
1 

 

An integrated method for assessing vulnerability of buildings caused by debris flows 1 

in mountainous areas 2 

Chenchen Qiu1, Xueyu Geng1* 3 

1School of Engineering, University of Warwick, Coventry, CV4 7AL, UK 4 

Xueyu Geng (Corresponding Author): 5 

E-mail: xueyu.geng@warwick.ac.uk 6 

School of Engineering, University of Warwick, Coventry, CV4 7AL, UK 7 

Abstract: The vulnerability assessment of buildings in future scenarios is critical to decrease potential 8 

losses caused by debris flows in mountainous areas due to the complex topographical condition that 9 

could increase the environmental vulnerability to climate change. However, the lack of reliable methods 10 

limits the accurate estimation of physical damage and the associated economic loss. Therefore, an 11 

integrated method of physical vulnerability matrix and machine learning model was developed to benefit 12 

the estimation of damage degree of buildings caused by a future debris-flow event. By considering the 13 

building structures (reinforced-concrete (RC) frame and non-RC frame), spatial positions between 14 

buildings and the debris-flow channels (horizontal distance (HD) and vertical distance (VD)), and impact 15 

pressure (Pt) to buildings, a physical vulnerability matrix was proposed to link physical damage with the 16 

four factors. In order to overcome the difficulty in estimating the possible impact pressure to buildings, 17 

an ensemble machine learning (ML) model (XGBoost) was developed with the involvement of 18 

geological factors. Additionally, the HD and VD were decided based on the satellite images. The 19 

Longxihe Basin, Sichuan, China was selected as a case study. The results show that the ML model can 20 

achieve a reliable impact pressure prediction because the mean absolute percentage error (MAPE), root 21 

mean squared error (RMSE), and mean absolute error (MAE) values are 9.53%, 3.78 kPa, and 2.47 kPa. 22 

Furthermore, 13.9% of buildings in the Longxihe Basin may suffer severe damage caused by a future 23 
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debris-flow event, and the highest economic loss is found in a residential building, reaching 5.1×105 €. 24 

Overall, our work can provide scientific support for the site selection of future constructions. 25 

Keywords: Debris flow, geological factors, building, machine learning, vulnerability assessment 26 
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1. Introduction 27 

Debris flows are among the most frequent and costly natural hazards due to climate change and 28 

difficulty in timely warning (Santi et al., 2011). These events can devastate entire settlements in their 29 

path and pose significant threat to natural environment (Immerzeel et al., 2020), causing destruction of 30 

aquatic biodiversity, along with damage to properties and finally leading to considerable economic 31 

losses worldwide each year (Qiu et al., 2022; Alene et al., 2024; Sridharan et al., 2024). In European 32 

Alps, this disaster claimed an economic loss of at least 5 € billion from 1988 to 2012 (Fuchs, 2009; 33 

Guzzetti et al., 2005). Moreover, a similar average annual loss is also found in China, approximately 34 

0.17 € billion of annual loss was recorded during the time period of 2005 and 2015 (Miao and Liu, 2020). 35 

In this case, a reliable estimation of the potential economic loss caused by debris flows is essential since 36 

it can provide guidance for decision-makers about where to place the infrastructures and buildings. The 37 

buildings are the most susceptible element to debris flows, and they are responsible for most of the 38 

economic loss (Fuchs, 2009; Wei et al., 2018). Therefore, in order to calculate the potential economic 39 

loss, it is critical to estimate the damage degree of the buildings since economic loss is linked to the 40 

physical vulnerability of a property and its economic value. 41 

The physical vulnerability quantifies the damage degree of a property, and the methods that are used 42 

to decide the physical vulnerability include mechanical method (Ruggieri et al., 2023, 2022), 43 

vulnerability matrices, vulnerability curves, vulnerability indicators (Papathoma-Köhle et al., 2017). The 44 

mechanical methods derive the vulnerability functions of buildings based on numerical models, which 45 

may achieve relatively high evaluation accuracy but highly rely on controlled laboratory experiments to 46 

obtain input data. As a result, this method itself is time-consuming and costly for regional application 47 

(Paudel et al., 2021; Qiu et al., 2022). Three vulnerability curves were derived using numerical 48 

modelling to relate the vulnerability to debris-flow intensity, including flow height, flow velocity, and 49 
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kinematic viscosity (Quan Luna et al., 2011). Although these three curves can suggest the physical 50 

vulnerability of a building at risk but fail to consider the impacts of building structures on damage 51 

degree. Therefore, a brick structure and a reinforced-concrete frame were included in the development of 52 

vulnerability curves by Zhang et al. (2018). However, the involvement of limited building types restricts 53 

the application of the curves when the determination of physical vulnerabilities for different building 54 

types is required. Therefore, considering the limitations of vulnerability curves, different vulnerability 55 

matrixes of buildings have also been developed by many studies due its advantages in interaction 56 

understanding between the debris-flow process and elements at risk and easily readable by non-experts 57 

(Bründl et al., 2009; Kang and Kim, 2016; Zanchetta et al., 2004). In contrast, these developed matrixes 58 

ignored the spatial position (horizontal distance and vertical distance) between the buildings and the 59 

debris-flow channels, which would misestimate the damage degree of a building caused by a debris-flow 60 

event. As for the vulnerability indicators, this method considers the characteristics of buildings without 61 

relating the debris-flow process when evaluating the damage degrees (Fuchs et al., 2019). Therefore, it is 62 

crucial to establish a comprehensive assessment matrix that takes into account the structural types, 63 

spatial positions between buildings and the debris-flow channels, and debris-flow intensities to estimate 64 

the potential damages of the buildings. Additionally, the possible damage degree of the buildings in 65 

future scenarios was not considered by the past studies (Papathoma-Köhle et al., 2017). Therefore, this 66 

study focuses on conducting an assessment of the potential physical damage of a building due to a future 67 

debris-flow event. 68 

Among the four factors in deciding the physical damage of buildings (building structure, spatial 69 

locations (HD and VD), and impact pressure (Pt)), impact pressure remains an unsolved problem since 70 

