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Abstract: The vulnerability assessment of buildings in future scenarios is critical to decrease potential 8 

losses caused by debris flows in mountainous areas due to the complex topographical condition that 9 

could increase the environmental vulnerability to climate change. However, the lack of reliable methods 10 

limits the accurate estimation of physical damage and the associated economic loss. Therefore, an 11 

integrated method of physical vulnerability matrix and machine learning model was developed to benefit 12 

the estimation of damage degree of buildings caused by a future debris-flow event. By considering the 13 

building structures (reinforced-concrete (RC) frame and non-RC frame), spatial positions between 14 

buildings and the debris-flow channels (horizontal distance (HD) and vertical distance (VD)), and impact 15 

pressure (Pt) to buildings, a physical vulnerability matrix was proposed to link physical damage with the 16 

four factors. In order to overcome the difficulty in estimating the possible impact pressure to buildings, 17 

an ensemble machine learning (ML) model (XGBoost) was developed with the involvement of 18 

geological factors. Additionally, the HD and VD were decided based on the satellite images. The 19 

Longxihe Basin, Sichuan, China was selected as a case study. The results show that the ML model can 20 

achieve a reliable impact pressure prediction because the mean absolute percentage error (MAPE), root 21 

mean squared error (RMSE) and mean absolute error (MAE) values are 9.53%, 3.78 kPa, and 2.47 kPa. 22 

Furthermore, 13.9% of buildings in the Longxihe Basin may suffer severe damage caused by a future 23 

mailto:xueyu.geng@warwick.ac.uk


2 

 

debris-flow event, and the highest economic loss is found in a residential building, reaching 5.1×105 €. 24 

Overall, our work can provide scientific support for the site selection of future constructions. 25 

Keywords: Debris flow, geological factors, building, machine learning, vulnerability assessment 26 
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1. Introduction 27 

Debris flows are among the most frequent and costly natural hazards due to climate change and 28 

difficulty in timely warning (Santi et al., 2011). These events can devastate entire settlements in their 29 

path and pose significant threat to natural environment (Immerzeel et al., 2020), causing destruction of 30 

aquatic biodiversity, along with damage to properties and finally leading to considerable economic 31 

losses worldwide each year (Qiu et al., 2022; Alene et al., 2024; Sridharan et al., 2024). In European 32 

Alps, this disaster claimed an economic loss of at least 5 € billion from 1988 to 2012 (Fuchs, 2009; 33 

Guzzetti et al., 2005). Moreover, a similar average annual loss is also found in China, approximately 34 

0.17 € billion of annual loss was recorded during the time period of 2005 and 2015 (Miao and Liu, 2020). 35 

In this case, a reliable estimation of the potential economic loss caused by debris flows is essential since 36 

it can provide guidance for decision-makers about where to place the infrastructures and buildings. The 37 

buildings are the most susceptible element to debris flows, and they are responsible for most of the 38 

economic loss (Fuchs, 2009; Wei et al., 2018). Therefore, in order to calculate the potential economic 39 

loss, it is critical to estimate the damage degree of the buildings since economic loss is linked to the 40 

physical vulnerability of a property and its economic value. 41 

The physical vulnerability quantifies the damage degree of a property, and the methods that are used 42 

to decide the physical vulnerability include mechanical method (Ruggieri et al., 2023, 2022), 43 

vulnerability matrices, vulnerability curves, vulnerability indicators (Papathoma-Köhle et al., 2017). The 44 

mechanical methods derive the vulnerability functions of buildings based on numerical models, which 45 

may achieve relatively high evaluation accuracy but highly rely on controlled laboratory experiments to 46 

obtain input data. As a result, this method itself is time-consuming and costly for regional application 47 

(Paudel et al., 2021; Qiu et al., 2022). Three vulnerability curves were derived using numerical 48 

modelling to relate the vulnerability to debris-flow intensity, including flow height, flow velocity, and 49 
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kinematic viscosity (Quan Luna et al., 2011). Although these three curves can suggest the physical 50 

vulnerability of a building at risk but fail to consider the impacts of building structures on damage 51 

degree. Therefore, a brick structure and a reinforced-concrete frame were included in the development of 52 

vulnerability curves by Zhang et al. (2018). However, the involvement of limited building types restricts 53 

the application of the curves when the determination of physical vulnerabilities for different building 54 

types is required. Therefore, considering the limitations of vulnerability curves, different vulnerability 55 

matrixes of buildings have also been developed by many studies due its advantages in interaction 56 

understanding between the debris-flow process and elements at risk and easily readable by non-experts 57 

