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Abstract. Windstorms affecting Europe are among the natural hazards with the largest socio-economic impacts. Therefore, 

many sectors like society, economy or the insurance industry are highly interested in reliable information on associated impacts 

and losses. In this study, we compare – for the first time – estimated windstorm losses using a simplified meteorological loss 

index (LI) with losses obtained from a complex insurance loss (catastrophe) model, namely the European Windstorm Model 15 

of Aon Impact Forecasting. To test the sensitivity of LI to different meteorological input data, we furthermore contrast LI 

based on the reanalysis dataset ERA5 and its predecessor ERA-Interim. We focus on similarities and differences between the 

datasets in terms of loss values and storm rank for specific historical storm events in the common reanalysis period across 11 

European countries. 

Our results reveal higher LI values for ERA5 than for ERA-Interim for all of Europe (by roughly a factor of 10), coming 20 

mostly from the higher spatial resolution in ERA5. The storm ranking is comparable for Western and Central European 

countries for both reanalyses, confirmed by high correlation values between 0.6 and 0.89. Compared to Aon’s Impact 

Forecasting model, LI ERA5 shows comparable storm ranks, with correlation values ranging between 0.45 and 0.8. In terms 

of normalized loss, LI exhibits overall lower values and smaller regional differences. Compared to the market perspective 

represented by the insurance loss model, LI seems to have particular difficulty in distinguishing between high impact events 25 

at the tail of the wind gust distribution and moderate impact events. Thus, the loss distribution in LI is likely not steep enough 

and the tail is probably underestimated. Nevertheless, it is an effective index that is suitable for estimating the impacts and 

ranking storm events, precisely because of its simplicity. 

1 Introduction 

In Central and Western Europe, windstorms are among the major natural hazards. They regularly lead to high economic and 30 

insured losses (Munich Re, 2022), causing damage to natural and human-made environments like infrastructure, buildings, 
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forestry and agriculture (Mitchell-Wallace et al., 2017; Pinto et al., 2019; Gliksman et al., 2023). In 2022, losses from European 

windstorms were well above average, with insured losses of $5.7 billion and economic losses of $7.5 billion, respectively 

(Aon, 2023a). In fact, European windstorms were among the five largest weather-related perils in 2022 (Swiss Re, 2023). The 

high losses were mainly caused by the windstorm series Ylenia-Zeynep-Antonia1 (international: Dudley-Eunice-Franklin) in 35 

February 2022, which resulted in insured losses of $4.7 billion (Aon, 2023a). The storm series affected the British Isles and 

continental Europe (Mühr et al., 2022), with highest losses in Germany, the Benelux countries, the UK and France (PERILS, 

2023). While from the market perspective there is a large number of impactful storms in recent decades, there is no clear trend 

and mostly decadal variability apparent over the last hundred years in meteorological terms (see review in Feser et al. (2015)). 

For the insurance industry, but also for society and economy, it is crucial to assess the wind-related risk, determine the return 40 

periods of historical storms and to forecast the impacts of extreme storms in order to adapt to and mitigate windstorm losses 

(Mitchell-Wallace et al., 2017; Pinto et al., 2019; Merz et al., 2020; Raschke, 2022; Gliksman et al., 2023). In this context, risk 

is usually defined as the interaction of hazard, exposure and vulnerability (e.g. IPCC, 2022). The hazard component is defined 

as the occurrence of a natural event (in our case a windstorm), the exposure component represents the presence of 

people/livelihoods/ecosystems or economic/social assets, and the vulnerability component describes the disposition to be 45 

affected (IPCC, 2022). The information on windstorm risk and associated losses is provided by various types of datasets 

(Gliksman et al., 2023; Moemken et al., 2024), both for present and future climate conditions. These datasets do not always 

account for all three risk components. Meteorological indices/storm severity indices (e.g. Klawa and Ulbrich, 2003) combine 

meteorological variables and insurance aspects, usually only considering the hazard component. The more complex storm loss 

models - developed, among others, by the insurance industry (catastrophe modelling) – consider all three risk components. 50 

These models relate meteorological wind data to actual building damage data, using so-called damage functions that define 

the relationship between wind and damage (Prahl et al., 2015; Gliksman et al., 2023). Commonly used damage functions 

assume either a power law or an exponential form. 

Moemken et al. (2024) recently compared several examples of loss datasets for windstorms across Europe, including a natural 

hazard database, insurance loss reports and various meteorological indices. Focusing on storm numbers and the ranking of 55 

specific storm events, they conclude that the datasets provide different perspectives on windstorm impacts and suggest that a 

combination of different types of datasets might be used to assign an uncertainty range to windstorm losses. A recent review 

paper by Gliksman et al. (2023) discusses open research questions related to damage from European windstorms. One raised 

issue is the lack of a clear methodology to select the most suitable index to assess windstorm losses for both present and future 

climate conditions. Moreover, loss calculations are affected by uncertainties, for example related to the used (meteorological) 60 

input data. They further point out that there is a need for a thorough comparison between meteorological loss indices and 

catastrophe models (used in insurance) to better understand loss estimates from different perspectives.  

In this study, we try to answer two of these questions, namely:  

                                                           
1 Storm names as given by the Freie Universität Berlin (https://www.wetterpate.de/namenslisten/tiefdruckgebiete/index.html; in German) 

and used by the German Weather Service (DWD). 
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• How sensitive are the loss estimates of a meteorological index to the meteorological input data? 