HD and VD can be determined based on the satellite images. In this case, a machine learning model was 71 

developed to predict the impact pressure to a building because this method can uncover intricate and 72 
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concealed relationships between various input variables and an output result (Khosravi et al., 2021; Jiang 73 

et al., 2023). To leverage the benefits of rapid processing and handling large-scale data, we employ an 74 

ensemble model, specifically extreme gradient boosting (XGBoost). This choice is made due to 75 

XGBoost's ability to partition data into smaller components, facilitating parallel computation and 76 

multithreading to enhance processing speed (Chen and Guestrin, 2016). 77 

In this paper, we proposed an integrated method of physical vulnerability matrix and machine 78 

learning model to estimate the physical damage of a building caused by a future debris-flow event, 79 

finally estimating the economic loss of this property. The buildings in the Longxihe Basin, Sichuan, 80 

Chian, were extracted to conduct a case study to test the efficiency and reliability of this method in 81 

physical damage estimation and corresponding economic loss. The formation of terrain in this area is 82 

affected by severe tectonic activities, which can produce abundant loose materials for potential debris 83 

flows. 84 

2. Methodology 85 

To estimate the economic loss of buildings caused by a future debris-flow event, several steps are 86 

comprised in this study (see Fig. 1): 87 
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 88 

Figure 1. Flow chart of this study 89 

(1) The historical debris-flow events in Gyirong, Tibet Tibetan Autonomous Region, and the 90 

Sichuan Basin (Fig. 2) from the past ten years are investigated based on satellite images and field 91 

investigations to collect information regarding the debris-flow volumes and damaged buildings. 92 

(2) We categorize the collected historical debris flows into two datasets (dataset Ⅰ and dataset Ⅱ) for 93 

the development of a physical vulnerability matrix and a prediction model, respectively. 94 

(3) The dataset Ⅰ includes the debris-flow events that caused damages to the buildings. Therefore, 95 

this dataset is employed for the development of a physical vulnerability matrix. 96 

(4) The dataset Ⅱ is composed of the debris-flow events that occurred in areas without the 97 
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distribution of buildings, and, therefore, no property loss is caused by these events. Therefore, this 98 

dataset was used for model training and utilize this model to estimate the debris-flow intensity in future 99 

scenarios, such as debris-flow impact pressure to buildings. This dataset is shown in Table 6 of 100 

Appendix. A. 101 

 102 

Figure 2. The collected historical debris flows in the Tibet Plateau and the Sichuan Basin 103 

2.1 Physical vulnerability matrix 104 

Vulnerability refers to the damage degree of a property when subjected to a hazard event, such as a 105 

landside and a debris-flow event (Fell, 1994). Normally, a physical vulnerability was used to quantify 106 

the damage degree of a property. To obtain the future economic loss of a building at risk, a physical 107 

vulnerability matrix of the buildings was proposed. The determination of physical vulnerability relied on 108 

the impact pressure (Pt) to buildings, the horizontal distance (HD), and the vertical distance (VD) 109 

between the building and the nearest debris-flow channel, as indicated by Eq. (1). The determination 110 

details of the three parameters in Eq. (1) are demonstrated in the following sections. 111 

 ( )p t , ,V H P HD VD=  (1) 112 

2.1.1 Calculation of impact pressure 113 

In order to propose a physical vulnerability matrix, the first step is to link the impact pressure to 114 
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damage degree. As suggested by (Jakob et al., 2012; Kang and Kim, 2016), Pt can effectively reflect the 115 

energy of debris flows and possible damage degree of buildings. However, past studies usually utilized 116 

debris-flow magnitude to decide the physical vulnerability since a greater magnitude may indicate a 117 

more significant impact force (Dai et al., 2002). This impact force cannot represent the actual damage of 118 

a building during a debris-flow event because the catchment with a potential large-scale debris-flow 119 

event may not cause severe damage to the buildings. The reason behind this uncertainty could be due to 120 

the moderate slope gradient and frictional resistance of a debris-flow channel, which could decrease the 121 

kinetic energy of the travelling mass. Consequently, only a slight or moderate damage to buildings could 122 

be caused. Therefore, impact pressure can better reflect the damage degree of buildings when subjected 123 

to different debris-flow magnitudes, which can be calculated through considering the dynamic 124 

overpressure and hydrostatic pressure (Eq. (2)) (Zanchetta et al., 2004): 125 

 ( )2

t df df

1
, ,

2
dfP gh v f h v  = + =  (2) 126 

where Pt (kPa) represents the impact pressure to buildings, and g is the gravitational acceleration. v (m/s) 127 

represents the mean flow velocity, and ρdf is the mean density of materials for a debris-flow event. h (m) 128 

is the flow depth. As for the debris-flow velocity (v) at peak discharge, it can be calculated using the 129 

equation proposed by Rickenmann (1999). This equation considers the debris-flow datasets in different 130 

regions, such as Italy, China, Japan, U.S.A, and Columbia, which enables its feasibility to be used in 131 

wider and different areas. 132 

 ( )0.33 0.33

p 12.1 ,pv Q J f Q J= =  (3) 133 

This equation illustrates that the velocity can be decided by Qp (m3/s) and channel gradient (J) (Cui 134 

et al., 2013). The calculation of Qp can be determined based on the equation (Eq. (4)): 135 

 ( ) ( )
1/1.266

2/152.97pQ U f U= =  (4) 136 

Therefore, the Qp can be calculated based on the estimated volume (U (m3)) of historical debris 137 
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flows. However, the absence of flow depth (h) also hampers the calculation of impact pressure. 138 

Therefore, an equation is used to calculate the flow depth (Koch, 1998). This formula has been proven to 139 

perform well in the numerical simulation of viscose debris flows (Eq. (5)): 140 

 ( ) ( ) ( )( )
10/3

0.5

1 3 1 3 1 1/ , , , , ,ph v C J f v C J f f Q J C J= = =  (5) 141 

where C1 represents the dimensional empirical coefficient. This value of parameter is indicated by a 142 

semi-theoretical relationship (Eq. (6)) (Rickenmann, 1999): 143 

 ( ) ( )( )2/25

1 p 4 4 210 pC Q f Q f f U= = =  (6) 144 

Therefore, the impact pressure can be described as a function of debris-flow volume and channel 145 

gradient, and the impact pressures of dataset Ⅰ are calculated based on Eqs. (2)-(6) (see Table 1). 146 