(Bründl et al., 2009; Kang and Kim, 2016; Zanchetta et al., 2004). In contrast, these developed matrixes 58 

ignored the spatial position (horizontal distance and vertical distance) between the buildings and the 59 

debris-flow channels, which would misestimate the damage degree of a building caused by a debris-flow 60 

event. As for the vulnerability indicators, this method considers the characteristics of buildings without 61 

relating the debris-flow process when evaluating the damage degrees (Fuchs et al., 2019). Therefore, it is 62 

crucial to establish a comprehensive assessment matrix that takes into account the structural types, 63 

spatial positions between buildings and the debris-flow channels, and debris-flow intensities to estimate 64 

the potential damages of the buildings. Additionally, the possible damage degree of the buildings in 65 

future scenarios was not considered by the past studies (Papathoma-Köhle et al., 2017). Therefore, this 66 

study focuses on conducting an assessment of the potential physical damage of a building due to a future 67 

debris-flow event. 68 

Among the four factors in deciding the physical damage of buildings (building structure, spatial 69 

locations (HD and VD), and impact pressure (Pt)), impact pressure remains an unsolved problem since 70 

HD and VD can be determined based on the satellite images. In this case, a machine learning model was 71 

developed to predict the impact pressure to a building because this method can uncover intricate and 72 
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concealed relationships between various input variables and an output result (Khosravi et al., 2021; Jiang 73 

et al., 2023). To leverage the benefits of rapid processing and handling large-scale data, we employ an 74 

ensemble model, specifically extreme gradient boosting (XGBoost). This choice is made due to 75 

XGBoost's ability to partition data into smaller components, facilitating parallel computation and 76 

multithreading to enhance processing speed (Chen and Guestrin, 2016). 77 

In this paper, we proposed an integrated method of physical vulnerability matrix and machine 78 

learning model to estimate the physical damage of a building caused by a future debris-flow event, 79 

finally estimating the economic loss of this property. The buildings in the Longxihe Basin, Sichuan, 80 

Chian, were extracted to conduct a case study to test the efficiency and reliability of this method in 81 

physical damage estimation and corresponding economic loss. The formation of terrain in this area is 82 

affected by severe tectonic activities, such as earthquakes (Chang et al., 2014; Chang et al., 2015), which 83 

can produce abundant loose materials for potential debris flows. 84 

2. Methodology 85 

To estimate the economic loss of buildings caused by a future debris-flow event, several steps are 86 

comprised in this study (see Fig. 1): 87 
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 88 

Figure 1. Flow chart of this study 89 

(1) The historical debris-flow events in Gyirong, Tibet Tibetan Autonomous Region, and the 90 

Sichuan Basin (Fig. 2) from the past ten years were investigated based on satellite images and field 91 

investigations to collect information regarding the debris-flow volumes and damaged buildings. 92 

(2) We categorized the collected historical debris flows into two datasets (dataset Ⅰ and dataset Ⅱ) 93 

for the development of a physical vulnerability matrix and a prediction model, respectively. 94 

(3) The dataset Ⅰ includes the debris-flow events that caused damages to the buildings. In detail, Vp 95 

is the physical vulnerability of buildings, and Pt represents the impact pressure of a debris-flow event to 96 

buildings. HD and VD are horizontal and vertical distance of buildings to their nearest debris-flow 97 
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channel. Therefore, this dataset is employed for the development of a physical vulnerability matrix. This 98 

dataset mainly includes the debris-flow events occurred in the Sichuan Basin, China and also several 99 

events in the Gyirong areas. 100 

(4) The dataset Ⅱ is composed of the debris-flow events that occurred in areas without the 101 

distribution of buildings, and, therefore, no property loss is caused by these events. For the purpose of 102 

establishing an estimation model, a series of factors, such as the depositional volume of a debris-flow 103 

event (U), area of a debris-flow catchment (A), length of the main channel for a catchment (L), the 104 

average topographic relief (R), and the average gradient of main channel (J). ρdf is the mean density of 105 

the material. Therefore, this dataset was used for model training and utilize this model to estimate the 106 

debris-flow intensity in future scenarios, such as debris-flow impact pressure to buildings. This dataset is 107 

shown in Table 6 of Appendix. A. 108 

 109 

Figure 2. The collected historical debris flows in the Tibet Plateau and the Sichuan Basin 110 

