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Abstract. In recent years, physics-based snowpack models combined with machine-learning techniques have gained momen-

tum in public avalanche forecasting. When integrated with spatial interpolation methods, these approaches enable fully model-

driven predictions of snowpack stability or avalanche danger at any location. This raises a key question: Are such spatially

detailed model predictions sufficiently accurate for operational use? We evaluated the performance of three spatially interpo-

lated, model-driven forecasts of snowpack stability and avalanche danger in Switzerland over three winters. As a benchmark,5

we used the official public avalanche danger forecasts, specifically focusing on the forecast danger level including the sub-

levels. We assessed the ability of both model and human forecasts to discriminate between reference conditions and avalanche

events
::::::::::
distributions

::
of

:::::::::
conditions –

:::::::
typically

:::
not

:::::::::
associated

::::
with

::::::::
avalanche

:::::::
activity

::
–

:::
and

:::::
actual

:::::::::
avalanche

::::::
events, either nat-

urally released or triggered by humans– ,
:

by calculating event ratios as proxies for release probability. Our results show that

event ratios increased clearly with higher predicted avalanche probability, lower snowpack stability, or higher forecast sub-10

level. Overall, both model predictions and human forecasts showed a comparable ability to discriminate between reference

and event conditions, with the event ratio increasing exponentially with increasing model-predicted probabilities or forecast

sub-levels. However, the human forecasts – which incorporate model output – achieved a small but statistically significant

advantage in discriminatory skill. This indicates that, while the evaluated models alone do not yet reach the full discriminatory

power of human forecasters, their performance is already approaching operational usefulness in a setup as used in Switzerland.15

As model quality is expected to improve further in coming years, it is essential to ensure their optimal integration into the

operational forecasting workflow to realize the full potential of model-based support. Further research should explore how to

implement this effectively, how to integrate real-time avalanche occurrence data into model prediction pipelines, and how to

validate increasingly high-resolution avalanche forecasts.

1 Introduction20

Public avalanche forecasts aim to inform and warn recreational and professional forecast users about the danger of snow

avalanches at a regional scale. In many countries, the expected probability of avalanche release, given a specific triggering

level, and the potential size of avalanches is described by generalizing this information in one of five avalanche-danger levels

(lowest: 1 (low) to highest: 5 (very high), EAWS, 2023; avalanche.org, 2024). Avalanche conditions are then communicated
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using a mix of formats, including tabular, graphical or text formats including a mix of symbols, classes, or words (e.g., Hutter25

et al., 2021). These forecasts are produced by professional forecasters making judgments based on a variety of data sources,

including measurements, observations, numerical weather prediction models, and – increasingly – predictions from physics-

based snowpack models as Crocus or SNOWPACK (e.g., Morin et al., 2020). The latter models are often combined with

statistical models or machine-learning approaches (e.g., Pérez-Guillén et al., 2022; Fromm and Schönberger, 2022; Hendrick

et al., 2023), which aim to make complex, multi-layered snow-cover simulations more accessible to forecasters by extracting30

and summarizing information relevant to the forecasting task (e.g., Horton et al., 2020; Herla et al., 2022; Maissen et al., 2024).

While forecasting chains such as SAFRAN-Crocus-MEPRA have been used operationally for many years in France (Durand

et al., 1999), recent advances now allow simulations at much higher spatial and temporal resolutions – down to hourly scales and

specific points – compared to the broader scales typically used in regional avalanche forecasting (e.g., hundreds of km2, Techel

(2020, p. 22)). These high-resolution snow-cover predictions can serve as valuable practical tools for forecasters – helping35

them test assumptions and refine their mental models, for instance regarding expected snowpack conditions and the evolution

of snowpack stability. Moreover, spatially interpolating point or gridded predictions allows predictions for arbitrary points in

space and time as well as backcasting for avalanche events at specific locations. In addition to providing reproducible forecasts

at higher resolution, model-based forecasting is likely to free up expert time for other tasks – for example, communicating to

professional and recreational mountain users.40

To date, distributed snow cover simulations or interpolated model predictions have primarily been validated by comparison

with forecasters’ expert judgment – such as the forecast presence of weak layers, avalanche problems, or danger levels (e.g.,

Herla et al., 2024, 2025; Maissen et al., 2024). This form of indirect validation, where model outputs at very local scales are

compared to regional forecasts or judgments prepared by experts makes interpreting lack of agreement challenging. When

model predictions and human judgments/forecasts differ, it often remains unclear whether forecasters or models were wrong45

(e.g., Herla et al., 2025). Given recent advances in snow-cover and snow-stability modeling, driven by developments in both

physics-based modeling and machine learning, we therefore pose the question: How close is public avalanche forecasting

to transitioning from human-driven analysis to fully automated, model-driven methods? This raises the question: Are high-

resolution model predictions "good enough" to complement or even replace those made by professional forecasters? To answer

this, we need a benchmark defining what "good enough" means. Given the challenges in validating avalanche forecasts in50

general, we define this benchmark through the use of traditional, primarily human-made public avalanche forecasts. Thus, we

deem model-driven forecasts to be adequate when they independently forecast avalanche danger with a similar skill to expert

forecasters, where both the human and the model forecasts are evaluated against objective data like avalanche occurrence.

Public avalanche danger scales are based on the principle that the likelihood, number, and size of avalanches increase non-

linearly with rising avalanche danger levels (e.g., Schweizer et al., 2020; Techel et al., 2022; Winkler et al., 2021). In line with55

this core concept of public avalanche forecasting, we evaluate the discriminatory skill of spatially interpolated model predic-

tions and human forecasts by comparing avalanche events with reference distributions that represent the base-rate conditions

in the Swiss Alps over three forecasting seasons. This approach enables an objective, data-driven comparison of model-based

and human forecasts. Specifically, we address the following questions: (1) Do spatially interpolated model predictions re-
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flect the observed increase in avalanche occurrence – either in terms of natural avalanches or locations susceptible to human60

triggering? (2) Do fully data- and model-driven predictions of snowpack stability or avalanche danger distinguish between

avalanche-relevant conditions with similar skill to that of human danger level forecasts in the public avalanche bulletin?

2 Models in support of avalanche forecasting

2.1 Recent developments

Recent years have seen rapid growth in the use of models aiming to support avalanche forecasting. Based on physics-based65

snow-cover simulations using the SNOWPACK or CROCUS models (Lehning et al., 2002; Vionnet et al., 2012), numerous

statistical and machine-learning models have been developed to provide predictions of potential snow-cover instability (e.g.,

Monti et al., 2014; Richter et al., 2019; Mayer et al., 2022), the likelihood of natural avalanche occurrence (Viallon-Galinier

et al., 2023; Hendrick et al., 2023; Mayer et al., 2023), the presence and characterization of specific avalanche problems (e.g.,

Reuter et al., 2022; Perfler et al., 2023), predictions of danger levels (Fromm and Schönberger, 2022; Pérez-Guillén et al.,70

2022; Maissen et al., 2024) or similarity assessments of simulated snow-cover profiles (Bouchayer, 2017; Herla et al., 2021)

allowing spatial clustering of distributed snow-cover simulations (e.g. Horton et al., 2025). Typically, these models were trained

and validated using observations or judgments made by observers or professional forecasters (e.g., Pérez-Guillén et al., 2022;

Herla et al., 2025; Pérez-Guillén et al., 2025). With the aim to support forecasters in their decision-making process, some

models are now used in operational forecasting processes - for instance in Canada (Horton et al., 2023), France (Morin et al.,75

2020), or Switzerland (van Herwijnen et al., 2023).

2.2 Models used in Switzerland

In the following, we briefly introduce three models, which are used in this study. These models provided live predictions

in Switzerland and were accessible to avalanche forecasters at the WSL Institute for Snow and Avalanche Research SLF,

responsible for producing the national public avalanche forecast, during forecast production. These three models are used to80

assess dry-snow (slab) avalanche conditions.