2.1.2 Determination of HD and VD values 147 

HD and VD values were also introduced here since the actual damage will be significant if a 148 

building stands close to the debris-flow channel (Sturm et al., 2018). They can be estimated through 149 

high-resolution satellite images, such as Gaofen, Ziyuan, WorldView, and GeoEye. In this study, 150 

Gaofen-2 satellite images are employed for determining the HD and VD values. This satellite can 151 

capture panchromatic (black and white) images with a spatial resolution reaching 0.8 m and 152 

multispectral (color) images with a spatial resolution up to 3.2 m. Therefore, the resolution of satellite 153 

images used for buildings identification is 0.8 m. As for the building clusters that are hard to be 154 

separated into individual buildings manually, a ‘fishnet’ tool in GIS was used to automatically divide 155 

these clusters into building segments. Furthermore, the rectangle segments were converted into points so 156 

that each point represents a building. As a result, the HD and VD values of a building can be decided. 157 

The damaged buildings are mainly distributed on the accumulation fans. Therefore, even though a large 158 

HD is observed, the VD is small due to the mild slope and smooth topography of the alluvial fans 159 

(Marcato et al., 2012). By considering the impact pressure, HD, and VD values, a physical vulnerability 160 
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matrix can be established to evaluate the physical damage of a building caused by a debris-flow event. 161 

2.2 Economic loss of a building at risk 162 

The economic loss of a building caused by a debris-flow event can be estimated based on 163 

multiplication of its physical vulnerability and economic value.  164 

 ( )e p t , , ;V V M H P HD VD M M P A=  =  =   (7) 165 

where, Ve and M represent the economic loss and the economic value of a building, respectively. P is the 166 

unit price of a building, and A represents the area of a building. Therefore, estimating Vp holds 167 

paramount importance in estimating economic loss. However, Vp (H(Pt, HD, VD)) is represented by the 168 

proposed physical vulnerability matrix. In this context, determining Pt plays a critical role in economic 169 

loss estimation. Therefore, to forecast the possible economic loss caused by a future debris-flow event, 170 

we need to estimate the impact pressure to buildings caused by a future debris-flow event. 171 

2.3 Prediction model development 172 

To predict the future impact pressure to buildings when a debris-flow event occurs, determining 173 

factors is essential. Therefore, we further developed Eq. (5) by integrating Eq. (4) and Eq. (6) to this 174 

equation: 175 

 ( )( ) ( )( )( ) ( )3 1 2 4 2, , , ,h f f f U J f f U J F U J= =  (8) 176 

Additionally, Eq. (3) can be rewritten as: 177 

 ( ) ( )( ) ( )1 1 2, , ,pv f Q J f f U J S U J= = =  (9) 178 

Therfore, the determination of impact pressure reslies on U and J: 179 

 ( ) ( )( )t , , , ,dfP f F U J S U J=  (10) 180 

However, the debris-flow volume is closely related to a set of geomorphic factors, as suggested by 181 

Huang et al. (2020). They are catchment area (A), channel length (L), topographic relief (R), and mean 182 

slope of the main channel (J). The catchment area can reflect the debris availability and capacity of 183 
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generating and containing the volume of loose materials for a debris-flow catchment. As for the channel 184 

length, it is related to the entrained and transported sediment volume (Marchi et al., 2019). Therefore, 185 

this parameter can also impact the final volume of a debris-flow event. R is defined as the terrain 186 

fluctuation and roughness of a catchment. To calculate this value, we need to first decide the optimal 187 

statistical unit in this area using the change-point model. Then, the subtraction value between the 188 

maximum value and minimum values of an optimal statistical unit is calculated. Finally, we utilized the 189 

maximum subtraction value to represent the R value of a catchment. J is defined as the ratio of the 190 

elevation difference of the main channel and channel length. A longer distance could be achieved for a 191 

debris-flow event if a steep channel exists in a catchment (de Haas and Densmore, 2019). In this case, U 192 

can be described as a function of A, L, R, and J: 193 

 ( )5 , , ,U f A L R J=  (11) 194 

Furthermore, subsitituting Eq. (11) to Eq. (10): 195 

 ( )( ) ( )( )( )t 5 5, , , , , , , , , ,dfP f F f A L R J J S f A L R J J=  (12) 196 

Therefore, Pt can be described as a complex function of geomorphology-related factors, including A, 197 

L, R, and J. To find the complicated correlations among them, an ensemble machine learning model 198 

(extreme gradient boosting (XGBoost)) was employed here to establish the relationship and then utilize 199 

this relationship to estimate the potential impact pressure to buildings when a future debris-flow event 200 

occurs. The basic mechanism of XGBoost is to constantly develop a new decision tree which acts as a 201 

weak learner and fits the residual error of the last prediction. After the training of a total of k trees, the 202 

final prediction result is the sum of the score of each leaf node in each developed tree. Overall, the target 203 

function of regression is placed in Appendix. A. Additionally, the database Ⅱ that is used for impact 204 

pressure prediction is presented in Table 6 of Appendix. A. 205 

2.4 Model assessment 206 
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After the impact pressure prediction, three assessment indexes were used to evaluate the prediction 207 

performance, including MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Square Error), 208 

and MAE (Mean Absolute Error): 209 

 
1

1 m
i ipre

i i

y y
MAPE

m y=

−
=   (13) 210 

 ( )
2

1

1 m

i ipre

i

RMSE y y
m =

= −  (14) 211 

 
1

1 m

i ipre

i

MAE y y
m =

= −  (15) 212 

where yi is the actual value, and yire represents the prediction value. m is the number of prediction values. 213 

3. Result analysis 214 

3.1 The relationship between the damage degree and Pt 215 

Fig. 3 shows the different damage degrees of buildings in dataset Ⅰ. The buildings were classified 216 

into two types, including RC-frame (reinforced concrete) and non-RC frame (masonry, wooden structure, 217 

and light steel frame). As indicated in Figs. 3(e)-(f), The masonry buildings suffer severe damage, and 218 

the light steel frame buildings and wooden structure buildings are destroyed (Figs. 3(g)-(h)) even though 219 

the impact pressure to buildings was estimated to be less than 30 kPa. However, the main structure of 220 

the reinforced concrete building can stay undamaged (Fig. 3(b)) when severe damage is found on the 221 

masonry structure (see a dashed circle in Fig. 3(b)) during the same debris-flow event. This resistance 222 

ability difference indicates the difference in physical vulnerabilities between the RC and the non-RC 223 

frames, which can also be seen in Fig. 3(a). Moreover, moderate damage to the RC frame with 224 

unreinforced masonry infill walls is found in Fig. 3(c) when a small-scale debris-flow event occurs. 225 

