
Reviewer #2: 
  

General Comments: 
 
1.  One of the main objectives of the paper is to compare the EnKF and 3DVAR approaches to 

determine which method provides better forecasts. However, the comparison is based on only two 
case studies, which is too limited a sample to adequately answer this question. If the paper were 
introducing a new method, using one or two example case studies might be sufficient. However, 
for a comparison of two existing methods, a larger number of cases is necessary to draw a robust 
conclusion. 

 
We sincerely thank the reviewer for this valuable observation. While we understand that a larger 
number of case studies would allow for a more statistically robust comparison of the two 
methods, we would like to clarify that the primary objective of this study is not to perform a 
statistical evaluation of the relative performance of EnKF and 3DVar over a wide range of cases. 
Instead, the goal of this paper is to compare the two techniques in two specific severe weather 
events in the Mediterranean region to highlight their respective strengths and limitations under 
contrasting conditions. This approach provides insights into their practical characteristics and 
implications, which we believe offer significant value to the research community. 
 
It is worth noting that papers comparing different Data Assimilation (DA) methods using two – 
and even one – case studies are common in the literature. Some examples of papers employing a 
similar approach we have just used here are listed below: 
 
1.  Mazzarella, V. et al., 2017. Comparison between 3D-Var and 4D-Var data assimilation 
methods for the simulation of a heavy rainfall case in central Italy. Advances in Science and 
Research 

2.  Tiwari, G. et al., 2022.  Predictive skill comparative assessment of WRF 4DVar and 3DVar 
data assimilation: An Indian Ocean tropical cyclone case study. Atmospheric Research 

3.  Sun, J. et al., 2013.  Radar data assimilation with WRF 4D-Var. Part II: Comparison with 
3D-Var for a squall line over the US Great Plains. Monthly Weather Review 

4.  Mazzarella, V. et al., 2020. Reflectivity and velocity radar data assimilation for two flash 
flood events in central Italy: A comparison between 3D and 4D variational methods. Quarterly 
Journal of the Royal Meteorological Society 
 
We have further revised the manuscript to explicitly clarify the scope of this study in the 
introduction and conclusion sections to prevent potential misinterpretation. Specifically, the 
following sentences have been added: 
 
● Introduction Section (page 4, Lines 149-180): 

“Recent convective-scale DA studies have primarily focused on the mature stage of weather 
events (e.g., Wheatley et al., 2015; Jones et al., 2016; Yussouf et al., 2020). However, at this 
stage, the system is already well-developed and likely impacting the population, limiting the 
effectiveness of DA in terms of forecast lead time. In such cases, the potential for early 
warnings and mitigation actions is significantly reduced, as there is little time left to respond 
and minimize socio-economic impacts.  Despite its potential benefits, very few studies have 
explored the role of DA in the pre-convective stage, where assimilating observations before 
convection initiates could significantly improve forecast lead time, providing advanced 
warnings and allowing decision-makers to act proactively. In this study, we compare the 
performance of two widely used DA techniques – 3DVar and EnKF – in enhancing the 



forecast lead time for two extreme weather events initiated over the sea, a data-sparse region 
where observational constraints pose additional forecasting challenges, affecting populated 
coastal regions in the Mediterranean basin. It is important to emphasize that this study does 
not aim to derive statistically significant conclusions. Instead, the main objective is to 
compare the performance of EnKF and 3DVar in two distinct extreme weather events, each 
characterized by unique atmospheric conditions and observational limitations. The two 
extreme weather events selected for this study are: (a) the heavy rainfall episode, IOP13, 
affecting coastal regions of Italy during October 2012 (Pichelli et al., 2017) and (b) the 
low-predictable Mediterranean Tropical-like cyclone (medicane), Qendresa, affecting Sicily 
in November 2014 (Pytharoulis et al., 2017; Pytharoulis, 2018; Cioni et al., 2018; Di Muzio 
et al., 2019). 

On overall, this study aims at: 

(a) Assessing the impact of 3DVar in comparison with the EnKF system to predict small-scale 
extreme weather events initiated over maritime regions with lack of in-situ observations. 

(b) Investigate the potential of using 3DVar and EnKF in the pre-convective environment, 
hours before the mature stage of convective systems are reached, to improve forecast lead 
time and warning capabilities for extreme weather events. 

(c) Compare the forecast impact from assimilating in-situ conventional observations in 
comparison to assimilating high spatial and temporal resolution data from remote sensing 
instruments.  

(d) Provide a quantitative assessment between the different DA schemes by means of using 
several statistical verification methods.” 

  
● Conclusion Section (page 30, Lines 940-967): 

“This study provides a quantitatively assessment of the impact of two widely used DA 
techniques – 3DVar and EnKF – on the predictability of maritime extreme weather events. 
The focus is on evaluating their potential to improve forecast lead time by assimilating 
observations during the pre-convective stage, rather than the mature stage, when the event is 
already fully developed and there is limited time for preparedness and response. To evaluate 
the performance of 3DVar and EnKF in improving the predictability of maritime events, we 
analyze two high-impact weather events triggered over the sea that later affected densely 
populated coastal regions. These two extreme weather events are known as (a) the high 
precipitation event registered during the 13th Intensive Observation Period (IOP13) affecting 
the western, northern and central parts of Italy, and (b) the intense Tropical-like 
Mediterranean Cyclone (medicane) known as Qendresa, that affected the islands of 
Pantelleria, Lampedusa, Malta and Sicily. These weather events pose a serious challenge for 
the numerical weather prediction community in terms of their accurate predictability, due to 
their initialization over the sea, which are regions with a lack of in-situ observations, and thus 
their initial conditions are poorly estimated. Furthermore, their evolution over complex 
terrain regions introduces additional forecasting challenges. 

For these two extreme weather events, both 3DVar and EnKF DA methods were applied, with 
the type and number of assimilated observations varying based on the data availability. For 
Qendresa, we assimilated (a) hourly in-situ conventional observations and (b) wind speed and 
wind direction profiles of the entire atmosphere (RSAMVs) derived from geostationary 
satellites every 20-min, providing high spatial and temporal resolution observations covering 
the Central Mediterranean Sea, where Qendresa initiated and evolved. On the other hand, for 
the IOP13, we assimilated (a) hourly in-situ conventional observations and (b) 15-min 3D 
reflectivity observations from two type-C Doppler Weather Radars.” 

 



We hope this clarification adequately addresses the reviewer’s concern and provides a better 
contextual understanding of the study’s objective. 
  

2.  The comparison is made between the two methods but does not include the background NODA 
simulation. To effectively assess the added value of the two methods, especially considering that 
one is computationally more expensive, it is essential to include the NODA simulation in the 
comparison. This would allow for an evaluation of how much the simulations have improved over 
the background using the different data assimilation methods. Moreover, taking the first case, 
IOP13, as an example, a run starting on the 15th at 00:00 is used as the NODA simulation. While 
this may be acceptable for assessing improvement from an operational perspective, to evaluate 
the impact of DA, it would be better to include a simulation with the same initial and boundary 
conditions as the runs with DA. The same consideration applies to the second case as well. 

We thank the reviewer for this important comment. We agree that including the NODA 
simulation in the comparison is essential to effectively assess the added value of the two data 
assimilation methods, particularly given their differences in computational cost. 
 
In response to this comment, we have now incorporated NODA results into the relevant figures 
and discussions. These additions ensure that the impact of 3DVar and EnKF can be quantified 
relative to a no-data-assimilation scenario, providing a clearer assessment of their benefits. We 
have included a NODA experiment initialized with the same conditions as the DA runs, ensuring 
a fairer comparison of forecast improvements due to data assimilation. This modification applies 
to both case studies (IOP13 and Qendresa). 
 
We appreciate the reviewer’s suggestion, as these additions enhance the robustness and validity 
of our analysis. 

  
3.  For the EnKF, a multi-physics approach is used, while for the 3DVar, a deterministic run is 

adopted. Has it been evaluated whether the ensemble multi-physics approach provides an 
advantage for these cases compared to the deterministic run, regardless of the data assimilation? 
Or, at the very least, has the behavior of the EnKF simulation with the same physical 
configuration as that used for the 3DVar been analyzed? The paper does not address this 
consideration, making it impossible to separate the advantage of using a multi-physics ensemble 
approach from a deterministic run from the benefits of the two data assimilation methods, given 
that the multi-physics ensemble inherently offers numerous advantages. 

