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Abstract. Understanding particle motion in snow avalanches is

crucial for improving the representation of flow dynamics in numerical models. In
this study, we develop and apply a general framework for testing and calibrating thickness-integrated flow models using
in-flow sensor data from AvaNodes, radar measurements, and simulations with the comlDFA module of the open-source
AvaFrame framework. This includes an implementation of particle tracking functionalities -facilitating-a-comparison-between

Radar measurements of the avalanche front and three-dimensional AvaNode trajectories provide a comprehensive observational

basis for model comparison. By minimizing the differences between measured and simulated partiele-velocities and front posi-

tionsalews-to-tdentify-optimal parameter-settings-for-an-observed-avalanche-event-at-the Nordkette-test-siteUsingthe-bes

is—, we identify parameter sets that achieve high
agreement with observed dynamics, yielding deviations below 5???2,% in maximum velocity and travel distance. However, the

results reveal a trade-off between the
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ves g | sity;on-accurately reproducing particle
versus front behaviour, reflecting model limitations and the presence of equifinality in the avatanehe flow—parameter space.
We also find that the simulated particle velocities are primarily controlled by initial position, contrasting with experimental
observations that show more complex particle interactions. These findings underline the need for enhanced model formulations
to better capture flow regime transitions and particle-scale effects. Our results highlight the potential of combining multiple
measurement types for calibration and future improvements in avalanche modelling,
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1 Introduction

Snow avalanches are dynamic and complex natural phenomena that involve the movement of large masses of snow down
a slope. These masses are composed of a wide range of particles, from tiny ice crystals and aerosols to much larger snow.
aggregates, each with distinct properties and behaviours. At one end of the spectrum, snow avalanches can contain fine, airborne
particles such as ice crystals, which are relevant to studies on aerosols (Rastello et al., 2011). These fine particles are typically
associated with the powder cloud of powder snow avalanches. At the other end, avalanches can involve much larger snow.
aggregates, which are formed by the consolidation of snow grains into more substantial granules (Bartelt and McArdell, 2009)
- These aggregates are particularly relevant to dense snow avalanches, whether dry or wet. Wet snow granules, for example, are
generally larger and heavier compared to the smaller snow granules found in dry avalanches (Steinkogler et al., 2013)..

In this study, we focus on dense flow avalanches, which are characterized by the movement of snow aggregates made up
of hundreds or even thousands of individual snow granules. These aggregates exhibit different dynamics compared to smaller
particles like individual ice grains and are of particular interest due to their potential for high impact pressures and larger scale
flow behaviour (Sovilla et al., 2018). The observation and study of such dense flow avalanches, which involve a significant

interaction between snow granules, is crucial for understanding avalanche dynamics and improving predictive models.
So far particle tracking in avalanche dynamics has enly-gained little attention, reasons-are-mainty-mainly due to the con-

strained engineering interest from a macroscopic perspective, coupled with limitations in computational power and available
measurement systems (Bartelt et al., 2012). Developments in avalanche modelling, in combination with the availability of
low cost sensors and existing measurement technologies, built the foundation of investigating avalanche mobility and trans-
port phenomena on a particle level. In recent years, radar measurements have become the most commonly used technique to
capture the dynamic evolution of avalanches (Gauer et al., 2007). These measurements provide a comprehensive overview of

avalanches’ temporal and spatial evolution, offering a characterization of the flow regime (Kohler et al., 2018). Another ex-
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perimental technique gaining attention involves in-flow sensors, initially applied in snow chute experiments (Vilajosana et al.,
2011) and more recently explored in full-scale rockfall applications (Caviezel et al., 2019). Adapted for snow avalanches in
recent years (Winkler et al., 2018; Neurauter et al., 2023), these AvaNode measurements produce unprecedented datasets on
avalanche dynamics at a particle level (Neuhauser et al., 2023). Particle measurements are valuable for exploring particle be-
haviour in response to environmental influences and terrain. The true significance of particle measurements emerges when they
are combined with radar measurements. This synergy allows scientists to determine particle location within the avalanche and
their behaviour relative to the avalanche body and in particular the respective flow front.

Tools for the simulation of snow avalanches include a wide range of flow models and numerical implementations (e.g.
Christen et al., 2010b; Sampl and Zwinger, 2004; Zugliani and Rosatti, 2021; Li et al., 2021; Hergarten and Robl, 2015;
Mergili et al., 2017; Rauter et al., 2018; Qesterle et al., 2022). Their tasks range from simulations for regional avalanche
terrain analysis (Toft et al., 2023), to-identity-identification of endangered terrain for hazard zone mapping or protection forest
classification, to detailed simulations used for dimensioning mitigation measures. Depending on the application, each model
has its own advantages and disadvantages. For large scale or large area simulations, conceptual data driven models such as
Flow-Py (D’Amboise et al., 2022) are used, but also process based, physical models are used (Issler et al., 2023; Biihler
et al., 2018). Classically detailed simulations are performed for operational engineering practice with tools such as RAMMS
(Christen et al., 2010b), the former SamosAT (Sampl and Zwinger, 2004) and now AvaFrame (Oesterle et al., 2022); or
research questions are investigated in a scientific setting using OpenFOAM (Rauter et al., 2018) or lately for example the MPM
method (Li et al., 2021). As the model parameters of complex avalanche flow models, such as the friction parameters, cannot
practically be determined directly by laboratory or field experiments, flow model applications rely on parameter suggestions
from guidelines (Gruber and Bartelt, 2007) or parameter optimization through back calculations (Ancey et al., 2003). Within
the variety of applied optimization approaches (Eckert et al., 2007; Gauer et al., 2009; Naaim et al., 2013; Fischer et al., 2015)
the potential of possible combinations of flow models, friction relations and best fit parameter combinations appears endless,

often causing equifinality, which describes the wealth of valid solutions (Canli et al., 2018; Mergili et al., 2018).

Snow granules within avalanches undergo a range of complex processes, including segregation by size and density, mixing,
and secondary flow structures (Edwards et al., 2022) . Additionally, the granules themselves evolve over time through aggregation
and crushing, directly affecting flow dynamics (Marks and Einav, 2015, 2017). These mechanisms play a central role in shapin
avalanche behaviour and internal structure yet are often difficult to observe directly. Understanding these granular interactions
is essential for interpreting particle-level measurements and their implications for avalanche dynamics.