• How comparable are windstorm loss estimates from this meteorological index and an insurance loss model? 65 

With this aim, we first calculate the Loss Index (LI) by Pinto et al. (2012) in the adaptation of Karremann et al. (2014a) using 

ERA5 (Hersbach et al., 2020) and its predecessor ERA-Interim (Dee et al., 2011). In a second step, we compare the loss 

estimates from LI to the output of an insurance loss (catastrophe) model for a set of historical European windstorms. Here, we 

use, for the first time in a scientific study, the European Windstorm Model of Aon Impact Forecasting (in the following Aon’s 

IF Euro WS model). We analyse the differences and similarities, focusing on loss values and storm ranks of individual events. 70 

The study is restricted to 11 European countries covered by Aon’s IF Euro WS model (see Sect. 3.2) and the extended winter 

season October – March (ONDJFM). For proprietary reasons, we only show country-aggregated and normalized losses. 

Throughout this study, we use the terms “extreme” and “severe” interchangeably when referring to storm events with high 

losses. 

The paper is organized as follows: Section 2 describes the datasets and Section 3 the methods/models. Section 4 focuses on 75 

the sensitivity of LI to different reanalysis datasets, while Section 5 presents the comparison between LI and Aon’s IF Euro 

WS model. Section 6 concludes this paper with a summary and discussion of results. 

2 Data  

2.1 Meteorological input data 

For the calculation of LI (Sect. 3.1.1), gridded datasets are needed. As we are interested in historical windstorms, we use 80 

reanalysis data – namely ERA5 (Hersbach et al., 2020) and its predecessor ERA-Interim (Dee et al., 2011). ERA5 is the latest 

reanalysis product of the European Centre for Medium-Range Weather Forecast (ECMWF). Wind gust data is available at 

hourly temporal and 30 km (0.25°) horizontal resolution for the period 1959-2021. For ERA-Interim, wind gust data is 

available with 3-hourly temporal and 83 km (0.75°) horizontal resolution for the period 1979-2019. In both datasets, wind 

gusts are defined as the maximum 3-second wind at 10 m height following the definition of the World Meteorological 85 

Organisation (WMO). For both datasets, ECMWF publishes post-processed wind gust, which is the maximum gust computed 

in every time step following the standard parameterization approach by Panofsky et al. (1977) and Bechthold and Bidlot (2008). 

We use the datasets in their native resolutions in order to test the sensitivity of LI to the resolution of the input data, considering 

only the common period 1979-2019. Additionally, we repeated some of the analyses with ERA5 data re-gridded to the coarser 

ERA-Interim grid using a conservative remapping. 90 

2.2 Insurance data – PERILS 

For the insurance perspective of the impacts of the windstorms, we use the PERILS data (https://www.perils.org). PERILS is 

a joint stock company owned by ten shareholders from the insurance industry, which collects, homogenises and provides 

aggregated anonymized insurance data for different weather-related perils (see Moemken et al. (2024) for a detailed 

https://www.perils.org/
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description). The data provides for selected events with a sizable financial footprint a market estimation for the loss per country 95 

and CRESTA zone (a geographical data aggregation standard used by global insurance industry; www.cresta.org), property 

premium data per country, and the exposure (total sum of insured property) per country and CRESTA zone. For extratropical 

windstorms in Europe, PERILS provides data for 12 countries, 11 of which are also covered by Aon’s IF Euro WS model, 

namely Austria, Belgium, Denmark, France, Germany, Ireland, Luxembourg, the Netherlands, Norway, the United Kingdom, 

and Sweden. Following Pinto et al. (2012), we additionally focus on the region of Core Europe, which is of special interest for 100 

the insurance industry in terms of windstorm risk and consists of those eight countries highlighted in italics. The insurance 

data is supplied by PERILS on an annual subscription basis. In our study, we use the exposure data of PERILS for the exposure 

component in the Aon IF model (Sect. 3.2) and the loss data as reference data for some of the analyses.  

2.3 Storm names 

We assign a name to each storm event based on the date of its occurrence, referring to those given by the Freie Universität 105 

Berlin and used by the German Weather Service (DWD): https://www.wetterpate.de/namenslisten/tiefdruckgebiete/index.html 

(in German). For events prior to 1999, we also refer to the Extreme Windstorms Catalogue (XWS) described in Roberts et al. 

(2014) and the windstorm documentation by Deutsche Rück for the years 1997-2004 (Deutsche Rück, 2005). 

3 Methods 

3.1 Meteorological loss index  110 

Meteorological loss indices, also referred to as storm severity indices, are typically used to identify severe windstorms, study 

their magnitude and likelihood of occurrence, and estimate the associated losses. There exists a wide variety of indices, ranging 

from more general ones to those targeting specific sectors like forestry, agriculture or transport (see Gliksman et al. (2023) for 

a detailed overview). The key variable for many of these indices is the daily maximum wind speed or peak wind gust, which 

is considered as relevant for storm losses (Lamb, 1991; Klawa and Ulbrich, 2003; Leckebusch et al., 2008; Pardowitz et al., 115 

2016). The assumption behind this is that the loss can be primarily attributed to the maximum gust, which causes damage by 

generating “pressure” on the infrastructure (Klawa and Ulbrich, 2003). 