2.1 Physical vulnerability matrix 111 

Vulnerability, usually referring to physical vulnerability, denotes the extent of damage a property 112 

may suffer when subjected to a hazard event, such as a landside and a debris-flow event (Fell, 1994), 113 

ranging from no damage (vulnerability is assigned as 0) to completely destroyed (vulnerability is 114 
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assigned as 1). To obtain the future economic loss of a building at risk, a physical vulnerability matrix of 115 

the buildings was proposed. The determination of physical vulnerability (Vp) relied on the impact 116 

pressure (Pt) to buildings, the horizontal distance (HD), and the vertical distance (VD) between the 117 

building and the nearest debris-flow channel, as indicated by Eq. (1). The determination details of the 118 

three parameters in Eq. (1) are demonstrated in the following sections. 119 

 ( )p t , ,V H P HD VD=  (1) 120 

2.1.1 Calculation of impact pressure 121 

In order to propose a physical vulnerability matrix, the first step is to link the impact pressure to 122 

damage degree. As suggested by Jakob et al. (2012) and Kang and Kim (2016), Pt can effectively reflect 123 

the energy of debris flows and possible damage degree of buildings. However, past studies usually 124 

utilized debris-flow magnitude to decide the physical vulnerability since a greater magnitude may 125 

indicate a more significant impact force (Dai et al., 2002). This impact force cannot represent the actual 126 

damage of a building during a debris-flow event because the catchment with a potential large-scale 127 

debris-flow event may not cause severe damage to the buildings. The reason behind this uncertainty 128 

could be due to the moderate gradient of debris-flow channel and its frictional resistance, which could 129 

decrease the kinetic energy of the travelling mass (Qiu et al., 2024). Consequently, only a slight or 130 

moderate damage to buildings could be caused. Therefore, impact pressure can better reflect the damage 131 

degree of buildings when subjected to different debris-flow magnitudes, which can be calculated through 132 

considering the dynamic overpressure and hydrostatic pressure (Eq. (2)) (Zanchetta et al., 2004): 133 

 ( )2

t df df

1
, ,

2
dfP gh v f h v  = + =  (2) 134 

where Pt (kPa) represents the impact pressure to buildings, and g is the gravitational acceleration. v (m/s) 135 

represents the flow velocity at the maximum discharge, and ρdf is the mean density of materials for a 136 

debris-flow event. h (m) is the flow depth that describes the deposit depth on buildings. As for the 137 
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debris-flow velocity (v) at peak discharge (Qp), it can be calculated using the equation proposed by 138 

Rickenmann (1999). This equation considers the debris-flow datasets in different regions, such as Italy, 139 

China, Japan, U.S.A, and Columbia, which enables its feasibility to be used in wider and different areas. 140 

 ( )0.33 0.33

p 12.1 ,pv Q J f Q J= =  (3) 141 

This equation illustrates that the velocity can be decided by Qp (m3/s) and channel gradient (J) (Cui 142 

et al., 2013). It’s worth noting that J changes along the channel. In our study, we focused on the mean 143 

gradient of the main channel within a debris-flow catchment, and it is calculated using the equation 144 

proposed by IMHE (1994): 145 

 

( )1 0
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 (4) 146 

where J is the mean path gradient (‰). Ej (j=1, 2, …, j-1) represents the elevation of each break point in 147 

the movement path (m). Elevation was downloaded from the ASF website 148 

(https://search.asf.alaska.edu/#/)) that can provide DEM with a spatial resolution of 12.5 m. Lj is length 149 

of each section within the movement path (m). m is the number of sections. E0 represents the elevation 150 

at the endpoint of the mass movement (m), while L denotes the length of the travel path (m). The divided 151 

sections are presented in Fig. 3.  152 

 153 

Figure 3. The segments of main channel within a catchment 154 

The calculation of Qp can be determined based on the equation (Eq. (5)): 155 

 ( ) ( )
1/1.266

2/152.97pQ U f U= =  (5) 156 

Therefore, the Qp can be calculated based on the estimated volume (U (m3)) of historical debris 157 

https://search.asf.alaska.edu/#/)
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flows. However, the absence of flow depth (h) also hampers the calculation of impact pressure. 158 