2.2.1 Danger-level model

The danger-level model, a random-forest classifier (Breiman, 2001), was trained with a large data set of danger levels that had

undergone judgment-based quality control (Pérez-Guillén et al., 2022). The model uses features describing both meteorological

conditions and snow-cover properties simulated with the SNOWPACK model. The classifier predicts probabilities (Pr(D = d))85

for four of the five avalanche danger levels (1 (low) to 4 (high)). From these, the most likely danger level can be extracted. In

addition, two further model outputs are used operationally: (1) a continuous value derived from the probability-weighted sum

of the danger levels,
∑4

d=1Pr(D = d) · d (Maissen et al., 2024; Pérez-Guillén et al., 2025); and (2) probability values linked

to specific danger levels, such as Pr(D = 4).
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Figure 1. (a) Distribution of automated weather stations (AWS) in the Swiss Alps, at which SNOWPACK simulations were run. DEM

(source: Federal Office of Topography swisstopo) (b) Schematic representation of the operational model pipeline for computing the nowcast

and forecast predictions.

2.2.2 Instability model90

The instability model assesses snow-cover simulations provided by the SNOWPACK model with regard to potential instability

related to human-triggering of avalanches (Mayer et al., 2022). The random-forest model uses six variables describing the

potential weak layer and the overlying slab to predict the probability that a snow layer is potentially unstable. The output

probability ranges from 0 (a layer was classified as stable by all the trees) to 1 (classified as unstable by all trees). All simulated

layers are assessed using this procedure. In the setup used for forecasting, the layer with the highest probability of instability95

(Prinstab) is determined and considered as decisive in characterizing this profile, as suggested by Mayer et al. (2022).

2.2.3 Natural-avalanche model

The natural-avalanche model is a simple one-parameter logistic regression model and comes in several variations: Its input

either consists of the 1-day or 3-day sum of the simulated new snow or the output of the instability model (Prinstab) (Mayer

et al., 2023). Trained on a data set of natural avalanches near automated weather stations (AWS), models then predict the100

probability of at least one dry-snow avalanche of size 2 or larger occurring at the same aspect and elevation as used in the

snow-cover simulations. In the operational setup, predictions from three models are combined using a weighted mean: the

1-day and 3-day new-snow models each contribute a weight of 0.25, while the instability model based on Prinstab contributes

0.5 (Trachsel et al., 2024). Including both short-term snow accumulation and snowpack instability ensures that the combined

forecast reflects both the triggering potential due to new snow loading and structural weaknesses in the snowpack. We refer to105

the resulting probability as PrnatAval.
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2.2.4 Operational setup in Switzerland

In Switzerland, operational snow-cover simulations are available at the locations of 147 AWS (SLF, 2024), of which 142 are

located throughout the Alps (Fig. 1a). Most of these stations are located at the elevation of potential avalanche starting zones

(median elevation: 2265 m a.s.l., min-max: 1258-2953 m a.s.l.). For nowcast predictions, SNOWPACK is driven using half-110

hourly or hourly measurements obtained from the network of AWS (Fig. 1b, step 1). The snow cover is simulated
:::::
Snow

:::::
cover

:::::::::
simulations

:::
are

:::::::::
performed

::::
with

::::::
outputs

::::::
written

:
at 3-hour intervals at the location of the AWS

:
.
::::::::::
Simulations

::
are

:::::::::
conducted for flat

terrain and for four virtual slopes (
:
– North, East, South, West )

:
– with slope angles of 38°, corresponding to typical avalanche

terrain (Morin et al., 2020). In forecast mode (Fig. 1b, step 2), snow cover simulations are initialized using the most recent

nowcast simulations. Simulations are driven by the 1 km-resolution numerical weather prediction (NWP) models operated by115

MeteoSwiss (COSMO1 until 2023/2024 (COSMO, 2025), ICON-EPS-CH1 from 2024/2025 onwards (MeteoSwiss, 2025)).

All SNOWPACK input parameters obtained from the NWP models – such as wind speed, radiation, air temperature, humidity,

and precipitation – are downscaled to the location of the AWS (Mott et al., 2023) using methods described in detail in Mott

et al. (2023, Table 1). This provides forecast snow cover simulations up to 27 hours ahead with a temporal resolution of three

hours. ML models
::::
such

::
as

:::
the

:::::::::::
danger-level

::::::
model,

:::
the

::::::::
instability

::::::
model,

::::
and

:::
the

::::::::::::::
natural-avalanche

::::::
model provide predictions120

for flat terrain and for the virtual slopes at the location of the AWS for each of the 3-hour forecast and nowcast time steps.

Operationally, model predictions are primarily visualized on maps, sometimes as time series of predictions aggregated by

region or elevation. To ease recognition of spatial patterns, predictions are interpolated in two-dimensional space.

3 Data and Methods

We structure this section on data (Section 3.1) and methods (Section 3.2) around our two research questions (RQ): (1) Do125

spatially interpolated model predictions reflect the observed increase in avalanche occurrence – either in terms of natural

avalanches or locations susceptible to human triggering? (2) Do fully data- and model-driven predictions of snowpack stability

or avalanche danger discriminate conditions with similar skill as the human danger level forecasts published in the public

bulletin?

Figure 2 provides an overview of the study design and illustrates how the data and methods sections align with the two RQs.130

We first introduce the data: model predictions (Section 3.1.1), event and reference grid point datasets (Section 3.1.2), and the

human avalanche forecast used as a benchmark for RQ2 (Section 3.1.4). We then describe the interpolation approach (Section

3.2.1) and the derivation of event ratios used in both analyses (Section 3.2.3). Finally, for RQ2, we explain how model outputs

are transformed and analyzed to enable direct comparison with human danger-level forecasts (Section 3.2.4). Each step in the

methods corresponds to elements in Figure 2 and links directly to the data processing and evaluations required to address the135

two research questions.
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Figure 2. Study layout. Forecasts – either model predictions (left) or human danger level forecasts (right) – are interpolated to locations

of interest using regression kriging (for models) or the 1-level rule (for human forecasts). These locations include avalanche events and

reference grid points. This results in two parallel datasets: one focused on natural avalanche occurrence, and one on locations susceptible

to human triggering. From these, we derive distributions that reflect both the range of forecast conditions during the study period (base-rate

distribution) and the conditions on event days. Depending on the research question (RQ, red boxes), either only models are analyzed (RQ1)

or model predictions are compared to human forecasts (RQ2).

3.1 Data

We used data from three avalanche forecasting seasons (2022/2023 to 2024/2025).

3.1.1 Model predictions

We analysed the model predictions as described in Section 2.2.4
:::::::
resulting

:::::
from

:::
the

:::::::::
operational

:::::
setup

:::::
(Sect.

:::::
2.2.4). In all cases,140

predictions for specific aspects (e.g., N, E, S, W) were used: the probabilities obtained with the instability model (Prinstab)

and the natural-avalanche model (PrnatAval). For the danger-level model, we derived the probability for danger level D ≥
3(considerable), referred to as PrD≥3. We chose this formulation instead of using the most likely danger level or the continuous

probability-weighted sum of the danger levels described in Section 2.2.1, as it reduces the output to a probability between 0 and

1. Moreover, and in contrast to PrD=2 or PrD=3, PrD≥3 by itself differentiates well between the predicted most likely danger145

levels
::::::::
simplifies

:::
the

:::::::
multiple

:::::::::::
probabilities

:::::
model

::::::
output

::::
(one

::::::::::
probability

::
for

:::::
each

::::::
danger

:::::
level)

:::
into

::
a
:::::
single

::::
and

::::
more

::::::
easily

::::::::::
interpretable

:::::::::
probability

:::::
value

:::::::
without

::::::
loosing

::::
too

:::::
much

::::::::::
information (see also Figure A1 in the Appendix and Pérez-Guillén

et al. (2025))and is strongly correlated with the continuous probability-weighted value . This
:
.
:::::::::
Converting

:::
the

::::::
danger

::::::
rating
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Table 1. Data overview for reference distribution (ref ) and events (Ev) for the respective models and data subsets. Shown are the respective

number of days or data points used in the analysis.

event type model days ref Ev

natural avalanches natural avalanchea 299 8× 105 1960

instability 395 11× 105 2660

danger levelb 386 11× 105 2547

human-triggered avalanches instability 395 11× 105 1078

danger levelb 386 11× 105 1046

a no data in 2022/2023, b no data in Dec 2023 and Jan 2024

:::::
model

::::::
output

:::
into

::
a
:::::
single

:::::
value

:::::::
between

::
0

:::
and

::
1 allowed us to interpolate (Sec. 3.2.1), visualize and analyze (Sec. 3.2.1) the

danger-level model predictions in the same way as the other two
:::
use

:
a
::::::::
consistent

:::::::
analysis

::::::::
approach

:::
for

:::
all

::::
three

::::
ML models.150

For the purpose of this analysis, we relied exclusively on model predictions calculated in real time during the forecasting

season. Crucially, this means our evaluation is not based on reanalysis data, but rather forecasting of events in an operational

context. We used simulations available at 15.00 local time (LT), the time when forecasters meet to discuss and produce the

forecast for the following day (Figure 1b). From these, we extracted the forecast predictions valid for the following day at

12.00 LT. Note that sometimes data were missing, either because the model was not available at the time (i.e., no data for155

natural-avalanche model in forecast-mode in 2022/2023 season, as it was only developed in 2023; Mayer et al., 2023), or

due to a re-engineering of the data-model pipeline (no forecast predictions for danger-level model for parts of the 2023/2024

season)(Table ??
:
1).