 
 We thank the reviewer for raising this point and appreciate the opportunity to clarify this aspect 

of our study. 
 
 Firstly, it is important to acknowledge that the comparative analysis of ensemble multi-physics 

versus deterministic approaches is well-established in the literature and does not represent a 
novel aspect. 

 Secondly, regarding the reviewer’s question about using the same physical configuration for the 
EnKF as the one employed for the 3DVar, we would like to emphasize the following. The EnKF 
method inherently relies on an ensemble-based approach to represent flow-dependent 
background error covariances, which are crucial for its proper functioning. The use of a 
multi-physics ensemble in this study is an integral part of the EnKF framework, as it enables the 
generation of diverse ensemble members and, consequently, a more accurate representation of 
system uncertainty. Conversely, 3DVar adopts a deterministic approach that assumes static, 
isotropic background error covariances, usually derived from a climatological background. These 



distinctions in designs and purpose highlight the inherent differences between  the two methods. 
Running the EnKF with the same deterministic configuration as 3DVar would not align with the 
principles of the EnKF and would likely lead to inaccurate results due to the lack of ensemble 
variability, which is essential for computing accurate flow-dependent error covariances. 

 
We wish to emphasize that the main goal of this paper is to evaluate the performance of two 
widely used data assimilation strategies—EnKF and 3DVar—when applied to extreme weather 
phenomena in maritime regions, which are characterized by a lack of observational data. 
Typically, these data assimilation systems are tested over land regions where observational 
coverage is dense, presenting fewer challenges. However, their performance in the context of 
extreme weather events over maritime regions remains largely unexplored, to the best of our 
knowledge. While the questions raised by the reviewer are indeed relevant and have been 
extensively addressed in the existing literature, we believe that delving into these aspects within 
this study would not provide new or meaningful information to the community. 
 
We hope this explanation clarifies the scope and objectives of our study and adequately addresses 
the reviewer’s concern. 

4.  In this work, operational evaluation is frequently discussed, but, for example, in the case of 
IOP13, the rainfall between 00 and 06 is analyzed from a simulation that starts at 00. In reality, 
this means that data assimilation occurs right up to the beginning of the event. In an operational 
context, to assimilate data up to 00:00 on the 15th, as shown in the scheme in Figure 6, it would 
be necessary to wait at least 15-20 minutes (or even more, it depends on the observations 
assimilated) after 00:00 on the 15th to acquire the latest observational data before starting the 
run. The 3DVar is relatively fast as an approach, especially if, as in this case, the observations 
assimilated are not very dense over the entire domain. But what time would the EnKF run be 
available? The risk with simulations structured in this way is that the forecast becomes available 
much later. In an operational context, which is repeatedly emphasized as a goal in the paper, 
evaluating the cumulative rainfall from 00 to 06 on the 15th effectively means validating rainfall 
that would not be forecasted but partially in hindcast. Actually, in Figure A1, the hourly 
precipitation between 00 and 01 is evaluated. Similar considerations can be made for the initial 
part of the second case, which, however, being evaluated over a longer period, is less affected by 
this issue. 

We thank the reviewer for this detailed comment, and we agree that the way we have explained 
this aspect in the paper may lead to misinterpretation. We appreciate the opportunity to rephrase 
and clarify this point. 

 
The configuration used in this paper was designed to represent a real event, rather than being 
optimized for an operational setting, where computational constraints are not a limiting factor. 
This strategy is not novel and has been utilized in previous studies: 
 

1. Carrió, D. S., & Homar, V. (2016). Potential of sequential EnKF for the short-range 
prediction of a maritime severe weather event. Atmospheric Research, 178, 426-444. 
 

2. Carrió, D. S., Homar, V., & Wheatley, D. M. (2019). Potential of an EnKF storm-scale data 
assimilation system over sparse observation regions with complex orography. Atmospheric 
Research, 216, 186-206. 
 

3. Carrió, D. S. (2023). Improving the predictability of the Qendresa Medicane by the 
assimilation of conventional and atmospheric motion vector observations. Storm-scale 
analysis and short-range forecast. Natural Hazards and Earth System Sciences, 23(2), 
847-869. 



 
While we acknowledge that real-world operational systems must address latency in data 
acquisition and computational speed, such operational constraints fall beyond the scope of this 
study. The primary goal of this paper is to provide scientific insights into the potential 
performance of EnKF and 3DVar under idealized conditions, rather than to propose practical 
operational guidelines. 
 
To avoid potential misunderstandings, we have added clarifications to the manuscript to 
explicitly state that this study is based on an idealized setup and does not intend to mimic 
operational implementations. Specifically, the following sentences have been added: 

 
 

● NODA Experiments Section (Page 20, Lines 599-608): 
“For the IOP13, NODA experiment is a direct downscaling from EPS-ECMWF boundary and 
initial conditions valid at 1800 UTC 14 October to 00 UTC 16 October 2012 (Fig. 6c). The 
comparison among NODA, CNTRL and SYN will provide us with valuable information on the 
impact of assimilating different sources of observations. 

For Qendresa, NODA experiment is simply a direct downscaling of 36 hours from 
EPS-ECMWF at 00 UTC 7 November to 12 UTC 8 November 2014 (Fig. 6f). Here again, it is 
important to note that the choice of starting NODA at 00 UTC 7 November instead of starting 
at 12 UTC 6 November was made intentionally to extract general conclusions applicable to 
an operational framework.” 

 
In the revised version of the manuscript, we have avoided referring to the “operational” 
framework. We hope this clarification addresses the reviewer’s concern and provides a clearer 
understanding of the study's scope. 
 

 
 
Major Comments: 
 
L 79-84: The literature review is lacking, and there are several studies on small-scale convective 
NWP that impact coastal regions of the Mediterranean, also with data assimilation approaches. It is 
recommended to expand the literature review on this topic and reconsider the misleading information 
in these lines. 
 
We thank the reviewer for pointing out the need to expand the literature review and for highlighting 
the relevance of studies on small-scale convective NWP and data assimilation approaches in coastal 
Mediterranean regions. While we agree that the existing literature on Data Assimilation for NWP is 
vast, we found relatively few studies that specifically focus on applying Data Assimilation to 
extreme weather events affecting coastal regions of the Mediterranean, particularly using EnKF 
and 3DVar methodologies. Producing accurate forecasts of extreme weather events initiated over 
maritime regions and affecting populated Mediterranean coastal regions remains a major challenge for 
the forecasting community. This challenge arises mainly due to the scarcity of observational data, the 
complex topography surrounding the Mediterranean basin, and the intricate interactions between  sea 
and land processes. Most DA studies available in the literature focus on relatively flat land regions, 
with very few addressing the Mediterranean basin. This gap underscore the novelty and relevance of 
the present study. 
 
To address the reviewer’s concern, we performed a more extensive search for relevant studies and 
have identified a few additional papers that align with the scope of our work. We have expanded the 
literature review to include the following references: 
 



1. Carrió, D. S., & Homar, V. (2016). Potential of sequential EnKF for the short-range 
prediction of a maritime severe weather event. Atmospheric Research, 178, 426-444. 

2. Amengual, A., Carrió, D. S., Ravazzani, G., & Homar, V. (2017). A comparison of ensemble 
strategies for flash flood forecasting: The 12 october 2007 case study in Valencia, Spain. 
Journal of Hydrometeorology, 18(4), 1143-1166. 
 

3. Carrió, D. S., Homar, V., & Wheatley, D. M. (2019). Potential of an EnKF storm-scale data 
assimilation system over sparse observation regions with complex orography. Atmospheric 
Research, 216, 186-206. 
 

4. Amengual, A., Hermoso, A., Carrió, D. S., & Homar, V. (2021). The sequence of heavy 
precipitation and flash flooding of 12 and 13 September 2019 in Eastern Spain. Part II: A 
hydrometeorological predictability analysis based on convection-permitting ensemble 
strategies. Journal of Hydrometeorology, 22(8), 2153-2177. 
 

5. Mazzarella, V., Ferretti, R., Picciotti, E., & Marzano, F. S. (2021). Investigating 3D and 4D 
variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain 
event in central Italy. Natural Hazards and Earth System Sciences, 21(9), 2849-2865. 
 

