius of 4 km in the vertical for the horizontal and vertical localizations, respectively, results in the best performance of the DA scheme.

Assimilating observations inherently reduces analysis variance in both variational and Kalman filter frameworks. Small ensemble sizes tend to overly collapse the ensemble spread (Anderson and Anderson, 1999). To mitigate this under dispersion and maintain realistic ensemble variance, a *spatially varying adaptive inflation technique* (Anderson and Collins, 2007; Anderson et al., 2009) is applied to the prior ensemble before assimilating the observations. This adaptive inflation technique increases the spread of the ensemble without changing the mean. The inflation value has a probability density distribution described by a mean and a standard deviation. In this study, it was determined that initializing the mean value of inflation at 1.0 and using a standard deviation of 0.6, yields the best performance of the DA scheme.

b) Three-dimensional Variational Data Assimilation (3DVar)

The 3DVar technique, implemented in WRFDA (Barker et al., 2004), is adopted for the numerical simulations. The 3DVar aims to seek the best estimate of the initial conditions through the iterative minimization of a cost function:

$$J(\mathbf{x}) = \frac{1}{2} \left\{ \left(\mathbf{x} - \mathbf{x}_{b} \right)^{T} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{b}) + \left[\mathbf{y}_{o} - \mathbf{H}(\mathbf{x}) \right]^{T} \mathbf{R}^{-1} \left[\mathbf{y}_{o} - \mathbf{H}(\mathbf{x}) \right] \right\}$$

where **B** and **R** are the background and observation error matrices, respectively; **x** is the state vector; \mathbf{y}_0 is the observations, \mathbf{x}_b is the first guess and H is the forward (non-linear) operator that converts data from model space to observation space.

The solution of the above cost function J consists in finding a state \mathbf{x}_a (analysis), that minimizes the distance between the observations and the background field. However, in a model with 10^6

³ The half-radius or cutoff term is defined here as 0.5 times the distance to where the impact of the observation assimilated go to zero. Multiplying the half-radius by 2 results in the maximum distance at which an observation can modify the model state.

degrees of freedom, the direct solution is computationally expensive. To reduce the complexity and calculate \mathbf{B}^{-1} more efficiently, a pre-conditioning is applied by transforming the control variables, respectively, pseudo relative humidity, temperature, u, v, and surface pressure, as $\mathbf{x} - \mathbf{x}_b = \mathbf{U}\mathbf{v}$, where v is the control variable and U the transformation operator.

The background error covariance matrix **B** matrix plays a key role in the assimilation process by weighing and smoothing the information from observations and by ensuring a proper balance between the analysis fields. The National Meteorological Center method (NMC; Parrish and Derber, 1992) was used to model the B matrix. This method evaluates the differences between two short-term forecasts valid at the same time but with different lead time, 12h and 24h, respectively, to generate the forecast error covariance matrix **B**. In this study, we build the 3DVar B matrix over a two-week period, in line with our operational experience running 3DVar and previous demonstrations of its benefits (Hung et al. 2023; Fitzpatrick et al., 2007; Mazzarella et al., 2020, 2021). To enhance B's quality despite this relatively short sampling window, we activate the CV7 option in WRFDA. This option uses empirical orthogonal functions (EOFs) to represent vertical covariances instead of the traditional recursive filter, which has proven particularly beneficial for radar-reflectivity assimilation and subsequent precipitation forecast improvements (Wang et al., 2013; Li et al., 2016; Shen et al., 2022; Ferrer Hernandez et al., 2022). In our configuration, the CV7 control variables (i.e., u, v, temperature, pseudo-relative humidity and surface pressure), are defined in EOF space, ensuring a compact yet accurate representation of error structures. We use the CV7 option to generate the **B** matrix for both case studies. In addition, the weak penalty constraint (WPEC) option (Li et al., 2015) in WRFDA has also been activated to further improve the balance between the wind and thermodynamic state variables, enforcing the quasi-gradient balance on the analysis field.

5. Model set-up

452

453

454

455 456 457

458

459

460

461

462

463

464

465

466

467

468 469

470

471

472

473

474 475

476

477 478

479 480

481 482

483

484 485

486

487 488

489 490

491

492 493

494

495

496

497

498

499

500

The mesoscale Advanced Research Weather Research and Forecasting Model (WRF; Skamarock et al., 2008) version 3.7 is used in this study. WRF solves a fully compressible and non-hydrostatic set of equations, using a η terrain-following hydrostatic-pressure vertical coordinate. The Arakawa C-grid staggering scheme and a third-order Runge-Kutta timeintegration, to improve the precision of the numerical solutions, are used. Because IOP13 and Qendresa episodes took place in different locations and with different conditions, two different model configurations were used. For the IOP13 episode, a one-way nested model configuration with the parent domain centered over the Western Mediterranean Sea, covering Central Europe and North Africa, with a horizontal grid-resolution of 15 km (168x247) and a nested domain centered over Gulf of Genoa with a horizontal grid-resolution of 3 km (250x250) were used (Fig. 5a). 51 vertical model levels, from surface to 50 hPa, with higher density of levels in the lower part of the atmosphere than in the upper for both domains were used. For Oendresa, a one-way nested model configuration is also used, but now the parent domain is centered over the Central Mediterranean Sea, covering most of the European region and the northern part of Africa (Fig. 5b), using a horizontal grid resolution of 15 km (245x245). The nested domain is centered over Sicily (Southern Italy) using a grid resolution of 3 km (253x253). Both numerical domains use a 51 terrain-following η levels up to 50 hPa, as in the IOP13 case.

For the EnKF DA experiments, initial and boundary conditions used to perform the simulations associated with IOP13 were obtained from the European Center of Medium Range Weather Forecasts Global Ensemble Prediction System (EPS-ECMWF), which stored meteorological fields using a horizontal and vertical spectral triangular truncation of T639L62 (i.e., ~32 km

grid resolution in the horizontal). In particular, the EPS-ECMWF provides 51 different initial and boundary conditions from 50 perturbed ensemble members plus a control simulation. However, due to unfeasible computational resources required to run our numerical simulations at high resolution, here we will use an ensemble consisting of 36 members. This configuration is analogous to the one used at the internationally prestigious National Oceanic and Atmospheric Administration - National Severe Storms Laboratory (NOAA-NSSL) in Norman (Oklahoma, USA) to improve predictability of tornadoes. To obtain the desired 36-member ensemble, a Principal Components Analysis and K-mean clustering technique were used together to select the 36 ensemble members from the EPS-ECMWF showing more dispersion over the entire numerical domain (see Garcies and Homar, 2009 and Carrió et al., 2016 for more details using these techniques). To perform Oendresa DA simulations, the initial and boundary conditions were obtained following the same methodology explained above for the IOP13 case, i.e., using an ensemble of 36 members obtained from the EPS-ECMWF. On the other hand, the initial and boundary conditions for 3DVar simulations are provided by the Integrated Forecast System (IFS) global model from the ECMWF, with a spatial resolution of $0.1^{\circ} \times 0.1^{\circ}$ and updated every 3 hours.

501

502

503 504

505

506 507

508

509 510

511

512

513

514

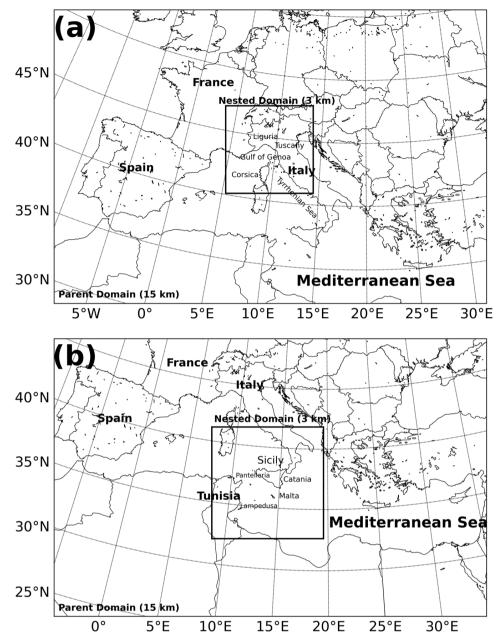


Figure 5. Meso- and storm-scale numerical domains used in this study for the (a) IOP13 and (b) Qendresa episodes, respectively.

To estimate the uncertainties of WRF, which is a necessary information for the EnKF, a multiphysics ensemble is built for both the IOP13 and Qendresa event (e.g., Stensrud et al., (2000); Wheatley et al., (2012)), where each ensemble member gets a different set of parameterizations (see Table 2). In particular, the diversity in our ensemble consists of (a) two short- and long-wave radiation schemes [Dudhia (Dudhia, 1989) and RRTMG (Iacono et al., 2008)], (b) three cumulus parameterizations schemes [Kain-Fritsch (KF; Kain and Fritsch, 1993; Kain, 2004), Tiedtke (Tiedtke, 1989) and Grell-Freitas (GF; Grell and Freitas, 2013)] and (c) three planetary boundary layer schemes [Yonsei University (YSU; Hong et al., 2006), Mellor-Yamada-Janjic (MYJ; Janjic, 1990, 2001), and Mellor-Yamada-Nakanishi-Niino level 2.5 (MYNN2; Nakanishi and Niño, 2006, 2009)]. Two widely used physics parameterizations are adopted for the microphysical processes and land surface interactions, the New Thompson (Thompson et al., 2008) and Noah (Tewari et al., 2004) schemes, respectively. Note that the

above-mentioned physical parameterizations are used for both the large-scale ensemble in the parent domain and the storm-scale ensemble in the nested domain, except for the cumulus parameterization that is only applied in the parent domain ensemble. On the other hand, for the WRF deterministic simulation using 3DVar, the microphysical processes are parametrized by using the New Thompson scheme, while a YSU scheme is adopted for PBL. Long- and shortwave radiation are considered through a RRTMG and Dudhia scheme, respectively; while Kain-Fritsch scheme is used for the convection, except for the inner domain where it is explicitly resolved.

Table 2: Multiphysics parameterizations used to generate the 36-member ensemble for the EnKF experiments in IOP13 and Qendresa episodes. PBL, SW and LW stand for planetary boundary layer, short-wave and long-wave, respectively.