3.1.2 Events and reference grid points

We consider the reported occurrence of an avalanche triggered by natural causes or by human load as an event. However,160

defining non-events is much more challenging since non-events are typically not reported, and the absence of an observed

avalanche does not mean there was no avalanche (Hendrick et al., 2023; Mayer et al., 2023). We therefore also extracted a subset

of grid points from a digital elevation model (Federal Office of Topography swisstopo) to derive distributions representing the

range of conditions over the study period as a reference. Since no assumptions are made about the occurrence of events at these

locations, they may include the locations and conditions of avalanche events. However, since avalanche events are rare, these165

reference distributions predominantly reflect non-event conditions and provide a baseline for comparing the conditions under

which avalanches occurred.

Events: avalanches

In Switzerland, approximately 80 observers or members of local avalanche commissions provide daily reports of avalanches

occurring in their area of observation. Apart from avalanches documented by these observers, additional reports may come170
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from field observers, who are also part of the observer network, or from the general public. The reported details of avalanches

include their location and estimated time of occurrence, size categorized on a scale of 1 to 5 as per EAWS (2019), moisture

content (classified as dry or wet), avalanche type (such as slab or loose-snow avalanche), and the triggering mechanism (such

as natural release or human-triggered), following guidelines from SLF (2020). Location information generally refers to the

top of the starting zone (coordinates, slope aspect, elevation). For the purpose of this analysis, we consider an event to have175

occurred at the location and date as reported
::::::::
neglecting

::::::::
potential

::::::::::
uncertainties

::
in
:::
the

::::::::
observed

::::
data.

Natural avalanches. We extracted all avalanches of size 2 or larger, classified as a dry slab avalanche with trigger type

natural release. In total, 2977 avalanches fulfilled these criteria during the three seasons. These were located at a median

elevation of 2509
::::
2510 m (IQR: 2307

::::
2310

:
- 2696

::::
2700 m).

Human-triggered avalanches. For human-triggered avalanches, we considered reported dry-snow slab avalanches with180

trigger type human, if the avalanche was either classified as size 2 or larger or if a person was caught in the avalanche.

As a large share of these avalanches was reported by the public, we checked the location, size and moisture content for

plausibility whenever possible. In total, during the three seasons, 1223 avalanches fulfilled these criteria. Of these, 32% (386)

were avalanches with at least one person being caught. Human-triggered avalanches were located at a median elevation of

2480 m (IQR: 2245
::::
2250

:
- 2708

::::
2710 m).185

Reference grid points

In many regions and on many days, we lacked reliable information on locations where avalanches did not occur. To overcome

these limitations and to enable meaningful normalization of event frequencies, we defined a reference set of locations that

captures the range of conditions typically encountered across the forecast area and time period – without making assumptions

about avalanche occurrence or human activity.190

This artificial set serves as a neutral baseline against which observed events can be compared. It allows us to compute

event ratios (described in detail in Section 3.2.3) that are interpretable as relative likelihoods of avalanche occurrence under

specific forecast or model-predicted conditions. By anchoring the denominator in a consistent, well-distributed sample of

terrain relevant to both natural avalanche release and winter recreation (which is assumed to correlate with locations where

human-triggered avalanches were recorded), we minimize biases due to missing or unevenly distributed non-event data since195

we normalize across potential avalanche rather than all terrain.

To generate reference points, we randomly sampled
:::
5%

::
of

:::
the

::::
grid

::::::
points from a 1 km resolution elevation grid within an

elevation range between 1600 and 3000 m a.s.l.. This range was chosen to match the elevations at which most avalanche events

were observed and where most of the AWS are located (Section 2.2.4), and as these are the elevations typically described in the

public avalanche forecast and frequented by winter backcountry recreationists (e.g., Winkler et al., 2021). To better reflect the200

observed
:::::::
elevation distribution of avalanche occurrences, we applied

::::
used a kernel density estimate to

::
of the elevation distribu-

tion of observed avalanches when randomly sampling
::
to

:::::
guide

:::
the

::::::
random

::::::::
sampling

::
of

:
5% of grid points. As this approach did

not fully cover all micro regions, the smallest spatial units used in human forecasts (see white polygon boundaries in Figure 3),

we additionally sampled two random points above 1600 m a.s.l. from each of the remaining regions. The resulting reference
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Figure 3. Map of Switzerland showing the spatial distribution of the randomly sampled subset of grid points used to obtain reference

distributions. White polygon outlines delimit the spatial extent of the micro regions, the smallest spatial units used in the human avalanche

forecast. (DEM and rivers/lakes - source: Federal Office of Topography swisstopo)

set shown in Figure 3 comprises 709 grid points with a median elevation of 2402
::::
2400 m (IQR: 2202

::::
2200 - 2603

::::
2600 m). It205

is therefore both geographically well distributed and representative of the elevation range relevant to avalanche forecasting and

winter backcountry recreation while permitting comparably efficient computation.

3.1.3 Snow-line estimates

The automatic weather stations (AWS )
:::::
AWS used for avalanche forecasting in Switzerland are primarily located at or above

the tree line, with few stations situated below 1700 m (Section 2.2.4). Due to sparse data coverage at lower elevations, we210

required an estimate of the elevation below which no continuous snow cover existed on steep slopes, and where avalanche

release was therefore not possible. For this purpose, we used daily estimates of the snow line – the approximate elevation

above which a continuous snow cover was observed on steep north- and south-facing slopes – based on reports from study plot

and field observers across Switzerland. The snow line is recorded in 200 m intervals SLF (2020)
::::::::::
(SLF, 2020). If the snow line

could not be visually confirmed, no estimate was reported. On average, over 100 snow-line estimates were available per day215

for each aspect.

3.1.4 Public avalanche forecast

To answer research question
:::
RQ 2, we used the public avalanche forecast as benchmark forecast (Figure 2).

We extracted the forecast danger level (D) and the associated sub-level qualifier (s, combined as Ds) from the forecast

published daily by the WSL Institute for Snow and Avalanche Research SLF at 17:00 local time (LT). This forecast is valid220

until 17:00 LT the following day. We extracted information related to the severity of dry-snow avalanche conditions, including

the sub-level refining the danger level, and the indicated elevation threshold and aspect range. For danger level 1 (low), no

sub-level, elevation threshold, or aspect range is provided (SLF, 2023).
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Sub-levels have been used internally since 2017 (Techel et al., 2020b) and were publicly introduced in the Swiss avalanche

forecast in December 2022 (Lucas et al., 2023). They provide a finer-grained and therefore more nuanced representation of the225

severity of avalanche conditions than the five danger levels alone. In general, higher forecast sub-levels correspond to a greater

number of locations prone to avalanche release and a higher likelihood of larger avalanches (Techel et al., 2022).
::
In

::::
this

:::::
study,

::
we

:::
use

:::
the

:::::::
forecast

::::::::
sub-level

::
as

::
a

:::::
proxy

:::
for

:::
the

:::::::::
probability

::
of

::::::::
avalanche

:::::::
release.