6. Torcasio, R. C., Federico, S., Comellas Prat, A., Panegrossi, G., D’Adderio, L. P., & Dietrich, 
S. (2021). Impact of lightning data assimilation on the short-term precipitation forecast over 
the Central Mediterranean Sea. Remote Sensing, 13(4), 682. 
 

7. Capecchi V, Antonini A, Benedetti R, Fibbi L, Melani S, Rovai L, Ricchi A, Cerrai D. 
Assimilating X- and S-Band Radar Data for a Heavy Precipitation Event in Italy. Water. 2021; 
13(13):1727. https://doi.org/10.3390/w13131727. 
 

8. Lagasio, M., Silvestro, F., Campo, L., & Parodi, A. (2019). Predictive Capability of a 
High-Resolution Hydrometeorological Forecasting Framework Coupling WRF Cycling 
3DVAR and Continuum. Journal of Hydrometeorology, 20(7), 1307-1337. 
https://doi.org/10.1175/JHM-D-18-0219.1 

 
If the reviewer is aware of additional studies that meet these criteria, we would greatly appreciate their 
suggestions and would be happy to include them in our review. 
 
Furthermore, we have carefully reviewed the lines identified by the reviewer for any potentially 
misleading information and have revised the text accordingly to ensure accuracy and clarity. 
Specifically, the literature review section has been updated to reflect these new references and to 
clarify the novelty and focus of our study. 

● Introduction Section (Page 2, Lines 79-84): 
"However, less attention has been paid to convective-scale NWP problems, especially those 
associated with small scale convective phenomena initiated over regions with sparse 
observational data coverage, such as the extreme weather events affecting coastal regions in 
the Mediterranean basin (Carrió et al., 2016; Amengual et al., 2017; Carrió et al., 2019; 
Amengual et al., 2021; Mazzarella et al., 2021; Torcasio et al., 2021)." 

 
These revisions aim to address the reviewer’s concern and ensure that our literature review 
appropriately reflects the current state of research in this field. We thank the reviewer for this 
constructive suggestion and believe that these updates will improve the manuscript significantly. 
 
 
L149-150 and 155-157: In this case as well, there is a gap in the literature review. Several studies on 
the Mediterranean region and Italy configure simulations, also with data assimilation and for 

https://doi.org/10.3390/w13131727


operational purposes. It is recommended to update the literature review and position the aim of the 
study and its innovation in relation to the already existing works. 
 
We thank the reviewer for this observation and appreciate the suggestion to strengthen the literature 
review. 

For Lines 149-150, we have expanded the literature review by incorporating additional references 
related to data assimilation studies in the Mediterranean region, particularly those focused on 
high-resolution numerical simulations with DA techniques. These additions provide a broader context 
and better position our study in relation to previous research.  

The revised text for Lines 149-150 now reads as follows (new references are underlined): 

“Recent convective-scale DA studies have primarily focused on the mature stage of weather events 
(e.g., Tong et al., 2005; Fujita et al., 2007; Dowell et al., 2021; Jones et al., 2013; Wheatley et al., 
2015; Jones et al., 2016; Gao et al., 2016; Ballard et al., 2016; Gustafsson et al., 2018; Carrió et al., 
2019; Mazzarella et al., 2020;  Yussouf et al., 2020; Federico et al., 2021; Junjun et al., 2021; Janjić 
et al., 2022; Wang et al., 2022).” 
 
Regarding Lines 155-157, we would like to emphasize that the number of studies specifically 
addressing data assimilation in pre-convective environments are relatively scarce. Most DA studies 
focus on assimilating observations once the weather phenomena has already initiated, rather than 
incorporating observations several hours before the event begins (i.e., in the pre-convective phase). 
Nonetheless, we have included some relevant studies we were able to identify in the revised 
manuscript. To the best of our knowledge, very few studies focus explicitly on DA strategies in 
pre-convective conditions, particularly in the Mediterranean region. This distinction underscores the 
novelty of the present study and its contribution to the existing body of research. If the reviewer is 
aware of additional references on this topic, we would greatly appreciate their suggestions, and we 
would be happy to incorporate them into our discussion. 

The revised text for Lines 155-157 now reads as follows: 

“Despite its potential benefits, very few studies have explored the role of DA in the pre-convective 
stage (e.g., Carrió et al., 2019; Carrió et al., 2022; Corrales et al., 2023), where assimilating 
observations before convection initiates could significantly improve forecast lead time, providing 
advanced warnings and allowing decision-makers to act proactively.” 

We have also updated the manuscript to clearly delineate the novelty of our study in comparison to the 
existing works. Specifically, the literature review section now better contextualizes the aim of our 
study and its contributions in relation to prior research. 

We hope this revision addresses the reviewer’s concerns and provides a more comprehensive 
positioning of our study within the existing body of work. 

 
New References: 
 
Corrales, P. B., Galligani, V., Ruiz, J., Sapucci, L., Dillon, M. E., Skabar, Y. G., ... & Nesbitt, S. W. 
(2023). Hourly assimilation of different sources of observations including satellite radiances in a 
mesoscale convective system case during RELAMPAGO campaign. Atmospheric Research, 281, 
106456. 
 
Tong, M., & Xue, M. (2005). Ensemble Kalman filter assimilation of Doppler radar data with a 
compressible nonhydrostatic model: OSS experiments. Monthly Weather Review, 133(7), 1789-1807. 
 



Fujita, T., Stensrud, D. J., & Dowell, D. C. (2007). Surface data assimilation using an ensemble 
Kalman filter approach with initial condition and model physics uncertainties. Monthly weather 
review, 135(5), 1846-1868. 
 
Carrió, D. S., Jansà, A., Homar, V., Romero, R., Rigo, T., Ramis, C., ... & Maimó, A. (2022). Exploring 
the benefits of a Hi-EnKF system to forecast an extreme weather event. The 9th October 2018 
catastrophic flash flood in Mallorca. Atmospheric Research, 265, 105917. 
 
Mazzarella, V., Maiello, I., Ferretti, R., Capozzi, V., Picciotti, E., Alberoni, P. P., ... & Budillon, G. 
(2020). Reflectivity and velocity radar data assimilation for two flash flood events in central Italy: A 
comparison between 3D and 4D variational methods. Quarterly Journal of the Royal Meteorological 
Society, 146(726), 348-366. 
 
Jones, T. A., Otkin, J. A., Stensrud, D. J., & Knopfmeier, K. (2013). Assimilation of satellite infrared 
radiances and Doppler radar observations during a cool season observing system simulation 
experiment. Monthly weather review, 141(10), 3273-3299. 
 
Federico, S., Torcasio, R. C., Puca, S., Vulpiani, G., Comellas Prat, A., Dietrich, S., & Avolio, E. 
(2021). Impact of radar reflectivity and lightning data assimilation on the rainfall forecast and 
predictability of a summer convective thunderstorm in Southern Italy. Atmosphere, 12(8), 958. 
 
Gao, J., Fu, C., Stensrud, D. J., & Kain, J. S. (2016). OSSEs for an ensemble 3DVAR data 
assimilation system with radar observations of convective storms. Journal of the Atmospheric 
Sciences, 73(6), 2403-2426. 
 
Dowell, D. C., Wicker, L. J., & Snyder, C. (2011). Ensemble Kalman filter assimilation of radar 
observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on 
storm-scale analyses. Monthly Weather Review, 139(1), 272-294. 
 
Carrió, D. S., Homar, V., & Wheatley, D. M. (2019). Potential of an EnKF storm-scale data 
assimilation system over sparse observation regions with complex orography. Atmospheric Research, 
216, 186-206. 
 
Janjić, Tijana, Yuefei Zeng, and Yvonne Ruckstuhl. "Weakly Constrained LETKF for Convective-Scale 
Data Assimilation." (2022). 
 
Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., Weissmann, M., Reich, H., ... & Fujita, T. 
(2018). Survey of data assimilation methods for convective‐scale numerical weather prediction at 
operational centres. Quarterly Journal of the Royal Meteorological Society, 144(713), 1218-1256. 
 
Ballard, Susan P., et al. "Performance of 4D‐Var NWP‐based nowcasting of precipitation at the Met 
Office for summer 2012." Quarterly Journal of the Royal Meteorological Society 142.694 (2016): 
472-487. 
 