Therefore, an equation is used to calculate the flow depth (Koch, 1998). This formula has been proven to 159 

perform well in the numerical simulation of viscous debris flows (Eq. (6)): 160 

 ( ) ( ) ( )( )
10/3

0.5

1 3 1 3 1 1/ , , , , ,ph v C J f v C J f f Q J C J= = =  (6) 161 

where C1 represents the dimensional empirical coefficient. This value of parameter is indicated by a 162 

semi-theoretical relationship (Eq. (7)) (Rickenmann, 1999): 163 

 ( ) ( )( )2/25

1 p 4 4 210 pC Q f Q f f U= = =  (7) 164 

Therefore, the impact pressure can be described as a function of debris-flow volume and channel 165 

gradient, and the impact pressures of dataset Ⅰ are calculated based on Eqs. (2)-(7) (see Table 1). 166 

2.1.2 Determination of HD and VD values 167 

HD and VD values were also introduced here since the actual damage will be significant if a 168 

building stands close to the debris-flow channel (Sturm et al., 2018). They can be estimated through 169 

high-resolution satellite images, such as Gaofen, Ziyuan, WorldView, and GeoEye. In this study, 170 

Gaofen-2 satellite images are employed for determining the HD and VD values. This satellite can 171 

capture panchromatic (black and white) images with a spatial resolution reaching 0.8 m and 172 

multispectral (color) images with a spatial resolution up to 3.2 m. Therefore, the resolution of satellite 173 

images used for determination of HD values is 0.8 m. However, there is no elevation information 174 

provided by satellite images. Therefore, DEM was used to extract the VD information between building 175 

and its nearest debris-flow channel. As for the building clusters that are hard to be separated into 176 

individual buildings manually, a ‘fishnet’ tool in GIS was used to automatically divide these clusters into 177 

building segments. Furthermore, the rectangle segments were converted into points so that each point 178 

represents a building. As a result, the HD and VD values of a building can be decided. The damaged 179 

buildings are mainly distributed on the accumulation fans. Therefore, even though a large HD is 180 
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observed, the VD is small due to the mild slope and smooth topography of the alluvial fans (Marcato et 181 

al., 2012). By considering the impact pressure, HD, and VD values, a physical vulnerability matrix can 182 

be established to evaluate the physical damage of a building caused by a debris-flow event. 183 

2.2 Economic loss of a building at risk 184 

The economic loss of a building caused by a debris-flow event can be estimated based on 185 

multiplication of its physical vulnerability and economic value.  186 

 ( )e p t , , ;V V M H P HD VD M M P A=  =  =   (8) 187 

where Ve and M represent the economic loss and the economic value of a building, respectively. P is the 188 

unit price of a building, and A represents the area of a building. Therefore, estimating Vp holds 189 

paramount importance in estimating economic loss. However, Vp (H(Pt, HD, VD)) is represented by the 190 

proposed physical vulnerability matrix. In this context, determining Pt plays a critical role in economic 191 

loss estimation. Therefore, to forecast the possible economic loss caused by a future debris-flow event, 192 

we need to estimate the impact pressure to buildings caused by a future debris-flow event. 193 

2.3 Prediction model development 194 

To predict the future impact pressure to buildings when a debris-flow event occurs, determining 195 

factors is essential. Therefore, we further developed Eq. (6) by integrating Eq. (5) and Eq. (7) to this 196 

equation: 197 

 ( )( ) ( )( )( ) ( )3 1 2 4 2, , , ,h f f f U J f f U J F U J= =  (9) 198 

Additionally, Eq. (3) can be rewritten as: 199 

 ( ) ( )( ) ( )1 1 2, , ,pv f Q J f f U J S U J= = =  (10) 200 

Therfore, the determination of impact pressure reslies on U and J: 201 

 ( ) ( )( )t , , , ,dfP f F U J S U J=  (11) 202 

However, the debris-flow volume is closely related to a set of geomorphic factors, as suggested by 203 
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Huang et al. (2020). They are catchment area (A), channel length (L), topographic relief (R), and mean 204 

slope of the main channel (J). The catchment area can reflect the debris availability and capacity of 205 

generating and containing the volume of loose materials for a debris-flow catchment. As for the channel 206 

length, it is related to the entrained and transported sediment volume (Marchi et al., 2019). Therefore, 207 

this parameter can also impact the final volume of a debris-flow event. R is defined as the terrain 208 

fluctuation and roughness of a catchment. To calculate this value, we need to first decide the optimal 209 

statistical unit in this area using the change-point model. Then, the subtraction value between the 210 

maximum value and minimum values of an optimal statistical unit is calculated. Finally, we utilized the 211 

maximum subtraction value to represent the R value of a catchment. J is defined as the ratio of the 212 

elevation difference of the main channel and channel length. A longer distance could be achieved for a 213 

debris-flow event if a steep channel exists in a catchment (de Haas and Densmore, 2019). In this case, U 214 

can be described as a function of A, L, R, and J: 215 

 ( )5 , , ,U f A L R J=  (12) 216 

Furthermore, subsitituting Eq. (12) to Eq. (11): 217 

 ( )( ) ( )( )( )t 5 5, , , , , , , , , ,dfP f F f A L R J J S f A L R J J=  (13) 218 