3.2 Methods

We begin by describing the methods common to both research questions, and then outline additional steps specific to RQ2.230

3.2.1 Spatial interpolation

We spatially interpolated point data – specifically, model predictions and snowline estimates – to arbitrary locations in avalanche

terrain, including observed avalanche locations and
::
the

::::::::
locations

::
of

::::::::
observed

::::::::
avalanche

::::
start

::::::
zones

:::
and

::
to

:
the randomly sam-

pled reference points
::
in

::::::::
avalanche

::::::
terrain. To do so, we employed regression kriging (RK) (Hengl et al., 2007), a geostatistical

method that combines a deterministic regression model with kriging of the residuals.235

This approach was well suited for our application, as it captures both spatial and elevational variation in avalanche conditions.

In our implementation, elevation was used as a predictor in the regression component. The remaining spatial structure –

unexplained by elevation – was interpolated using kriging, allowing us to better preserve local variability. Compared to simple

ordinary kriging, RK enables the inclusion of environmental gradients, such as the varying magnitude of change with elevation.

Compared to purely deterministic interpolation, it reduces bias introduced by unmodeled spatial autocorrelation. This hybrid240

method therefore offers improved interpolation accuracy and physical plausibility in mountainous terrain, where elevation-

dependent and location-specific patterns dominate.
:::
This

::::::::
approach

::::
was

:::
well

::::::
suited

::
for

::::
our

:::::::::
application,

::
as

::
it
:::::::
captures

::::
both

::::::
spatial

:::
and

:::::::::
elevational

::::::::
variation

::
in

:::::::::
avalanche

:::::::::
conditions.

::
In

::::
our

:::::::::::::
implementation,

::::::::
elevation

::::
was

::::
used

::
as

::
a
::::::::
predictor

::
in

:::
the

:::::::::
regression

:::::::::
component.

::::
The

:::::::::
remaining

:::::
spatial

::::::::
structure

:
–
:::::::::::
unexplained

::
by

::::::::
elevation

:
–
::::
was

::::::::::
interpolated

:::::
using

:::::::
kriging,

:::::::
allowing

:::
us

::
to

:::::
better

:::::::
preserve

::::
local

:::::::::
variability.

:
245

Some avalanche events were recorded on compound
::::::::::
intermediate

:
aspects (e.g., NE, SW). For these cases, we approximated

model predictions by averaging between the corresponding primary aspects
:::::::
cardinal

:::::::
direction. For example, for NE, we used

the mean of North and East predictions. We applied the same logic to snowline estimates (Section 3.1.3): for East, we averaged

North and South; for NE, we used a weighted mean of North (0.75) and South (0.25). For snowline elevation, any point below

or at the snowline was assigned Pr = 0.250

To optimize kriging performance, we tested several settings using leave-one-out cross-validation on a random subset of three

cases per model. Following best practice (e.g., Hengl et al., 2007), we applied a logistic transformation to all Pr values prior to

interpolation, setting Pr = 0 and Pr = 1 to 0.001 and 0.999, respectively. All interpolation steps were implemented in R using

the sp and gstat packages (Pebesma, 2004; Gräler et al., 2016; Pebesma, 2018; Pebesma and Bivand, 2023).1

1Interpolation scripts are available in the code repository listed at the end of this manuscript.
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Figure 6. Interpolated predictions (natural-avalanche model, forecast-mode), valid for 11 March 2024 for three elevations (left: 1800 m,

middle: 2200 m; right: 2600 m) and two aspects (upper row: North, lower row: South). For visibility, grid points 400 m below and all points

above the indicated elevation are coloured. The elevation of these grid points is held fixed.

points, allowing for instance the derivation of weak-layer type, stability and depth in a region (e.g., Herla et al., 2024) or for

specific grid-points. However, in Canada, where initially snow-cover simulations were simulated for all points of the NWP grid,

there has been a change to running SNOWPACK at a small number of select grid-points only, due to computational resources415

and largely redundant information contained in neighbouring grid cell simulations (Horton et al., 2024)check Simon’s paper

again that this is correct.

Model pipelines are complex, consisting of numerous steps, each with their own potential error sources. A particularly

challenging aspect is that machine-learning models are specifically trained on output from snow-cover simulations. If this

model is being adapted, the subsequent models require retraining.necessary to mention? omit?420

Should we discuss the actual findings in detail? For example, differences between patterns seen when using reference distri-

butions compared to GPX tracks?

7.4 Outlook and future directions

7.4.1 Avalanche forecasting

The performance of the avalanche forecasting models has shown promising results, indicating that these models can achieve a425

performance comparable to that of human-made regional avalanche forecasts, when interpreted using a simple 1-Level-Rule.

– Integration of models in forecasting: It is evident – from this study, but also from numerous recent studies (e.g., Herla

et al., 2023, 2024; Techel et al., 2022; Pérez-Guillén et al., in prep.), that now is the time to integrate forecasting models

18

Figure 4. Interpolated predictions (natural-avalanche model, forecast-mode), valid for 11 March 2024 for three elevations (left: 1800 m,

middle: 2200 m; right: 2600 m) and two aspects (upper row: North, lower row: South). For visibility
::::::::
readability,

:::::::::
interpolation

::
is

:::::
shown

:::
for

::
all grid points

:::::
located

:::::
above

:::
and

::
up

::
to
:
400 m below and all points above the indicated elevationare coloured. The elevation of these grid

points is held
:
,
::::
using

:
a
:
fixed

::::::
elevation

:::
for

:::::::::
interpolation.

Although we interpolated to specific locations – such as the known coordinates of avalanche release zones – we emphasize255

that interpolation yields regional patterns, not slope-specific predictions. As illustrated in Figure 4, holding elevation and aspect

constant, the resulting spatial variation primarily reflects larger-scale gradients. Within-region differences arise mainly from

variations in elevation (captured in the regression component) and aspect-specific snow cover modeling (reflected in the aspect

dimension of the model inputs).

3.2.2 Base-rate
::::::::
Reference

:
distributions of model predictions260

To describe the forecast conditions over the three winter seasons, we derived base-rate distributions for both the model predic-

tions and the human-generated danger levels. For each reference location and for each of the four primary aspects (North, East,

South, West), we first interpolated the model-predicted probabilities using regression kriging (Section 3.2.1). These interpola-

tions were performed for all days on which model output was available (Table ??
:
1).

3.2.3 Evaluating model predictions with events and reference distribution265

To address the first research question –
:::::::::
investigate

:
whether the models reflect

::::::
capture

:
the expected increase in avalanche

occurrence probability with increasing predicted probabilities– we used ,
:::
we

::::::
applied

:
a bin-wise event ratio approachthat enables

a direct and interpretable comparison between model outputs and observed avalanche activity. This evaluation framework

11



quantifies how often avalanches occur relative to a reference baseline for each probability level. We consider this approach a

reasonable approximation of the avalanche occurrence probability under specific (forecast) conditions. Furthermore, it is well270

suited for comparing probabilistic forecasts across models, as it highlights discriminatory power while accounting for differing

event frequencies.

To account for sampling uncertainty — especially relevant given the relatively small number of events — we applied

bootstrap sampling with replacement, repeating the procedure 100 times.

For each bootstrap sample, we binned the model-predicted probabilities (Pr) into intervals
:
.
:::
We

:::::::
grouped

::::
the

::::::::
predicted275

::::::::::
probabilities

::::
into

::::
bins of width 0.05 . For each model, we then counted the number of predictions falling

:::
and

:::::::
counted

::::
how

::::
many

::::::::::
predictions

:::
fell into each bin from both the reference locations (ref

::
for

::::
both

:::
the

::::::::
avalanche

::::::
events

:::
(Ev) and the avalanche

events (Ev
:::::::
reference

::::::::
locations

:::::
(ref ). To quantify the relationship between predicted probabilities and avalanche occurrence,

we computed the event ratio Rm,i as:

Rm,i =
N(Ev)m,i

N(ref)m,i
, (1)280

where N denotes the number of data points in bin i for model m. This ratio describes how often an avalanche event occurred

::::
event

::::
ratio

:::::::::
quantifies

:::
how

:::::
often

:::::::::
avalanches

:::::
occur

:
relative to the reference baseline for each probability bin,

::::::::
revealing

::::
how

::::
well

::
the

::::::
model

:::::::::::
distinguishes

::::::::::::::
avalanche-prone

::::::::
conditions

:::::
from

:::
the

::::::::::
background.