In this context, it is important to acknowledge the fundamental differences between natural snow granules, the synthetic

and the numerical particles used in thickness-integrated models such as AvaFrame::com1DFA.

sensor particles (AvaNodes

The AvaNodes are rigid, cubic objects with fixed size and density that interact with the granular snow medium, potentially.
undergoing effects such as geometrical trapping, density-driven segregation, and complex mixing processes. In contrast, the
numerical particles represent thickness-integrated flow columns and do not capture these micro-scale interactions, with an
artificial numerical size that does not directly relate to a physical scale. Despite these inherent limitations, the implementation
of particle tracking in the simulation allows for a first-order comparison between observed and simulated particle behaviour.




This enables an evaluation of whether such models can reproduce key trends in avalanche dynamics, such as the timing, spatial
evolution, and magnitude of particle velocities, even without explicitly resolving granular physics. Such comparisons are an

95 important first step toward enhancing model realism and integrating in-flow sensor data into model validation frameworks.
Following this introduction, Section 2 summarizes the key objectives of this work. Section 3 provides a detailed description
of the avalanche event, the radar and AvaNode measurements, and the simulation setup, including the implementation of
particle tracking functionalities within the AvaFrame::com DFA module. The results are presented in Section 4 and subsequently

discussed in Section 5, followed by conclusions and an outlook in Section 6.
100 i : i

105 This study aims to evaluate and improve the capability of a thickness-integrated flow model to reproduce observed avalanche
dynamics by making use of a unique dataset combining radar-based front tracking and in-flow measurements from three
synthetic sensor nodes (AvaNodes). A central challenge in this context lies in the conceptual difference between measured and
simulated particles: while the measured AvaNodes are designed to mimic snow granules moving three-dimensionally with the
avalanche flow, the numerical particles in the simulation represent columns with thickness-integrated properties constrained

110 to two-dimensional

thiekness-integrated-motion along the digital elevation model.
The first key objective of this work is the development of a general framework for testing and calibrating thickness-integrated
flow_models, demonstrated here using an extended Voellmy law including cohesive effects, based on high-resolution field
115 data, The second objective is the implementation of particle tracking functionalities within the open-source simulation module

AvaFrame::com1DFA

120 trajectories and velocities.
Together, these developments allow for a comprehensive investigation of the spatio-temporal evelution-of the-avalanchefront

acino—the-anestion—oe ha th necc—intesrated-comIPEA-A ’Q

to-reproduce-the-measured-evolution of the avalanche front and velocities-ef-measurementparticles—

particle
125 velocities. In addition, they enable an analysis of how initial and boundary conditions, such as initial-pesition-and-underlying
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Table 1. Summary of the measurement on 2022-02-22 (220222) for the three AvaNodes C07, C09 and C10 with their respective density
p. The first block lists trajectory properties (three dimensional trajectory lengths Asg,. and altitude difference AZ), the second block
summarizes a first dynamic view on the experiments with maximum velocity vmqz and flow duration A¢. A consistent colouring for each
AvaNode is used for all visualisations in the following figures and given in the table row colour.

date Ava  colour p ASgy, AZ  Vpee At
Node [kg/ m?] [m] [m] [m/s] [s]

220222 | CO7  green 688 2979 1739 13.6 34.6
220222 | CO09 red 415 382.1 2225 163 37.1
220222 | C10  violet 415 352.8 2094 17.1 369

folowsin-See—-5—with-afinal concluston-and-outlookin-See—6-the starting location or underlying topography, affect resultin

uantities like maximum velocity and runout distance. Ultimately, this work contributes to a more detailed understanding of

how thickness-integrated models can be aligned with real avalanche behaviour through targeted calibration and validation
efforts.

3 Methods for particle and front tracking and simulations
3.1 Avalanche experiment: AvaNode and radar measurements

The data sets used in this article eriginates-originate from an avalanche experiment (number #20220025) that was performed
on the 22-22 of February 2022, at the test site Nordkette, Seilbahnrinne, in AustriatNeshauser-et-al;2023). The avalanche was
released within-during avalanche control work after a new snow precipitation event of around 40 cm new snow at Seegrube.
Some parts of the avalanche reached the catching dam at 1800 ma-s-}—as] resulting in a maximum altitude difference AZ of
400 m and a projected travel length As,,, of 690 m along the main flow direction. More details to this avalanche event is found

in Neuhauser et al. (2023).

The used particle measurement devices are AvaNodes Generation II, with enabled Doppler velocity tracking (Neuhauser
et al., 2023). The AvaNodes are equipped with a glebalnavigationsatettite-system-Global Navigation Satellite System (GNSS)
that collects positions and velocities with-at 10 Hz on three axisaxes. In this experiment three AvaNodes, namely C10 s-and
C09 with a density of 415kgm~2 and AvaNode C07 with a higher density of 688 kgm ™2 recorded data. Fhe-While snow

articles in avalanches tend to have densities between 100 and 400 ke/m?3 during the movement and 250 to 400 ke/m? in the

deposition (Dent et al., 1998), it was the goal to achieve similar densities for the AvaNodes. The AvaNodes are cube-like

bodies with an outer length of 16 cm, which is comparable to the typical size of snow granules found in the deposition
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Figure 1. Test site Nordkette and experimental data: In the left panel trajectories or GNSS positions of the experiment 220222 are displayed.
The dot size of 5 m corresponds to the accuracy stated by the manufacturer. The hatched area represents the release Area. In the right panel
the trajectory length s.,. and the temporal velocity evolution of the AvaNodes are shown. ¢,,;, indicates the starting of the movement and
refers to t = 0.

zone (Bartelt and McArdell, 2009). The inclusion of a higher-density node (688 ke/m?) was intended to introduce variation

facilitating the investigation of potential differences in the behaviour of varying densities during flow.

With the gained experience and further advancements in using these sensors in avalanche experiments, it is now possible to

roduce a wider range of densities and likely reduce the minimum density of the AvaNodes. The recorded positions have a hori-

zontal position accuracy of 657=2-50,, , = 2.5 m and the recorded velocities have an accuracy of -7="06:050, 4 = 0.05 ms—-
m/s on every axis (u-blox, 2022). Fab:Table 1 gives an overview of the collected particle datasets, starting with three-dimensional
travel length Asg,., altitude difference between release and deposition AZ, maximum velocity .4, and duration of overall
movement with At along each particle trajectory. Due to challenging weather conditions the recovery of the AvaNodes took

place some days after the experiment, and therefore no information about the burial depths could be observed.
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Figure 2. Radar measurement and particles distribution in release area. Left: The range-time radar analysis captured on 22nd February 2022
depicts the motion of the avalanche and pinpoints the AvaNode positions in relation to the avalanche front. The black line defines the tracked
front, while the coloured lines trace the trajectories of the AvaNodes. Right: Spatial distribution of the AvaNodes in the release area, also
highlighting the slope inclination.