3.1.1 Loss Index LI 

In our study, we use the Loss Index (LI) by Pinto et al. (2012) in the extended version by Karremann et al. (2014a). LI is built 

from the widely used storm loss model by Klawa and Ulbrich (2003) and is based on the following assumptions: 120 

• Losses increase with the cube of wind speed/gust (Palutikof and Skellern, 1991; Lamb, 1991), which – from a physical 

perspective – is proportional to the wind power or the wind kinetic energy flux. 
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• Infrastructure and other assets are adapted to the local wind conditions. Therefore, it can be assumed that only the top 

2% of wind gusts (corresponding to beaufort 8, circa 17-20 m/s) cause damage to buildings (Palutikof and Skellern, 

1991). This is taken into account by scaling the daily peak gust with the local 98th percentile. 125 

• In the case that no insurance data is available, population density can be used as a proxy for the insured value 

(exposure component). 

• The (re-)insurance clause for natural hazards is typically 72 hours. This also corresponds to the period during which 

an average storm crosses Europe and produces damaging winds (Hewson and Neu, 2015). 

Hence, LI is calculated as:  130 

𝐿𝐼 =  ∑ ∑ (
𝑣𝑖𝑗

𝑣98𝑖𝑗

)

3

∗ 𝐼 (𝑣𝑖𝑗 , 𝑣98𝑖𝑗
) ∗  𝑃𝑖𝑗 ∗  𝐿𝑖𝑗

𝑀
𝑗=1

𝑁
𝑖=1          (1) 

with 𝐼 (𝑣𝑖𝑗 , 𝑣98𝑖𝑗
) =  {

0 𝑓𝑜𝑟 𝑣𝑖𝑗 <  𝑣98𝑖𝑗

1 𝑓𝑜𝑟 𝑣𝑖𝑗 >  𝑣98𝑖𝑗

,  

𝐿𝑖𝑗 =  {
0 𝑜𝑣𝑒𝑟 𝑠𝑒𝑎

1 𝑜𝑣𝑒𝑟 𝑙𝑎𝑛𝑑
, 

maximum wind gust v in 72 hours at grid point ij, local 98th percentile v98, and population density P. Here, we use gridded 

population density data for the year 2020 at a spatial resolution of 0.25° (see Figure 1a), downloaded from the Centre for 135 

International Earth Science Information Network (CIESIN) at Columbia University, USA. 

To separate individual events per extended winter season (October – March, ONDJFM), overlapping 72-hour sliding time 

windows (shifted every 6 hours) are used and the temporal local maximum of each 72-hour time window is analysed 

(Karremann et al., 2014a). We are particularly interested in extreme storm events. Therefore, we only consider events with LI 

values above a certain threshold, which corresponds to the selection of an average of five events per season (Pinto et al., 2012; 140 

Karremann et al., 2014a). This results in 205 storm events (41 years x 5 events) per dataset (LI ERA5 and LI ERA-Interim). 

3.1.2 Windstorm footprints 

For the hazard component, windstorm footprints are required. Following the WMO and Haylock (2011), the footprint is defined 

as the percentage of wind gust values that exceed the local 98th percentile per 72-hour period: 

𝑤𝑖𝑛𝑑 𝑔𝑢𝑠𝑡 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 =  
(𝑣𝑚𝑎𝑥− 𝑣98)

𝑣98
∗ 100%  (2)  145 

With maximum wind gust in 72 hours at each grid point vmax, and local 98th percentile v98. We use the same 72-hour periods 

as for the LI calculation. The corresponding cyclone tracks were derived following the tracking algorithm by Murray and 

Simmonds (1991) and Pinto et al. (2005). As an example, Figure 1b shows the footprint and cyclone track for windstorm Kyrill 

in January 2007 (Fink et al., 2009). 
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 150 

Figure 1: (a) Population density for 2020 derived from CIESIN for the 11 countries covered in this study. (b) Wind gust footprint for storm 

Kyrill in January 2007 based on ERA5. Shown is the largest exceedance (in percent) of the 98th percentile of daily maximum wind gust 

within 72 hours. The red line and dots denote the cyclone track derived from ERA5 using the tracking algorithm of Pinto et al. (2005). Please 

refer to Sect. 3 for detailed information on the methods. 

3.1.3 Original and normalized loss values 155 

For the comparison between LI ERA5 and LI ERA-Interim, we use both original loss estimates as well as normalized losses. 

The normalization is done with a min-max scaling approach, which scales the loss values between 0.0 and 1.0. The top storm 

event corresponds to the value 1.0 and the event with the lowest impact to the value 0.0. The normalized losses of all other 

events relate to the top event (relative ranking). We only focus on losses aggregated at country level (c.f. Sect. 3.2.1). 