To
::::::
account

:::
for

:::::::
sampling

::::::::::
uncertainty

:
–
:::::::::
especially

:::::::
relevant

::::
given

:::
the

::::::::
relatively

:::::
small

:::::::
number

::
of

:::::
events

::
–

::
we

:::::::
applied

::::::::
bootstrap

:::::::
sampling

::::
with

:::::::::::
replacement

:::::
before

::::::::::
calculating

::
the

:::::
event

::::::
ratios,

::::::::
repeating

:::
the

::::::::
procedure

::::
100

:::::
times.285

::
To

:
facilitate comparison across models, we also computed a relative ratio (RR) by normalizing the event ratio in each bin

using the overall base-rate event ratio Rm, defined as:

Rm =
N(Ev)m
N(ref)m

, (2)

and

RRm,i =
Rm,i

Rm
. (3)290

::
To

::::::::
facilitate

::::::::::
comparison

:::::
across

:::::::
models,

:::
we

::::
also

::::::::
computed

::
a

::::::
relative

::::
ratio

:::::
(RR)

:::
by

::::::::::
normalizing

:::
the

:::::
event

::::
ratio

::
in

:::::
each

:::
bin

::::
using

:::
the

::::::
overall

::::::::
base-rate

:::::
event

::::
ratio

::::
Rm,

::::::
defined

:::
as:

:

RRm,i =
Rm,i

Rm
,

:::::::::::::

(4)

:::::
where

:::
Rm::

is
:::
the

::::
ratio

:::
of

::
the

:::::::
number

::
of

:::
all

:::::
events

::::
and

:::
the

::::::
number

::
of

:::
all

::::::::
reference

:::::
points

:::
for

::::
each

::::::
model:

:

Rm =
N(Ev)m
N(ref)m

,

::::::::::::::

(5)295

:
. This normalization enables direct comparison of patterns across models, independent of absolute event frequencies.

Unless stated otherwise, we report Rm,i or RRm,i as the median from the 100 bootstrap samples, and plot the corresponding

90% percentile intervals in the figures. To assess whether R increases monotonically with Pr, we calculated the Spearman

rank-order correlation coefficient (ρ) between Rm,i and the midpoints of the corresponding probability bins Prm,i.
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3.2.4 Analysis for RQ2: Evaluating the discriminatory skill of model predictions and human forecasts300

To address RQ2, we assess
:::::::
assessed how well interpolated model predictions and forecast sub-levels discriminate between

conditions at reference locations and at avalanche events. To enable a direct comparison between continuous model outputs

and the discrete sub-levels of the public avalanche forecast, we apply
::::::
applied a consistent procedure for assigning forecast

values to specific locations and for binning model probabilities. This is
:::
was necessary because forecast avalanche danger is

always the highest danger
:::::::
expected

::
to

::
be

:
found in a region, usually for a specified range of terrain types, elevations and aspects.305

This involves
:::::::
involved

:
two additional steps (see also Figure 2).

Translating the regional avalanche danger forecast to local points

We used the published danger level and sub-level (Ds) from the Swiss avalanche bulletin (see Section 3.1.4) as a benchmark

for comparison. For each point of interest, we checked whether it was located within the elevation and aspect range specified

in the forecast. If so, we assigned the published Ds to that location. Otherwise, we applied the 1-level rule, subtracting one310

level to estimate local danger conditions. This rule-of-thumb has proven effective for approximating avalanche danger outside

the specified forecast ranges (SLF, 2023; Winkler et al., 2021). The resulting adjusted value is referred to as D∗
s .

This approach allowed us to assign a representative danger rating to each location and aspect, consistent with how forecasts

are typically interpreted in practice (SLF, 2023). It also approximates the expected reduction in danger with decreasing ele-

vation or less exposed aspects (Winkler et al., 2021), and thus forms the basis for both the reference distribution of human315

forecasts – comparable to the reference distributions obtained for model predictions (Sec. 3.2.2) – and the conditions present

when avalanches occurred.

Finally, we merged the model predictions and human forecast values by location and date, retaining only cases where both

D∗
s and model predictions were available. The discriminatory power of both approaches is then evaluated using normalized

event ratios, as described in Section 3.2.3. In addition, we calculate summary metrics to quantify discrimination strength. The320

following paragraphs outline the full procedure.

Binning model predictions to match forecast sub-levels

To compare spatially interpolated model predictions with the benchmark forecast (D∗
s ), we first transformed the continuous

model outputs into a format compatible with the discrete forecast sub-levels. Since D∗
s consists of a limited number of ordinal

classes, we binned model predictions such that the relative frequency of values in each bin matched the frequency distribution325

of D∗
s . This approach ensured that each bin corresponded to an equally sized sub-group, reducing distortions in the event ratio

(R) that might otherwise result from unequal sample sizes. It also enabled a fair and interpretable assessment of discriminatory

performance across comparable categories.

To derive the bin thresholds, we ranked all model-predicted probabilities in ascending order and divided them according

to the cumulative proportions of D∗
s in the corresponding reference set. As shown in Figure 5a, this procedure yields bin330

thresholds (thr) that align with sub-level frequencies. For example, in the subset combining the human avalanche forecasts

and the corresponding instability model predictions, 36% of all D∗
s values were rated as 1 (low). Setting the upper threshold
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Figure 5. (a) Example using the instability model: cumulative distribution of predicted probabilities (Prinstab), with bin thresholds derived

from the proportion of forecast sub-levels D∗
s (y-axis). Model-predicted probabilities are assigned to bins (light-blue labels 1 to 6) such that

each bin contains the same proportion of data as the corresponding sub-level class. The bold line shows the cumulative distribution of D∗
s ;

dotted lines indicate the thresholds (thr) separating bins. Note that thresholds for D∗
s ≥ 4− and bins ≥ 7 are not shown. (b) Probability

thresholds corresponding to sub-level bins for the three models in forecast mode. The values shown for the instability model match those in

panel (a).

for bin 1 at Pr = 0.32 ensured that 36% of the model predictions fell into this bin. Thresholds for subsequent bins (e.g., 2–6)

were derived in the same way, based on the cumulative distribution. The resulting thresholds for all three models are shown

in Figure 5b.
:::
Due

::
to

:::
the

::::
very

::::::
limited

:::::::
number

::
of

:::::
event

::::
data

:::::
points

::
at
:::::::::
D∗

s > 3+
::
for

:::
the

::::::::::::::
human-triggered

:::::::::
avalanche

::::
data

:::
set,

:::
we335

::::::::
combined

:::
the

::::::
highest

:::::
three

:::::::::
sub-levels

:::
into

::
a
:::::
single

:::::
class

::::::::::
representing

:::::::
danger

::::
level

::
4

:::::
(high)

::
or

::::
bin

::
8.

::
In

::::::::
contrast,

:::
for

::::::
natural

:::::::::
avalanches,

::
a
::::::::
sufficient

:::::::
number

::
of

::::::
events

::::
was

::::::::
available

::::
even

::
in

:::
the

:::::::
highest

::::
bins.

:::
To

:::::
allow

::::::::::
meaningful

:::::::::::
comparisons

::::::
across

::::::
datasets

::::
and

::::::
models,

:::
we

:::::
again

::::::::::
normalized

:::
the

::::
event

:::::
ratios

::
R

:::::
using

:::
the

::::::::
base-rate

::::
ratio

::::::::
obtaining

::::
RR

:::
(Eq.

:::
4).

:

We selected this proportion-based binning strategy to allow direct and fair comparisons with the human forecast, which

is issued in fixed sub-level proportions. Alternative approaches such as unsupervised clustering or categorization based on340

internal model thresholds (e.g., the three-category classification in the instability model proposed by Mayer et al. (2022))

were considered. However, clustering lacks a direct correspondence to the forecast structure, and fixed thresholds are either

unavailable or inconsistent across models. In contrast, the proportion-matching method provides a consistent and interpretable

framework for comparing discriminatory performance between models and human forecasts.