The—frequeney—Additional measurements have been performed with a modulated continuous wave (FMCW) radar, the
mGEODAR (Kohler et al., 2020)has-a-spatial-, to gain an overview on the flow evolution. The radar system was positioned

at Seegrube at 1900 m asl, approximately 700 m away from the release area of the Seilbahnrinne, providing a clear line of

sight to the main avalanche path. In the lower part of the track, at a distance of 200 m, the radar view becomes obstructed

and the full run-out is not captured. The radar operates with a range resolution of 0.375m per range-gate-and-a-temporat
resotution-bin at a sampling frequency of 50 Hz-tnFig:2-the-, enabling the precise tracking of the avalanche front over time.
The radar data are typically displayed in range-time diagrams, or so-called moving target indication (MTI) plotfrom-the radar
measurementis-combined-with-the-, that highlight moving parts (red) and suppressing the static background (yellow) (Fig. 2).
The range corresponds to the line-of-sight distance between the radar position and the avalanche track, and the slope of features
can be directly attributed to an approach velocity as indicated by the velocity legend in the top right corner. Based on prior
evaluations, the expected positional uncertainty of the radar-tracked avalanche front is estimated to be approximately £1-2m,
which corresponds to around five radar range bins. This provides reliable observations for tracking the avalanche front??
evolution, especially in the middle section of the path where radar line of sight aligns well with the flow direction.

While the radar offers high temporal and spatial resolution of the avalanche evolution and in particular the avalanche
front, the AvaNodes provide complementary data on particle-level dynamics, particularly in the tail of the avalanche. The
combination of both systems allows to bring the particle measurements in the perspective of the full avalanche and offers a
more comprehensive view of avalanche dynamics. Figure 2 combines the radar measurement with the AvaNode GNSS posi-
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tions that are transformed into the radar coordinate system and synchronized to the time of release. The radar measurement

unfortunately deesn’tdoes not include the whole run out in the lower part of the test site-, because the avalanche track continues

to the side of the radar position and causes the flow to exit the radar?? field of view. This geometric short coming of the radar

measurements causes a false impression of deceleration below 250 m in the radar data, but in reality the flow continues until
1800 m asl, thus below the radar location.

Analysis of the radar measurement yields the approach velocity with a maximum value of 26 sms—m/s in the center part
of the avalanche path, where radar line of sight and main flow direction are closely aligned. It also shows the relation of the
avalanche front to the AvaNodes;-AvaNode positions, that are travelling in the middle part of the avalanche approximately 80 m
to 100 m behind the front until 15's, and afterwards separating further te-towards the tail. Additional information on the exact
radar location and the evaluation of radar er-and AvaNode data is provided in (Neuhauseret-al5-2023)Neuhauser et al. (2023).

3.2 Avalanche simulations: AvaFrame::com1DFA

AvaFrame is an open-source framework that alongside well-established computational modules, provides various tools for
geo data handling, testing, analysis and comparison as well as the possibility to directly add new functionalities. The particle
simulations are performed with AvaFrame’s computational module com1DFA version 1.7! for dense flow avalanches (Oesterle
et al., 2022). AvaFrame::com1DFA is based on a thickness-integrated flow model, solved by a numerical particle grid method
(Tonnel et al., 2023). For this study, particle tracking functionalities are added to AvaFrame::com1DFA, allowing us to track
the numerical particles that start within a predefined radius of a given coordinate point, for example around the initial positions
of the AvaNodes. One important aspect for avalanche simulations is the chosen friction relation. For the current study we

use an adapted friction relation (Fi 5 Fischer, 2013) referenced as a Voellmy minimum shear stress model

including a classical Coulomb, Voellmy-like turbulent drag (Voellmy, 1955) and a shear stress limit, termed minimum shear

stress term-similarly-(Sampl and Zwinger, 2004) which similar to the effect of snow cohesion (Ligneau et al., 2022), refereneced
as-Voelmy minimum-shear stress-model-which needs to be exceeded to initiate movement.

7®) =75+ 0® tan(s) + %po T (1)

where p = tan(d) refers to the Coulomb friction coefficient, £ is the turbulent-friction coefficient and 7 represents a
minimum-shear-stress-shear stress minimum which induces a flow thickness threshold for the initiation of movement. The
term with £ in Eq. 1 increases the friction with increasing velocity and constrains the maximum velocity. The superscript (b)
means basal and refers to the shear stress at the bottom surface for 7(*) and normal stress at the bottom for o(®). To test if
we can identify suitable parameter sets within a plausible parameter space, that allow us to reproduce the measurements, we

perform simulations varying z between 0.1 and 0.8, with step size 0.1, & between 1000 and 10000 m/s?, with step size 1000,

Thttps://doi.org/10.5281/zenodo. 10033196
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and 7y between 0 and 150 Pa, with step size 25. Equidistant sampling covers the investigated parameter space and yields 1050

resulting parameter sets.

As this study represents the first iteration, the parameter ranges were deliberately chosen to be as broad as possible to capture
the full spectrum of potential outcomes (Fischer et al., 2015). In a subsequent iteration, narrower parameter ranges could be

employed to focus on the most relevant regions identified in this initial exploration.
The delineation of the release area is based on the local assessment and performed considering slope angle (between 30 and

60 degrees), terrain curvature and the fracture length of 100-120 m derived from radar measurements (compare Fig.2). The

corresponding release thickness is estimated with-70 cm, taking into account local storm board observations in-addition—to-te

wind-transportinto-therelease-areaand weather station data sets.

3.3 Spatial and temporal reference systems

It is necessary to choose a common and appropriate coordinate system when comparing measurements with simulations.
Distances derived from radar data are always measured in line of sight towards the radar and therefore one dimensional.
For radar measurements it therefore makes sense to keep the comparison in one dimensional space (Fischer et al., 2014).
We follow the approach of Rauter and Kohler (2019), by optimizing the front position between simulation and radar data
in the one dimensional radar coordinates. However, AvaFrame::com1DFA calculations are based on the thickness-integrated
thickness-integrated governing equations, delivering surface parallel velocities. Particle measurements collect datasets in three
dimensional space. Regarding particle simulations and AvaNode measurements it makes sense to keep the overall information
about the particle velocity and spatial evolution in three dimensional space. This retains all available information by not
transforming it into a one- or two-dimensional coordinate system.

To achieve time synchronization between the measurement and the simulation, a global synchronization time step, tpomp, 1S
used. This time step refers to the release time of the avalanche, defined as 07:52:23 [UTC]. With this interpretation, ¢y from
the simulation corresponds to ¢y, in the datasets from AvaNode and radar.