Hu, Junjun, et al. "Assessment of Storm‐Scale Real Time Assimilation of GOES‐16 GLM 
Lightning‐Derived Water Vapor Mass on Short Term Precipitation Forecasts During the 2020 Spring 
Forecast Experiment." Journal of Geophysical Research: Atmospheres 126.21 (2021): 
e2021JD034603. 
 
Wang, Y., Yussouf, N., Kerr, C. A., Stratman, D. R., & Matilla, B. C. (2022). An experimental 1-km 
Warn-on-Forecast System for hazardous weather events. Monthly Weather Review, 150(11), 
3081-3102. 
L161-172: Point a) The comparison with the NODA run is missing in order to address this point. 
Please refer to General Comment 2 concerning the NODA run that should be used to effectively 
assess the impact of data assimilation. Point b) It is true that assimilation starts in the pre-convective 



phase of the event, but it extends until the beginning of the validated time window. How does this 
approach differ from other similar methods that have already been published and are commonly used 
in operational contexts? Point c) To assess the impact of observations with high spatial and temporal 
resolution, why was a broader domain coverage not used, provided by other denser and more 
homogeneous networks available in Italy? Point d) Comparisons with the NODA run are missing. 
 
Point a): We appreciate the reviewer’s suggestion and agree that including the NODA run enhances 
the robustness of our assessment. In response to this comment, we have incorporated the results from 
NODA runs into our analysis and included new discussions in the manuscript to more effectively 
evaluate the impact of data assimilation. Please, also refer to our response to General Comment 2, 
where we provided additional details on this aspect. 
 
Point b): Typically, Data Assimilation is applied once the weather event has already initiated and 
developed. For instance, studies focusing on improving tornadoes forecasts over the U.S. Great Plains 
often assimilate observations only after the tornado has developed, rather than in the hours leading up 
to its development. From a Warning System perspective, this approach has limited advantages, as the 
event is already underway, leaving less time for authorities to issue effective warnings and mitigate 
potential impacts. 
 
This is precisely why assimilating observations before the event begins – during the pre-convective 
phase – is crucial. Forecasting the onset of an extreme weather event is significantly more challenging 
than predicting its subsequent evolution. By implementing this approach, we aim to improve the lead 
time for early warnings. We have previously applied this methodology in several studies (e.g., Carrió 
et al., 2016, 2018, 2019), demonstrating its potential benefits in enhancing forecast accuracy for 
high-impact weather events. 
 
Point c): The observations used in this study to validate our DA simulations were obtained from the 
publicly available observations provided by MADIS from the National Oceanic and Atmospheric 
Administration (NOAA). While denser observational networks exist in Italy, these datasets are 
generally not publicly accessible to all users. Our selection of observational data therefore was based 
on the public available sources to ensure accessibility and reproducibility of the present study. 
 
Point d): As noted in Point a), we acknowledge the reviewer’s concern regarding the missing NODA 
runs. To address this, we have now included the results from NODA runs in the revised version of the 
manuscript, along with a corresponding discussion to better assess the impact of data assimilation. 
 
Section 3: The study presents a potentially interesting comparison, but it is based on only two case 
studies and two sets of observations that differ significantly. The in-situ observation sets also appear 
to vary considerably between the two cases, which makes it challenging to draw a general conclusion. 
While it is true that observations over the sea are generally limited, a more homogeneous correction 
across the entire domain could still lead to improvements in the initial and boundary conditions, and, 
consequently, in the simulation. As it stands, the two cases seem somewhat disconnected, making it 
difficult to draw a broader conclusion. 
 
We thank the reviewer for this comment and appreciate the opportunity to clarify this relevant point. 
 
This study is not intended to derive general conclusions applicable to all scenarios, but rather to 
provide a focused comparison of two widely used data assimilation methods – EnKF and 3DVar – in 
the context of extreme weather events that initiated over the sea, where observational data are scarce. 
We want to assess the potential of these methods in improving predictability under such challenging 
conditions, rather than to establish statistically robust conclusions across multiple cases. Several 
studies published in top-ranked journals have adopted a similar methodology, using one or two 
real-case weather events to assess the performance of different existing DA methods. Notables 
examples include: 
 



1. Tiwari, G. et al., 2022.  Predictive skill comparative assessment of WRF 4DVar and 3DVar 
data assimilation: An Indian Ocean tropical cyclone case study. Atmospheric Research 

2. Sun, J. et al., 2013.  Radar data assimilation with WRF 4D-Var. Part II: Comparison with 
3D-Var for a squall line over the US Great Plains. Monthly Weather Review 

3. Mazzarella, V., Maiello, I., Capozzi, V., Budillon, G., & Ferretti, R. (2017). Comparison 
between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall 
case in central Italy. Advances in Science and Research, 14, 271-278. 

4. Mazzarella, V., Maiello, I., Ferretti, R., Capozzi, V., Picciotti, E., Alberoni, P. P., ... & 
Budillon, G. (2020). Reflectivity and velocity radar data assimilation for two flash flood 
events in central Italy: A comparison between 3D and 4D variational methods. Quarterly 
Journal of the Royal Meteorological Society, 146(726), 348-366. 

 
We acknowledge that the two case studies involve different sets of in-situ observations, reflecting the 
inherent variability in real-world data availability over maritime regions. However, this diversity is 
intentional, as it highlights the challenge of data assimilation in such environments and provides 
valuable insights into how each method performs under different observational constraints. The key 
motivation of this study was to select two distinct extreme weather events initiated over the sea to 
analyze how these two methods behave under significantly different conditions. Unlike many DA 
studies that focus on well-observed land-based events, our approach deliberately examines extreme 
weather phenomena in regions with scarce in-situ observations. By doing so, we aim to contribute to 
the understanding of DA performance in maritime environments, a topic that remains 
underrepresented in the existing literature. 
 
To further clarify this, we have revised the manuscript to explicitly state the study’s scope and 
objectives, ensuring that readers do not misinterpret it as an attempt to generalize findings beyond the 
examined cases. See previous answers for further details.  
 
We hope this explanation addresses the reviewer’s concern and clarifies the intent of the study. 
 
L447: The period used for constructing the background is only 2 weeks, which is half of the minimum 
duration recommended in the WRFDA user guide (at least a 1-month dataset). This could negatively 
impact the comparison between 3DVar and EnKF, potentially disadvantaging the 3DVar. Have 
sensitivity tests been conducted using B matrices constructed from longer periods? 
 
We thank the reviewer for the opportunity to clarify this relevant aspect. Several studies in the 
literature use a two-week period for calculating the B matrix (Hung et al. 2023; Fitzpatrick et al., 
2007; Mazzarella et al., 2020, 2021), and all show an improvement in reproducing the initial 
conditions. It's worth noting that the WRFDA user guide states: “For the NMC-method, the model 
perturbations are differences between forecasts (e.g. T+24 minus T+12 is typical for regional 
applications, T+48 minus T+24 for global) valid at the same time. Climatological estimates of 
background error may then be obtained by averaging these forecast differences over a period of time 
(e.g. one month)" (WRFDA Users Guide, pp. 41). This clearly suggests that the recommended 
one-month period is not mandatory, and a shorter duration, such as two weeks, can be used. In the 
context of this study, we adopted the CV7 option with the default "len scale" and "var scale" 
parameters. While acknowledging that a sensitivity analysis of these parameters could potentially lead 
to further improvements in model performance, this was not among the primary objectives of this 
work.  
 
We hope this explanation satisfactorily addresses the reviewer’s concern and enhances the clarity and 
improves the clarity and completeness of our manuscript. 
 
 
New References: 
 



Hung MK, Tien DD, Quan DD, Duc TA, Dung PTP, Hole LR, Nam HG. Assessments of Use of 
Blended Radar–Numerical Weather Prediction Product in Short-Range Warning of Intense Rainstorms 
in Localized Systems (SWIRLS) for Quantitative Precipitation Forecast of Tropical Cyclone Landfall 
on Vietnam’s Coast. Atmosphere. 2023; 14(8):1201. https://doi.org/10.3390/atmos14081201 
 
Fitzpatrick, P. J., Li, Y., Hill, C., Karan, H., Lim, E., & Xiao, Q. (2007, June). The impact of radar 
data assimilation on a squall line in Mississippi. In 22nd Conference on Weather Analysis and 
Forecasting/18th Conference on Numerical Weather Prediction. 
 