Multiphysic Configuration												
Ens. Memb	MP	CU	PBL	Land Sfc	SW/LW Rad.	Ens. Memb	MP	CU	PBL	Land Sfc	SW/LW Rad.	
1	New Thompson	KF	YSU	Noah	Dudhia	19	New Thompson	KF	YSU	Noah	Dudhia	
2	New Thompson	KF	YSU	Noah	RRTMG	20	New Thompson	KF	YSU	Noah	RRTMG	
3	New Thompson	KF	MYJ	Noah	Dudhia	21	New Thompson	KF	MYJ	Noah	Dudhia	
4	New Thompson	KF	MYJ	Noah	RRTMG	22	New Thompson	KF	MYJ	Noah	RRTMG	
5	New Thompson	KF	MYNN2	Noah	Dudhia	23	New Thompson	KF	MYNN2	Noah	Dudhia	
6	New Thompson	KF	MYNN2	Noah	RRTMG	24	New Thompson	KF	MYNN2	Noah	RRTMG	
7	New Thompson	GF	YSU	Noah	Dudhia	25	New Thompson	GF	YSU	Noah	Dudhia	
8	New Thompson	GF	YSU	Noah	RRTMG	26	New Thompson	GF	YSU	Noah	RRTMG	
9	New Thompson	GF	MYJ	Noah	Dudhia	27	New Thompson	GF	MYJ	Noah	Dudhia	
10	New Thompson	GF	MYJ	Noah	RRTMG	28	New Thompson	GF	MYJ	Noah	RRTMG	
11	New Thompson	GF	MYNN2	Noah	Dudhia	29	New Thompson	GF	MYNN2	Noah	Dudhia	
12	New Thompson	GF	MYNN2	Noah	RRTMG	30	New Thompson	GF	MYNN2	Noah	RRTMG	
13	New Thompson	Tiedke	YSU	Noah	Dudhia	31	New Thompson	Tiedke	YSU	Noah	Dudhia	
14	New Thompson	Tiedke	YSU	Noah	RRTMG	32	New Thompson	Tiedke	YSU	Noah	RRTMG	
15	New Thompson	Tiedke	MYJ	Noah	Dudhia	33	New Thompson	Tiedke	MYJ	Noah	Dudhia	
16	New Thompson	Tiedke	MYJ	Noah	RRTMG	34	New Thompson	Tiedke	MYJ	Noah	RRTMG	
17	New Thompson	Tiedke	MYNN2	Noah	Dudhia	35	New Thompson	Tiedke	MYNN2	Noah	Dudhia	
18	New Thompson	Tiedke	MYNN2	Noah	RRTMG	36	New Thompson	Tiedke	MYNN2	Noah	RRTMG	

6. Design of IOP13 and Qendresa Experiments

To quantify the benefits of assimilating different observation types with the 3DVar and EnKF DA schemes, a suite of numerical experiments is designed. First, a reference experiment without any data assimilation (NODA), using the same model configuration employed for the

WRF experiments performed using 3DVar, is carried out at the regional scales considered in this study. Building on this, several numerical experiments, each differing only in the type of observations assimilated, to isolate and compare their impacts on forecast skill, are performed. Only conventional *in-situ* observations are assimilated using the 3DVar and the EnKF, for the first set of experiments (SYN). All available observations (i.e., conventional, radar based and satellite derived data) are assimilated using both 3DVar and EnKF, for the second type of experiments (CNTRL). The comparison between these numerical experiments will provide information on which DA scheme and observation is performing better for these weather events. The DA experiments mainly consist of two phases: the first one is related to the data assimilation procedure, where different types of observations are assimilated by the variational 3DVar and the ensemble-based EnKF DA schemes; the second phase is associated with the free model run initialized using the initial conditions obtained during the first phase. The total forecast time is 24 h and 36 h for IOP13 and Qendresa, respectively. For IOP13, a further simulation lasting 6-hour from 18 UTC 13 October to 00 UTC 14 October 2012 (Carrió et al., 2019) is performed (Fig. 6) to reduce spin-up problems related to the direct downscaling from global ECMWF analysis (32 km grid resolution) to the WRF parent domain used in our simulations (16 km grid resolution). This procedure improved the DA for IOP13, but it had a small impact for Qendresa.

- 571 Therefore, the following model simulations were performed:
- No Data Assimilation (NODA)

- Only conventional *in-situ* observations are assimilated using the 3DVar and the EnKF (SYN)
- All available observations (i.e., conventional, radar based and satellite derived data) are assimilated using both 3DVar and EnKF (CNTRL)

The comparison between the DA experiments and NODA allows us to assess the impact of the DA procedure. On the other hand, the comparison between SYN and CNTRL will allow for assessing the role of radar and/or satellite data, especially for the events originated in the area where observations are not available. Moreover, the assimilation of the radar and/or satellite will produce important information on the triggering phase of both events developing on the sea.

6.1. CNTRL Experiments

For IOP13, the CNTRL experiment is designed to assimilate both *in-situ* conventional and reflectivity observations from Aleria and Nimes Doppler weather radars. The assimilation of the reflectivity is expected to improve the forecast of this event by significantly improving the initial conditions over the sea, where convective activity initiated and evolved into deep convection affecting coastal populated areas of Italy. As briefly described in the previous section, this experiment consists of three stages: 1) the spin-up of the storm-scale domain is accounted for by running the WRF model during 6 hours from 18 UTC 13 October to 00 UTC 14 October 2012 (note that for the 3DVar experiment, the spin-up is accounted for by just initializing WRF with the deterministic analysis from the IFS ECMWF. However, for the EnKF counterpart, the spin-up is accounted by initializing the 36-member ensemble at 18 UTC 13 October); 2) *in-situ* conventional observations were hourly assimilated during 24 hours from 00 UTC 14 October to 00 UTC 15 October, meanwhile reflectivity observations were assimilated using a Rapid-Update Assimilation Cycle every 15 minutes during a period of 6

hours, from 18 UTC 14 October to 00 UTC 15 October (Fig. 6); 3) a 24-h ensemble (deterministic) forecast until 00 UTC 16 October, using the recently obtained initial conditions, is performed by the EnKF (3DVar).

For the Qendresa episode, CNTRL experiment is designed to assimilate both *in-situ* conventional and RSAMV observations. The assimilation of RSAMV observations is expected to improve the representation of the atmospheric circulation at upper-levels, whereas the assimilation of surface conventional observations is expected to enhance the one at low-levels. The Qendresa CNTRL experiment consists of two main phases: 1) *in-situ* conventional and satellite derived RSAMV observations are hourly and 20-min assimilated, respectively, during a 12-h period from 12 UTC 6 November to 00 UTC 7 November 2014 to end up with the last analysis at the end of the assimilation window (i.e., 00 UTC 7 November); 2) a free 36-h ensemble (deterministic) forecast is performed by the EnKF (3DVar) from 00 UTC 7 November to 12 UTC 8 November 2014 (Fig. 6e).

6.2. SYN Experiments

 For IOP13, the SYN experiment assesses the impact of *in-situ* conventional observations, which are crucial to characterize mesoscale atmospheric circulation. Analogous to the CNTRL, SYN follows the same three phases, but in the second phase only the hourly *in-situ* conventional observations from 00 UTC 14 October to 00 UTC 15 October 2012 are assimilated. The analysis obtained from the assimilation stage is used as initial conditions for running the free forecast for 24h, in the third phase (Fig. 6).

Similarly, also for Qendresa, in the SYN experiment only *in-situ* conventional observations are hourly assimilated for 12 hours, from 12 UTC 6 November to 00 UTC 7 November 2014 (Fig. 6).

6.3. NODA Experiments

 For the IOP13, NODA experiment is a direct downscaling from EPS-ECMWF boundary and initial conditions valid at 18 UTC 13 October to 00 UTC 16 October 2012 (Fig. 6). The comparison among NODA, CNTRL and SYN will provide us with valuable information on the impact of assimilating different sources of observations.

 For Qendresa, NODA experiment is simply a direct downscaling of 36 hours from EPS-ECMWF at 00 UTC 7 November to 12 UTC 8 November 2014 (Fig. 6). Here again, it is important to note that the choice of starting NODA at 00 UTC 7 November instead of starting at 12 UTC 6 November was made intentionally to extract general conclusions applicable possibly to an operational framework.

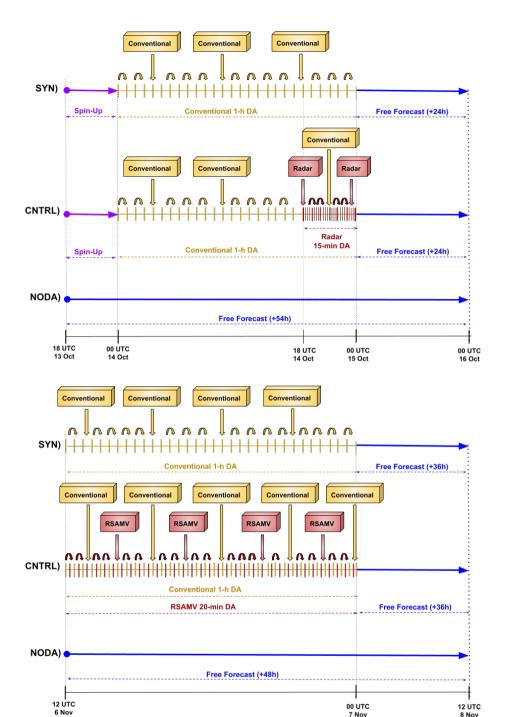


Figure 6. Schematic representation of the main numerical experiments performed in this study for the IOP13 (top panel) and Qendresa (bottom panel) episodes, respectively. SYN, CNTRL and NODA experiments are illustrated for each case, highlighting their respective configurations and assimilation strategies.

7. Verification Methods

 To quantitatively evaluate the performance of the EnKF and the 3DVar and their impact on the short-term forecast of these two extreme weather events, various verification scores are used. Given the different nature of the weather phenomena associated with these episodes, the selection of verification scores is tailored specifically to each event. For the IOP13 heavy precipitation event (Fig. 7a), the model verification was performed using the observed accumulated precipitation field over different time windows (e.g., 3 hours, 6 hours or 9 hours).

 More specifically, the accumulated precipitation was computed using observations from the *Italian Department of Civil Protection*. However, the spatial distribution of rain gauges is not homogenous and there are regions where a lack of rain gauges is present. To address these issues, three sub-regions are chosen where the heavy precipitation event was well recorded by the weather stations (see R1, R2 and R3 in Fig. 7b). Conversely, for the Qendresa tropical-like cyclone, a limited number of *in-situ* observations were present since it initiated and moved over the sea during its lifecycle, and radar-data were not available. Consequently, IR satellite imagery was the primary source of data to approximately estimate Qendresa's trajectory (Fig. 7c). Regarding the intensity of Qendresa, since the cyclone's center passed over Malta island, reaching its minimum mean sea level pressure (MSLP) of 985 hPa, METAR data from Malta's airport was also used to verify the cyclone's intensity (Fig. 7d).