Additionally, the RC frame suffers extensive damage when the impact pressure exceeds 100 kPa based 226 

on the estimated debris-flow volume. Therefore, the identifications of different damage degrees for 227 

buildings provide us with access to proposing a classification standard for the physical vulnerability of 228 

https://doi.org/10.5194/nhess-2024-156
Preprint. Discussion started: 4 September 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

buildings. 229 

    230 

    231 

    232 

    233 

Figure 3. Photographs of the damaged residential buildings caused by debris flows during the field 234 
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investigations on the Qinghai-Tibetan Plateau 235 

3.2 Determination of HD and VD thresholds 236 

The field investigations and statistical results show that the non-RC frame buildings are destroyed or 237 

suffer structural damage when the HD is less than 30 m (Fig. 4(a)). The damaged buildings cannot be 238 

repaired, and reconstruction is required. In consistent with the conclusion of past study (Wei et al., 2022), 239 

the residential buildings, such as brick structures (Fig. 4(b)) and the RC frame buildings (Fig. 4(c)), are 240 

partially buried by the debris-flow sediments without structural damage when the HD is greater than 100 241 

m but less than 160 m. Therefore, 160 m is another HD threshold to classify the inundated and slightly 242 

affected areas. The upper limit of HD value for the historical debris flows during the field investigations 243 

is 230 m because almost 94% of HD values are less than 230 m (see Table 1). 244 

 245 
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    246 

Figure 4. Examples of the determination of the HD thresholds 247 

Table 1. Dataset Ⅰ for physical vulnerability matrix. 248 

No. Year Lon 

(°) 

Lat 

(°) 

Number 

of 

damaged 

buildings 

Impact 

pressure 

Pt (kPa) 

Maximum  

HD (m) 

Maximum  

VD (m) 

1 2006 85.3278 28.3735 21 16.1 162 12 

2 2007 85.5683 29.1875 13 40.6 141 12 

3 2007 85.5528 28.8717 7 37.5 13 7 

4 2008 85.6241 29.1869 21 41.0 119 3 

5 2010 86.0872 29.1625 11 35.5 54 2 

6 2013 85.3112 28.7649 53 24.1 284 29 

7 2015 85.2928 28.4174 9 117.4 160 2 

8 2015 85.3608 28.4074 22 31.1 131 107 

9 2015 85.3542 28.7159 7 17.5 82 13 

10 2015 84.7653 28.7559 38 132 74 15 

11 2015 85.4566 28.3868 3 5.1 32 10 

12 2015 85.4413 28.3827 1 32.7 17 6 

13 2015 85.0105 29.1208 3 5.2 133 2 

14 2015 85.2579 29.2603 9 9.8 146 2 

15 2015 85.2759 29.2652 6 14.8 228 10 

16 2015 85.0083 29.1493 4 14.6 171 3 

In order to support the thresholds determination of HD, we further analyzed the frequencies of HD 249 

values for the damaged buildings, as depicted in Table 1, through dividing the HD values into several 250 

intervals. The frequency and accumulative frequency results are shown in Fig. 5. 251 

(b) (c) 

Buried height 
Debris-flow 

direction 
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 252 

Figure 5. The frequency and accumulative frequency distributions of the 228 damaged buildings. 253 

As depicted in Fig. 5, the highest proportion occurs in the range of 10 to 20 m, accounting for 20.1%, 254 

followed by a 15% percentage of HD values falling between 20 to 30 m. Therefore, the proportion 255 

falling within the range of 0 to 30 m is 49.4%, and approximately 82.5% of the HD values is measured 256 

under 100 m. Following the suggestion of Liu et al. (2020), a probability of 50% is considered a 257 

threshold for debris-flow warning, which implies that 30 m in this study can serve as a threshold. 258 

Moreover, the accumulative frequency of 80% is selected as another threshold based on Wei et al. (2018), 259 

corresponding to the HD value of 100 m. Furthermore, 90.5% of the damaged buildings have HD value 260 

less than 160 m, and nearly 98.9% of the damaged buildings fall within the HD range of 0 to 230 m. As 261 

a result, 160 m and 230 m are selected as additional two thresholds. In addition to the determination of 262 

HD threshold values, the maximum flow depth (h) in the debris-flow channel is used as a reference to 263 

decide the VD thresholds since the buildings are mostly situated along the channels (Fig. 4(a) and Fig. 6).  264 

Therefore, calculating the elevation difference between the buildings and the nearest debris-flow 265 

channel is critical to evaluate the safety of the buildings. For example, both the masonry buildings in Fig. 266 

4(a) and Fig. 6 are close to the debris-flow channel. However, no severe damage is observed for the 267 

building in Fig. 6 because it has a considerable vertical distance from the main channel. To decide the 268 

VD thresholds, the h values of the historical debris flows are presented in Table 6 of Appendix. A. The 269 
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average depth of the debris flows is 2.6 m, and nearly all the VD values are less than 4 m. Therefore, 4 m 270 

serves as the first threshold, suggesting that the most severe damage to the buildings may be caused 271 

when the VD is less than 4 m. Whilst a debris-flow depth value of as high as 10 m is suggested (Xie et 272 

al., 2013), which can be found in curved channels. Consequently, we utilize 10 m to indicate the 273 

moderate damage of buildings when the VD is less than 10 m but greater than 4 m. Moreover, a vertical 274 

distance of 14 m above the river level is considered to record the river gauging on the Iowa River using a 275 

digital video camera (Creutin et al., 2003), which indicates a safe VD value to avoid damage caused by 276 

the river discharge. Therefore, 15 m is used as the upper limit of the VD values in this paper. 277 