Mazzarella, V.; Maiello, I.; Ferretti, R.; Capozzi, V.; Picciotti, E.; Alberoni, P.; Marzano, F.; Budillon, 
G. Reflectivity and velocity radar data assimilation for two flash flood events in central Italy: A 
comparison between 3D and 4D variational methods. Q. J. R. Meteorol. Soc. 2020, 146, 348–366. 
 
Mazzarella, V., Ferretti, R., Picciotti, E., and Marzano, F. S.: Investigating 3D and 4D variational 
rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy, 
Nat. Hazards Earth Syst. Sci., 21, 2849–2865, https://doi.org/10.5194/nhess-21-2849-2021, 2021. 
 

The revised text now reads as follows: 

“Consistent with several papers (Hung et al. 2023; Fitzpatrick et al., 2007; Mazzarella et al., 2020, 
2021) showing positive results, a two-week period was used for the calculation of the B matrix in this 
study” 
 
L503-504: A multi-physics approach for the EnKF, compared to a deterministic run with 3DVar, 
significantly disadvantages the deterministic simulation, regardless of the effect of data assimilation. 
A comparison between the ensemble and the deterministic simulation without the use of DA should be 
conducted to effectively evaluate the impact of the two DA methods. 
 
We thank the reviewer for raising this point. EnKF and 3DVar are fundamentally different Data 
Assimilation approaches, primarily in how they estimate the background error covariance matrices, 
which play a crucial role in their performance. Comparisons between EnKF and 3DVar/4DVar are 
widely conducted in the literature, as they provide valuable insights into the strengths and limitations 
of each method under different scenarios. 
 
The EnKF methodology inherently relies on an ensemble-based approach to estimate 
flow-dependent background error covariances, ensuring that error structures evolve dynamically 
with the forecast. In contrast, 3DVar employs static, climatological background error covariances, 
which do not evolve with time but can be tuned based on long-term statistics. The use of a 
multi-physics ensemble in EnKF is a standard practice, as it ensures sufficient ensemble spread and 
better representation of background error statistics, which are essential for the proper functioning of 
the EnKF system. Running EnKF with a deterministic configuration similar to 3DVar would 
significantly degrade its performance, as it would lack the necessary variability to correctly compute 
error covariances. 
 
Here, it is important to highlight that, due to differences in how background error covariances are 
computed, 3DVar can sometimes produce more realistic background error covariance estimates over 
the sea than an ensemble-based system like EnKF. This is because EnKF relies on short-range 
ensemble forecasts to approximate these covariances, whereas 3DVar can incorporate climatological 
information, which may be particularly advantageous in data-sparse maritime regions. 
 
It is not among the aims of this paper the comparison between the ensemble simulation and the 
deterministic one. There are many papers addressing this problem. 
 

https://doi.org/10.3390/atmos14081201


We hope this clarification helps address the reviewer’s concern and provides further insight into the 
methodological choices in our study. 
 
L530-531 and 547-548: why the reference experiment is not included in the validation? It is 
impossible to assess the impact of the assimilation without a reference simulation. Where is the NODA 
experiment in the work results analysis? 
 
We thank the reviewer for this observation. We fully agree that including a reference experiment is 
essential for assessing the impact of data assimilation. In response to this comment, we have now 
incorporated NODA results into our analysis and added a corresponding discussion in the manuscript. 
 
These additional results allow for a clearer evaluation of the improvements introduced by data 
assimilation, ensuring a more comprehensive assessment of the relative performance of the EnKF and 
3DVar methods. 
 
We hope this revision adequately addresses the reviewer’s concern and enhances the clarity and 
completeness of our results analysis. 
 
L553-555: The comparison is certainly of interest. However, it is based on only two case studies, 
where two different sets of observations were used in the CNTRL simulation for two extreme events 
with completely different characteristics. This makes it challenging, if not impossible, to draw general 
conclusions. Typically, the run that uses high spatial and temporal resolution data, such as radar and 
satellite products, shows a greater improvement compared to one that only uses in-situ observations, 
which is almost well-established in the literature. Expanding the analysis to include more cases or a 
more consistent dataset could strengthen the conclusions drawn. 
 
We thank the reviewer for this comment and appreciate the opportunity to further clarify the scope of 
our study. As previously mentioned in our responses, this study is not intended to derive general 
conclusions but rather to provide a focused comparison of two widely used data assimilation methods 
– EnKF and 3DVar – when applied to extreme weather events initiated over the sea, where 
observational data are scarce. 
 
We acknowledge that the two case studies involve different sets of in-situ observations, reflecting the 
inherent variability in real-world data availability over maritime regions. However, this diversity is 
intentional, as it highlights the challenges of data assimilation in such environments and provides 
insights into how each method performs under different observational constraints. Additionally, 
studies that compare different DA methods based on one or two real-case experiments are common in 
the literature and have provided valuable contributions to understanding DA performance. 
 
While we agree that expanding the analysis to include more cases could further generalize the 
findings, the goal of this study is not statistical validation but rather a methodological comparison 
under contrasting extreme weather conditions. The selection of these two cases was made in purpose, 
as they represent significantly different meteorological scenarios, allowing us to assess the strengths 
and limitations of each DA method across different conditions. 
 
To avoid any misinterpretation, we have revised the manuscript to further clarify the study’s 
objectives and limitations, ensuring that readers do not mistakenly assume that broad generalizations 
are being drawn from the results. 
 
We hope this explanation satisfactorily addresses the reviewer’s concern. 
 
L612-613: As mentioned in general comment 4, if the aim is to assess the applicability to an 
operational framework, the simulation time required for these configurations should be included in 
the analysis. This would help determine whether the validation time window chosen for the results 
analysis is fully available as a forecast or if part of it will be in hindcast considering that in real time 



the assimilation should wait for the observations availability. For operational applications, it is 
crucial that the forecast be provided in advance of the event’s time window, ideally by at least a few 
hours. While this may be negligible in the case of a long-lasting event, as in the second use case 
presented in the work, it is fundamental for the first use case. 
 
We thank the reviewer for this comment and appreciate the opportunity to clarify this point once 
again. As previously stated in our response to General Comment 4, this study is not designed as an 
operational application but rather as a methodological evaluation of two widely used data 
assimilation techniques under optimal conditions. Therefore, assessing the computational time 
required to run these experiments is not within the scope of this study. 
 
Our primary objective is to analyze the potential of these DA methods in improving the predictability 
for extreme weather events originating over the sea, where the observational data are scarce. To 
achieve this, we assume a perfect scenario where computational constraints are not a limiting factor. 
While we acknowledge that operational applications must account for real-time processing constraints 
and observational availability, these aspects fall beyond the intended scope of this work. 
 
To prevent further misunderstanding, we have added a clarification in the manuscript explicitly stating 
that this study does not aim to evaluate operational feasibility but rather to compare the performance 
of these DA methods under optimal conditions. 
 
We hope this explanation satisfactorily addresses the reviewer’s concern. 
 
Figure A1: For the evaluation of hourly rainfall, only the 1-hour forecast between 00:00 and 01:00 on 
the 15th was considered, which corresponds to the moment when the data assimilation has just 
finished. It would be more appropriate to evaluate all hourly accumulations between 00:00 and 06:00 
for consistency with the 6-hourly evaluation and to provide a more comprehensive view of the period 
during which data assimilation has an impact. 
 
We thank the reviewer for this valuable suggestion. In response to this comment, we have updated the 
figure to include the evaluation of all hourly rainfall accumulations between 00:00 and 06:00, 
ensuring consistency with the 6-hourly evaluation and providing a more comprehensive view of the 
period during which data assimilation has an impact. 
 
The updated figure has been included in the Section “New Figures” of this document. 
 
L787-789: The members with poorer performance use the Kain-Fritsch cumulus parametrization, 
which is the same as the deterministic simulation employed for the 3DVar. Was an attempt made with 
3DVar, using the Grell-Freitas cumulus parametrization in combination with the YSU PBL scheme, 
which appears to be the best combination in the ensemble, to assess the impact of this difference? 
 
We thank the reviewer for this comment. However, we would like to clarify that this study is not 
designed as a sensitivity analysis of physical parameterizations, but rather as a comparison between 
two widely used data assimilation methods – 3DVar and EnKF – in their established configurations. 
 