It is important to point out that AvaNode C07 has a higher density as the two other AvaNodes (C09 & C10) and in particular
compared to the expected snow granule density. The radar measurement lasts for 25 seconds, after which there is no available
information regarding the avalanche front position. This absence of data is attributed to the avalanche front being obscured by
an avalanche deflecting dam, causing it to exit the radar’s field of view. Consequently, the front comparison is restricted to this
specific time frame. The AvaNode measurements on-the-otherside-have a duration of roughly 35-40 seconds (compare Table 1)

before the movement stops.
3.4 Particle and front tracking

Particle tracking is performed with the GNSS modules in the AvaNodes, resulting in positions with 10 Hz temporal resolution
and o, j, = 2.5 m horizontal position accuracy. The initial position of the AvaNode in the release area and o, 3, is used to deter-
mine which particles are tracked in the simulation. Each particle in the simulation has its own ID, which is saved throughout

the entire simulation. By-ereating-a-A circle with a radius of 2.5m around the AvaNode’s starting position and-identifying
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defines the simulated particle ID’s within-itfor comparison with the measured particle trajectories. We effectively track around
15 to 20 particles within this radius in the simulation, saving values such as position and velocity at each time step for each
particle along its trajectory.

When comparing data from the in-flow sensors (AvaNodes) to the numerical particles of the AvaFrame::com1DFA simula-
tions, there are several theoretical differences between the two that hinder a direct comparison and have to be discussed. The
AvaNode sensors that flow with the avalanche can be redistributed within the avalanche due to complex flow patterns or due
to effects caused, for example, by differences in the density or size of the snow granules. In AvaFrame::comI1DFA, numerical
particles refer to columns of incompressible snow mass that are forced to travel along the predefined surface. These numerical
particles have thickness-integrated properties, such as flow velocity for example and represent the thickness-averaged flow
of the avalanche. By comparing the velocity evolution of measurement particles and tracked particles in the simulation, we
analyze the thickness-integrated flow model’s capability and limitations of replicating the measured particles’ behavior.

In order to quantitatively evaluate and compare the simulations to the measured avalanche front (see Fig. 2) we employ a
similar tracking method for the simulated avalanche front. Assuming the avalanche moves continuously downhill we track the
front by determining the particle with the lowest altitude z value for each time step. In the case of the avalanche front, the
tracked particle ID can vary as-throughout the simulation, as different particles can have the lowest z value at the respective
time step.

To ensure that there are enough particles to track at the starting locations of the Avanodes, a dense particle distribution in
the release area is needed. The initialization method for the particles in AvaFrame::com1DFA was set to mass per particle
through number of particles per kernel radius (MPPKR) and the number per particles in kernel radius (nPPK) was set to 50.
The-defaultsetting resultsin-While the default setting would yield 458 particles, the adjusted setup used-in this study ferresult
in a more densely distributed particle setup resuttsin-of 2559 particles. Additional information on the simulation setup, the nec-
essary input data (DEM and release) and the corresponding parameter setting (configuration files for the AvaFrame::com1DFA
simulation) can be found in the supplementary material.

GNSS measurements have an output frequency of 10 Hz, while the simulations on the other hand allow the user to export

the particle information for a predefined time step. For this analysis, considering computational cost and the effective size of

the resulting data set, we compare measurement and simulations on a temporal resolution of 1 Hz.
3.5 Particle velocity and front position error

For avalanche simulation optimization the runout or deposition area is mostly used to determine the best-fit model parameters
(Sampl and Zwinger, 2004; Christen et al., 2010a; Biihler et al., 2011). These areas rely more on observations made after the
event, making them easier to obtain and more numerous compared to inflow measurements taken during an avalanche experi-
ment. Contrarily, our emphasis here is on employing a dynamic evaluation method. This involves comparing range-time data for
the avalanche front position and velocity-time data along the individual particle trajectories. When comparing information re-
garding the avalanche front position, like its spatial and temporal evolution, the chosen coordinate system is the line of sight to-
wards the radar (Rauter and Kohler, 2019). The AvaNodes record position and velocity in a three-dimensional-world-coordinate

10
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Figure 3. Temporal evolution of the velocity along each axis and the corresponding magnitude for the best-fit simulation fitting AvaNode
C10 measurements. All simulated particles are visualized in grey, the tracked particles from the simulation are shown as dashed lines and the

solid lines represent the measurements.

three-dimensional World

Coordinate System, where the axes are defined as follows: x points East, oints North, and z points vertically upward. All
further analyses, including the comparison between measurements and simulations, are consistently performed in this World
Coordinate System. Deviations are first computed separately along each axis in three dimensions (as defined in Eq.2), and are

then combined into a single magnitude (Eg-as defined in Eq.3).
When comparing the trajectories one has to keep in mind the obvious differences, with measured velocities representing

free flowing particles in an avalanche, while simulated particle velocities in the AvaFrame::com1DFA module of AvaFrame

are thickness averaged properties along the predefined mountain topography.
There are several possibilities to compare the velocities of simulation and measurement. Here we apply a method, evaluating

three dimensional velocities to ensure that the trajectories of the tracked particles are similar. Therefore we calculate the root

11
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mean square error (RMSE) between measurement and simulation, for the tracked particle velocity evolution €,,, on the z( Fast)

axis:

1 - meas sim) 2
€va = gZ(“m -y’ @
=0

where v™ represents the velocity of the AvaNode particle measurement and v*™ the velocity of the tracked simulation
particle assigned to the respective AvaNode for each time step ¢ in the total number of measurement time steps n. Analogously
to Eq. 42, values for the particle velocity errors €, , and €, . are calculated for the y (north) and z (vertical upwards) axis
respectively.

Furthermore the velocity error in all three dimensions, x,y and z can then be summarized in a general or tracked particle

velocity error magnitude €,,, with:

€y = ,/e%’ere%’erGaZ 3)

For further analysis the magnitude of the velocity error €, is used.

When taking a closer look at the measurement datasets in Fig.3 one can see that there is a slight time delay between the z
component and the z and y component. While there is an earlier onset of recorded velocities along = and y axes, velocities
also decrease to zero earlier along these coordinate axes when compared to the z axis. As known from Neuhauser et al. (2023)
the velocity measurements have included Kalman-filters;; regarding Fig, 3 it looks like the Kalman-filter is strongest on the z
value of the GNSS velocity measurement.