 278 

Figure 6. Example of the determination of the VD threshold 279 

3.3 Physical vulnerability matrix (h(Pt, HD, VD)) 280 

The proposed physical vulnerabilities of residential buildings are listed in Table 2. Extensive 281 

damage or even complete damage may occur when a non-RC building is located near the debris-flow 282 

channel with HD less than 30 m and VD less than 4 m. However, a significant improvement in resistance 283 

ability can be observed when the non-RC frame is replaced by the RC frame considering the same 284 

impact pressure, HD and VD values. In general, the buildings hardly suffer damage when the VD is 285 

4<VD<10 m 

Masonry structure 
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greater than 10 m. Therefore, the economic loss of a building can be calculated based on the proposed 286 

physical vulnerabilities and economic values. 287 

Table 2. Physical vulnerability matrix 288 

Pt 

(kPa) 

Building 

structure 

HD<30 m 30 <HD< 100 m 

4< 

VD 

4<VD< 

10 

10<VD<

15 

4< 

VD 

4<VD< 

10 

10<VD<

15 

<30 RC frame 0.3 0.2 0.1 0.2 0.1 / 

Non-RC 

frame 

0.8 0.7 0.6 0.7 0.6 0.4 

30-70 RC frame 0.6 0.5 0.4 0.5 0.4 0.2 

Non-RC 

frame 

1 0.9 0.8 0.9 0.8 0.6 

70-100 RC frame 0.7 0.6 0.5 0.6 0.5 0.3 

Non-RC 

frame 

1 1 0.9 1 0.9 0.7 

>100 RC frame 0.8 0.7 0.6 0.7 0.6 0.4 

Non-RC 

frame 

1 1 0.9 1 1 0.8 

Pt 

(kPa) 

Building 

structure 

100<HD<160 m 160<HD<230 m 

4< 

VD 

4<VD< 

10 

10<VD<

15 

4< 

VD 

4<VD< 

10 

10<VD<

15 

<30 RC frame 0.1 / / / / / 

Non-RC 

frame 

0.6 0.4 0.1 0.4 0.1 / 

30-70 RC frame 0.4 0.2 / 0.2 / / 

Non-RC 

frame 

0.8 0.6 0.3 0.6 0.3 / 

70-100 RC frame 0.5 0.3 / 0.3 / / 

Non-RC 

frame 

0.9 0.7 0.4 0.7 0.4 / 

>100 RC frame 0.6 0.4 0.1 0.4 0.1 / 

Non-RC 

frame 

1 0.8 0.5 0.8 0.5 0.1 

3.4 Prediction model development and assessment 289 

The debris flows in Table 6 (see Appendix. A) were divided into a training set and a validation set, 290 

and the training set is used to train the prediction model. The validation results are plotted in Fig. 7. 291 

Additionally, the performance of the developed model is assessed using the three indexes (Eqs. (14)-292 

(16)). As indicated in Fig. 7, the prediction results show minor errors to the actual values, and the MAPE, 293 

RMSE and MAE values are 9.70%, 3.98 kPa and 2.74 kPa, respectively. RMSE value can reflect the 294 

extreme errors, and the calculated RMSE value can indicate that there are no extreme values observed in 295 
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the prediction results. Additionally, MAPE reflects the error percentage between the measured and 296 

predicted values, and the model is more reliable if the MAPE is closer to 0. Therefore, it can be 297 

concluded that this model performed well in predicting the volume of a future debris-flow event. 298 

 299 

Figure 7. Plotted results of the prediction results 300 

4 Case study 301 

4.1 Geological setting 302 

We selected the Longxihe Basin (Fig. 8) in Dujiangyan, Sichuan Province, to conduct a case study 303 

(see Fig. 1 about the geographic location of this area), which is 15 km away from the epicenter of the 304 

2008 Wenchuan earthquake. There are three faults crossing this area, namely the Southern Branch of the 305 

Yingxiu-Beichuan Fault, the Northern Branch of the Yingxiu-Beichuan Fault, and the Feilaifeng 306 

Structure. These faults and structures cause the incised valleys and uplifting of the land surface, resulting 307 

in large areas of exposed rocks. Additionally, this study area belongs to the subtropical monsoon climate, 308 

with annual precipitation reaching 1134.8 mm. Over 80 % of the annual rainfall occurs from May to 309 

September. Consequently, the abundant rainfall and complex geological structure give birth to frequent 310 

debris flows. It was reported that 13 debris-flow events occurred in this basin on 12th May, 24th June, 311 

25th September 2008, and 17th July 2009. In particular, 45 debris-flow events were recorded on 13th 312 
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August 2010 due to a high-intense rainfall event, causing severe damage to 233 buildings and resulting 313 

in the entire economic loss of 7.2×107 €. There are one town and two villages distributed in this basin. 314 

The impacts of the Wenchuan earthquake still pose threats to the local people since a time period of at 315 

least 20 years is required if the occurrence frequency of debris flows before the earthquake is expected 316 

(Yu et al., 2014). 317 

 318 

Figure 8. The Longxihe Basin, Dujiangyan, China 319 

4.2 Estimation of economic loss of buildings 320 

4.2.1 Determination of physical vulnerability 321 

To estimate the potential physical damage of the buildings in the Longxihe Basin, the developed 322 

prediction model was applied to predict the potential impact pressure to buildings. As illustrated in Fig. 323 

9(c), the debris-flow catchments within this basin were generated since we mainly focus on the regions 324 

with the distribution of buildings and estimate the possible economic loss of the buildings when debris 325 

flows occur. Therefore, we extracted a total of 386 buildings in three regions based on the satellite 326 

images (Fig. 9(a), Fig. 9(b), Fig. 9(d), and Fig. 9(e)). After that, we selected the catchments that are the 327 
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nearest to the buildings to conduct analysis (see highlighted catchments with red lines in Fig. 9(c)). The 328 

input information of these catchments for impact pressure prediction and the predicted results are all 329 

listed in Table 3. 330 

 331 

Figure 9. The debris-flow catchments and residential buildings in this area 332 

Table 3. Prediction results using developed prediction model 333 

No. A / km2 L / km R / m J Predicted 

Pt (kPa) 