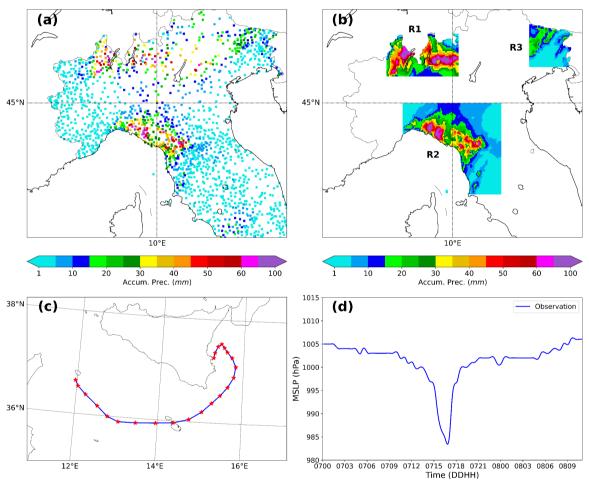


Figure 7. (a) Example of the 12-h accumulated precipitation estimated values and their spatial distribution from the Italian Department of Civil Protection rain gauges. (b) Linear interpolation of 12-h accumulated precipitation values into the three target areas where verification has been performed. (c) Observed track of Qendresa medicane viewed from infrared satellite imagery. (d) Surface pressure (hPa) data obtained from the METAR station at Malta's airport.

To quantitatively assess the short-term (i.e., first 6-9 hours) precipitation forecast for the IOP13 initialized using the analysis from the 3DVar and EnKF DA techniques, the *Filtering Method*, the *Relative Operating Characteristics* (ROC; Mason, 1982; Stanski et al., 1989; Swets, 1973) and the *Taylor Diagrams* (Taylor, 2001) were used. We avoid using the conventional point-by-point approach, which has been shown to have serious limitations in the evaluation of high-

grid spatial and temporal precipitation field resolutions (Roberts, 2003). More specifically, as *Filtering Method* we use the *Fraction Skill Score* (FSS; Roberts and Lean, 2008), which is commonly used to quantitatively assess precipitation. A preliminary interpolation of the forecast and the observations onto a common regular mesh of 3 km is performed to compute FSS. Then the comparison is carried out within a region of 3x3 grid cells around each grid cell. The FSS can be used to determine the scale over which a forecast system has sufficient skill (Mittermaier, 2010). The FSS ranges from 0 to 1, being 1 a perfect match between model and observations. In addition to the ROC curves, the *Area Under the ROC Curve* (AUC; Stanski et al., 1989; Schwartz et al., 2010), which is also widely used to quantitatively assess the quality of weather forecasts, will be also used in this study. For a perfect forecast, AUC is equal to 1.

For Oendresa, the Whisker diagrams (Tukey, 1977) and the Probability Distribution of the Cyclone Center Occurrence (PCCO), which was based on the Kernel Density Estimation (KDE; Bowman and Azzalini, 1997; Scott, 2015; Silverman, 2018), were used to validate the simulations. More specifically, the KDE is used to compute the probability of having the center of the cyclone over the entire numerical domain. The main idea behind KDE is to place a "kernel" (i.e., a probability distribution function) at each data point, and then sum up the kernels to estimate the overall probability density function. The kernel is typically chosen to be a smooth function, such as a Gaussian, that decays to zero as the distance from the data point increases. The width of the kernel is controlled by a parameter called the bandwidth, which it turns out to be one of the limitations of the KDE technique. In this case, we found that the optimal bandwidth is 20 km, which is within the meso β scale, i.e. a typical length scale for convective cells. Here, a 2-dimensional KDE will be applied over each cyclone center (lat, lon coordinates) identified for the different simulations (i.e., EnKF vs 3DVar). In this way, we will infer the most probable track of Qendresa for the different simulations, thereby identifying which is the best DA technique and which provides better estimations of Qendresa medicane's track.

8. Results

As discussed in the previous section the above-mentioned verification techniques were applied for the two extreme events. The results are described in the following subsections.

8.1. Statistical analysis: IOP13 Episode

Because IOP13 was a heavy rainfall episode, to quantitatively assess the impact on the short-range forecasts from assimilating both *in-situ* conventional and reflectivity observations from Doppler weather radars using the 3DVar and the EnKF DA algorithms, the accumulated precipitation field will be used.

8.1.1. Filtering Method

The FSS associated with the 3-h accumulated precipitation field is computed independently for the three sub-regions R1, R2 and R3, which are highlighted in Fig. 7b. These regions were chosen due to their higher observation density, allowing for a more reliable evaluation. The analysis is carried out using two precipitation thresholds: 5 mm·h⁻¹ (moderate rainfall) and 10 mm·h⁻¹ (heavy rainfall). In general, except for R3, the comparison in terms of FSS (Fig. 8 a-f)

shows that at the initial forecast time and during the first 6 hours, DA simulations (EnKF and 3DVar) outperform the NODA simulation (without assimilation). Among the DA simulation, EnKF generally outperforms 3DVar in R1 and R2, especially for the higher precipitation threshold (10 mm·h⁻¹). As expected, CNTRL experiments for both 3DVar and EnKF provide higher FSS values compared to SYN experiments, where reflectivity observations were not considered.

 In R3, the results show an unexpected behavior when using the moderate threshold (5 mm·h-1) (Fig. 8c), where NODA outperforms DA simulations during the first few hours. This anomaly could be attributed to three factors: (1) the use of a moderate precipitation threshold, which may not capture significant precipitation differences; (2) minimal precipitation in R3 during the initial forecast hours, since the deep convection system had not yet reached this region; and (3) the location of R3 near the domain edges, where it relies solely on *in-situ* observations for assimilation corrections, as it falls outside the radar coverage area. This interpretation is reinforced when examining the higher precipitation threshold (10 mm·h⁻¹) (Fig. 8f), where all methods exhibit similarly poor skill in the early forecast hours, indicating that precipitation is still too weak to be meaningfully assessed. However, after 6-9 hours, as expected, DA simulations outperform NODA in all sub-regions.

To be noticed, the CNTRL simulations do not consistently show better FSS scores than SYN simulations during the first hours, for R1. This could be due to the short-lived impact of radar reflectivity assimilation, which in past studies has been shown to last no longer than 2-4 hours for 3DVar and EnKF, respectively. These findings align with previous studies, which reported similar behavior regarding the transient impact of reflectivity DA (Carrió et al., 2016; Carrió et al., 2019).

Finally, we also computed the Root Mean Squared Error (RMSE) for the precipitation field over the first 24 hours of free forecast for both DA and NODA experiments (Fig. 8g-i). For 3DVar and NODA, RMSE is calculated from the deterministic forecast, while for EnKF, it is computed from the ensemble mean precipitation field. Overall, DA experiments exhibit lower (better) RMSE scores compared to NODA, confirming the positive impact of data assimilation on forecast accuracy. Among the DA experiments, EnKF consistently outperforms 3DVar in all regions, suggesting a better representation of precipitation variability and improved initial conditions.

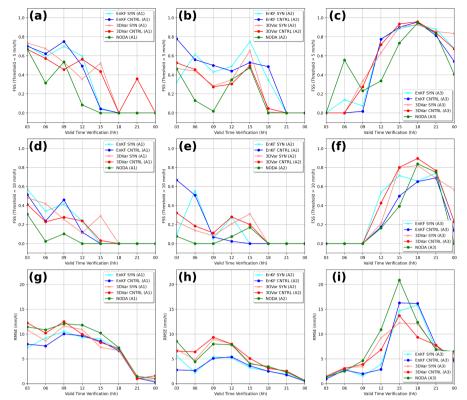


Figure 8. Upper panels: Evolution of the FSS during the first 24-h hours of free forecasts for 3-h accumulated precipitation in the Italian sub-regions: R1 (first column), R2 (second column) and R3 (third column). Two thresholds are used: > 5 mm·h⁻¹ (first row) and > 10 mm·h-1 (second row). Lower panels: Evolution of the RMSE associated with each experiment during the first 24 hours of free forecast in the different sub-regions. Simulations assimilating both conventional and radar observations (CNTRL) and simulations assimilating only conventional observations (SYN) associated with the 3DVar and the EnKF are shown here. As a reference, NODA results are also included.

8.1.2. ROC and AUC

To strengthen how skillful are the different simulations performed by the 3DVar and the EnKF, the *Receiver Operating Characteristic* (ROC) curve is used. The probability of exceeding a given threshold is computed and verified against dichotomous observations. The ROC curve is computed as follows: the model variable is interpolated to the observation locations and if the model variable exceeds a given threshold, that model grid point is assigned a value of 1. On the contrary, if the model value does not exceed that threshold, the assigned value is 0. The same method is applied for the observations. Then, using these dichotomous values, the *Hit Rate* and *False Alarm* scores are computed. This process is repeated, varying the threshold value. Gathering the *Hit Rate* and *False Alarm* scores for the different thresholds, we obtain the ROC curve. For the 3DVar, we get the *Hit Rate* and *False Alarm* scores by simply interpolating the model values to the observation locations and apply the threshold criteria explained above. In the case of the EnKF, the ensemble mean is used as the field to be interpolated to the observation locations. The area under the ROC curve (AUC), which measures the ability of the system to discriminate between the occurrence or nonoccurrence of the event, is also computed.

For the sake of brevity and because the results from the three sub-regions are similar, the ROC curve and AUC are computed, accounting for all the observations within the inner domain.

Specifically, to compute the ROC curves, we use the 3-hour (from 00 UTC - 03 UTC 15 Oct) and 6-hour (from 00 UTC - 06 UTC 15 Oct) accumulated precipitation fields from the model simulation and the observed values registered by the rain gauges, using 1 mm and 10 mm as thresholds (Fig. 9).

794

795

796 797

798 799

800

801

802 803

804

805

806 807

808

809 810

811

812 813

814

815 816

817

818 819

820

821

822

823 824

825

826

Overall, DA experiments outperform the NODA runs for both the 3-hour and 6-hour accumulated precipitations, as shown by higher ROC curves and larger AUC values. Among the DA approaches, the EnKF consistently outperforms 3DVar, with greater benefits observed at the 10 mm threshold (i.e., bottom row of Fig. 9). This improvement highlights the advantages of radar reflectivity assimilation within an ensemble-based framework, especially for more intense precipitation events. To better understand this result, we closely analysed the 1-h and 6-h accumulated precipitation fields obtained from the EnKF (CNTRL) and the 3DVar (CNTRL) comparing them against corresponding observations (see Fig. A1 and Fig. A2 in the Appendix). The 1-h accumulated precipitation (Fig. A1) shows that the EnKF localizes with high accuracy the regions where the most intense precipitation was observed, that is near Tuscany and northern Italy. Also, 3DVar correctly reproduces the rainfall in the regions affected by observed precipitation, although the maximum amounts are centered over Liguria, instead of near Tuscany. In addition, the 3DVar is also showing a tongue area of weak precipitation from Liguria to northern Italy, that does not fit with the observations. Consequently, while small differences exist between 3DVar and EnKF in the 1-h accumulated precipitation field, the low magnitude of accumulated precipitation values leads to no substantial differences in ROC verification scores. However, in the case of the 6-h accumulated precipitation (Fig. A2), the 3DVar overestimates accumulated precipitation near Liguria, Tuscany and northern Italy than the observed ones. Moreover, 3DVar is also misplacing the locations of the precipitation for some places. On the contrary, the EnKF locates with enough accuracy the regions where the accumulated precipitation was actually observed and properly estimates the observed intensity. Consequently, ROC curve for the 6-hour accumulated precipitation obtained from the EnKF produced a much better score than the 3DVar. We hypothesize that this difference could be associated with the *static/climatological* background error covariance matrix used by the 3DVar. Because of the fast changes in the flow associated with the IOP13 case, using a climatological background error covariance could not be as good as using a flow-dependent background error covariance matrix, which is used in the EnKF.