3.2 Insurance loss model 160 

Storm loss (catastrophe) models determine the windstorm risk to residential and commercial buildings by relating wind speed 

to building damage (Palutikof and Skellern, 1991; Dorland et al., 1999; Gliksman et al., 2023), usually by implementing 

statistical modelling. Like for storm severity indices, the maximum daily wind gust speed is assumed to be the most relevant 

factor in these models (Dorland et al., 1999; Klawa and Ulbrich, 2003; Donat et al., 2011; Koks and Haer, 2020) and is used 

as the basis for the hazard component. The building damage data is usually represented using so-called loss ratios, which is 165 

the amount of insured loss occurring per district, divided by the corresponding sum of insured value (Klawa and Ulbrich, 2003; 

Prahl et al., 2015). For the relationship between wind and damage, also referred to as damage functions, various formulations 

exist in literature (see Prahl et al. (2015) for a detailed overview). These damage functions aim at describing the non-linear 

relation between storm intensity and actual (monetary) damage. Typically used damage functions range from exponential to 

power law to excess-over-threshold formulations. 170 
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3.2.1 Aon Impact Forecasting European Windstorm Model 

In our study, we use the European Windstorm Model of Aon Impact Forecasting (Aon’s IF Euro WS model), which is 

implemented in ELEMENTS, Aon’s loss modelling platform (Aon, 2023b). The model covers 22 countries in Western, 

Northern and Central Europe. The aim of this catastrophe model is to provide a quantification of financial losses from 

windstorm risk in Europe. The model consists of three main components, namely hazard, vulnerability and exposure, plus a 175 

financial part (see Supplementary part A).  

The hazard component has two parts: a historical and a stochastic event set. The historical event set comprises 26 historical 

storms (see Supplementary Table S1; Born et al., 2012), based on wind gust footprints built from weather station data. The 

stochastic event set covers 4,731 years of simulated events (Karremann et al., 2014a). The stochastic events represent 

physically consistent storm events and are based on outputs of the ECHAM 5 global climate model (Jungclaus et al., 2006). A 180 

combination of dynamical downscaling and statistical downscaling (Haas and Pinto, 2012) is used to produce the final high-

resolution stochastic event set that is implemented in Aon’s IF Euro WS model.  

The exposure component typically uses a combination of Aon’s client data and the PERILS industry exposure database. The 

component comprises five lines of business: residential, commercial, industrial, agricultural, motor and forestry (only Norway, 

Sweden and Finland). For our study, we only use the PERILS data for 2022 for the exposure.  185 

The vulnerability component is divided into Chance of Loss (COL) and Conditional Mean Damage Ratio (CMDR), thereby 

giving a more realistic view of loss than a single mean damage ratio. The COL is applied first, rating the probability of loss 

for a certain wind speed and a given building. If the building is determined to have suffered a loss, then the conditional damage 

ratio (CMDR) is applied. The vulnerability component of the model applies IF’s proprietary damage curves to calculate the 

physical loss for each event at each insured location. Original limits and other policy conditions are then applied per event to 190 

calculate the Gross loss and the Net loss, thus obtaining the value of insured loss in the financial component of the model.  

The model is calibrated against insurance data, including PERILS data as the primary benchmark. For this reason, we assume 

it as a representation of a market perspective for the purpose of our paper. A more detailed description of the model is available 

in the Supplementary part A. For proprietary reasons, the comparison to LI is restricted to losses at country level and 

normalized loss values.  195 

4 Comparison between ERA5 and ERA-Interim 

We first analyse the sensitivity of LI to the meteorological input data. To this end, we compare ERA5 and ERA-Interim in 

terms of wind gust as the relevant input variable for LI. We then use both datasets to derive LI for our study domain and 

compare the results with respect to storm loss and storm rank. 
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4.1 Wind gust climatology 200 

We use the 98th and 99.9th percentiles of daily maximum wind gust to compare ERA5 and ERA-Interim. The percentiles are 

calculated for the winter half year ONDJFM for 1979-2019, the period common to both datasets. Figure 2 shows both 

percentiles for ERA5 (left) and ERA-Interim (middle), as well as the absolute difference between the datasets (right). For the 

98th percentile (Figure 2, upper row), both datasets show a similar spatial pattern: For most of Europe, the 98th percentile ranges 

between 16 and 30 m/s, with highest values over the North and Baltic Sea, and the British Isles. Except for Sweden and the 205 

Baltic region, values are in general higher for ERA5 compared to ERA-Interim. Differences reach highest values (over 4 m/s) 

over mountainous regions like the Alps, the Pyrenees and the Scandinavian mountains, while they are in the range of 2 m/s for 

Core Europe. This suggests a slight shift towards higher gust speeds in the wind gust distribution of ERA5 compared to ERA-

Interim for large parts of Central Europe. For the 99.9th percentile (Figure 2, lower row), differences between the datasets are 

larger for all of Europe – not only in terms of magnitude but also regarding the spatial pattern. This confirms the overall shift 210 

in the wind gust distribution, but also indicates a longer tail of the wind gust distribution for ERA5 over continental Europe. 

Differences result most likely from the different ECMWF model version used for the reanalysis and the overall better 

representation of resolution and physical processes in the ERA5 setup (see Hersbach et al. (2020) for detailed information). 

 

Figure 2: 98th percentile (upper row) and 99.9th percentile (lower row) of daily maximum wind gust for the winter half year (October – 215 
March, ONDJFM) for the period 1979-2019 derived from ERA5 (left), and ERA-Interim (middle). Difference between ERA5 minus ERA-

Interim (right). 
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4.2 Storm losses and storm ranking 

In the next step, we compare the loss values and the storm ranking for the 20 common most extreme storms (Top20) in the 

period 1979-2019. The Top20 storms are derived separately for each country as well as for Core Europe. The storm list for 220 

Core Europe can be found in Supplementary Tables 2 and 3. Figure 3 presents the comparison of normalized loss values 

derived from LI ERA5 (x-axis) and LI ERA-Interim (y-axis) for four different regions/countries, namely Core Europe, the 

United Kingdom, Germany, and France. For most events and countries, the datasets show comparable normalized losses. 