1 0.4226 0.70 116 0.3024 22.0 

2 0.8849 1.00 123 0.3503 26.7 

3 0.1447 0.25 113 0.4055 18.0 

4 2.9068 0.91 145 0.1668 22.1 

5 0.3637 0.58 125 0.2998 19.2 

6 0.9317 0.88 130 0.2551 20.9 

7 4.1780 1.84 141 0.0751 16.0 

8 0.1632 0.61 117 0.3419 19.3 

9 0.0932 0.69 112 0.3622 17.3 

10 0.1087 0.69 112 0.3542 17.5 

11 0.2355 0.73 159 0.6828 16.5 

12 1.3027 1.46 145 0.3944 25.2 

13 2.8095 1.30 158 0.2466 26.5 

14 0.3802 0.89 129 0.4299 19.2 

15 0.2177 0.70 136 0.5690 15.8 

16 0.1529 0.84 162 0.6821 14.4 

17 3.5789 2.23 153 0.3047 33.6 

18 0.3179 0.69 127 0.5400 17.4 

19 0.1970 0.74 96 0.4056 15.0 

20 0.2201 0.90 110 0.4599 13.0 

(a) 

(b) 

(c) (d) 

(e) 

https://doi.org/10.5194/nhess-2024-156
Preprint. Discussion started: 4 September 2024
c© Author(s) 2024. CC BY 4.0 License.



22 

 

In addition to the predicted impact pressures to the buildings by the potential debris flows, the 334 

horizontal and vertical distances between each building and the nearest debris-flow channel were 335 

measured using GIS. As a result, the physical vulnerabilities of the buildings in Longxihe Basin can be 336 

decided based on the proposed physical vulnerability matrix, and the results are shown in Figs. 10(a)-(d). 337 

       338 

       339 

Figure 10. Physical vulnerabilities of the buildings in the Longchi Basin 340 

Table 4. Statistical results of the buildings with different physical vulnerabilities 341 

 0 - 0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 - 1.0 

Number 237 52 45 18 34 

Percentage 61.4% 13.5% 11.6% 4.7% 8.8% 

The statistical results in Table 4 illustrate that most buildings nearly suffer no damage when a 342 

debris-flow event occurs. This is because these buildings are RC-frame structures, which allow them to 343 

stay undamaged or only suffer slight damage even though they are close to the debris-flow channels. 344 

(a) (b) 

(d) (c) 
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However, non-RC frame buildings may always suffer severe damage during a debris-flow event if their 345 

locations are near the channels. As indicated in Figs. 10(a)-(d), the buildings with high and very-high 346 

physical vulnerabilities are mainly brick and light steel structures. The difference in resistance ability 347 

allows a greater possibility for RC-frame buildings to keep structures undamaged during the same 348 

debris-flow event when compared to a non-RC building, which is consistent with the field investigation 349 

results in Fig. 3(b). Moreover, a non-RC frame building can also avoid damage even though it is close to 350 

the debris-flow channel. This is because a higher vertical distance to the debris-flow channel can allow 351 

this non-RC building to suffer no damage or light damage. Therefore, a comprehensive analysis by 352 

considering the structure type, spatial distances to debris-flow channel, and potential impact pressure is 353 

significant to establish a reliable physical vulnerability matrix to benefit the determination of the 354 

potential damage degree of buildings. 355 

In order to validate the efficiency and accuracy of our method in estimating the physical damages of 356 

buildings, the damaged buildings caused by debris flows on 13th August 2010 are employed here to 357 

assess the reliability of this method. As depicted in Fig. 11(a), the RC-frame buildings suffer a moderate 358 

damage (see red dashed circles in Fig. 10(a)) because there are no obvious damages of external or 359 

internal walls observed during the field investigations based on the HAZUS building classification 360 

scheme (Rojahn, 1988). However, the debris-flow event caused an extensive damage (see yellow dashed 361 

circles in Fig. 10(a)) to the brick structures due to the partly destroyed external or internal walls. As a 362 

result, evacuation of people is necessary and reconstruction is required. Overall, our proposed method 363 

can provide a reliable evaluation of physical vulnerability of buildings caused by a debris-flow event 364 

and therefore benefit their estimation of economic loss. 365 
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    366 

Figure 11. The damaged buildings caused by the debris-flow events. 367 

4.2.2 Economic loss 368 

Based on the estimated physical damage, we can further provide a reliable estimation of the 369 

economic loss. Six categories of buildings were identified in this study area based on the field 370 

investigations. They are residential buildings, factory buildings, office buildings, and livestock houses. 371 

Table 5. Unit price (P) of a building in this area 372 

Element Categories Unit price Value based on 

Buildings 

Residential buildings 

(RC-frame) 
1050.44 €/m2 Average market price 

Residential buildings 

(Brick structure) 
158.38 €/m2 Construction cost 

Business buildings 

(RC-frame) 
1371.47 €/m2 Average market price 

Office buildings 

(RC-frame) 
1050.44 €/m2 \ 

Factory buildings 

(Light steel structure) 
237.57 €/m2 Construction cost 

Livestock houses 

(Brick structure) 
7.92 €/m2 

Restoration and 

reconstruction cost 

The economic value of a residential building in this area is based on the market price, which is 373 

provided by the Housing and Urban-rural Construction Agency. As for the unit price of a business 374 

building, we refer to the price ratio of a residential building and a business building in the city center of 375 

Dujiangyan. The unit price of a business building is normally 30% higher than a residential building. An 376 

office building belongs to the national assets, which cannot be rented or sold. However, possible damage 377 

still cannot be avoided if a debris-flow event occurs, which therefore requires restoration or 378 

(a) (b) 
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reconstruction. Therefore, we refer to the unit price of a residential building to estimate the economic 379 

loss of an office building. Unlike the high construction cost and business value of a residential building 380 

and a business building, the construction cost of a factory building is low because of its light steel 381 

structure. Meanwhile, this kind of building is normally situated at a distance from the city center and 382 

residential areas, primarily to mitigate effects of noise and environmental pollution. Most importantly, a 383 

factory building invariably occupies a large area, potentially raising the construction cost when situated 384 

in the city center due to the exorbitant land prices. Considering the average market price of a factory 385 

building, we decide the unit price as 237.57 €/m2. Finally, the livestock house is still considered here 386 

since two villages are included in the analysis, and the livestock house is built for sheep and cattle. 387 