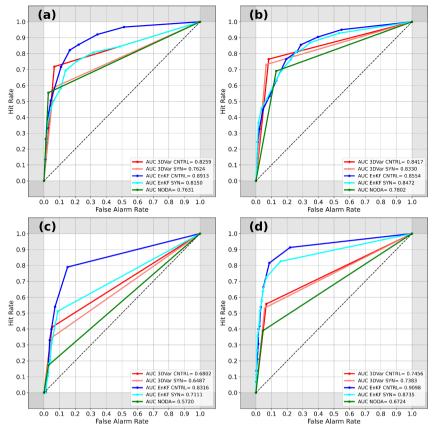


Figure 9. ROC curves and AUC associated with the 3DVar (red and pink colors), EnKF (blue and cyan colors) and NODA (green color) for the 3-hour accumulated precipitation using (a) 1 mm and (b) 10 mm threshold and 6-hour accumulated precipitation using (c) 1 mm and (d) 10 mm threshold, computed over the entire inner domain. Note: all experiments employ the same set of probability thresholds; any apparent differences in the number of plotted points arise from clustering of ROC values at similar thresholds, not from differing data counts.

8.1.3. Taylor Diagrams

827 828

829

830 831

832

833 834 835

836

837

838 839

840

841

842

843

844

845

846

847

848

849

850 851

852

853

854 855

To strengthen the comparison of the DA schemes, the Taylor Diagram is used. This tool provides us additional information about the skill of each ensemble member in the EnKF. Here, we compute the Taylor diagram for the 6-hour and 24-hour accumulated precipitation fields, which represents the forecast ranges where the observations assimilated have more impact. Overall, results show that the NODA experiment generally exhibits the lowest correlation and largest discrepancy in standard deviation relative to observations, emphasizing that DA significantly improves the representation of precipitation fields, especially for high-impact weather events. Among the different DA approaches, the 3DVar and the EnKF ensemble mean provide comparable results, with correlations ranging from approximately 0.50 to 0.61, similar RMSE and standard deviation that are symmetrically distributed around the observed reference. Notably, 3DVar tends to overestimate the standard deviation, while the EnKF ensemble mean tends to underestimate it (Fig. 10). A key advantage of EnKF lies in its individual ensemble members, some of which exhibit better performance than the 3DVar run. Although the mean difference between EnKF and 3DVar is small, the ensemble-based approach provides additional insight through its member-by-member variability. Specifically, ensemble members using the Grell-Freitas cumulus parameterization coupled with the Yonsei University planetary boundary layer scheme exhibit higher correlation and standard deviations similar to the observations in this study. Conversely, ensemble members associated with the lower scores are those using Kain-Fritsch for the cumulus parameterization and the MellorYamada-Janjic for the planetary boundary layer scheme. These findings underscore the potential of multi-physics ensembles to capture diverse physical representations of convective processes, thereby enhancing forecast accuracy.

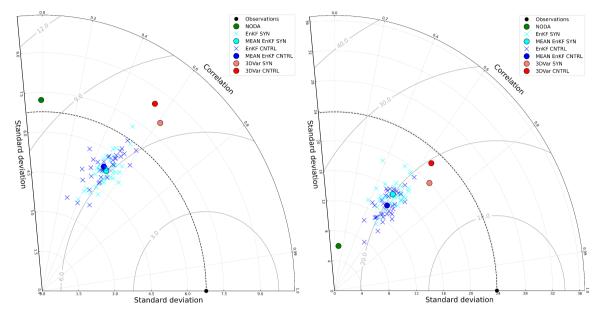


Figure 10 Taylor dia

Figure 10. Taylor diagram comparing the performance of 3DVar (red), EnKF (blue) and NODA (green) for the 6-hour (left panel) and 24-hour (right panel) accumulated precipitation, valid at 06 UTC 15 October 2012.

8.2. Statistical analysis: Qendresa event

In tropical cyclone forecasting, two key factors are typically evaluated: (a) the intensity and (b) the trajectory followed by the cyclone. Therefore, to assess the impact of assimilating both *insitu* conventional and remote RSAMV observations using the 3DVar and the EnKF, we focus on these two factors for the Qendresa event.

8.2.1. Whisker Diagrams

For this event, the lack of *in-situ* observations over maritime regions poses a main challenge to properly verify the triggering and intensification of cyclones. Fortunately, the Qendresa medicane crossed just over Malta island, where a pressure drop greater than 20 hPa in 6 h, was registered by METAR at Malta airport, reaching a minimum of surface pressure of 985 hPa. Therefore, this METAR is used to quantitatively assess the skill of the NODA simulation and the various DA approaches. To compare the surface pressure registered at Malta with the different simulations, the full cyclone trajectory is used, and the grid point closest to Malta airport is selected. Specifically, the surface pressure time series measured by METAR is compared with the NODA run and the different DA simulations from 3DVar and EnKF, such as the 3DVar_SYN, 3DVar_CNTRL, EnKF_SYN, and the EnKF_CNTRL (Fig. 11).

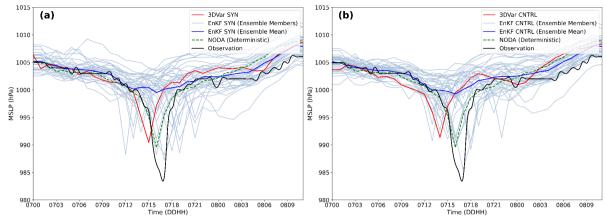


Figure 11. Temporal surface pressure evolution at the closes grid point to Malta for the (a) SYN and (b) CNTRL experiments associated with the EnKF (blue), 3DVar (red) and NODA (green), compared to the observed surface pressure registered by METARs in Malta's airport (black line).

888

889

890 891 892

893

894

895

896 897

898

899

900

901

902 903

904 905

906

907 908

909

910

911 912

913

914

915

916

917

918

919 920

921

922

923 924

925

Overall, results indicate that NODA simulation captures the timing of the observed pressure drop more accurately than the DA runs, suggesting that the large-scale dynamics are adequately represented even without data assimilation (Fig. 11). However, NODA underestimates the intensity of the medicane's central pressure.

Among the DA simulations, assimilating in-situ conventional observations enables some EnKF ensemble members to outperform NODA in both timing and intensity, whereas 3DVar shows limitations in capturing the event timing and central pressure depth (Fig. 11a). Additionally, the ensemble mean of the EnKF SYN accurately fits the observations during the first hours of the forecast, from 00 UTC to 13 UTC 7 November (Fig. 11a), performing slightly better than 3DVAR SYN. However, during the intensification phase, the ensemble mean of the EnKF SYN barely shows the intensification of Qendresa, reaching minimum MSLP values of 1002 hPa. On the contrary, the 3DVar SYN simulation depicts the intensification of the medicane, by deepening the MSLP and reaching values of 992 hPa, although a time shift of 3 hours is found (i.e., 15 UTC 7 November) (Fig. 11a). Finally, during the dissipation phase of Qendresa, the ensemble mean of EnKF SYN is performing a bit better than the 3DVar SYN (Fig. 11a). These results highlight a notable limitation of the EnKF when applied to lowpredictable weather events, such as Qendresa. The low predictability of Qendresa and the high sensitivity to physical parameterizations produce substantial spread in ensemble behavior: some members capture the cyclone's closed circulation and track reasonably well, while others fail to develop a coherent low-pressure core, instead producing only disorganized or weak convective cells. Consequently, these poorly performing members may entirely miss the medicane's formation or misplace its center, leading to large errors in both track and intensity forecasts. In this situation, our small-to-moderate ensemble size exacerbates sampling error, yielding spurious background error covariances that degrade analysis accuracy in the EnKF. These errors become particularly problematic when the numerical model mispredicts the event, since the ensemble members no longer provide a reliable representation of flow-dependent uncertainty. On the other hand, a climatological/static background error covariance matrix, like the one used in the 3DVar could produce better results than ensemble members, as we see in Fig. 11a where we compared the 3DVar (red line) with the EnKF ensemble mean analysis (blue line). Also, it is important to note that although the ensemble mean of the EnKF SYN is not correctly reproducing the intensification of Qendresa, some of the ensemble members very well reproduce the observed MSLP both in deepening and timing. This suggests that using an ensemble system, even having the above-mentioned problems, is still more useful than using only a fully deterministic system such as the 3DVar, which cannot provide information about the uncertainties of the system. Therefore, we can speculate that for extreme weather events with low numerical predictability, a better approach could be using a hybrid error covariance model, where the forecast error covariance matrix is obtained linearly combining ensemble-based covariance with static climatological error covariances (Hamill and Snyder (2000); Lorenc (2003); Clayton et al., 2013; Carrió et al., 2021). The impact of using hybrid DA to improve this kind of small-scale extreme weather events could be of great interest in the weather forecast community, although it is beyond the scope of this study. For this reason, the authors leave as future work the benefits of using hybrid error covariance models to improve the forecast of extreme weather events in the Mediterranean basin.

Then, we evaluated the impact of assimilating both *in-situ* conventional and RSAMV observations on the accuracy of Qendresa intensity forecast (Fig. 11b). In this case, the results of the two experiments show large similarities (Fig. 11a, b). In terms of the 3DVar, the MSLP signature is basically the same, without showing a clear signal of improvement or diminishing, suggesting that the assimilation of RSAMVs is not enough to significantly improve the low level relevant dynamical structures associated with the genesis and intensification of Qendresa. However, in terms of the EnKF a clear improvement for a few members is found, even if it is not affecting the mean value. Indeed, some of the ensemble members depicted an intense cyclone far from the time when it was observed (approx. at 18 UTC 7 November), were corrected reducing spurious cyclones and the deepening of at least one ensemble member close to the observed value (Fig. 11b). It can be observed that in the EnKF_CNTRL, there are more ensemble members depicting a deep cyclone at the observed time than in the case of the EnKF_SYN, showing the benefits of assimilating RSAMVs to improve the intensification estimation of Qendresa.