Moreover, the ratio between extreme storms with high losses to extreme storms with moderate losses is similar in both datasets. 

This is confirmed by the fact that most events are grouped closely around the linear regression line. Only storm Irina (October 225 

2002) is classified as an outlier for the UK, i.e. that the difference in loss value is large based on the Inter-Quartile Range (IQR; 

Dodge, 2008). The large difference between ERA5 and ERA-Interim for storm Irina can be explained by looking at the storm 

footprint (Fig. S1): It is overall flatter in ERA5 compared to ERA-Interim. This is particularly the case for the UK, where the 

mean wind gust over land is 12.1 m/s for ERA5 and 24.6 m/s for ERA-Interim. Therefore, the LI for storm Irina is higher in 

ERA-Interim due to the cumulative effect (summation of v/v98; see Sect. 3.1.1). 230 

 

Figure 3: Comparison of normalized loss values based on LI ERA5 (x-axis) and LI ERA-Interim (y-axis). Depicted are the common 20 

most extreme storms in the period 1979-2019 for (a) Core Europe, (b) the United Kingdom, (c) Germany, and (d) France. Corresponding 

storm names to each data point are marked with a blue line. Storms without a formal name are named based on the region (e.g. CE for Core 

Europe) and the loss value (starting from zero for storm with highest loss). The red dashed line denotes the linear regression line. Outlier 235 
storms based on the IQR method (see section 4.2) are marked in red.  
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When comparing the original loss values (Supplementary Figure S2), the values based on ERA5 are approximately 10 times 

larger than those for ERA-Interim. The most obvious reason is the higher spatial resolution of ERA5 compared to ERA-Interim 

(roughly 3 times higher): As LI sums over all grid points with wind gusts above the 98th percentile, a higher number of grid 

points results in an overall higher value of LI. This is confirmed by a sensitivity study, in which we re-gridded ERA5 data to 240 

the coarser ERA-Interim resolution before calculating LI (Supplementary Figure S3). After re-gridding, LI ERA5 and LI ERA-

Interim are in the same order of magnitude, while the overall behaviour/order of storms does not change (cp. Figures S2 and 

S3). The main reason for the remaining differences between LI ERA5 and LI ERA-Interim is most likely the shift towards 

higher gust speeds and the longer tail in the wind gust distribution of ERA5 compared to ERA-Interim as discussed in Section 

4.1. 245 

The comparison of storm ranks between LI ERA5 and LI ERA-Interim is presented in Figure 4. Differences are generally 

larger than for the loss values. This is confirmed both by a higher number of outlier storms in individual countries such as 

France, and by an overall larger spread of events along the linear regression line.  

 

Figure 4: Same as Figure 3, but for the comparison of storm ranks. The values in brackets indicate the rank (first value ERA5, second value 250 
ERA-Interim). 

In general, LI ERA5 and LI ERA-Interim show a good agreement. This is supported by overall high Spearman’s rank 

correlation coefficients (Spearman, 1904; Dodge, 2008), which we computed to quantify and map the differences between the 

datasets across countries. In addition to the value of Spearman's rank correlation, which measures the strength and direction 
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of the relationship, we use the R2 of Spearman’s rank correlation that indicates the proportion of variance in the ranks of one 255 

variable that is predictable from the ranks of the other variable. For most countries, the correlations between LI ERA5 and LI 

ERA-Interim exceed 0.5, thereby confirming the good agreement between the datasets (Figure 5). Moreover, more than half 

of the countries have R2 values above 0.40, indicating that more than 40% of the variance in the ranks of LI ERA5 is explained 

by the variance in the ranks of the LI ERA-Interim (Table 1). Based on these results, we focus only on LI ERA5 in the following 

chapter, in order to benefit from the higher spatial and temporal resolution and the more recent data. 260 

 

Figure 5: Spearman’s rank correlation coefficient at country level for LI ERA5 vs LI ERA-Interim. The ranking is based on common storms 

per country (see Table 1 and Supplementary Figure S4). 

 

5 Comparison of loss estimates from LI ERA5 and Aon’s IF Euro WS model 265 

In the second part of our study, we compare LI ERA5 to the output from Aon’s IF Euro WS model, focusing on normalized 

losses and storm ranks at country level. The analysis is based on Aon’s historical event set of insured storms in the period 

1990-2020 (see Supplementary Table S1). Thus, the number of common storms between Aon’s IF Euro WS model and LI 

ERA5 can differ in the individual countries (see Table 1 and Supplementary Figure S4). Please note that some events cannot 

be clearly separated based on LI ERA5 (e.g. Lothar and Martin, see Fig. 3 and Table S2), while they are single events in Aon’s 270 

IF Euro WS model. In these cases, we assign the same LI value to both storm events for the comparison between LI ERA5 

and Aon’s IF Euro WS model. 
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Table 1: Explained variance (R2) of Spearman’s rank correlation coefficient between LI ERA5 and LI ERA-Interim (2nd column), LI ERA5 

and Aon’s IF Euro WS model (3rd column), LI ERA5 and PERILS (4th column), and Aon’s IF Euro WS model and PERILS (last column). 275 
The number of common storms per country is given in brackets.  