After assigning bins, we proceeded as described in Section 3.2.3: we counted the number of observations from avalanche345

events (Ev) and reference points (ref) in each bin or for each sub-level i, and computed the corresponding event ratio Rm,i

(Equation 1) and relative event ratio RRm,i (Equation 4) for each model m.
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Evaluating the discriminatory power of model predictions and human forecasts

Lastly, to assess the discriminatory power between neighboring bins or sub-levels, we derived the factor F
:
F , which sum-

marizes the average fold-increase in the relative event ratio RR
:::
RR between adjacent bins. For model m and bin i

::
m

::::
and

:::
bin350

:
i, we define:

Fm,i =
RRm,i+1

RRm,i
(6)

From the resulting set of values Fm,i::::
Fm,i, we computed two summary metrics: the median fold-increase Fm :::

Fm, and the

total fold-increase Ftotal,m ::::::
Ftotal,m, defined as the ratio of RR

:::
RR in the highest to the lowest bin:

Ftotal,m =
RRm,max

RRm,min
(7)355

Higher values of Fm and Ftotal,m::::
Fm :::

and
:::::::
Ftotal,m indicate a clearer separation of avalanche-relevant conditions, consistent

with the expected, non-linear, increase in avalanche release probability across forecast sub-levels, as shown by Techel et al.

(2022). Conversely, values of Fm,i ≤ 1
:::::::
Fm,i ≤ 1

:
suggest that this expected monotonic increase between neighboring bins or

sub-levels is not observed.

4 Results360

4.1 Model predictions

Figure 6 summarizes model predictions (Pr) for each of the three models (danger level, instability, natural avalanche), separated

by avalanche type: natural avalanches (left column) and human-triggered avalanches (right column).

4.1.1 Reference distributions

The reference distributions in Figure 6a and b represent the full range of model-predicted conditions across the study period.365

Note that the curves for the danger-level model and instability model
:
,
:::
the

::::::
curves in Figures 6a and b are identical, as they are

based on the same underlying grid points and model predictions (see also Table ??
:
1).

For the natural-avalanche model, predictions were strongly skewed toward low probabilities: over 50% of grid points had

predicted probabilities PrnatAval < 0.05. The danger-level model exhibited a similar but less pronounced skew, with approxi-

mately 25% of predictions below PrD≥3 < 0.05. In contrast, the instability model showed a more even distribution of predic-370

tions across the probability range.

The median predicted probabilities further underscore these differences: for the natural-avalanche model, the median was

PrnatAval = 0.04, suggesting that natural avalanche activity was rarely predicted at reference locations on an average day.
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For the danger-level model, the median prediction was PrD≥3 = 0.17, indicating that conditions at reference points would

typically have been predicted as levels 1 (low) or 2 (moderate). The instability model had a notably higher median value of375

Prinstab = 0.47, although this still falls within the "stable" category, as defined by Mayer et al. (2022, stable if Prinstab < 0.5).

4.1.2 Events

The model-predicted distributions differed strongly between the reference distributions and the event data set (Figure 6c and

d). Focusing on natural avalanches first, we observe that avalanche events were approximately similarly distributed across

the entire range of PrnatAval-values (Figure 6c), with a visible increase only for PrnatAval > 0.85. For the other two models380

the number of natural avalanches increased considerably and almost continuously with increasing Pr-values. The median

value was PrnatAval = 0.56, indicating thaton average the model predicted more than a
:
,
::
on

::::::::
average,

:::
the

::::::
natural

:::::::::
avalanche

:::::
model

::::::::
predicted

::
a

::::::
greater

::::
than 50% chance of at least one natural dry-snow avalanche occurring on event days. The median

values were high for the danger-level model (PrD≥3 = 0.79) as well as for the instability model (Prinstab = 0.86), which

correspond to a model-predicted danger level well within danger level 3 (considerable) and as potentially unstable according385

to the classification by Mayer et al. (2022, unstable if Prinstab ≥ 0.77).

Human-triggered avalanches were more frequent when the danger-level model and the instability model predicted higher

probabilities (Figure 6d). This pattern was much more pronounced for the instability model, with particularly many events when

Prinstab ≥ 0.8. Median Pr-values were lower for the data set of human-triggered avalanches (PrD≥3 = 0.57, Prinstab = 0.78)

compared to natural avalanche events.390

Pr-values differed significantly between events and reference distributions for all models (Wilcoxon rank-sum test: p <

0.001).

4.1.3 Event ratio

The ratio between the number of avalanche events and the corresponding reference distribution, normalized by the overall

mean event ratio, is referred to as the relative event ratio
::
As

::::::
shown

::
in

::::::
Figure

:::
6e,

:::
the

:::::::
relative

::::
event

::::::
ratios,

:
RR (Eq. 4). This395

metric provides a direct answer to our first research question: whether the model-predicted probabilities reflect the expected

increase in avalanche occurrence – either due to natural processes or human triggering.

As shown in Figure 6e, RR
:
, increased markedly with increasing probability value across all models for the natural avalanche

dataset. The natural-avalanche model exhibited a strictly monotonic increase, with a perfect Spearman rank-order correlation

(ρ= 1) between neighboring bins. The other two models also showed strong monotonicity (ρ= 0.99). Median increases be-400

tween adjacent bins ranged from F = 1.24 for the natural-avalanche model, to F = 1.35 for the danger-level model, and

F = 1.40 for the instability model. The total increase in RR between the lowest and highest bins (corresponding to Pr< 0.05

and Pr> 0.95) ranged from 72 (instability model) to 266 (natural-avalanche model), highlighting the models’ ability to differ-

entiate between stable and unstable conditions with respect to natural avalanche occurrence.
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Results for human-triggered avalanches (Figure 6f) followed a similar pattern (ρ≥ 0.98), though the magnitude of increase405

was less pronounced. The corresponding median bin-to-bin increases were F = 1.22 for the instability model and F = 1.12

for the danger-level model.

4.2 Comparison with benchmark forecast, the avalanche bulletin

We now compare model predictions with the sub-levels forecast in the public avalanche bulletin. To enable this comparison,

we assigned the rank-ordered model-predicted probabilities to bins such that each bin contained the same proportion of data410

points as the corresponding sub-level class in the bulletin (see Section 3.2.3). Due to the very limited number of event data

points at D∗
s > 3+ for the human-triggered avalanche data set, we combined the highest three sub-levels into a single class

representing danger level 4 (high) or bin 8. In contrast, for natural avalanches, a sufficient number of events was available even

in the highest bins. To allow meaningful comparisons across datasets and models, we again normalized the event ratios R using

the base-rate ratio obtaining RR (Eq. 4). Figure 7 shows the resulting relative ratios RR; additional details on the distributions415

of events and non-events are provided in the Appendix (Figures B1–B2).

Both the models and the bulletin forecasts exhibited monotonously increasing RR values with increasing bin number or

sub-level, with one exception: in the human-triggered avalanche dataset (Fig. 7b), the final bin for the human forecast showed

a drop, likely reflecting user adaptation to clearly dangerous conditions when danger level 4 (high) was published.

Overall, the results show that both model predictions and human forecasts discriminate avalanche occurrence with a compa-420

rable level of skill (Fig. 7a). In both datasets – natural and human-triggered avalanches – the relative event ratio (RR) increased

steadily with higher model probabilities and forecast sub-levels, as expected. While the human forecasts showed slightly

stronger increases, the differences were modest. The average increase between adjacent bins (F ) ranged from 2.20 to 2.26 for

the
::::
three

:::::::::::::
model-specific

:::
data

::::
sets

::::::::::
(instability,

::::::
danger

:::::
level,

:::
and

:::::::
natural

::::::::
avalanche

::::::
model)

:::
of

:::
the human forecasts, compared

to 1.63 for the instability model, 2.07 for the natural-avalanche model, and 2.0 for the danger-level model. The total increase425

from the lowest to highest bin (Ftotal) ranged from
:::::
varied

:::::::
between 1206 to

:::
and 1274 for the

::::
three

::::::::::::
model-specific

::::
data

::::
sets

::
of

::
the

:
human forecasts, and from 286 (instability model) to 1163 (danger-level model). Statistical testing confirmed

::::::::::
Statistically

:::::::::
comparing

::
the

:::::::::
respective

::::::::::
distributions

::
of
:::
the

::::
100

::::::::
bootstrap

:::::::
samples

::
for

:::::
each

::
of

:::
the

::::::::::::
model-specific

::::
data

:::
sets

::
of

::::::
human

::::::::
forecasts

:::
and

:::::::
models,

:::::::::
confirmed

:::
that

:
these differences were significant in most cases (Wilcoxon rank-sum test, p < 0.001), with the

exception of the natural-avalanche model (p= 0.08). These findings highlight that, even though the human forecasts achieved430

slightly better discrimination, the spatially interpolated model predictions – without human refinement – performed at a broadly

similar level.