 To quantitatively assess the performance of NODA and the different DA experiments, we use the lagged correlation technique computed between the model MSLP signatures and the observations. This technique allows us to measure how the shape of the surface pressure evolution obtained from the different simulations fits the shape of the observed MSLP, taking also into account temporal shifting. The correlation is computed for the NODA, 3DVar, and for each ensemble member from the EnKF. These results are shown using Whisker plots (Fig. 12), where a correlation of one indicates that the specific model field has the same 'V' pressure shape evolution as the observation, and that the minimum for both is found at the same time. The results show that the NODA simulation exhibits the highest correlation values among all the simulations, reaching its maximum correlation when no time-shifting is applied. For the 3DVar SYN, the correlation is maximum and approximately equal to one when a 1-hour delay is produced by the forecasts (Fig. 12a). Whiskers from EnKF SYN show that none of the ensemble members overcomes the maximum correlation value found in 3DVar SYN. However, when the assimilation of RSAMVs is added to the *in-situ* conventional observations, it is found that the maximum correlation value associated with 3DVar CNTRL using 2h of delay applied to the forecasts, is surpassed by some of the ensemble members of the EnKF CNTRL, when a 3 or 4 hour of delay is applied (Fig. 12b).

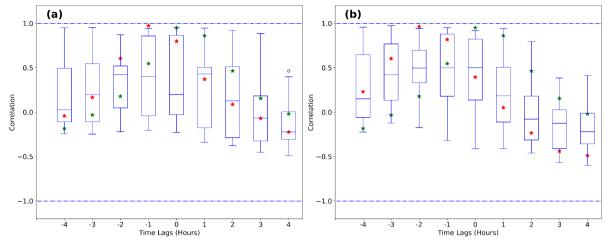


Figure 12. Whisker plots depict the lagged correlation values between the observations and the EnKF (blue boxes), the 3DVar (red stars) and NODA (green stars) for the (a) SYN and (b) CNTRL experiments. The correlation is computed considering that the observed V-shape pressure signature associated with the observations is shifted 4 hours to the left and 4 hours to the right.

8.2.2. Probability Distribution of Cyclone Center Occurrence

Due to the difficulty to accurately predict the observed trajectory of Qendresa (Pytharoulis et al., 2018), the impact of assimilating different kinds of observations on the trajectory of the medicane is investigated.

Results indicate that the NODA simulation fails to accurately capture the track of Qendresa, especially its recurvature towards Sicily after leaving Malta, as evidenced by satellite imagery. In contrast, the 3DVar SYN accurately captures the track of Oendresa during the first hours (Fig. 13b). However, after Qendresa leaves Malta, the trajectory simulated by 3DVar SYN diverges from the observed track, shifting north-eastwards and failing to capture the track-loop observed in satellite imagery. To quantify the benefits of assimilating in-situ conventional observations using the 3DV ar or the EnKF, the probability of occurrence of a cyclone following the track observed via satellite imagery is computed. For instance, 3DVar SYN underestimates the probability of cyclone occurrence east of Sicily, where Qendresa made landfall while looping (Fig. 13b). On the other hand, some EnKF SYN ensemble members show a cyclone trajectory shifted significantly southward, while others reproduce the loop trajectory missed by the NODA forecast (Fig. 13a). In addition, the probability of Qendresa occurrence eastwards Sicily, is in this case larger than 3DVar SYN, showing the benefits of using the EnKF against the 3DVar (Fig. 13a). Moreover, the EnKF_SYN ensemble trajectories, in general, follow a 'V' shape (i.e., first moving towards the southeast, then moving to the east and finally moving towards the northeast) similar to the trajectory observed via satellite imagery. Although the shape of most of the EnKF SYN trajectories agree with the observations, a consistent southeastward displacement is evident in their location.

If both *in-situ* conventional and RSAMV observations are assimilated, some of the ensemble members from the EnKF_CNTRL shows more accurate trajectories in comparison with EnKF_SYN: the loop trajectory is closer to the observed region of eastern Sicily (Fig. 13c). An improvement of the 3DVar_CNTRL trajectory by increasing the probability of cyclone occurrence following the observed track is observed, especially eastern of Sicily. However, 3DVar experiments are not able to reproduce the looping trajectory observed via satellite imagery (Fig. 13b-d). Hence, EnKF outperforms 3DVar showing some of the ensemble

members depicting a loop trajectory, although shifted southwards and producing a probability of cyclone occurrence lower than the 3DVAR ones.

Both the EnKF and the 3DVar still have difficulties in depicting accurately the track observed by Qendresa, even after the assimilation of *in-situ* conventional and RSAMV observations. Because RSAMVs are useful in describing dynamical features on the upper levels of the atmosphere, we hypothesize that ingesting them via DA may not be sufficient to correct key low-level dynamical features. In this case, the assimilation of surface wind observations may help to even improve these results. However, this is beyond the scope of this study and the authors leave this question as future work, where other sources of information from satellites will be assimilated to improve low-level thermodynamic aspects of extreme weather events, such as medicanes.

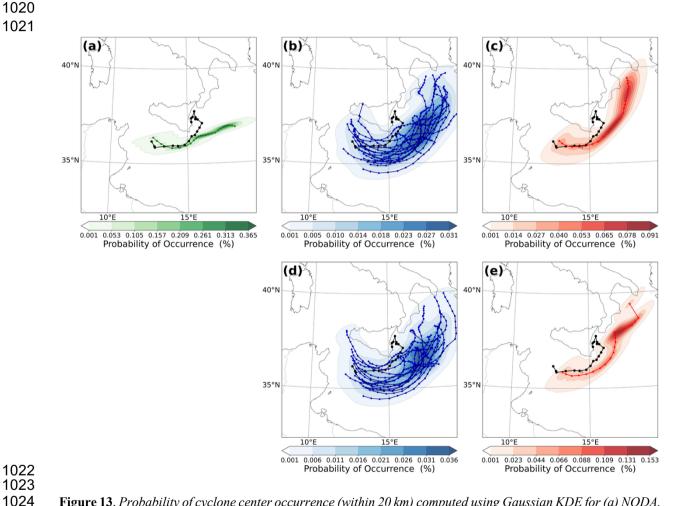


Figure 13. Probability of cyclone center occurrence (within 20 km) computed using Gaussian KDE for (a) NODA, (b) EnKF (SYN), (c) 3DVar (SYN), (d) EnKF (CNTRL) and (e) 3DVar (CNTRL), from 11 UTC 7 November to 12 UTC 8 November 2014. Qendresa's trajectory observed via satellite imagery is depicted in black.

9. Summary and Conclusions

 This study provides a quantitative assessment of the impact of two widely used DA techniques – 3DVar and EnKF – on the predictability of maritime extreme weather events. The focus is on evaluating their potential to improve forecast lead time by assimilating observations during the developing stage, as opposed to the mature stage, which affords limited time for preparedness and response. To evaluate the performance of 3DVar and EnKF, we analyze two

high-impact weather events triggered over the sea and later affected densely populated coastal regions. These two extreme weather events are known as (a) the high precipitation event registered during the 13th Intensive Observation Period (IOP13) affecting the western, northern and central parts of Italy, and (b) the intense Tropical-like Mediterranean Cyclone (medicane) known as Qendresa, that affected the islands of Pantelleria, Lampedusa, Malta and Sicily. These weather events pose a serious challenge for the numerical weather prediction community due to their low predictability, resulting from their initialization over the sea, where *in-situ* observations are sparse and initial conditions are poorly estimated. Furthermore, their evolution over complex terrain regions introduces additional forecasting challenges.

For these two extreme weather events, both 3DVar and EnKF DA methods were applied, with the type and number of assimilated observations varying based on the data availability. For Qendresa, we assimilated (a) hourly *in-situ* conventional observations and (b) wind speed and wind direction profiles of the entire atmosphere (RSAMVs) derived from geostationary satellites every 20-min, providing high spatial and temporal resolution observations covering the Central Mediterranean Sea, where Qendresa initiated and evolved. On the other hand, for the IOP13, we assimilated (a) hourly *in-situ* conventional observations and (b) 15-min 3D reflectivity observations from two type-C Doppler Weather Radars.

Because of the different thermodynamic characteristics associated with Qendresa and IOP13, a set of different verification metrics were used for each of these extreme weather events. The Filtering method (FSS and RMSE), the ROC/AUC and the Taylor diagram were used to verify the numerical simulations from 3DVar and EnKF associated with IOP13. In the case of Qendresa, we used the Whisker diagrams and the Probability Distribution of Cyclone Center Occurrence verification scores. For the IOP13, both the Filtering method and Taylor diagram verification show that EnKF slightly outperforms 3DVar, although the differences are not significant. In addition, it was observed that the assimilation of spatial and temporal highresolution reflectivity observations significantly improved the forecast for both 3DVar and EnKF, showing the key role of this type of observation. On the other hand, the ROC and AUC scores clearly show that EnKF outperforms 3DVar. For the Qendresa event, while the ensemble mean of EnKF underestimates the intensity of the medicane compared to 3DVar, some individual EnKF ensemble members produce more accurate results than 3DVar. This behaviour suggests how important it is using an ensemble forecast system to predict extreme weather events at high spatial and temporal resolution. Regarding the cyclone's trajectory, the EnKF provides a more realistic representation of the Qendresa's observed path.

Although the EnKF technique has shown in general better performance against the 3DVar for the two extreme weather events analyzed in this study, it is also important to account for the computational resources required by each method. The EnKF requires approximately 36 times more model integrations per cycle than 3DVar's single forecast, in addition to the overhead of computing ensemble updates. This makes the 3DVar appealing because it is much faster and cheaper than the EnKF, and it makes this technique particularly suitable for operational purposes at the small weather forecast centers.

An interesting result of this study is that, for highly non-Gaussian extreme events the deterministic 3DVar forecast can occasionally outperform the EnKF ensemble mean in terms of point forecasts (e.g., minimum central pressure), because averaging across ensemble members tends to smooth out the tails of a skewed probability distribution. In contrast, probabilistic metrics like ROC/AUC consistently favor the EnKF, reflecting its superior ability to capture forecast uncertainty. We attribute these contrasting behaviors to the different

approaches to background error covariances: 3DVar employs a static covariance, while EnKF uses a flow-dependent covariance estimated from a finite ensemble. To combine the strengths of both methods, a hybrid error covariance approach—where the forecast error covariance matrix is formed by linearly blending the EnKF's ensemble-derived covariances with the 3DVar's static climatological covariances—may offer improved forecast skill for convective-scale extreme events.

Further work will investigate the impact of using hybrid DA schemes in comparison to standard 3DVar or EnKF. In this scenario, it is expected that the hybrid error covariance matrix will be more precise than the one derived from the ensemble members or from climatology, which on their own are not able to reproduce key aspects of challenging extreme weather events. High temporal and spatial observations from Doppler Weather radars, such as reflectivity and radial wind velocities, will be assimilated for this case to obtain accurate analysis and thus, improve the short-range forecast of this catastrophic flash-flood event. In addition, it is important to highlight that satellite-based data assimilation provides a significant opportunity for enhancing convective-scale forecasting, particularly in data-sparse maritime regions such as the Mediterranean, where the formation of extreme weather events like tropical-like cyclones is increasingly impacting densely populated areas. Future studies integrating high-resolution satellite observations, such as cloud top heights, thermodynamic profiles or cloud properties, could further enhance the accuracy of convective-scale predictions, improving early warning capabilities and disaster preparedness.