Through particle tracking in the simulations and linking them towards the initial position of the AvaNode, both particles;
simulated and measured ene;-particles have the same or at least similar underlying topographic features along their trajectories
within the release area.

For the spatial deviation between experimental and computational results of the front tracking we introduce the position

RMSE of the tracked front evolution €,:

1 — .
&=y o o (e —dim)?, )

=0

where d™* represents the front distance to radar in the measurement, and d*™ the corresponding distance of the simulated

particle with the smallest radar range for each time step ¢ in the total number of measurement time steps n.

12
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Figure 4. Velocity error magnitude ¢, for AvaNode C10 averaged over the 16 corresponding -tracked simulation particles, ranging from 2
to 14 ms~? in the parameter space around the best-fit parameters.

4 Evaluating measurements and simulation results

The parameter variation from Section 3.2 results in 1050 avalanche simulations. The number of tracked numerical particles
that are initially within the radius of the horizontal positional accuracy of the AvaNodes C07, C09 and C10 are 18,19 and 16

respectively.
4.1 Tracked particle velocities

For each simulation, the velocity errors €, 4, €, and €, . are calculated between the measured particle and the tracked simu-
lated ones, and they are then combined to estimate the velocity error magnitude €, (Eq 3). This results in multiple ¢, values for
every tracked particle. For further analysis and model interpretation, we used the mean value of ¢, for all tracked particles i
from one simulation, assigned-to-the-that are assigned to their respective AvaNodes. In Fig. 4 the variation of €, for AvaNode
C10 is displayed, ranging between 1.7 and 14.3 ms~!, with one parameter always held constant at the best-fit simulation pa-

rameter set. Interestingly one can identify the equifinality with a narrow band of parameter combinations that provide solutions
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Figure 5. Front position error €, ranging from 4 to 213 m in the investigated parameter space around the best-fit parameter set.

with similar velocity error magnitude for all single parameters, almost covering the entire parameter space. The parameter
set with the lowest mean ¢, value for AvaNode C10 is p = 0.55, £ = 5000ms~2, and 79 = 75Pa, with €, = 1.74m/s. This
parameter set is henceforth referenced as the best-fit for AvaNode C10. The parameter set with the lowest mean ¢, value for
AvaNode C09 is = 0.5, £ = 3000ms 2, and 7y = 75Pa, with €, = 1.77m/s and for AvaNode C0O7 p = 0.5, £ = 3000ms ™2,
and 79 = 150Pa, with ¢, = 1.64m/s.

4.2 Tracked front positions

Fig. 5 is similar to Fig.4, but shows the variation of the front position error €, (Eq 4), again with one parameter held constant on
the best-fit simulation parameter set. The position error values reach from ¢, = 4.34m for the best-fit to €, = 213.4m for the
worst-fit simulation. The best-fit parameter for the front is p = 0.4, ¢ = 5000ms~2 and 75 = 125 Pa, resulting in a minimum
position error RMSE value of €, = 4.34m. Technically this is the best-fit, but considering RMSE values lower then €, < 20m,
Fig. 5 indicates a band with possible parameters (light yellow) causing equifinality.

The left panel of Fig. 6 shows the spatial evolution of the avalanche front distance towards the radar derived from the radar

measurements (black solid), extracted from the best-fit front simulation (black dashed) and from the best-fit AvaNode C10
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Figure 6. The left panel shows the avalanche front positions in relation to the radar, with the corresponding colour from the position RMSE

calculation. The black solid line indicates the radar measurement, the black dashed line the best-fit front simulation and the dashed-dotted
lme the best-fit simulation for AvaNode C10. The right panel shows the altitude difference AZ versus the maximum velocity v,,q. of the
avalanche front. The x marks the radar measurement, the circle the best-fit front simulation and the triangle the maximum-veloeity vmaz—and

altitude-difference-As-ofthe-best-fit simulation for C10. The coloured points belong to simulations with an €, < 63.57 m.

simulation (black dash-dotted). The extracted fronts from all simulations are coloured with the corresponding ¢, value. Since
the avalanche exits the radar’s field of view after 25 seconds, only this time period is used for the RMSE analysis, nevertheless

this is the most dynamic part in the avalanche track including the acceleration state in the steepest part along on the avalanche

track. The best-fit simulation for AvaNode C10 has a deviation of ¢, = 63.57 m, and the corresponding simulated front is
slower which yields an offset of 100 m at 25 s compared to the measured front.

We also analysed the total altitude difference versus the maximum velocity for all simulations s-eoloured-with-the-with a
better fit than the deviation of C10, €. g, ¢, < 63.57 m. All these simulations are coloured with their corresponding ¢, value and
shown in the right panel of Fig 6. The x-black cross marks the radar measurement, the grey circle indicates the best-fit front
simulation and the black triangle the best-fit simulation for AvaNode C10. The dashed line indicates the maximum velocity an

avalanche can obtain according to its altitude difference, following the suggestion of McClung and Schaerer (2006) and Gauer

(2014). The relation of maximum velocity and altitude differents-difference originates from observations of many avalanches,
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however, our simulations show a different behaviour, potentially indicating the influence of the local topography. The vertical
grey dashed-dotted line represents-the-upper-anddower-at AZ = 400 m indicates the catching dam in the avalanche track —Fer

S ' as ~in_the dam with varying maximal velocities. However, the best-fit
simulations for the front and for the AvaNode C10, do not reach the dam. Interestingly, these best-fit simulations and the
radar measurement are 20 — 30 % slower than the maximal achievable velocities (grey dashed line), indicating that the relation
v =0.61/gAZ is a conservative approximation for an upper velocity limit.

4.3 Comparison of particle and front tracking

The analysis of the best-fit parameters shows rather similar results for the three tracked particles and larger differences when
compared to the best-fit front parameters. In order to analyze these differences we focus on one of the particle simulations
(AvaNode C10) and compare the simulations results to the best-fit front simulation.

Fig. 7 shows the temporal evolution of particle velocity (upper panels) and trajectory length (lower panels) for the best-fit
simulations fitting the particle measurement data of AvaNode C10 (left) and the recorded radar front (right). All particles of
the simulation are visualized in grey as the envelope of mininum and maximum values for all particles at each time step.
The tracked particles from the simulation are shown as dashed lines and the solid lines represent the measurements of the
AvaNodes. The direct comparison of the two best fit simulations shows that the best-fit front optimization generally yields
larger velocities. Although the total duration of the flow is similar in both cases (compare measurement results in Table 1 and
Fig. 1), higher velocities and correspondingly longer travel length beyond 600 m appear in the best-fit front simulation.