 LI ERA5 vs  

LI ERA-Interim 

LI ERA5 vs  

Aon’s IF Euro WS 

LI ERA5 vs 

PERILS 

Aon’s IF Euro WS 

vs PERILS 

Core Europe 0.65 [20] 0.52 [23] 0.26 [17] 0.57 [19] 

Austria 0.43 [20] 0.75 [15] 1.0 [4] 1.0 [4] 

Belgium 0.62 [20] 0.22 [21] 0.09 [11] 0.66 [11] 

Denmark 0.25 [20] 0.41 [15] 0.49 [5] 0.14 [6] 

France 0.79 [20] 0.6 [17] 0.56 [10] 0.54 [11] 

Germany 0.5 [20] 0.57 [23] 0.33 [15] 0.47 [15] 

Ireland 0.37 [20] 0.2 [19] 0.49 [5] 0.64 [5] 

Luxembourg 0.64 [20] 0.26 [15] 0.07 [6] 0.43 [6] 

Netherlands 0.2 [20] 0.64 [21] 0.68 [11] 0.7 [11] 

Norway 0.29 [20] 0.4 [9] 0.25 [3] 1.0 [3] 

Sweden 0.51 [20] 0.23 [13] 1.0 [4] 0.16 [4] 

United Kingdom 0.49 [20] 0.36 [20] 0.44 [13] 0.7 [13] 

 

5.1 Case study – Storm Sabine 

First, we analyse one case study in detail, namely storm Sabine that hit Europe in February 2020. We compare the normalized 

losses (relative ranking) and storm ranks (ordinal ranking) at country level, additionally including PERILS as a reference 280 

(Figure 6). All three datasets agree with regard to the region affected by the storm, which closely follows Sabine’s cyclone 

track (black line and dots in left column of Figure 6). However, the normalized loss values can differ significantly in the three 

datasets. Values are generally higher for LI ERA5 for all countries, except for Norway, where all datasets show the same 

normalized loss. Aon’s IF Euro WS model and PERILS show a good agreement in terms of the relative ranking of storm 

Sabine in the different countries. In terms of the ordinal ranking (Figure 6, lower row), Sabine is among the Top6 storms in all 285 

three datasets. However, while the ranking for Aon’s IF Euro WS model and PERILS differs by no more than one position, 

differences are larger between LI ERA5 and Aon’s IF Euro WS model/PERILS and can reach up to five positions, e.g. for the 

UK. In general, the agreement/disagreement between LI ERA5 on one hand and Aon’s IF Euro WS model/PERILS on the 

other hand is different for each country and systematic differences are not apparent. Nevertheless, the results suggest that LI 
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ERA5 might have difficulties in clearly distinguishing individual storms from one another, i.e. that the loss values of the most 290 

extreme events are too close together. This will be examined in more detail in the following sections.  

 

Figure 6: Normalized losses (upper row) and storm ranking (lower row) at country level for storm Sabine in February 2020. Losses are 

derived from LI ERA5 (left), Aon’s IF Euro WS model (middle), and PERILS (right). The black line and dots in the left column denote the 

cyclone track derived from ERA5 using the tracking algorithm of Pinto et al. (2005). Losses are only shown for the 11 countries covered by 295 
Aon. The ranking is based on common storms per country (see Table 1 and Supplementary Figure S4).  

5.2 Windstorm loss 

In this section, we compare the normalized loss values derived from Aon’s IF Euro WS model (x-axis) and LI ERA5 (y-axis) 

for all common storms for four different regions/countries: Core Europe, the United Kingdom, Germany, and France (Fig. 7). 

In general, the two datasets reveal large differences. Only individual storm events like Daria in January 1990 or Kyrill in 300 

January 2007 show comparable normalized losses. This is supported by a rather large spread of storm events along the 

regression line (Fig. 7). Nevertheless, only a small number of storms is identified as outliers based on the IQR method – for 

example Sabine in Core Europe or Martin in France. For LI ERA5, the range of loss values is quite similar between larger 

regions like Core Europe and smaller regions (individual countries). Aon’s IF Euro WS model, on the other hand, reveals a 

different range of loss values for different regions. Within individual regions, Aon’s IF Euro WS model shows a clear 305 

distinction between extreme “high loss” storm events such as Daria and those events with “moderate” losses (e.g. Isaias). 

Normalized loss values between those events can differ by a factor of up to 1000 for single countries. This distinction is less 

pronounced in LI ERA5 (see e.g. Fig. 7b), where the individual storm events are closer together and usually differ by a factor 

of less than 100 in terms of their respective normalized loss. Such differences are not uncommon when comparing loss datasets 

(Moemken et al., 2024). 310 
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Figure 7: Comparison of normalized loss values between Aon’s IF Euro WS model (x-axis) and LI ERA5 (y-axis). Depicted are the common 

most extreme storms for the period 1990-2020 for (a) Core Europe, (b) the United Kingdom, (c) Germany, and (d) France. A logarithmic 

scale is used for the axes. The red dashed line denotes the logarithmic regression. Outlier storms based on the IQR method are marked in 

red. Please note the different scales. 315 

In a sensitivity study, we tested whether the differences between LI ERA5 and Aon’s IF Euro WS model result from the 

different event definition – 72-hour periods vs 24-hour periods. With this aim, we calculated LI ERA5 for running 24-hour 

windows. The comparison of normalized loss values is shown in Supplementary Figure S5 (see Figure S6 for storm ranks). 