Appendix

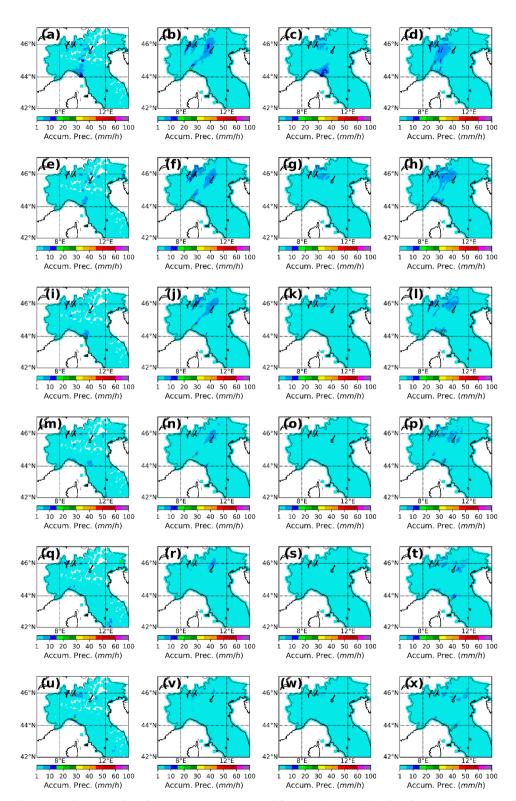


Fig. A1. 1-h accumulated precipitation computed from 00-06 UTC 15 October 2012 associated with Observations (first column), NODA (second column), EnKF (CNTRL) (third column) and 3DVar (CNTRL) (fourth column).

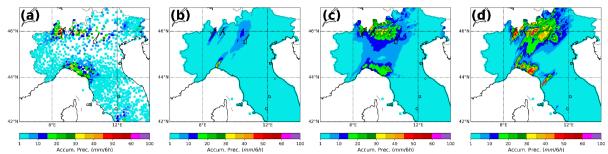


Fig. A2. 6-h accumulated precipitation computed from 00-06 UTC 15 October 2012 associated with (a) Observations, (b) NODA, (c)EnKF (CNTRL), (d) 3DVar (CNTRL).

Author Contribution. DSC: Conceptualization, Methodology, Software, Validation, Formal analysis, investigation, writing-original draft, writing-review & editing, visualization, supervision; VM: formal analysis, writing-review; RF: formal analysis, writing-review, supervision.

Competing Interests. The contact author has declared that none of the authors has any competing interests.

Acknowledgements. The first author acknowledges the European Union's Horizon 2020 research and innovation programme under the *Marie Sklodowska-Curie* grant agreement 101106403 [SENTINEL]. This research is also sponsored by the grants TRAMPAS (PID2020-113036RB-I00) and HYDROMED (PID2023-1466250B-I00) funded by MICIU/AEI/10.13039/501100011033 by ERDF/EU. The authors thankfully acknowledge Météo-France for supplying the data and HyMeX database teams (ESPRI/IPSL and SEDOO/OMP) for their help in accessing the data. The author also acknowledges the computer resources at MareNostrum IV and CRAY supercomputers, as well as the technical support provided by the Barcelona Supercomputer Center (RES-AECT-2017-1-0014, RES-AECT-2017-2-0014) and ECMWF data center, required to perform the high-resolution simulations presented in this study.

References

Albergel, C., Zheng, Y., Bonan, B., Dutra, E., Rodríguez-Fernández, N., Munier, S., ... & Calvet, J. C. (2020). Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces. Hydrology and Earth System Sciences, 24(9), 4291-4316.

Amengual, A., Carrió, D. S., Ravazzani, G., & Homar, V. (2017). A comparison of ensemble strategies for flash flood forecasting: The 12 october 2007 case study in Valencia, Spain. Journal of Hydrometeorology, 18(4), 1143-1166.

Amengual, A., Hermoso, A., Carrió, D. S., & Homar, V. (2021). The Sequence of Heavy Precipitation and Flash Flooding of 12 and 13 September 2019 in Eastern Spain. Part II: A

- 1232 Hydrometeorological Predictability Analysis Based on Convection-Permitting Ensemble
- 1233 Strategies. Journal of Hydrometeorology, 22(8), 2153-2177.

- 1235 Anderson, J. L., & Anderson, S. L. (1999). A Monte Carlo implementation of the nonlinear
- filtering problem to produce ensemble assimilations and forecasts. Monthly weather review,
- 1237 127(12), 2741-2758.

1238

Anderson, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation. Monthly weather review, 129(12), 2884-2903.

1241

- 1242 Anderson, J. L., & Collins, N. (2007). Scalable implementations of ensemble filter algorithms
- for data assimilation. Journal of Atmospheric and Oceanic Technology, 24(8), 1452-1463.

1244

- 1245 Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Avellano, A. (2009). The
- 1246 data assimilation research testbed: A community facility. Bulletin of the American
- 1247 Meteorological Society, 90(9), 1283-1296.

1248

- Ballard, Susan P., et al. "Performance of 4D-Var NWP-based nowcasting of precipitation at
- the Met Office for summer 2012." Quarterly Journal of the Royal Meteorological Society
- 1251 142.694 (2016): 472-487.

1252

- 1253 Barker DM, Huang W, Guo Y-R, Bourgeois A, Xiao XN (2004) A three-dimensional
- variational data assimilation system for MM5: implementation and initial results. Mon Wea
- 1255 Rev 132:897–914

1256

- Bowman, A. W., & Azzalini, A. (1997). Applied smoothing techniques for data analysis: the
- kernel approach with S-Plus illustrations (Vol. 18). OUP Oxford.

1259

- Bryan, G. H., & Rotunno, R. (2005, October). Statistical convergence in simulated moist
- absolutely unstable layers. In Preprints, 11th Conf. on Mesoscale Processes, Albuquerque, NM,
- 1262 Amer. Meteor. Soc. M (Vol. 1).

1263

- 1264 Capecchi V, Antonini A, Benedetti R, Fibbi L, Melani S, Rovai L, Ricchi A, Cerrai D.
- 1265 Assimilating X- and S-Band Radar Data for a Heavy Precipitation Event in Italy. Water. 2021;
- 1266 13(13):1727. https://doi.org/10.3390/w13131727.

1267

- 1268 Carrassi, A., Bocquet, M., Bertino, L., & Evensen, G. (2018). Data assimilation in the
- 1269 geosciences: An overview of methods, issues, and perspectives. Wiley Interdisciplinary
- 1270 *Reviews: Climate Change*, *9*(5), e535.

1271

- 1272 Carrió, D. S., & Homar, V. (2016). Potential of sequential EnKF for the short-range prediction
- of a maritime severe weather event. Atmospheric Research, 178, 426-444.

- 1275 Carrió, D. S., Homar, V., Jansa, A., Romero, R., & Picornell, M. A. (2017). Tropicalization
- 1276 process of the 7 November 2014 Mediterranean cyclone: Numerical sensitivity study.
- 1277 Atmospheric Research, 197, 300-312.

- 1279 Carrió, D. S., Homar, V., & Wheatley, D. M. (2019). Potential of an EnKF storm-scale data
- assimilation system over sparse observation regions with complex orography. Atmospheric
- 1281 Research, 216, 186-206.

1282

- 1283 Carrió, D. S., Bishop, C. H., & Kotsuki, S. (2021). Empirical determination of the covariance
- of forecast errors: An empirical justification and reformulation of hybrid covariance models.
- 1285 Quarterly Journal of the Royal Meteorological Society, 147(736), 2033-2052.

1286

- 1287 Carrió, D. S., Jansà, A., Homar, V., Romero, R., Rigo, T., Ramis, C., ... & Maimó, A. (2022).
- 1288 Exploring the benefits of a Hi-EnKF system to forecast an extreme weather event. The 9th
- October 2018 catastrophic flash flood in Mallorca. Atmospheric Research, 265, 105917.

1290

- 1291 Carrió, D. S. (2023): Improving the predictability of the Qendresa Medicane by the assimilation
- of conventional and atmospheric motion vector observations. Storm-scale analysis and short-
- range forecast, Nat. Hazards Earth Syst. Sci. Discuss. https://doi.org/10.5194/nhess-2022-58,

1294

- 1295 Cioni, G, Cerrai, D, Klocke, D. (2018). Investigating the predictability of a Mediterranean
- tropical-like cyclone using a storm-resolving model. Q J R Meteorol Soc.; 144: 1598–1610.
- 1297 https://doi.org/10.1002/qj.3322

1298

- 1299 Clayton, A. M., Lorenc, A. C., & Barker, D. M. (2013). Operational implementation of a hybrid
- ensemble/4D-Var global data assimilation system at the Met Office. Quarterly Journal of the
- 1301 Royal Meteorological Society, 139(675), 1445-1461.

1302

- 1303 Corrales, P. B., Galligani, V., Ruiz, J., Sapucci, L., Dillon, M. E., Skabar, Y. G., ... & Nesbitt,
- 1304 S. W. (2023). Hourly assimilation of different sources of observations including satellite
- 1305 radiances in a mesoscale convective system case during RELAMPAGO campaign.
- 1306 Atmospheric Research, 281, 106456.

1307

- 1308 Courtier, P. H. I. L. I. P. P. E., Thépaut, J. N., & Hollingsworth, A. (1994). A strategy for
- operational implementation of 4D-Var, using an incremental approach. Quarterly Journal of
- 1310 the Royal Meteorological Society, 120(519), 1367-1387.

1311

- 1312 Di Muzio, E, Riemer, M, Fink, AH, Maier-Gerber, M. Assessing the predictability of
- 1313 Medicanes in ECMWF ensemble forecasts using an object-based approach. Q J R Meteorol
- 1314 Soc. 2019; 145: 1202–1217. https://doi.org/10.1002/qj.3489

1315

- Dowell, D. C., Wicker, L. J., & Snyder, C. (2011). Ensemble Kalman filter assimilation of
- radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity
- observations on storm-scale analyses. Monthly Weather Review, 139(1), 272-294.

- Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K., Borga, M., ... & Wernli,
- H. (2014). HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle.
- Bulletin of the American Meteorological Society, 95(7), 1063-1082.

- 1324 Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon
- 1325 experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences,
- 1326 46(20), 3077-3107.

1327

- 1328 Eliassen, A. (1954). Provisional report on calcuation of spatial covariance and autocorrelation
- of the pressure field. Peport no 5, Videnskaps-Akademiets Institutt for Vaer-Og
- 1330 Klimaforskning, Oslo, Norway, 12.

1331

- 1332 Emanuel, K. (2005). Genesis and maintenance of Mediterranean hurricanes. Advances in
- 1333 Geosciences, 2, 217-220.