Fig. 8 shows the Range-Time diagram of the best-fit particle (left) and front (right) tracking simulation parameters. This
visualization is-simitar-to-can be seen as a synthetic radar plot where the simulations are evaluated in the radar line-of-sight
coordinates and is thus similar to the MTI plot in Fig. 2;--but-, It is particularly useful because it includes front position and
velocity data at the same time, for simulation and measurement. The coloured area represents the maximum velocity of all
particles at a given radar distance and time step. The black stars indicate the radar measurements of the front positions in
time and the coloured solid lines represent the AvaNode measurements. One has to be aware that the slope of the particle
trajectories corresponds to approach velocities in the radar coordinate system, which slightly differ compared to the surface
parallel velocities of the simulations and the measurement velocities of the AvaNodes—, in this case between 5-10 %.

The comparison of the two best fit simulations highlights the differences in velocities which also explain the rather large
range of the front position error towards the end of the avalanche movement. Similarly to the corresponding measurement
(Fig. 2) one can see that the AvaNodes tend to be transported in the main body and towards the tail of the avalanche.

Table 2 summarizes the parameter sets and resulting velocity and position errors for the best-fit simulations, matching
the corresponding measurement data. Frontal position and mean particle velocity error (¢,,¢,) are highlighted for each best-fit

simulation. The magnitude of the errors reflects the similarity of the best-fit simulations, particularly comparing the the different
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Figure 7. Shown are the temporal evolution of the measurement and simulation particle velocities (upper panel) and trajectory length (lower
panel). Two best-fit simulations are presented: Best-fit simulation for particle velocities of AvaNode C10 with €, = 1.74 m/s (left) and the
best-fit for the radar front (right, €, = 4.34m). All particles are visualized in grey, the tracked particles from the simulation are shown as

dashed and the solid lines represent the measurements.

Table 2. Summary of the best-fit parameters for front and AvaNodes, with the corresponding RMSE values. The minimum RMSE value
resulting for the corresponding measurement and simulation is highlighted in boldface.

I & o Fronte, C07¢, C09¢, ClOg¢,
] [ms?] [Pa] [m] ms™'] [ms™'] [ms!]
Front | 0.4 5000 125 4.34 4.47 3.56 3.24
C07 0.5 3000 150 81.6 1.64 3.16 2.73
C09 0.5 3000 75 50.37 2.9 1.77 1.82
C10 | 0.55 5000 75 63.57 2.82 1.80 1.74

AvaNode measurements. The front optimization leads to a slightly different parameter result, along with lower position errors

375 and slightly larger velocity error magnitudes. However it is important to note that both, the front position and particle velocity
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Figure 8. Range-time diagram of the best-fit C10 (left) and front (right) simulations, showing the temporal evolution of the maximum
flow velocities with distance to the radar. The black stars show the measured the avalanche front, the coloured lines show the AvaNode
measurements. The corresponding simulation animation in three dimensional terrain can be found in the supplementary material.

error still remains in a medium range (50 m< ¢, <82 m, 3.24 ms~! < ep < 4.47 ms~!) for their non best-fit simulations. This
indicates that suitable solutions are identified, albeit with reduced accuracy. In Fig. 4, 5 and 6 one can identify the corresponding
equifinality bands of parameter sets that lead to low RMSE values. The area for low RMSE solutions is wider for the particle
fit in Fig.5 than for the front fit in Fig.4. This indicated that there are more parameter sets with low RMSE values when
particle velocities are optimized, compared to when front positions are optimized. With the presented method one can now use
those bands and search for overlapping areas between best-fit particle and front simulations, with low RMSE values for both
simulations. There are many ways of combining these two parameter ranges.

Table 3 summarizes selected simulation results corresponding to Figs. 7 and 8. The respective measurement data is high-
lighted in Fig. 1 and summarized in Table 1.

Comparing computational and experimental data allows us to deduce the accuracy of the best fit simulations. The resulting
differences between maximum particle velocities between measurements (Tab. 1) and simulations (Tab. 3) range between
1.0m/s and 1.3 m/s, which is less than 10 % of the maximum velocity values. Additionally it is possible to evaluate the travel
lengths (AS,y.) or related altitude differences (AZ) along their individual trajectories, with the simulated resulting travel
lengths deviating between 6 m and 18 m from the measurements (< 5% of the maximum travel length) and a similar range for
the respective altitude differences. Another quantity to assess the accuracy of the simulations is the maximum of the avalanche

front velocity, which is obviously closely related to the alignment of the front positions (compare Fig.6). For the best-fit front
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Table 3. Summary of simulation results of the best fit simulations for the front and each AvaNode with the corresponding values highlighted
in boldface. Listed are the maximum front velocities v fron+ and frontal altitude difference AZ) (Fig.8) as well as maximum velocity Umaz,
travel length 5., and altitude difference AZ (Fig.7) averaged for the corresponding tracked simulation particles and each AvaNode.

Front CO07 tracked C09 tracked C10 tracked

U front AZ Umaz gwyz E Umaz g:J(:;L/z ﬁ Umaz gryz E

[ms~'] [m] | [ms™'] [m] [m] | [ms™'] [m] [m] | [ms'] [m] [m]
Front 27.5 333.0 23.8 471.0 276.0 22.1 415.3 245.5 22.2 414.0 246.4
Cco7 18.8 229.8 14.9 304.7 184.4 12.9 247.9 151.1 12.9 245.6 151.2
Cc09 19.9 285.4 18.4 429.2 254.1 17.3 389.2 231.6 17.5 386.7 231.7
C10 20.9 282.3 17.7 418.7 248.4 16.4 369.8 220.6 16.6 370.8 222.7

simulation (or lowest front position error ¢€,) we obtain a maximum front velocity of 27.5m/s compared to 26 m/s for the
corresponding measurement, which is the same level of accuracy that we observe for the particle velocities. Comparing the
range of result values between the different best-fit simulations it can be seen that parameter sets optimized for other result

variables merely provide a slightly lower accuracy for the result variable under consideration.