Therefore, the unit price of a livestock building is low (see Table 5). The economic loss of the buildings 388 

in the Longxihe Basin are presented in Fig. 12.  389 

       390 

(a) (b) 
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       391 

Figure 12. Economic loss of the residential buildings in the Longxihe Basin 392 

The distribution characteristics of economic loss are different from physical vulnerability. For 393 

example, Figs. 10(a) illustrates that the buildings are more likely to suffer severe damage if they are 394 

close to the debris-flow channel, especially the non-RC frame structures. However, these non-RC frame 395 

buildings require lower reconstruction or restoration costs when compared to the RC-frame buildings 396 

(see Fig. 12(a)). In this case, the economic loss is low since it relies on the multiplication of physical 397 

vulnerability and economic value of a building (see red dashes in Fig. 12(b)). As indicated in Fig. 12(d), 398 

the factory buildings (see Fig. 10(d) and Fig. 12(d)) may suffer an economic loss of 3.2×105€. As for 399 

the reason why a low unit price of a factory building (see Table 5) results in a high economic loss may 400 

be due to the large area of this factory building. Therefore, the site selection of a factory building is 401 

significant. Although the location of the factory buildings in mountainous areas can avoid noise 402 

pollution in urban development and decrease construction costs, the possible economic loss caused by 403 

natural hazards cannot be neglected. Additionally, the residential building should not be built on the 404 

outlet of the debris-flow catchment directly opposite (see red dash circles in Fig. 12(d)), especially when 405 

the foundation of the residential buildings is only slightly higher than the riverway (see yellow contours 406 

in Fig. 12(d)). For example, the highest economic loss is found in a residential building (see the image in 407 

Fig. 12(d)), reaching 5.1×105€. Therefore, at least a 4 m of residential building (RC frame) foundation 408 

(c) (d) 
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is essential if the buildings are close to the debris-flow channel based on Table 2. Overall, the analysis of 409 

economic loss for buildings in mountainous areas can provide decision-makers with guidance about 410 

urban planning. 411 

5. Discussion 412 

The proposed integrated method has been applied for the determination of the damage degree for 413 

buildings in the Longxihe Basin, Sichuan, China. The involvement of debris-flow intensities, building 414 

attributes, and spatial position between the buildings and debris-flow channel can help to suggest a more 415 

reasonable damage degree value caused by debris flows. Specifically, the debris-flow intensity is 416 

expressed in impact pressure here, which can indicate the possible consequence of a building if the 417 

flowing materials strike the building directly. However, an overestimation of the damage degree may be 418 

caused since the spatial positions between the building and debris-flow channel is not a one-dimensional 419 

problem. In general, the elevation of a building is greater than that of the debris-flow channel in the 420 

horizontal direction. This is because the long-term water flow and historical debris flows move the soils 421 

and rocks, causing erosion of the channel bottom and therefore decreasing its elevation. As a result, the 422 

elevation difference between the buildings and the debris-flow channel could cause a loss of impact 423 

pressure. Therefore, simply utilizing impact pressure is not enough to reflect the actual damage to a 424 

building. In contrast, the introduction of HD and VD is an effective supplement to improve the 425 

estimation of physical damage that the buildings may suffer. Furthermore, the damage degree may vary 426 

when subjected to different building structures. In this case, two major types of buildings are considered 427 

in this study to distinguish the impact resistance capacities of different building types. Overall, this 428 

developed matrix comprehensively describes the factors impacting the damage degree of buildings 429 

caused by debris flows. 430 

By utilizing the proposed matrix, we can estimate the damage degree of a building. However, the 431 
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possible damage in future scenarios is still unclear due to the change in debris-flow magnitude. 432 

Therefore, an ensemble machine learning (ML) model is used to predict the volume of a future debris-433 

flow event so that the debris-flow intensities can be calculated based on the empirical relationships. This 434 

ML method can effectively avoid over-fitting when training prediction models due to the existence of a 435 

regular term. Most importantly, the strong ability in establishing a reliable relationship between a group 436 

of independent variables and a dependent variable enables a wider application of ML methods when 437 

compared to empirical and regression methods. Therefore, a precise prediction can be expected based on 438 

the established relationship using the ML method to indicate the potential damage to buildings caused by 439 

a future debris-flow event. However, we are also aware that the current sample size may not support a 440 

robustness performance in estimating impact pressure to buildings. For broader applications, continuous 441 

input of debris-flow data globally is essential, which may beyond the scope of this study. However, 442 

further improvement can also be achieved if the floors of buildings are considered when developing the 443 

physical vulnerability matrix. This is because the degree of loss presents a negative correlation with the 444 

number of floors (Fuchs et al., 2019). Nevertheless, the limitation cannot alter the fact that our work can 445 

benefit the subdivision of buildings in different vulnerability levels and provide suggestions about the 446 

site selection of future residential areas.  447 

6. Conclusion 448 

In this paper, an integrated method for vulnerability assessment of buildings caused by future debris 449 

flows was proposed. This method includes a physical matrix and a machine learning model, in which 450 

this matrix was developed by considering the debris-flow process, building structure, and spatial 451 

positions between the buildings and debris-flow channels. To be more specific, the debris-flow process 452 

is represented by impact pressure (Pt), which can be estimated based on the debris-flow volume through 453 

field investigations. As for the definition of spatial positions, HD and VD are used to describe the 454 
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position relation between the buildings and the debris-flow channel. By combining the three parameters, 455 

the actual impact pressure on the buildings can be decided. However, the damage degree may vary for 456 

different building structures. Therefore, the building structure is further considered to provide a precise 457 

estimation of the buildings, including the RC frame and non-RC frame (brick structure, light steel 458 

structure, and masonry structure). Therefore, a total of six types of buildings are included in this study. 459 

They are residential buildings (RC frame and brick structure), business buildings (RC frame), office 460 

buildings (RC frame), factory buildings (light steel structure), and livestock houses (brick structure). At 461 

the same time, an ML model (XGBoost) was developed to predict the impact pressure to buildings 462 

caused by future debris flows. On the basis of the proposed physical vulnerability matrix and machine 463 

learning model, we selected the Longxihe Basin, Sichuan, China, to conduct a case study. The results 464 

show that the non-RC buildings may be more likely to suffer severe damage if they are close to the 465 

debris-flow channels. The buildings with high and very-high physical vulnerabilities are mainly brick 466 

and light steel structures. Consequently, the factory buildings occupy the highest economic loss, 467 

reaching 2.41×105 € due to their large area. In addition, the buildings may suffer severe economic loss if 468 

they are located the directly opposite of the outlet of the debris-flow catchment. Overall, our studies can 469 

achieve a reliable assessment of the physical damage and corresponding economic loss of buildings and 470 

therefore provide suggestions and scientific support for the future construction planning of buildings. 471 
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Appendix. A 576 