1334

- Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model
- 1336 using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research:
- 1337 Oceans, 99(C5), 10143-10162.

1338

- 1339 Federico, S., Torcasio, R. C., Puca, S., Vulpiani, G., Comellas Prat, A., Dietrich, S., & Avolio,
- 1340 E. (2021). Impact of radar reflectivity and lightning data assimilation on the rainfall forecast
- and predictability of a summer convective thunderstorm in Southern Italy. Atmosphere, 12(8),
- 1342 958.

1343

- 1344 Ferrer Hernández, A. L., González Jardines, P. M., Sierra Lorenzo, M., & de la Caridad Aguiar
- Figueroa, D. (2022). Impact of the Assimilation of Non-Precipitating Echoes Reflectivity Data
- on the Short-Term Numerical Forecast of SisPI. Environmental Sciences Proceedings, 19(1),
- 1347 13.

1348

- 1349 Ferretti, R., Pichelli, E., Gentile, S., Maiello, I., Cimini, D., Davolio, S., ... & Rotunno, R.
- 1350 (2014). Overview of the first HyMeX Special Observation Period over Italy: observations and
- model results. Hydrology and Earth System Sciences, 18(5), 1953-1977.

1352

- 1353 Fitzpatrick, P. J., Li, Y., Hill, C., Karan, H., Lim, E., & Xiao, Q. (2007, June). The impact of
- radar data assimilation on a squall line in Mississippi. In 22nd Conference on Weather Analysis
- and Forecasting/18th Conference on Numerical Weather Prediction.

1356

- 1357 Flaounas, E., Lagouvardos, K., Kotroni, V., Claud, C., Delanoë, J., Flamant, C., ... & Wernli,
- 1358 H. (2016). Processes leading to heavy precipitation associated with two Mediterranean
- 1359 cyclones observed during the HyMeX SOP1. Quarterly Journal of the Royal Meteorological
- 1360 *Society*, 142, 275-286.

- Fujita, T., Stensrud, D. J., & Dowell, D. C. (2007). Surface data assimilation using an ensemble
- 1363 Kalman filter approach with initial condition and model physics uncertainties. Monthly
- 1364 weather review, 135(5), 1846-1868.

- 1366 Gao, J., Fu, C., Stensrud, D. J., & Kain, J. S. (2016). OSSEs for an ensemble 3DVAR data
- assimilation system with radar observations of convective storms. Journal of the Atmospheric
- 1368 Sciences, 73(6), 2403-2426.

1369

- 1370 Garcies, L., & Homar, V. (2009). Ensemble sensitivities of the real atmosphere: application to
- 1371 Mediterranean intense cyclones. Tellus A: Dynamic Meteorology and Oceanography, 61(3),
- 1372 394-406.

1373

- 1374 Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three
- dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 723-757.

1376

- 1377 Grell, G. A., & Freitas, S. R. (2014). A scale and aerosol aware stochastic convective
- parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics,
- 1379 14(10), 5233-5250.

1380

- Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., Weissmann, M., Reich, H., ... & Fujita,
- 1382 T. (2018). Survey of data assimilation methods for convective-scale numerical weather
- 1383 prediction at operational centres. Quarterly Journal of the Royal Meteorological Society,
- 1384 144(713), 1218-1256.

1385

- Hacker, J. P., Anderson, J. L., & Pagowski, M. (2007). Improved vertical covariance estimates
- for ensemble-filter assimilation of near-surface observations. Monthly Weather Review,
- 1388 135(3), 1021-1036.

1389

- Hamill, T. M., & Snyder, C. (2000). A hybrid ensemble Kalman filter–3D variational analysis
- 1391 scheme. Monthly Weather Review, 128(8), 2905-2919.

1392

- Honda, T., Miyoshi, T., Lien, G. Y., Nishizawa, S., Yoshida, R., Adachi, S. A., ... & Bessho,
- 1394 K. (2018). Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon
- 1395 Soudelor (2015). Monthly Weather Review, 146(1), 213-229.

1396

- Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit
- treatment of entrainment processes. Monthly weather review, 134(9), 2318-2341.

1399

- 1400 Houtekamer, P. L., & Mitchell, H. L. (1998). Data assimilation using an ensemble Kalman
- filter technique. Monthly Weather Review, 126(3), 796-811.

1402

- 1403 Hu, Junjun, et al. "Assessment of Storm-Scale Real Time Assimilation of GOES-16 GLM
- 1404 Lightning-Derived Water Vapor Mass on Short Term Precipitation Forecasts During the 2020
- Spring Forecast Experiment." Journal of Geophysical Research: Atmospheres 126.21 (2021):
- 1406 e2021JD034603.

- Huang, X. Y., Xiao, Q., Barker, D. M., Zhang, X., Michalakes, J., Huang, W., ... & Kuo, Y. H.
- 1409 (2009). Four-dimensional variational data assimilation for WRF: Formulation and preliminary
- 1410 results. Monthly Weather Review, 137(1), 299-314.
- 1411
- Hung MK, Tien DD, Quan DD, Duc TA, Dung PTP, Hole LR, Nam HG. Assessments of Use
- of Blended Radar–Numerical Weather Prediction Product in Short-Range Warning of Intense
- 1414 Rainstorms in Localized Systems (SWIRLS) for Quantitative Precipitation Forecast of
- 1415 Tropical Cyclone Landfall on Vietnam's Coast. Atmosphere. 2023; 14(8):1201.
- 1416 https://doi.org/10.3390/atmos14081201
- 1417
- 1418 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W.
- 1419 D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER
- radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13).

- Janjić, Z. I. (1990). The step-mountain coordinate: Physical package. Monthly weather review,
- 1423 118(7), 1429-1443.

1424

- Janić, Z. I. (2001). Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the
- 1426 NCEP Meso model.

1427

- 1428 Janjić, Tijana, Yuefei Zeng, and Yvonne Ruckstuhl. "Weakly Constrained LETKF for
- 1429 Convective-Scale Data Assimilation." (2022).

1430

- Jansa, A., Alpert, P., Arbogast, P., Buzzi, A., Ivancan-Picek, B., Kotroni, V., ... & Speranza,
- 1432 A. (2014). MEDEX: a general overview. Natural Hazards and Earth System Sciences, 14(8),
- 1433 1965-1984.

1434

- Jones, T. A., Otkin, J. A., Stensrud, D. J., & Knopfmeier, K. (2013). Assimilation of satellite
- infrared radiances and Doppler radar observations during a cool season observing system
- simulation experiment. Monthly weather review, 141(10), 3273-3299.

1438

- Kain, J. S., & Fritsch, J. M. (1990). A one-dimensional entraining/detraining plume model and
- its application in convective parameterization. Journal of Atmospheric Sciences, 47(23), 2784-
- 1441 2802.

1442

- Kain, J. S. (2004). The Kain–Fritsch convective parameterization: an update. Journal of applied
- 1444 meteorology, 43(1), 170-181.

1445

- 1446 Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cambridge
- 1447 university press.

- Lagasio, M., Silvestro, F., Campo, L., & Parodi, A. (2019). Predictive Capability of a High-
- 1450 Resolution Hydrometeorological Forecasting Framework Coupling WRF Cycling 3DVAR and
- 1451 Continuum. Journal of Hydrometeorology, 20(7), 1307-1337. https://doi.org/10.1175/JHM-D-
- 1452 18-0219.1

- Le Dimet, F. X., & Talagrand, O. (1986). Variational algorithms for analysis and assimilation
- of meteorological observations: theoretical aspects. Tellus A: Dynamic Meteorology and
- 1456 Oceanography, 38(2), 97-110.

1457

- Lee, J. H., Lee, H. H., Choi, Y., Kim, H. W., & Lee, D. K. (2010). Radar data assimilation for
- the simulation of mesoscale convective systems. Advances in Atmospheric Sciences, 27, 1025-
- 1460 1042.

1461

- Li, X., J. Ming, M. Xue, Y. Wang, and K. Zhao, 2015: Implementation of a dynamic equation
- 1463 constraint based on the steady state momentum equations within the WRF hybrid ensemble-
- 1464 3DVar data assimilation system and test with radar T-TREC wind assimilation for tropical
- 1465 Cyclone Chanthu (2010). J. Geophys. Res. Atmos., 120, 4017–4039, doi:
- 1466 10.1002/2014JD022706.

1467

- 1468 Li, X., Zeng, M., Wang, Y., Wang, W., Wu, H., & Mei, H. (2016). Evaluation of two
- 1469 momentum control variable schemes and their impact on the variational assimilation of
- radarwind data: Case study of a squall line. Advances in Atmospheric Sciences, 33, 1143-1157.

1471

- Lorenc, A. C. (1981). A global three-dimensional multivariate statistical interpolation scheme.
- 1473 Monthly Weather Review, 109(4), 701-721.

1474

- 1475 Lorenc, A. C. (1986). Analysis methods for numerical weather prediction. Quarterly Journal
- of the Royal Meteorological Society, 112(474), 1177-1194.

1477

- Lorenc, A. C. (2003). The potential of the ensemble Kalman filter for NWP—A comparison
- 1479 with 4D-Var. Quarterly Journal of the Royal Meteorological Society: A journal of the
- atmospheric sciences, applied meteorology and physical oceanography, 129(595), 3183-3203.

1481

- 1482 Llasat, M., & Sempere-Torres, D. (2001). Heavy rains and floods in west mediterranean areas:
- a climatic feature. Geophysical Research Abstr acts, 3.

1484

- Llasat, M. C., Llasat-Botija, M., Prat, M. A., Porcu, F., Price, C., Mugnai, A., ... & Nicolaides,
- 1486 K. (2010). High-impact floods and flash floods in Mediterranean countries: the FLASH
- preliminary database. Advances in Geosciences, 23, 47-55.

1488

Mason, I., 1982: A model for assessment of weather forecasts. Aust. Met. Mag., 30, 291-303.

1490

- 1491 Mass, C. F., Ovens, D., Westrick, K., & Colle, B. A. (2002). Does increasing horizontal
- 1492 resolution produce more skillful forecasts?: The Results of Two Years of real-Time Numerical
- 1493 Weather Prediction over the Pacific Northwest. Bulletin of the American Meteorological
- 1494 Society, 83(3), 407-430.