5 Discussion
5.1 Measurement data and simulation results

‘We were able to show that the position RMSE for the avalanche front ¢, and the velocity RMSE for particles ¢, provide valuable
information about how accurately the simulations can reproduce the measured dynamic behaviour of an avalanche particle or
the front. As seen in Table 2 the minimum values for the velocity error magnitude €, are below 10% of the maximum velocity
detected in those avalanches, which indicates a strong relation between the simulated and measured particles. The advantage of
calculating ¢, in three dimensions before combining them is that one could apply weighting factors depending on the accuracy
on the different axes. Since it is known and also visible in Figure 3 that the z component in GNSS measurements is the
most inaccurate one, this could be weighted less than the horizontal velocity components. Ht-is-alse—elear-thatitispossible

considered-and-the-aceeptable-errors for certain-result-quantitiesInterestingly, the optimization results revealed that different
observational datasets, such as the AvaNode velocities and radar front positions, lead to distinct yet relatively narrow bands
of well-performing parameter combinations. As an outlook, a promising strategy would be to combine these complementary.
observational constraints in a weighted manner, depending on the specific modelling objective. Such a targeted combination
could enable the identification of parameter sets that simultaneously provide good agreement with both particle and front

observations, thereby improving the robustness and general applicability of simulation results.
Fig. 6 shows the best-fit simulation for the avalanche front compared to all simulations coloured in the corresponding RMSE

value. In the left panel one can see the evolution of the avalanche front and how well the model can reproduce it, while the
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best-fit simulation for C10 has a €, value of 63.57 m we reach ¢, = 4.34m for the best-fit simulation front. The right panel
shows the overall altitude difference of the front compared to the maximum velocity in this simulation. As one can see the
measurement of the front indicates a longer run-out length, leading to deposition in the dam, while the simulation stops earlier,
although the maximum velocity of the best-fit simulation is higher. With the front best-fit we ensure that the avalanche front is
reproduced accurately in the first 25 seconds, not covering the avalanche run-out towards the deposition zone at the upper dam.

Fig. 7 shows the two best-fit simulations, based on the comparsion to the AvaNode and radar front, with the tracked particles
compared to the measured ones. The left panel shows the best-fit C10 simulation, indicating that the tracked simulation particles
reproduce the behaviour of the measured AvaNode C10 with highest accuracy (maximum velocity of 16.6 m/s for the simulated
vs. 17.1 m/s for the measured particle, see Tables 1 and 3). It is important to note that the best-fit particle simulations are
generally accompanied with lower velocities than the best-fit front ones, which is also reflected in the resulting shorter travel
length along the particle trajectories and resulting runout.

Fig. 8 illustrates the evolution of the two best-fit simulations in a Range-Time diagram. In the left panel, the movement of the
AvaNodes is reproduced quite accurately, although the simulated and measured fronts show differing evolutions, as previously
observed (Fig.6). On the right panel the front evolution achieves a very high accuracy with a front position RSME value of
€p = 4.34 m (compare Table 2);but-thestmulation-particlestend-to-stop-earlier-than-the AvalNodes—.

By considering avalanche motion on a particle level, the presented method provides a deeper understanding of how a chosen
friction model performs within the considered plausible parameter space and results in a parameter set that can reproduce the
measurements with the highest accuracy.

Avalanches can exhibit a multitude of flow regimes which either vary from top to bottom along the track or from front
to tail (Kohler et al., 2018) yielding a potential temporal dependency of the related friction coefficients (Buser and Bartelt,
2009). For the observed avalanche and corresponding particle movement we assume the cold flow regime to be most relevant
and only small parts that are slightly fluidized when reaching the maximum runout. Air intake at the flow front may cause the
avalanche body to develop a fluidized layer on top of a dense-flow layer (Issler and Gauer, 2008) and therefore also explain that
small parts of the avalanche traveled further than the main body. Such processes alter the volumetric mixture of snow grains
with interstitial air compared to the tail of the avalanche where one expects a rather dense granular flow (Bartelt et al., 2012).
Even when the analysed medium sized avalanche did not convert towards a fully developed powder snow avalanche with an
intermittent flow regime (Sovilla et al., 2018), there are different frictional relations for the flow of the front compared to the

avalanche front, based

tail. Our optimizations for the avalanche front, based

on radar data, and for the tail, based on AvaNode particle data, reveal that the particle and front behaviour ef-the-avalanche;
meastired-by-the-two-different systems-eannotbe-fulty-cannot be simultaneously reproduced by the undertying-flow-model-and

fitting-parameters-same set of flow model parameters and friction relations. This suggests that different flow regimes dominate
different parts of the avalanche: the front is governed by more inertial, dynamic processes, while the tail transitions into a
slower, more friction-dominated regime. This observation is consistent with the concept of frictional hysteresis and phase
transitions in density, as previously reported in large-scale avalanche measurements, such as those by Sovilla et al. at Vall+®e
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Figure 9. This figure illustrates the maximum particle velocity projected to the initial simulation particle position in the release area. The
left part represents the best-fit C10 simulation and the right part the best-fit front simulation. The black circles mark the starting points of the
AvaNodes, colour-coded based on their corresponding maximum velocity.

de la Sionne. Our results highlight that even in smaller avalanches, these complex dynamics are present, emphasizing the
need for models that can account for spatially and temporally varying flow behaviours. To further support this finding, we
provide a supplementary video that visualizes both best-fit simulations?6one optimized for the front eompared-to-the-tattand
one for the tail?Goffering an intuitive overview of the differences in particle dynamics and flow structure across the avalanche
(Neuhauser et al., 2024).

5.2 Initial and boundary conditions

The influence of boundary conditions, such as release thickness, release area or topography on simulation results is well known,
considering the main avalanche features (Biihler et al., 2011; Biihler et al., 2018). In this paper with particular focus on particle
tracking we investigate the interplay between topography and initial position within the release area —for isolated particles.
To do so the com1DFA module of AvaFrame has been extended with the presented particle tracking. The implementation of
these functionalities allows us to e.g. project simulation results along the particle trajectories or forwards and backwards in
time. With this one can display and analyze-analyse how flow quantities, such as maximum velocity or travel length, develop
along potential particle trajectories. In the future, the methodology could allow predictions where and how something will be
transported if the starting point is known. As a first application we use this methodology to test whether the interaction of local

topography and initial position in the release area determines the resulting maximum velocities. It is important to note that
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observational data remains sparse and that it is not possible to investigate the relative influence of the different effects, such as

comparing the role of initial position of an AvaNode to its density.
Fig. 9 shows the reprojection of the maximum velocity along the particle trajectories back into the release area to the respec-