The choice of physical parameterizations in each system follows commonly used configurations for 
operational and research application. The 3DVar experiment employs a deterministic configuration, 
while the EnKF system relies on an ensemble-based approach with multi-physics to ensure sufficient 
spread and proper representation of flow-dependent background error covariances. Since the objective 
of this study is to evaluate the performance of EnKF and 3DVar under their respective standard 
implementations, we did not modify the physical parameterizations in the 3DVar experiment. A 
separate sensitivity study on parameterization schemes would be required to specifically address this 
question, but it is beyond the scope of the present work. 
 
We hope this clarification addresses the reviewer’s concern. 



 
Summary and Conclusions section: The conclusions of this work should be revisited in light of the 
previous comments and the work that still needs to be implemented. 
 
We thank the reviewer for this comment and appreciate their constructive feedback through the review 
process. In response to the reviewer’s suggestions, we have revised the Summary and Conclusions 
section to reflect the updates made to the manuscript, including the incorporation of NODA runs, the 
extended hourly rainfall evaluation, and the clarification of the study’s scope and objectives. 
 
These revisions ensure that the conclusions accurately summarize the findings while maintaining 
consistency with the additional analyses and discussions implemented throughout the manuscript. 
 
We hope the revised conclusions now better align with the reviewer’s expectations and the updated 
content of the study. 
 
 
Minor comments: 

L137-138: Given the approach proposed for an operational purpose, it is recommended to include a 
more detailed comparison of computational efforts and timing in some section of the paper. This could 
be important for further evaluating the choice of using an EnKF approach compared to the 
deterministic 3DVar. 
 
We thank the reviewer for this suggestion. However, as previously clarified in General Comment 4 
and L612-613, this study is not designed for operational implementation but rather as a 
methodological comparison of two widely used data assimilation approaches – EnKF and 3DVar – 
under optimal conditions. Therefore, a detailed comparison of computational costs and timing was not 
within the scope of this work. 
 
We acknowledge that computational efficiency is a crucial factor for operational applications. 
However, evaluating the feasibility of these approaches in an operational setting would require 
additional considerations, including hardware specifications, model resolution, data availability 
latencies, and system optimization, which are beyond the focus of this study. 
 
To avoid potential misunderstandings, we have revised the manuscript to explicitly clarify that this 
study does not aim to assess operational feasibility, but rather to explore the potential of these DA 
methods in improving predictability in maritime extreme weather events. 
 
We hope this clarification adequately addresses the reviewer’s concern. 
 
L174-175: If “this study is not aimed to draw any statistically significant conclusion”, how can points 
a, b, c, and d be addressed? 
 
We thank the reviewer for this observation and appreciate the opportunity to clarify this point. The 
statement “this study is not aimed to draw any statistically significant conclusion” refers to the fact 
that our analysis is not based on a large sample of cases and does not attempt to establish 
generalized statistical relationships. The statistical framework is only used to objectively compare the 
two methods. Instead, the study focuses on a methodological comparison between 3DVar and EnKF in 
two distinct extreme weather events that originated over the sea, where observational data are scarce. 
 
However, despite the limited number of case studies, the points (a, b, c and d) are still addressed by 
qualitative and process-based evaluations rather than statistical inference. The methodology used 
allows us to assess the behavior of each DA approach under different conditions and to provide 
insights into their potential advantages and limitations in such challenging environments. 
 



To avoid potential misinterpretation, we have revised this statement in the manuscript to clarify that 
while the study does not aim to establish statistically significant findings, it does provide a 
comparative assessment of DA methodologies based on two well-defined case studies. For additional 
clarification, the reviewer may refer to our response to the first “General Comment”, where we have 
reformulated the study objectives (points a, b, c and d) to better reflect the scope of this research. 
 
We hope this explanation resolves the reviewer’s concern. 
 
L259-266: Italy has a dense national network of both radar and in-situ stations, offering 
comprehensive coverage across the territory. Could you please clarify why the decision was made not 
to utilize all available observations, which would provide more homogeneous and dense coverage 
over the entire domain of interest, potentially enhancing the data assimilation process? Especially in 
the Qendresa use case, was there no radar available with at least some coverage over the sea? 
 
We thank the reviewer for this comment and appreciate the opportunity to clarify our data selection 
process. 
 
The observational data used in this study were obtained from publicly available datasets, specifically 
from MADIS (NOAA), ensuring accessibility and reproducibility of our results. While we 
acknowledge that Italy has a dense observational network, not all datasets are openly accessible for 
research purposes. Many high-resolution national networks have restrictive access, limiting their 
availability to external users. 
 
Regarding the Qendresa case, reflectivity observations from radar were not available for the dates and 
locations relevant to the event. Additionally, the southernmost radar in Italy does not provide 
sufficient coverage over the initiation region over the sea, where Qendresa developed. Furthermore, 
even if some radar observations were available, they are not publicly accessible and lack quality 
control, which could introduce uncertainties into the data assimilation process. In contrast, for the 
IOP13 case, we used radar data that were quality-controlled and archived on the HyMeX website, 
ensuring reliability. 
 
This study focuses on assessing DA performance in maritime-origin extreme weather events, where 
observational constraints are a major challenge. The dataset used reflects realistic limitations in data 
availability when forecasting such events. However, we recognize that incorporating a denser, more 
homogeneous observational network could further improve DA performance. Future studies could 
explore the impact of assimilating additional observations, if accessible, to evaluate their contribution 
to forecast improvements. 
 

The revised text for Section IOP13 Observations now reads as follows: 

“For the IOP13, we assimilated both in-situ conventional data and remote sensing 
observations from two Doppler Weather Radars. While Italy has a dense national network of 
radar and in-situ stations, the majority of these datasets were not publicly available. To 
ensure reproducibility and accessibility, we exclusively used freely available data. Regarding 
radar observations, we assimilated data from the only two radars providing coverage over 
the maritime region where this event initiated. These include data from: (a) Aleria radar 
(9.496ºE, 42.129ºN, 63 m ASL), located on Corsica Island, and (b) Nimes radar (4.502ºE, 
43.806ºN, 76 m ASL), located in southern France (Fig. 3a). These two Météo-France 
polarimetric S-band Doppler Weather Radars, strategically positioned, ensure a good spatial 
coverage over the Ligurian Sea, the area where initiation and intensification of deep 
convection occurred, and provide key information about the 3D structure of the convective 
systems at high spatial and temporal resolution. Aleria and Nimes radars perform 5 and 9 
elevation scans every 5 minutes, respectively, and their data are available at the HyMeX’s 

https://mistrals.sedoo.fr/en/HyMeX/


official website (see https://www.hymex.org). Specifically, Aleria radar provides data at 5 
elevation angles: 0.57º, 0.96º, 1.36º, 3.16º and 4.57º with a mean frequency of 2.8 GHz. In 
comparison, Nimes radar provides data at 9 elevation angles: 0.58º, 1.17º, 1.78º, 2.38º, 
3.49º, 4.99º, 6.5º, 7.99º and 89.97º, also at the same frequency. It is worth mentioning that 
Aleria and Nimes radar reflectivity data are provided by the Météo-France operational radar 
network and undergo rigorous data quality control. This ensures that common radar error 
sources, such as signal attenuation, ground clutter or beam blocking, are meticulously 
identified and corrected. Radial velocity from Aleria and Nimes Doppler radars was also 
available, but because of the low reliability of the data (not quality controlled properly) it 
was not used in this study. Additionally, conventional in-situ observations were obtained from 
NOAA’s Meteorological Assimilation Data Ingest System (MADIS), a global dataset that 
provides high-quality, quality-controlled meteorological observations. In particular, we 
assimilated pressure, temperature, humidity and horizontal wind speed and direction from 
in-situ instruments such as METARs, maritime buoys, rawinsondes and aircrafts (Fig. 3a). ” 

The revised text for Section Qendresa Observations now reads as follows: 

“For the Qendresa episode, two different observational sources were publicly available: (a) 
conventional in-situ observations and (b) satellite-derived observations. Conventional in-situ 
observations were obtained from MADIS database. However, only observations from buoys, 
METAR and rawinsonde were used for this case. It is essential to highlight that observation 
gaps persist across large areas of the region, particularly over the sea (Fig. 3b), where 
Qendresa initiated and evolved. As for the IOP13, we were interested in Doppler Weather 
Radars data to enhance the intensity and trajectory forecasts of Qendresa. Unfortunately, 
Doppler Weather Radars were not publicly available in the neighborhood  of the region 
where Qendresa initiated and evolved. Instead, we used an alternative high-resolution data 
source, the so-called Rapid-Scan Atmospheric Motion Vectors (RSAMVs; Velden et al., 2017). 
This dataset provides 3D wind information throughout the entire atmosphere (both speed and 
direction) at high spatial and temporal resolution (i.e., every 20-min). These observations 
were particularly valuable for capturing wind field structures over the sea, where 
conventional observations  were sparse or unavailable. This satellite product is obtained 
using the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard the 
Meteosat Second Generation (MSG) satellite, which has a scanning frequency as low as 5 
minutes. The final product is indeed obtained averaging 4 consecutive images.” 