- 1496 Mazzarella, V.; Maiello, I.; Ferretti, R.; Capozzi, V.; Picciotti, E.; Alberoni, P.; Marzano, F.;
- Budillon, G. Reflectivity and velocity radar data assimilation for two flash flood events in
- 1498 central Italy: A comparison between 3D and 4D variational methods. Q. J. R. Meteorol. Soc.
- 1499 2020, 146, 348–366.
- 1500
- 1501 Mazzarella, V., Ferretti, R., Picciotti, E., & Marzano, F. S. (2021). Investigating 3D and 4D
- variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain
- event in central Italy. Natural Hazards and Earth System Sciences, 21(9), 2849-2865.
- 1504
- 1505 Mittermaier, M., & Roberts, N. (2010). Intercomparison of spatial forecast verification
- 1506 methods: Identifying skillful spatial scales using the fractions skill score. Weather and
- 1507 Forecasting, 25(1), 343-354.
- 1508
- Nakanishi, M., & Niino, H. (2006). An improved Mellor–Yamada level-3 model: Its numerical
- 1510 stability and application to a regional prediction of advection fog. Boundary-Layer
- 1511 Meteorology, 119, 397-407.
- 1512
- Nakanishi, M., & Niino, H. (2009). Development of an improved turbulence closure model for
- the atmospheric boundary layer. Journal of the Meteorological Society of Japan. Ser. II, 87(5),
- 1515 895-912.
- 1516
- Pakalidou, N., & Karacosta, P. (2018). Study of very long-period extreme precipitation records
- in Thessaloniki, Greece. *Atmospheric Research*, 208, 106-115.
- 1519
- Park, S. K., & Županski, D. (2003). Four-dimensional variational data assimilation for
- mesoscale and storm-scale applications. Meteorology and Atmospheric Physics, 82(1), 173-
- 1522 208.
- 1523
- Parrish, D., and J. Derber, 1992: The National Meteorological Center's spectral statistical-
- 1525 interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763, doi:10.1175/1520-
- 1526 0493(1992)120<1747:TNMCSS>2.0.CO;2.
- 1527
- 1528 Petterssen, S. (1956). Weather analysis and forecasting: motion and motion systems. McGraw-
- 1529 Hill.
- 1530
- 1531 Pichelli, E., Rotunno, R. and Ferretti, R. (2017), Effects of the Alps and Apennines on forecasts
- 1532 for Po Valley convection in two HyMeX cases. Q.J.R. Meteorol. Soc., 143: 2420-2435.
- 1533 <u>https://doi.org/10.1002/qj.3096</u>
- 1534
- Poterjoy, J. (2016). A localized particle filter for high-dimensional nonlinear systems. Monthly
- 1536 Weather Review, 144(1), 59-76.
- 1537
- 1538 Pu, Z., Li, X., Velden, C. S., Aberson, S. D., & Liu, W. T. (2008). The impact of aircraft
- dropsonde and satellite wind data on numerical simulations of two landfalling tropical storms

- during the tropical cloud systems and processes experiment. Weather and Forecasting, 23(1),
- 1541 62-79.

- 1543 Pytharoulis, I., Matsangouras, I. T., Tegoulias, I., Kotsopoulos, S., Karacostas, T. S., & Nastos,
- P. T. (2017). Numerical study of the medicane of November 2014. In Perspectives on
- 1545 Atmospheric Sciences (pp. 115-121). Springer International Publishing.

1546

- Pytharoulis, I. (2018). Analysis of a Mediterranean tropical-like cyclone and its sensitivity to
- the sea surface temperatures. Atmospheric Research, 208, 167-179.

1549

- 1550 Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J. F., & Simmons, A. (2000). The ECMWF
- 1551 operational implementation of four-dimensional variational assimilation. I: Experimental
- 1552 results with simplified physics. Quarterly Journal of the Royal Meteorological Society,
- 1553 126(564), 1143-1170.

1554

- Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., Inverarity, G. W., ... & Payne,
- 1556 T. J. (2007). The Met Office global four-dimensional variational data assimilation scheme.
- 1557 Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences,
- applied meteorology and physical oceanography, 133(623), 347-362.

1559

- Roberts, N.M. (2003) The impact of a change to the use of the convection scheme to high-
- 1561 resolution simulations of convective events. Met Office Forecasting Research Technical Report
- 1562 number: 407.

1563

- Roberts, N. M., & Lean, H. W. (2008). Scale-selective verification of rainfall accumulations
- from high-resolution forecasts of convective events. Monthly Weather Review, 136(1), 78-97.

1566

- 1567 Romero, R., Guijarro, J. A., Ramis, C., & Alonso, S. (1998). A 30-year (1964–1993) daily
- rainfall data base for the Spanish Mediterranean regions: First exploratory study. International
- 1569 Journal of Climatology: A Journal of the Royal Meteorological Society, 18(5), 541-560.

1570

- Romine, G. S., Schwartz, C. S., Snyder, C., Anderson, J. L., & Weisman, M. L. (2013). Model
- bias in a continuously cycled assimilation system and its influence on convection-permitting
- 1573 forecasts. Monthly weather review, 141(4), 1263-1284.

1574

- 1575 Schwartz, C. S., Kain, J. S., Weiss, S. J., Xue, M., Bright, D. R., Kong, F., ... & Wandishin, M.
- 1576 S. (2010). Toward improved convection-allowing ensembles: Model physics sensitivities and
- optimizing probabilistic guidance with small ensemble membership. Weather and Forecasting,
- 1578 25(1), 263-280.

1579

- 1580 Scott, D. W. (2015). Multivariate density estimation: theory, practice, and visualization. John
- 1581 Wiley & Sons.

- 1583 Shen, F., Song, L., Li, H., He, Z., & Xu, D. (2022). Effects of different momentum control
- variables in radar data assimilation on the analysis and forecast of strong convective systems
- under the background of northeast cold vortex. Atmospheric Research, 280, 106415.

1587 Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge.

1588

- 1589 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers,
- 1590 J. G. (2008). A description of the advanced research WRF version 3. National Center For
- 1591 Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.

1592

- 1593 Stanski, H.R., L.J. Wilson, and W.R. Burrows, 1989: Survey of common verification methods
- in meteorology. World Weather Watch Tech. Rept. No.8, WMO/TD No.358, WMO, Geneva,
- 1595 114 pp.

1596

- 1597 Stensrud, D. J., Bao, J. W., & Warner, T. T. (2000). Using initial condition and model physics
- perturbations in short-range ensemble simulations of mesoscale convective systems. Monthly
- 1599 Weather Review, 128(7), 2077-2107.

1600

- 1601 Stensrud, D. J., Xue, M., Wicker, L. J., Kelleher, K. E., Foster, M. P., Schaefer, J. T., ... &
- Tuell, J. P. (2009). Convective-scale warn-on-forecast system: A vision for 2020. Bulletin of
- the American Meteorological Society, 90(10), 1487-1500.

1604

- Sun, J., & Crook, N. A. (1997). Dynamical and microphysical retrieval from Doppler radar
- observations using a cloud model and its adjoint. Part I: Model development and simulated
- data experiments. Journal of the Atmospheric Sciences, 54(12), 1642-1661.

1608

- 1609 Swets, J. A. (1973). The Relative Operating Characteristic in Psychology: A technique for
- 1610 isolating effects of response bias finds wide use in the study of perception and cognition.
- 1611 Science, 182(4116), 990-1000.

1612

- 1613 Tewari, M., Chen, M., Wang, F., Dudhia, W., LeMone, J., Mitchell, K., Ek, M., Gayno, G.,
- Wegiel, J., and Cuenca, R. H. (2004, January). Implementation and verification of the unified
- NOAH land surface model in the WRF model (Formerly Paper Number 17.5). In Proceedings
- of the 20th conference on weather analysis and forecasting/16th conference on numerical
- weather prediction, Seattle, WA, USA (Vol. 14).

1618

- 1619 Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram.
- Journal of geophysical research: atmospheres, 106(D7), 7183-7192.

1621

- 1622 Tiedtke, M. I. C. H. A. E. L. (1989). A comprehensive mass flux scheme for cumulus
- parameterization in large-scale models. Monthly weather review, 117(8), 1779-1800.

- Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit forecasts of
- winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of
- a new snow parameterization. Monthly Weather Review, 136(12), 5095-5115.

- Tong, M., & Xue, M. (2005). Ensemble Kalman filter assimilation of Doppler radar data with
- a compressible nonhydrostatic model: OSS experiments. Monthly Weather Review, 133(7),
- 1631 1789-1807.

1632

- 1633 Torcasio, R. C., Federico, S., Comellas Prat, A., Panegrossi, G., D'Adderio, L. P., & Dietrich,
- S. (2021). Impact of lightning data assimilation on the short-term precipitation forecast over
- the Central Mediterranean Sea. Remote Sensing, 13(4), 682.

1636

1637 Tukey, J. W. (1977). Exploratory data analysis (Vol. 2, pp. 131-160).

1638

- Van Leeuwen, P. J. (2009). Particle filtering in geophysical systems. Monthly Weather Review,
- 1640 137(12), 4089-4114.

1641

- Velden, C., Lewis, W. E., Bresky, W., Stettner, D., Daniels, J., & Wanzong, S. (2017).
- 1643 Assimilation of high-resolution satellite-derived atmospheric motion vectors: Impact on
- 1644 HWRF forecasts of tropical cyclone track and intensity. Monthly Weather Review, 145(3),
- 1645 1107-1125.

1646

- 1647 Wang, H., Huang, X. Y., Sun, J., Xu, D., Fan, S., Zhong, J., & Zhang, M. (2013, September).
- 1648 A comparison between the 3/4DVAR and hybrid ensemble-VAR techniques for radar data
- assimilation. In 35th Conference on Radar Meteorology, Breckenridge.

1650

- Wang, Y., Yussouf, N., Kerr, C. A., Stratman, D. R., & Matilla, B. C. (2022). An experimental
- 1652 1-km Warn-on-Forecast System for hazardous weather events. Monthly Weather Review,
- 1653 150(11), 3081-3102.

1654

- Wheatley, D. M., Stensrud, D. J., Dowell, D. C., & Yussouf, N. (2012). Application of a WRF
- mesoscale data assimilation system to springtime severe weather events 2007–09. Monthly
- 1657 weather review, 140(5), 1539-1557.

1658

- Whitaker, J. S., Hamill, T. M., Wei, X., Song, Y., & Toth, Z. (2008). Ensemble data
- assimilation with the NCEP global forecast system. Monthly Weather Review, 136(2), 463-
- 1661 482.

1662

- Wu, X., Zhang, S., Liu, Z., Rosati, A., & Delworth, T. L. (2013). A study of impact of the
- 1664 geographic dependence of observing system on parameter estimation with an intermediate
- 1665 coupled model. Climate Dynamics, 40, 1789-1798.

- 1667 Xiao, Q., & Sun, J. (2007). Multiple-radar data assimilation and short-range quantitative
- precipitation forecasting of a squall line observed during IHOP_2002. Monthly Weather
- 1669 Review, 135(10), 3381-3404.

Yano, J. I., Ziemiański, M. Z., Cullen, M., Termonia, P., Onvlee, J., Bengtsson, L., ... & Wyszogrodzki, A. A. (2018). Scientific challenges of convective-scale numerical weather prediction. Bulletin of the American Meteorological Society, 99(4), 699-710. Yussouf, N., Dowell, D. C., Wicker, L. J., Knopfmeier, K. H., & Wheatley, D. M. (2015). Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Monthly Weather Review, 143(8), 3044-3066.