tive initial particle positions for the two best-fit (C10 and front) simulations. Additionally the initial position of the Avanode
sensors and their corresponding measured maximum velocities (see Table 1) are shown. When comparing the simulated to the
measured velocities we observe that the C10 best fit velocities are generally lower than the ones for the best-fit front. This is in
line with the previously discussed results. Furthermore the agreement of simulated and measured maximum velocity for C10
and the surrounding simulation particles (with 0.5 m/s difference for the best-fit) highlights the functionality of the particle
tracking based optimization. Besides these expected results it is interesting to investigate the similarities between the two best
fit simulations. It appears that the determining factor for maximum velocity within the simulations is the relative initial position
in the main flow direction within the release area. Particles that travel at the front of the avalanche achieve higher maximum
velocities than the ones that follow towards the tail of the avalanche, which may appear counterintuitive considering simple
energy conservation based block model approaches (Korner, 1980), where particles starting at higher altitudes should lead to
larger maximum velocities and corresponding runouts. Compared to the relative initial position, the inclination at this position
plays a subordinate role, although steeper parts of the release range lead to a higher initial acceleration, which, however, does
not lead to the maximum velocities (see slope map in Fig 2 and velocity evolution in Fig. 7 and 8 or the simulation animation
in the supplementary material). This is related to the fact that neither particle overtaking nor resorting effects are observed in
the simulation data. At this point, it is important to be aware of the fundamental differences between simulations and measure-
ments. As the simulations are performed using a thickness-integrated model, numerical particles represent two-dimensional
columns moving in two dimensional space along the predefined digital elevation model. This involves the effects of pressure
gradients in the flow and inhibits overtaking of material at different vertical positions. Due to the thickness-integration and
shallow flow assumption, processes like segregation or overtaking of particles in the vertical dimension cannot be represented
in the simulations.

On the flip side, the measurement data does not confirm this initial position dependency of the maximum velocity and
additionally, the AvaNode CO7 (green) is overtaken by the other two AvaNodes. Here we have to remember that the AvaNodes
have different particle properties while all simulation particles have the same generic properties. AvaNode C07 has a higher
density and is initially positioned downhill of the other AvaNodes in the release area, but reaches lower velocities. At this
stegestage, we cannot infer if the particle property or the initial position are the determining factors for the resulting velocity
although the analysis of other experimental AvaNode data Neuhauser et al. (2023) indicates that particles with higher densities

tend to be differently transported with lower velocities and a different position within the avalanche body.

6 Conclusion and outlook

The combination of AvaNode particle and corresponding radar measurements provides a holistic view on the temporal and

spatial evolution of the avalanche. The measurements and simulations provide an unprecedented level of detail with respect
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to avalanche particle dynamics. With this study we show how particle and front tracking in experimental and computational
avalanche dynamics help to get a deeper insight into the driving processes behind transport phenomena and mobility as well as
how they are represented in widely applied thickness-integrated-thickness-integrated flow models.

The comparison between measurement and simulation on a particle level delivers new insights on the capabilities and limita-
tions of the employed model approach. The computational module AvaFrame::com1DFA of AvaFrame highlights the potential
of research applications, extending an open source simulation tool for gravitational mass flows that is used for operational
hazard mapping. The implemented particle tracking allows te-explore-exploration of avalanche features such as maximum
velocity in new and diverse ways, namely to project these results along their trajectories to an arbitrary time step, e.g. to their
initial position. This approach provides new insights into the performance of the flow model, the related constraints, and how
boundary conditions like particle properties, topography or initial position influence particle motion during the flow phase. The
comparison of measured particle properties, focusing on their velocity, demonstrates that the underlying model has the capa-
bility of reproducing the behaviour of single measured particles, indicating the comparability of experiment and simulation
particles. Using the RMSE velocity and position method, we replicate avalanche particle and front dynamics quite accurately,
although with different parameter sets. Beyond the best-fit solutions we obtain a wide range of suitable parameter sets within
the equifinality. However it is out of the scope of this paper to address the resulting trade-off between single simulation accuracy
and the possibility to replicate multiple measurements at the same time in more detail. Measurements indicate a dependence
of the maximum velocity of particles on their initial position or particle properties which differs from the dependence found in
simulations. This reveals potential limitations of thickness-integrated-thickness-integrated approaches to reproduce differences
between single particle properties like varying density or processes like overtaking that appear in natural flows through sep-
aration and segregation (Gray and Ancey, 2015). These shortcomings could potentially be resolved by implementing varying
particle properties in the simulations, considering the full three dimensional velocity field (Rauter et al., 2016; Li et al., 2021)
or additionally employing multi-phase flow models (Mergili et al., 2020) with variable frictional and rheological approaches
(Jop et al., 2006) or different flow regimes along the path (Bartelt et al., 2012).

In this work, we have taken the first steps towards an in-depth avalanche analysis at the particle level. With more accurate
datasets the level of detail could be increased further, providing more insights into avalanche dynamics and the flow regime
evolution along the path. Improving the position measurement, i.e. regarding spatial accuracy of the AvaNodes would enhance
the overall method. More accurate results would allow te-minimize-minimization of the number of tracked simulation particles,
which would be particularly useful in combination with the extension of the spatial distribution and number of measurement
particles in the release area. One goal for future investigations and developments would be to get radar measurements of the
whole avalanche track combined with more accurate AvaNode GNSS data sets, avalanche run-out distance and deposition area.
For the AvaNodes, increasing the accuracy of position measurements, and if feasible, velocity measurements, by using more
precise GNSS modules would be beneficial, particularly towards resolving movement in the vertical direction. The focus for
radar measurements should be on enhancing the accuracy of the measurements themselves and, if possible, combining two
radar types, namely pulse-Doppler and FMCW, to measure the same avalanche. This would provide a better understanding of

velocity distribution evolution in avalanches. Additionally, new developments of the AvaNodes could lead to lower densities
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and a wider range of sensor shape and size, resulting in a more comprehensive analysis of how particle properties influence
flow evolution in different locations or parts of the avalanche. This would allow to investigate transport phenomena, such
as segregation and separation processes (Gray and Ancey, 2015) or the influence of the vertical resolution of the velocity
profile (Tiefenbacher and Kern, 2004; Kern et al., 2009, 2010). Additional sensor systems, such as infrared temperature or
pressure sensor-sensors in the AvaNodes could deliver new insight to the driving factors of avalanche movement, considering
temperature (Vera Valero et al., 2015; Steinkogler et al., 2014; Fischer et al., 2018), related mass evolution through entrainment
(Naaim et al., 2013) or to determine the vertical position withing the avalanche.

In conclusion, the advancements in measurement technology and computational modelling pave the way for a deeper and
more comprehensive understanding of avalanche dynamics, ultimately enhancing our ability to predict and mitigate avalanche-
related hazards, towards predicting flow intensities with respect to their initial position and along flow trajectories, that may

serve useful for optimal search design for burials or terrain classification with respect to the potential destructiveness.

Data availability. Additionally to this paper we deliver all initalisation files and input data required to reproduce the best-fit simulations.

With this dataset comes a readme file that describes how to setup the simulations.
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