We hope this explanation clarifies our approach and the reasoning behind our data selection. 
 
L437-439: The observation operator used considers only the warm rain process and not all the ice 
microphysics species. In the case of extreme convective events, ice species are typically an important 
component of the cloud, as evidenced by the usual presence of lightning. Has the impact of using a 
warm rain approach on radar data assimilation been evaluated, especially in the 3DVar run, which 
has a single physical configuration due to its deterministic nature? 
 
We thank the reviewer for this insightful comment. We acknowledge that in extreme convective 
events, ice species play a crucial role, as evidenced by the frequent presence of lightning. However, 
the primary focus of this study is to compare the performance of 3DVar and EnKF data assimilation 
techniques using the default setup, rather than to conduct a detailed sensitivity analysis of different 
microphysical assumptions within the observation operator. Assessing the specific impact of using a 
warm rain approach versus a more complete microphysics scheme is an important topic but falls 
beyond the scope of the present study. Additionally, note that the observation operator used in this 
study is the same used in previous papers (i.e., Carrió et al., 2019; Mazzarella et al., 2020), where it 

https://www.hymex.org


has been successfully applied in similar contexts. Therefore, this choice is consistent with established 
practices in convective-scale data assimilation studies. 
 
We appreciate this suggestion and acknowledge that future work could explore the impact of 
assimilating radar reflectivity with an observation operator that includes ice-phase processes, 
particularly for extreme convective events. We have added a brief discussion in the revised manuscript 
to acknowledge this limitation and highlight it as a potential direction for future research. 
 
We hope this clarification addresses the reviewer’s concern. 
 
L467-478: The domains chosen in this work are quite small and one-way nested, which may limit the 
duration of the data assimilation effect. Given the operational purpose emphasized in the study, why 
was a single, national-scale domain not used? This approach could have also facilitated a more 
homogeneous comparison between the two case studies and potentially allowed for a longer data 
assimilation impact. Can you justify also the use of a one-way nested approach instead of a two-way 
one? 
 
We thank the reviewer for this comment and appreciate the opportunity to clarify our choices 
regarding the domain configuration and nesting approach. 
 
First, it is important to note that using nesting domains is the most common practice in 
convective-scale DA studies (e.g., Snyder and Zhang, 2003; Dowell et al., 2004; Tong and Xue, 2005; 
Fujita et al., 2007; Wheatley et al., 2012; Yussouf et al., 2015, Carrió et al., 2019). The domains used 
in this study were carefully designed to balance high-resolution representation of convection with 
computational feasibility. The small, high-resolution inner domains were chosen to focus on the areas 
directly affected by the extreme weather events, ensuring that data assimilation had a meaningful 
impact on the convective-scale processes. Using a single national-scale domain, while beneficial for 
consistency across cases, would have required a coarser resolution to maintain computational 
efficiency, potentially reducing the benefits of data assimilation at convective scales. Additionally, 
using a nested-domain approach allows for a more effective treatment of the multiscale data 
assimilation problem. The assimilation of in-situ observations primarily enhances the estimation of 
large-scale atmospheric patterns, while higher-resolution observations, such as radar data, contribute 
to improving small-scale weather features. This distinction is crucial in high-resolution numerical 
weather prediction and justifies the use of nested domains in this study. Furthermore, the domain sizes 
selected are comparable to those used in previous research, reinforcing the validity of this approach. 
As previously clarified, this study is not intended for operational implementation, but rather to 
evaluate the potential of EnKF and 3DVar in extreme weather scenarios, making a national-scale 
setup less relevant for our research objectives. 
 
Regarding the one-way nested approach, this choice was made to ensure numerical stability and 
prevent feedback loops between the large-scale and fine-scale domains. A two-way nesting approach 
allows information from the inner domain to influence the outer domain, which may introduce 
inconsistencies when performing high-resolution data assimilation experiments. In our setup, one-way 
nesting ensures that the data assimilation process does not artificially influence the larger-scale 
meteorological fields, maintaining a cleaner evaluation of the data assimilation impact within the 
targeted high-resolution domain. Additionally, based on previous experience running nested 
high-resolution simulations, we have observed that two-way nesting is significantly more 
computationally demanding. Given the computational cost-benefit tradeoff and the focus of this study 
on evaluating convective-scale data assimilation, a one-way nesting approach was deemed the most 
appropriate choice for maintaining numerical consistency and computational efficiency. 
 
We recognize that alternative domain configuration, including a single large-scale domain or two-way 
nesting, could provide different insights. However, the current configuration was selected based on 
best practices for convective-scale DA studies and the specific objectives of this work. 
 



We hope this explanation adequately addresses the reviewer’s concern. 
 
L564-565: Several studies have shown that the assimilation of high spatial and temporal resolution 
observations helps to reduce model spin-up. Could you clarify the reasoning behind the decision to 
use the first 6-hours of simulation without DA, rather than utilizing the DA to reduce spin-up and 
potentially shorten the simulation time? 
 
We thank the reviewer for this insightful comment and appreciate the opportunity to clarify our 
methodology. 
 
The decision to exclude data assimilation during the first 6 hours of simulation was made to allow the 
model to achieve dynamical balance before initiating the assimilation process. While it is true that 
assimilating high spatial and temporal resolution observations can help reduce model spin-up in some 
cases, it is also important to ensure that the model fields are sufficiently adjusted to the mesoscale 
environment before introducing observational corrections. 
 
One of the key challenges in convective-scale data assimilation is that assimilating observations too 
early in the model integration can introduce inconsistencies if the initial fields are still undergoing 
significant adjustments. By allowing an initial period without assimilation, we ensure that the model 
has time to develop a physically consistent state, reducing the risk of introducing imbalances that 
could negatively impact the subsequent assimilation cycles. 
 
Furthermore, the 6-hour spin-up period aligns with common practices in previous studies (e.g., 
Schwartz et al., 2014; Carrió et al., 2019; Mazzarella et al., 2020), where a short free-run period 
before DA is used to improve the stability and realism of subsequent assimilation cyclones. This 
approach was found to provide a better balance between model initialization and the effective impact 
of DA. 
 
We acknowledge that alternative configurations, including an earlier assimilation start time, could be 
explored in future studies. However, given the focus of this work on evaluating DA performance, we 
believe that the chosen setup is appropriate for the objectives of this study. 
 
We hope this explanation adequately addresses the reviewer’s concern. 
 
L696: The threshold used for the FSS is 1mm/h. Such a low threshold is not very appropriate to assess 
extreme precipitation events. It would be more suitable to use progressively higher thresholds to 
evaluate whether the simulations accurately predict the more intense part of the event. 
 
We thank the reviewer for this valuable suggestion. We agree that using higher precipitation 
thresholds for the FSS would provide a more meaningful assessment of the model’s ability to capture 
the more intense portions of the extreme precipitation events. 
 
In response to this comment, we have performed additional analyses using progressively higher 
thresholds and have updated the relevant figures accordingly. The revised figures are included below 
in the Section “New Figures” of the present document, and the corresponding discussion has been 
added to the manuscript to reflect these updates. 
 
We appreciate the reviewer’s input, as this improvement enhances the robustness of our assessment of 
extreme precipitation predictability. 
 

L716-716: The short impact of reflectivity assimilation could be due to factors such as the observation 
coverage of the domain, the choice of domain size, and the nesting approach. A different setup might 
allow for a longer impact of the assimilation. 
 