For human-triggered avalanches (Fig. 7b), the observed increases in relative event ratio (RR) were less pronounced than for

natural avalanches, reflecting smaller effect sizes associated with human triggering. Still, both the human forecasts and model

predictions showed a consistent increase in RR with higher sub-levels and probabilities. The human forecasts achieved F val-435

ues between 1.53 and 1.67, compared to 1.46 and 1.48 for the models. Although the numerical differences were smaller than in

the natural avalanche dataset, they remained statistically significant (p < 0.01). This again suggests that, while expert forecasts
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showed slightly better discriminatory power, model predictions without human input still captured meaningful differences in

triggering likelihood.

5 Discussion440

This study addressed two research questions: (1) whether spatially-interpolated model predictions for natural and human-

triggered avalanches reflect observed variations in avalanche occurrence, and (2) whether these model-based predictions

discriminate avalanche-relevant conditions as effectively as the human-generated sub-level forecasts published in the Swiss

avalanche bulletin. We found that all three models captured patterns of avalanche occurrence well: model-predicted probabili-

ties were strongly and positively correlated with the event ratio R (Figure 6), our proxy for avalanche release probability. Both445

the model predictions and the human forecasts – interpreted using the 1-level rule – showed clear, exponential increases in

event ratio with rising bin or sub-level (Figure 7), with the human forecasts maintaining a small but consistent advantage.

In the following, we discuss the comparable discriminatory skill of model and human forecasts, the challenges of verifying

distributed predictions for rare and severe events, key assumptions and limitations of our study, and implications for the future

of avalanche forecasting – particularly regarding the integration of model-driven processes.450

5.1 Comparable discriminatory skill –
:
–
:
but humans still maintain a slight lead

Model-driven forecasts can be considered successful when they independently achieve a level of discrimination comparable to

that of expert-generated forecasts – and, crucially, do so at the spatial and temporal scales relevant to operational avalanche

forecasting. Our results indicate that this aim is increasingly within reach: both model predictions and human forecasts showed

consistently strong and exponential increases in the event ratio from stable to unstable conditions, suggesting that both ap-455

proaches effectively reflect variations in avalanche occurrence probability.

However, this similarity must be interpreted in light of an important asymmetry. While forecasters had access to model

output during forecast production — likely influencing the final danger levels — the model predictions were generated without

access to any human-generated information such as avalanche observations, recent activity reports, or field assessments. The

comparison was therefore unbalanced: it contrasts purely model-based predictions with human forecasts that integrated model460

data and benefited from broader situational awareness. Forecasters can draw on recent avalanche activity, on-the-ground snow-

pack observations, and knowledge of persistent weak layers – qualitative insights that are difficult to encode in current models

but which meaningfully affect human forecast decisions. That model predictions nonetheless performed at a comparable level

highlights the maturity of these modeling approaches and suggests they may already offer a robust and reliable foundation in

situations with limited observational data – for example, in remote regions.465

In summary, our findings highlight that model chains are no longer merely supplemental tools – they are approaching a level

of discriminatory skill that qualifies them as credible standalone components within avalanche forecasting workflows.
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5.2 Verification of distributed predictions of rare and severe events

Avalanches are generally rare but potentially severe events. Exceptions are situations of widespread instability or when avalanches

are very small. Public avalanche forecasts communicate the probability of these rare and severe events in a region through dan-470

ger levels, or by using symbols or narrative text descriptions (e.g., EAWS, 2023; Hutter et al., 2021). They can therefore be

considered a type of rare and severe event forecast (RSE), following the notion of Murphy (1991). Verifying RSE forecasts

is challenging due to the rarity of events, their localized nature, and the mismatch in scales between regional forecasts and

local events. In practice, for a specific point in avalanche terrain within a region, the probability of avalanche occurrence is

very low in most cases. We accommodated these challenges by interpolating to specific points and by evaluating the discrim-475

inatory power of human forecast and model predictions considering the increase in event ratio with increasing sub-level or

model-predicted probability rather than by classifying forecasts and predictions using absolute terms as ’right’ or ’wrong’. By

doing so, we avoided comparing (distributed) model predictions and treating forecasters’ best judgments as ground truth as is

often done due to a lack of objective data (e.g., Herla et al., 2025; Maissen et al., 2024). We consider this novel approach to

be an important contribution of our study, since it allows us to objectively link avalanche forecast danger levels to events and480

reference locations representing the range of avalanche terrain – a long standing challenge (Schweizer et al., 2003).

Avalanche records are indicators of events; unfortunately, these are notoriously incomplete (e.g., Hafner et al., 2021). Au-

tomated avalanche detection systems using ground-based or airborne technologies have the potential to allow a much more

systematic and continuous detection of events (e.g., Eckerstorfer et al., 2016; Fox et al., 2024; Hafner et al., 2022), particularly

with regard to occurrence and absence of natural avalanches. However, the avalanche detection rate is impacted by avalanche485

properties including the type (wet or dry) and size of avalanches (e.g., Mayer et al., 2020; Hafner et al., 2021). Nonetheless,

these systems likely provide the best means for obtaining increasingly complete avalanche records in the future, though they

still do not resolve the issue of recording non-events under additional loads.

While an avalanche is a clear and objective indication that the snowpack was susceptible to triggering given a certain trig-

gering mechanism (i.e., natural causes or additional loads from human activities) at the location and time of release, it remains490

conceptually and practically more challenging to be certain of non-events, as these require continuous monitoring of avalanche

activity at a specific location, and – in case of triggering given additional loads such as a skier – also requires knowledge about

whether a person skied a slope without releasing an avalanche. To our knowledge, GPS tracks are currently the most-widely

used means to track actual terrain choices of backcountry users (e.g., Sykes et al., 2020; Winkler et al., 2021; Degraeuwe et al., 2024)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Winkler et al., 2021; Degraeuwe et al., 2024; Sykes et al., 2025), and notionally also provide information on non-events.495

Note though that near misses or sloughs may have occurred, so these data are at best a proxy.

5.3 Limitations

The data-sets of natural and human-triggered avalanches represent only a small fraction of actual activity. Moreover, there is

uncertainty related to the exact location and timing of avalanches. For human-triggered avalanches, starting-zone coordinates

and release date were checked for plausibility (and corrected if needed), for natural avalanches this was not possible.500
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We analyzed predictions made by an operational model pipeline in real time. We made no attempts to improve any part of

the pipeline or to remove outliers as these errors are part of the pipeline as are human-made errors in the case of the human

forecasts.

We focused on the probability of avalanche occurrence, either due to natural causes or related to human-triggering. Avalanche

size, which is expected to increase with increasing danger level (Schweizer et al., 2020; Techel et al., 2020a), was not analyzed505

in detail. Avalanche size, however, is reflected in human
::::::
danger

::::
level forecasts and is therefore also implicitly contained in the

predictions by the danger-level model, as this model was trained using a historic data set of quality-checked avalanche forecasts

(Pérez-Guillén et al., 2022). In contrast, both the natural-avalanche model and the instability model were trained with a focus

on estimating the probability of avalanche release due to natural causes or due to a human load.

For the purpose of our analysis, we assumed that the widely used 1-level rule is a good approximation to apply the informa-510

tion provided in the human avalanche forecast to locations outside the aspects and elevations indicated in the public avalanche

forecast. Even though this rule-of-thumb has been used for many years to apply the bulletin to avalanche terrain during the

planning phase of ski tours (e.g., SLF, 2023), there are likely more suitable approaches, which reflect the more gradual –

rather than step-wise – increase of avalanche danger with elevation and aspect (Winkler et al., 2021; Degraeuwe et al., 2024).