1. Mechanism of XGBoost 577 

The mechanism of XGBoost is to constantly develop a new decision tree which acts as a weak 578 

learner and fits the residual error of the last prediction. After the training of a total of k trees, the final 579 

prediction result is the sum of the score of each leaf node in each developed tree. The target function of 580 

regression in XGBoost is: 581 

 ( ) ( ) ( )
1 1

,
m t

i i k

i k

L l y y f
= =

= +    (10) 582 

where ( )
1
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m

i i

i

l y y
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  represents the loss function, and ( )
1

t

k

k

f
=

  is the regularisation term. 
iy  and 

iy  583 

are prediction value and true value, respectively. m is the number of samples. fk is the kth tree model. As 584 

mentioned above, the newly generated tree needs to fit the residual error of the last prediction, and 585 

therefore the prediction result can be presented as: 586 
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Substitute the Eq. (12) into Eq. (11) to rewrite the objective function as: 588 
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Furthermore, Taylor’s second order expansion is introduced to find fk to minimize the objective 590 

function: 591 
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   (13) 592 

where gi is the first derivation, and the hi represents the second derivation 593 

2. Calculation results of impact pressure Pt 594 

Table 6. Dataset Ⅱ for developing the impact pressure prediction model 595 

No. A 

(km2) 

L  

(km) 

R 

(m) 

J Pt 

(kPa) 

No. A 

(km2) 

L  

(km) 

R 

(m) 

J Pt 

(kPa) 

1 8.55 3.13 269 0.1051 40.9 42 0.05 0.18 85 0.1908 10.3 

2 4.68 1.41 126 0.2162 47.4 43 0.06 0.23 81 0.3038 14.2 
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3 12.88 4.16 269 0.1246 56.0 44 0.33 0.50 162 0.2792 18.4 

4 0.29 0.50 95 0.1638 13.2 45 0.05 0.20 107 0.2661 12.2 

5 0.29 0.29 200 0.4122 23.0 46 1.37 1.11 160 0.1763 34.1 

6 5.73 0.71 260 0.1175 49.4 47 4.83 1.96 277 0.2071 35.5 

7 0.56 0.62 195 0.2475 29.3 48 1.33 0.50 258 0.5117 35.7 

8 2.15 0.73 250 0.2736 24.2 49 0.17 0.62 231 0.4727 21.0 

9 0.32 0.46 276 0.5452 23.0 50 12.47 3.61 366 0.1853 67.9 

10 1.67 0.95 161 0.3699 32.3 51 0.46 0.88 189 0.3819 26.4 

11 11.21 1.93 360 0.1512 34.1 52 1.63 1.98 148 0.3115 28.9 

12 2.85 1.57 232 0.2568 28.3 53 1.34 1.00 158 0.1727 18.7 

13 2.29 1.84 189 0.3581 46.6 54 0.24 0.43 151 0.2867 16.6 

14 0.08 0.42 240 0.3561 16.6 55 0.39 0.75 120 0.1745 15.6 

15 0.18 0.48 366 0.6976 13.0 56 0.02 0.1 132 0.5295 18.0 

16 0.53 0.81 170 0.2943 22.5 57 2.56 1.23 127 0.0998 16.7 

17 0.71 1.74 151 0.6494 166.9 58 1.62 0.71 229 0.1673 19.7 

18 0.49 1.64 162 0.6494 181.2 59 0.49 1.41 182 0.3000 24.0 

19 0.60 1.52 155 0.6469 155.1 60 0.21 0.66 215 0.5384 40.6 

20 0.36 1.15 261 0.8214 127.6 61 0.29 1.31 133 0.5184 64.1 

21 2.73 2.57 190 0.6771 88.2 62 0.85 1.75 163 0.4578 36.0 

22 2.02 2.59 198 0.7028 94.9 63 1.71 2.06 145 0.3879 68.5 

23 0.43 1.30 198 0.7729 94.7 64 1.27 2.16 183 0.3522 84.1 

24 0.19 1.09 181 0.6873 79.2 65 0.89 2.07 127 0.3385 68.1 

25 1.03 2.02 232 0.4369 51.2 66 0.49 1.20 168 0.5681 141.0 

26 3.99 3.78 134 0.4061 36.8 67 0.75 1.58 327 0.5566 165.7 

27 2.88 2.40 313 0.7107 66.5 68 0.37 0.52 199 0.3404 23.6 

28 0.34 1.14 163 0.8571 102.6 69 0.77 0.76 115 0.1566 17.0 

29 2.81 2.84 253 0.5250 80.8 70 0.31 0.87 178 0.1317 25.9 

30 7.18 4.82 400 0.5139 102.4 71 0.36 0.35 261 0.4578 20.6 

31 24.42 9.47 337 0.3153 20.2 72 2.62 1.39 321 0.3482 33.8 

32 2.81 1.74 205 0.3191 31.8 73 0.84 1.39 199 0.4899 14.9 

33 0.43 1.30 200 0.8012 47.5 74 2.72 2.56 528 0.1069 31.2 

34 7.06 4.41 275 0.4473 84.1 75 5.85 0.86 365 0.2962 31.5 

35 1.07 2.05 225 0.4431 71.0 76 2.61 1.28 388 0.5317 44.0 

36 0.86 2.17 149 0.3979 70.6 77 5.45 2.82 261 0.5228 112.0 

37 6.51 2.92 252 0.5029 110.7 78 3.51 0.99 227 0.3839 38.2 

38 0.42 1.64 151 0.4813 149.0 79 7.09 2.29 293 0.1962 52.6 

39 0.51 1.43 153 0.4899 153.1 80 0.02 0.21 110 0.4390 17.8 

40 0.20 0.76 130 0.5520 51.6 81 2.06 1.92 160 0.3211 29.7 

41 0.34 1.25 130 0.4942 56.5       

 596 

 597 
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