We thank the reviewer for this comment. The short-lived impact of reflectivity assimilation is a 
well-known limitation in DA research (e.g., Gustafsson et al., 2018; Carrió et al., 2019) and it can be 
attributed to two key factors: 
 

1. Intrinsic limitations of current DA methodologies: Most DA schemes, including 3DVar 
and EnKF, are formulated under the assumption of Gaussian error distributions and linear 
observation operators. However, radar reflectivity observations are inherently non-Gaussian 
and highly nonlinear, making their assimilation more challenging. This mismatch can lead to 
a rapid loss of assimilation impact, as the corrections introduced by reflectivity DA tend to be 
quickly adjusted by the model dynamics. 

 
2. Influence of lateral boundary conditions: Radar observations typically provide coverage 

over limited portions of the high-resolution domain, as the inner domain size must remain 
computationally feasible. Consequently, as the model runs freely after the last DA cycle, the 
newly introduced information from reflectivity assimilation can be gradually replaced or 
dissipated due to inflowing large-scale information from the lateral boundaries.  

 
While factors such as observation coverage, domain size, and nesting approach can influence the 
persistence of reflectivity assimilation effects, the fundamental challenge remains the inherent 
limitations of current DA methods in handling highly nonlinear and non-Gaussian observation 
operators. However, we emphasize that the objective of this study is not to find the best DA setup for 
these case studies, but rather to compare two different DA methods using default configurations. A 
detailed sensitivity analysis on model domain size or assimilation settings falls beyond the scope of 
this work. 
 
We acknowledge that improving the impact duration of reflectivity DA is an active area of research, 
with potential solutions including advanced hybrid DA techniques, adaptive covariance tuning, and 
machine-learning-based observation operators. We have added a brief discussion in the revised 
manuscript to clarify this aspect and emphasize that this limitation is intrinsic to existing DA 
frameworks rather than solely a consequence of domain or nesting choices. 
 
L742-743: The EnKF can benefit from the multi-physics approach when assimilating observations 
that directly impact the model's microphysical species. For the deterministic 3DVar, was the physical 
configuration selected the one that performed best for the specific case study? 
 
We thank the reviewer for this comment. As previously mentioned in our response to an earlier 
comment, the physical configuration used in the 3DVar experiment was not chosen based on its 
optimal performance for the specific case study, but rather follows the default configuration used by 
CETEMPS for 3DVar in this setup. Modifying this setup to optimize performance for a particular case 
would introduce an additional variable, making it more difficult to isolate the impact of the DA 
methodology itself. The goal of this study is to compare the performance of two established DA 
methods rather than to conduct a sensitivity analysis of physical parameterizations within 3DVar.  
 
To avoid redundancy, we refer the reviewer to our previous response addressing this aspect. We hope 
this clarification resolves the concern. 
 
L748-750: It would be valuable to include an evaluation and comparison with the ensemble run that 
uses the same physical setup as the 3DVar. 
 
We thank the reviewer for this comment. However, as previously explained, configuring the EnKF 
ensemble to use the same physical setup as the deterministic 3DVar run would significantly degrade 
the performance of the EnKF system. This is because ensemble variance is crucial for properly 
estimating flow-dependent background error covariances, which are essential for the effectiveness of 
EnKF. 
 



Reducing the physical diversity within the ensemble would lead to a dramatic reduction in ensemble 
spread, increasing the risk of filter divergence, where the system becomes overconfident in its 
background state and fails to properly adjust to new observations. To prevent this, it is standard 
practice in ensemble-based data assimilation to incorporate multi-physics or other perturbation 
strategies to maintain adequate ensemble variability. 
 
The key objective of this study is to compare two established DA methodologies in their respective 
standard configurations, not to artificially align their setups at the expense of methodological integrity. 
Additionally, configuring EnKF with a single physical scheme identical to 3DVar would not only 
compromise the ensemble’s performance but also fail to contribute any new scientific insights to the 
community, as the limitations of such an approach are already well-documented in the literature.  
 
We hope this clarification adequately addresses the reviewer’s concern. 
 
Figure 8: It would be better if RMSE and FSS were applied to the same time window. 
 
We thank the reviewer for this suggestion. We agree that applying RMSE and FSS to the same time 
window will improve the consistency of the evaluation. In response to this comment, we have revised 
Figure 8 to ensure that both metrics are computed over the same time period. 
 
The updated figure has been included in the Section “New Figures” below, and the corresponding 
discussion has been modified accordingly in the main manuscript. 
 
We appreciate the reviewer’s input, as this adjustment enhances the clarity and comparability of the 
results. 
 
L775-776: It would be preferable if the diagrams covered the same time window as the FSS and 
RMSE. 
 
We thank the reviewer for this comment. We agree that Taylor diagrams should use the same time 
window as FSS and RMSE to ensure consistency across the evaluation metrics. In response, we have 
updated the Taylor diagrams to align with the same time period. The revised figures have been 
included in the Section “New Figures”. 

We appreciate the reviewer’s suggestion, as this adjustment improves the comparability and coherence 
of our analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
New Figures: 
 
Fig. 6: I have modified the figure according to reviewer’s comments. 



 
 
 

 
 
Fig. 8: I have added results from NODA simulation. 
  
1h Accumulated precipitation (threshold: 1mm/h): 



 
 
1h Accumulated precipitation (threshold: 3mm/h): 
 

 
 
 
 
 
 
3h Accumulated precipitation (threshold: 5 mm/h and 10 mm/h): 
 



 
 
6h Accumulated precipitation (threshold: 3mm/h): 

 



 
Figure 8. Upper panels: Evolution of the FSS during the first 24-h hours of free forecasts for 3-h accumulated 
precipitation in the Italian sub-regions: R1 (first column),  R2 (second column) and R3 (third column). Two 
thresholds are used: > 5 mm·h-1 (first row) and  > 10 mm·h-1 (second row). Lower panels: Evolution of the 
RMSE associated with each experiment during the first 24 hours of free forecast in the different sub-regions. 
Simulations assimilating both conventional and radar observations (CNTRL) and simulations assimilating only 
conventional observations (SYN) associated with the 3DVar and the EnKF are shown here. As a reference, 
NODA results are also included. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 9: I have added results from NODA (Deterministic) simulation. 
 

 
Figure 9. ROC curves and AUC associated with the 3DVar (red and pink colors), EnKF (blue and cyan colors) 
and NODA (green color) for the 3-hour accumulated precipitation using (a) 1 mm and (b) 10 mm threshold and 
6-hour accumulated precipitation using (c) 1 mm and (d) 10 mm threshold, computed over the entire inner 
domain. 
 
Fig. 10: I have added results from NODA simulation. 
 
 

 



Figure 10. Taylor diagram comparing the performance of 3DVar (red), EnKF (blue) and NODA (green) for the 
6-hour (left panel) and 24-hour (right panel) accumulated precipitation, valid at 06 UTC 15 October 2012. 
 
 
 
 
Fig. 11: I have added results from NODA simulation. 
 

 
Figure 11. Temporal surface pressure evolution at the closes grid point to Malta for the (a) SYN and (b) CNTRL 
experiments associated with the EnKF (blue), 3DVar (red) and NODA (green), compared to the observed 
surface pressure registered by METARs in Malta’s airport (black line). 
 
 
Fig. 12: I have added results from NODA simulation. 
 

Figure 12. Whisker plots depict the lagged correlation values between the observations and the EnKF (blue 
boxes), the 3DVar (red stars) and NODA (green stars) for the (a) SYN and (b) CNTRL experiments. The 
correlation is computed considering that the observed V-shape pressure signature associated with the 
observations is shifted 4 hours to the left and 4 hours to the right. 
 
 
 
 
 
 



Fig. 13: I have added results from NODA simulation. 
 

 
Figure 13. Probability of cyclone center occurrence computed using Gaussian KDE for (a) NODA, (b) EnKF 
(SYN), (c) 3DVar (SYN), (d) EnKF (CNTRL) and (e) 3DVar (CNTRL), from 11 UTC 7 November to 12 UTC 8 
November 2014. Qendresa’s trajectory observed via satellite imagery is depicted in black.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. A1 
 

 



Fig. A1. 1-h accumulated precipitation computed from 00-06 UTC 15 October 2012 associated with 
Observations (first column), NODA (second column), EnKF (CNTRL) (third column) and 3DVar (CNTRL) 
(fourth column).  

 
 

Fig. A2 

Fig. A2. 6-h accumulated precipitation computed from 00-06 UTC 15 October 2012 associated with (a) 
Observations, (b) NODA, (c)EnKF (CNTRL), (d) 3DVar (CNTRL). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