Furthermore, for comparison between model predictions and human forecasts, we assigned rank-ordered, model-predicted515

probabilities to bins equal in size to the proportion of sub-levels. While this facilitated the comparison, it possibly split model

predictions in an unfavorable way, potentially reducing discrimination capabilities of model predictions.

For this analysis, we generated a reference distribution that reflects the range of conditions encountered across the three

forecasting seasons. This distribution served as our benchmark for comparison. Such an approach is particularly suitable for

evaluating the probability of natural avalanche occurrence. However, human behavior in avalanche terrain is influenced by520

both forecasted and perceived conditions (e.g., Winkler et al., 2021). As a result, the reference distribution does not fully

represent the true exposure of backcountry users, especially at higher danger levels: human presence in avalanche terrain

tends to decrease at level 3 (considerable) and drops sharply at level 4 (high) (Winkler et al., 2021; Techel et al., 2024b).

Nonetheless, the observed patterns in Figure 7b resemble those found by Techel et al. (2024a)2. Conceptually, if users were

unaware of conditions and did not adapt their behavior, the event ratio R would approximate the true probability of avalanche525

release due to human load, at least at a relative scale. Conversely, if users perfectly identified and avoided all unstable slopes, R

would underestimate this probability. In reality, behavior likely falls between these extremes. Therefore, while we consider the

reference distribution appropriate for validating the probability of natural avalanche release, its representativeness for human-

triggered avalanches remains uncertain – particularly because behavioral adaptations may differ depending on whether users

see the human forecast (visible) or remain unaware of the model output (invisible).530

2See also the respective analysis in the preprint of this study
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5.4 Outlook and future directions

Our results show that avalanche forecasting model chains have matured substantially in recent years. Their ability to discrimi-

nate avalanche-relevant conditions is now broadly comparable to human-made regional danger-level forecasts when interpreted

using a simple 1-level rule.

This and other recent studies (e.g., Herla et al., 2024, 2025; Techel et al., 2022; Pérez-Guillén et al., 2025; Maissen et al.,535

2024; Trachsel et al., 2024) highlight that the time has come to integrate model-based approaches more systematically into

operational avalanche forecasting. Such integration could take different forms: models may be used as additional data sources,

as intelligent summarizers of key information (e.g., Horton et al., 2025), or as independent "second opinions" that support

decision-making (e.g., Purves et al., 2003; Maissen et al., 2024; Winkler et al., 2024).

To ensure constant alignment with real-world conditions, model chains must incorporate additional data streams – partic-540

ularly real-time avalanche detection systems
::::
data – and remain robust when confronted with unfamiliar conditions not repre-

sented in the training data. Advances in snowpack physics and hybrid approaches such as physics-informed machine learning

(Raissi et al., 2019) offer promising avenues. Equally important is the spatially consistent integration of uncertainty.

As model performance continues to improve and approaches – or surpasses – that of human forecasters, a shift toward more

automated forecasting becomes increasingly feasible. In this context, forecasting systems must not only be accurate but also545

interpretable and resilient. Forecasting pipelines should include fallback strategies for data outages or infrastructure failures,

with human expertise acting as a critical safeguard, especially in data-sparse or rapidly evolving situations.

We also anticipate that avalanche forecasts will be produced at increasingly high spatial and temporal resolutions. However,

such forecasts must respect the limits imposed by data quality and availability. To ensure usability, clustering and aggregation

techniques will be needed to communicate these detailed outputs effectively. As automation advances, the role of human550

forecasters may shift – from producing forecasts to interpreting, validating, and communicating them. These tasks will remain

essential for ensuring trust, credibility, and user comprehension.

Eventually, model-based forecasts will also become directly available to end users. In principle, such products could already

be offered today – as this study suggests, with minimal loss in predictive performance relative to human forecasts. However,

interpreting these high-resolution outputs remains a challenge. Despite their apparent precision, model predictions are not555

slope-specific. The platform Skitourenguru exemplifies one way to bridge this gap: by combining regional forecasts with

terrain-based heuristics to produce location-specific assessments (Winkler et al., 2021; Degraeuwe et al., 2024).

In sum, avalanche forecasting is undergoing a transformation akin to that seen in weather forecasting over the past decades

(Young and Grahame, 2024). Data, computing power, and modeling capabilities have reached a point where machine-generated

avalanche forecasts can rival human forecasts in many respects. Key questions now lie ahead: How can ML-based models be560

adapted to rare or yet unseen conditions? How should high-resolution forecasts be communicated effectively? And what will

be the evolving role of human expertise in an increasingly automated avalanche forecasting landscape?
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6 Conclusions

We have shown that three spatially-interpolated models predicting avalanche danger, the probability of avalanche release, and

snowpack instability are capable of predicting expected increasing probabilities of avalanche release due to natural causes or565

human load. Moreover, the performance of these model predictions with regard to discriminating avalanche conditions with

different severity are broadly comparable to the respective skill of human forecasters in an operational setting expressing this

using danger levels including sub-level modifiers. Thus, fully data- and model-driven avalanche forecast pipelines – such as

the ones discussed in this study, are ready to become an integral part of the avalanche forecasting process, mimicking changes

to operational weather forecasting which have occurred over the last decades. Based on these findings, we conclude that public570

avalanche forecasting may be reaching a point where a transition from primarily human-made forecasts to machine-generated

forecasts is appropriate. The extensive network of real-time data and observations in Switzerland, coupled with high resolution

weather forecasting model output, may provide a particularly appropriate setting for such developments. Nonetheless, more

work is needed, including improving each step of forecasting pipelines, reliably predicting infrequently-occurring conditions,

validating distributed or spatially-interpolated predictions, optimally integrating models in the forecasting process, and – lastly,575

but crucially – effectively communicating spatially and temporally highly-resolved forecasts and their uncertainties to forecast

users.

Code and data availability. The data is available at the data repository: 10.16904/envidat.535. The R-Code will be made available at: https:

//gitlabext.wsl.ch/TechelF/model-driven-avalanche-forecasting-evaluation-study-nr1.
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Figure 6. Model predictions (Pr) . Columns show the respective results for
:::::
natural

::::::::
avalanches

:
(left

:::::
column) natural avalanches and

::::::::::::
human-triggered

::::::::
avalanches

:
(right

:::::
column)human-triggered avalanches. Top row: (a, b) reference distributions; middle row: (c, d) event

distributions; bottom row: (e, f) event ratios. Results are shown for each model. To facilitate comparison between models, proportions rather

than absolute numbers are shown, where 100% corresponds to the number of data points in Table ??
:
1. Median values are indicated

:
by

::::::
dashed

:::::
vertical

::::
lines. Shading in (c) to (f) indicates the 90% confidence interval. In (a) and (b), this is not visible due to minimal variation in the

reference sampling.
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Figure 7. Ratio of avalanche events to the reference distribution of model predictions and human sub-level forecasts, normalized by the over-

all base-rate ratio (Eq. 4) for (a) natural avalanches and (b) human-triggered avalanches. Note the log-scale on the y-axis. Model predictions

are shown with coloured symbols; human forecasts for the same model subsets are shown with hollow black symbols.
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Appendix A: Methods590
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Figure A1. Relationship between the model-predicted danger level D and the predicted probabilities for individual danger levels PrD=1,

PrD=2, PrD=3, and PrD=4 shown in panels (a)–(d), and for PrD≥3 in panel (e). All predictions were generated by the danger-level model

in forecast mode for the 2022/2023 season (n= 56000). Each panel also shows the corresponding Spearman rank correlation coefficient ρ

between D and the predicted probability. Panel (e) shows the aggregated probability PrD≥3, which was used in the main analysis of this

study. It has, together with PrD=1, the highest (absolute) correlation with D. For an in-depth analysis refer to Pérez-Guillén et al. (2025).
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Appendix B: Results
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Figure B1. Natural avalanches. Left column: model predictions, right column: human avalanche forecast. Upper row: reference distributions,

middle row: events (natural avalanches), bottom row: relative ratio RR (Eq. 4).
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Figure B2. Human-triggered avalanches. Left column: model predictions, right column: human avalanche forecast. Upper row: reference

distributions, middle row: events (human-triggered avalanches), bottom row: relative ratio RR (Eq. 4).
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