Overall, we find no systematic reduction in the differences between LI ERA5 and Aon’s IF Euro WS model when using 24-

hour windows instead of 72-hour windows. For some storms and/or countries, differences decrease with a shorter event 320 

definition (e.g. for Germany), while for others they increase (e.g. Core Europe). Moreover, the number of common storm 

events decreases with a shorter event definition for LI ERA5 (not shown). 

5.3 Storm ranking 

We also compare LI ERA5 and Aon’s IF Euro WS model in terms of storm ranks for the common most extreme storms per 

country. Figure 8 shows this comparison for Core Europe, the UK, Germany and France. As for the normalized losses, we see 325 

rather large differences between the datasets, though less pronounced. Most events show rank differences in the range of zero 

to three positions. Only in the case of individual storms, such as Klaus in Core Europe or Martin in Germany, can rank 

differences reach up to 16 positions. These events are also marked as outliers based on the IQR method.  
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Figure 8: Same as Figure 7, but for the comparison of storm ranks. The values in brackets indicate the rank (first value Aon’s model, second 330 
value ERA5). 

Finally, we compare Spearman’s rank correlation coefficients (Figure 9) and the corresponding explained variance (R2; Table 

1), again including PERILS as a reference. Figure 9 displays the correlation coefficients for each country, providing a clear 

depiction on the agreement or disagreement between LI ERA5, Aon’s IF Euro WS model and PERILS. For most parts of 

Central Europe, LI ERA5 and Aon’s IF Euro WS model show a high agreement, with correlation values reaching up to 0.86 335 

for Austria. Lower correlations with values below 0.5 and therefore larger differences can be found for Ireland, Belgium and 

Sweden. The correlation pattern between LI ERA5 and PERILS looks similar, with overall lower values. Only the perfect anti-

correlation for Sweden and the perfect correlation for Austria are striking. However, these values could be due to the small 

sample of common storms (see Supplementary Figure S4) and should therefore be viewed with caution. The comparison of 

Aon’s IF Euro WS model and PERILS reveals mostly high correlation coefficients, ranging between 0.69 for Germany and 340 

1.0 for Austria and Norway. In terms of the explained variance, Austria exhibits the highest R2 value when comparing LI 

ERA5 against Aon’s IF Euro WS model and PERILS (Table 1). This result suggests that for Austria, over 70% of the variation 

in the ranks of loss from one dataset can be explained by the variation in the ranks of the other loss values. Due to the small 

sample of common events in some countries, some correlation values in this comparison should also be treated with care.  
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 345 

Figure 9: Spearman’s rank correlation coefficient at country level for LI ERA 5 vs Aon’s IF Euro WS model (left), LI ERA5 vs PERILS 

(middle), and Aon’s IF Euro WS model vs PERILS (right). The ranking is based on common storms per country (see Table 1 and 

Supplementary Figure S4).  

6 Summary and discussion 

In this study, we compared estimated windstorm losses over Europe from the meteorological loss index LI and the catastrophe 350 

windstorm model of Aon Impact Forecasting, used in insurance. Furthermore, we tested the sensitivity of LI to the 

meteorological input data by using both ERA5 and its predecessor ERA-Interim. The main results can be summarized as 

follows: 

• For all of Europe, LI values are higher for ERA5 than for ERA-Interim (by roughly a factor of 10). The main reason 

is the higher spatial resolution in ERA5. Additionally, the wind gust distribution in ERA5 is slightly shifted towards 355 

higher values and has a longer tail. With regard to normalized losses and storm ranks, LI ERA5 and LI ERA-Interim 

show a comparable behaviour for Core Europe with Spearman’s rank correlation mostly ranging between 0.61 

(Ireland) and 0.89 (France).  

• Compared to Aon’s IF Euro WS model, LI ERA5 shows overall lower normalized loss values, while the storm ranks 

are comparable for most of Core Europe (correlations between 0.45 and 0.8). Moreover, Aon’s IF Euro WS model 360 

reveals a clearer distinction between high and moderate impact events. The difference between the highest and lowest 

insured loss, as given by Aon’s IF Euro WS model (e.g. Daria vs Isaias in UK, see Fig. 7b) is 3 orders of magnitude, 

while the corresponding LI ERA-5 difference is typically 1 to 1.5 orders of magnitude.  In addition, the catastrophe 

model shows a clear regional dependency of loss values. This regional dependence is less pronounced in LI ERA5.  

In previous studies, LI has been calculated and analysed for a variety of reanalysis datasets with different spatial and temporal 365 

resolutions: ERA-40 with 1.125° and 6-hourly resolution in Pinto et al. (2012), NCEP with 1.875° and 6-hourly resolution in 

Karremann et al. (2014a), or ERA-Interim with 0.75° and 6-hourly resolution in Priestley et al. (2018). In line with our results, 

these studies show that the magnitude of LI is sensitive to the spatial resolution of the underlying dataset. Nevertheless, they 

all agree on the general (regional) behaviour of LI. Another reason for the different LI values for ERA5 compared to ERA-

Interim is a slight shift towards higher gust speeds and a longer tail in the wind gust distribution of ERA5. This is in line with 370 
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Minola et al. (2020), who compared wind gust data from ERA-Interim and ERA5 with observational data across Sweden. They 

find an overall better agreement between observations and ERA5, although some discrepancies persist in regions with complex 

topography. We therefore conclude that it is adequate to use the recent ERA5 dataset for the comparison to the insurance model 

in the second part of our study. 

One reason for the differences between the meteorological index and the catastrophe model of Aon Impact Forecasting is their 375 

different methodological design: First, Aon’s IF Euro WS model uses a 1-day window for the loss calculation, while LI ERA5 

is based on 72-hour windows. Thus, Aon’s IF Euro WS model is better able to separate storm events in short succession (like 

Lothar and Martin in December 1999). In a sensitivity study, we could show that using a 24-hour event definition for LI ERA5 

does not lead to a systematic reduction in the differences between LI ERA5 and Aon’s IF Euro WS model (Sect. 5.2). 

Therefore, we decided to stick to the 72-hour event definition in LI ERA5. This has several advantages: We are able to capture 380 

the entire windstorm footprint (Hewson and Neu, 2015). Additionally, the 72-hour event definition corresponds to a definition 

often used in reinsurance treaties (the so-called 72-hour-clause; Klawa and Ulbrich, 2003; Karremann et al., 2014a). Finally, 

the correlations between LI ERA5 and Aon’s IF Euro WS model are higher when using 72-hour windows, especially for Core 

Europe. Another methodological difference is the consideration of different risk components. LI ERA5 only includes the 

hazard component and an estimate for the exposure component, while Aon’s IF Euro WS model additionally includes a 385 

sophisticated engineering-based vulnerability component that takes e.g. building resistance, loss frequency due to quasi-

random effects and local societal adaptations into account. 

Aside from that, our study reveals some shortcomings of the two approaches. As all meteorological indices, LI relies upon the 

quality of both the underlying wind data and the impact function used for the calculation of loss. In the specific case of LI, the 

initial index was developed and evaluated for Germany by Klawa and Ulbrich (2003), employing insurance data of Munich 390 

Re and GDV (“Gesamtverband der Deutschen Versicherer e.V.”). In a follow-up study, Karremann et al. (2014b) were able to 

demonstrate that the chosen 98th percentile is an appropriate threshold to identify extreme storm events over Central and 

Western Europe. Nevertheless, they also point out that the 98th percentile might be too low for South Eastern Europe, the 

Mediterranean and Scandinavia. For these regions, Karremann et al. (2014b) suggest the use of a fixed, reasonable threshold 

below which losses are improbable. Moreover, the usage of present-day population density as proxy for exposure levels might 395 

lead to an overestimation of loss values (Koks and Haer, 2020). Furthermore, LI depends on the used gust data. The ERA5 

wind gust data, we use here, is based on the parameterization approach by Panofsky et al. (1977). While this approach performs 

well in flat terrain, it is sensitive to the local parameterization of the roughness length (Born et al., 2012; van den Brink, 2019). 

Finally, the LI index is missing a detailed damage component. The applied cubic relation tries to mimic the non-linear response 

of buildings to wind gusts. However, compared to the market perspective of Aon’s IF Euro WS model, LI ERA5 seems to 400 

struggle with capturing this non-linearity, especially for the high impact events at the tail of the gust spectrum. In some extreme 

cases, certain exposures (e.g. greenhouses, timber building or agricultural buildings) may have vulnerability functions 

approximating a step-function. Various studies tested different formulations of meteorological indices, also considering 

different exponents (e.g. Klawa and Ulbrich, 2003; Pinto et al., 2012; Prahl et al., 2015; Gliksman et al., 2023). All these 
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studies agree that the performance of the different indices depend on the underlying event set. For some events, formulations 405 

with higher exponents seem to estimate windstorm losses better, while for other events, the cubic relationship provides results 

that are more realistic. In this sense, no formulation clearly outperforms the others. Aon’s IF Euro WS model on the other 

hand, includes no information on not-insured market loss. Additionally, insurance data in general depend on the insurance 

coverage and policy in single countries. Both factors might result in an overrepresentation of windstorms that hit countries 

with high market coverage (Moemken et al., 2024). 410 

The current study is, to our knowledge, the first to compare a full insurance windstorm model (which is not publicly available) 

to a simplified meteorological loss index. For this reason, and due to some proprietary restrictions, we decided to focus on a 

straightforward comparison of the two methods. Overall, our results suggest that the loss distribution in LI is not steep enough 

and accordingly the tail is too short, leading to an underestimation of high impact windstorms compared to the market 

perspective derived from the insurance catastrophe model. Nonetheless, LI is an effective index precisely because of its 415 

simplicity since it only considers wind gust and population density. Although it cannot be used to price a storm (due to the 

missing vulnerability information), it is suitable for estimating the impacts and rank events. The first comparison between a 

meteorological index and a full commercial windstorm model could serve as a reference for future studies focussing on the 

development and improvement of both storm loss models and storm severity indices. 
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