Therefore, Pt can be described as a complex function of geomorphology-related factors, including A, 219 

L, R, and J. To find the complicated correlations among them, an ensemble machine learning model 220 

(extreme gradient boosting (XGBoost)) was employed here to establish the relationship and then utilize 221 

this relationship to estimate the potential impact pressure to buildings when a future debris-flow event 222 

occurs. The basic mechanism of XGBoost is to constantly develop a new decision tree which acts as a 223 

weak learner and fits the residual error of the last prediction. After the training of a total of k trees, the 224 

final prediction result is the sum of the score of each leaf node in each developed tree. In this study, 225 

GridSearch algorithm was employed to decide the optimal hyper-parameters of XGBoost. As a result, 226 
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the hyper-parameters, such as n_estimators, learning_rate, max_depth, min_child_weight, and gamma, 227 

were decided as 500, 0.1, 5, 1, and 0.01, respectively. Overall, the target function of regression is placed 228 

in Appendix. A. Additionally, the database Ⅱ that is used for impact pressure prediction is presented in 229 

Table 6 of Appendix. A. 230 

2.4 Model assessment 231 

After the impact pressure prediction, three assessment indexes were used to evaluate the prediction 232 

performance, including MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Square Error), 233 

and MAE (Mean Absolute Error): 234 

 
1

1 m
i ipre

i i

y y
MAPE

m y=

−
=   (14) 235 

 ( )
2

1

1 m

i ipre

i

RMSE y y
m =

= −  (15) 236 

 
1

1 m

i ipre

i

MAE y y
m =

= −  (16) 237 

where yi is the actual value, and yipre represents the prediction value. m is the number of prediction 238 

values. 239 

3. Result analysis 240 

3.1 The relationship between the damage degree and Pt 241 

Fig. 3 shows the different damage degrees of buildings in dataset Ⅰ. The buildings were classified 242 

into two types, including RC-frame (reinforced concrete) and non-RC frame (masonry, wooden structure, 243 

and light steel frame). As indicated in Figs. 4(e)-(f), The masonry buildings suffer severe damage, and 244 

the light steel frame buildings and wooden structure buildings are destroyed (Figs. 4(g)-(h)) even though 245 

the impact pressure to buildings was estimated to be less than 30 kPa. However, the main structure of 246 

the reinforced concrete building can stay undamaged (Fig. 4(b)) when severe damage is found on the 247 

masonry structure (see a dashed circle in Fig. 4(b)) during the same debris-flow event. This resistance 248 
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ability difference indicates the difference in physical vulnerabilities between the RC and the non-RC 249 

frames, which can also be seen in Fig. 4(a). Moreover, moderate damage to the RC frame with 250 

unreinforced masonry infill walls is found in Fig. 4(c) when a small-scale debris-flow event occurs. 251 

Additionally, the RC frame suffers extensive damage when the impact pressure exceeds 100 kPa based 252 

on the estimated debris-flow volume. Therefore, the identifications of different damage degrees for 253 

buildings provide us with access to proposing a classification standard for the physical vulnerability of 254 

buildings. 255 

    256 

    257 
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    259 

Figure 4. Photographs of the damaged residential buildings caused by debris flows during the field 260 

investigations on the Qinghai-Tibetan Plateau 261 

3.2 Determination of HD and VD thresholds 262 

The field investigations and statistical results show that the non-RC frame buildings are destroyed or 263 

suffer structural damage when the HD is less than 30 m (Fig. 5(a)). The damaged buildings cannot be 264 

repaired, and reconstruction is required. In consistent with the conclusion of past study (Wei et al., 2022), 265 

the residential buildings, such as brick structures (Fig. 5(b)) and the RC frame buildings (Fig. 5(c)), are 266 

partially buried by the debris-flow sediments without structural damage when the HD is greater than 100 267 

m but less than 160 m. Therefore, 160 m is another HD threshold to classify the inundated and slightly 268 

affected areas. The upper limit of HD value for the historical debris flows during the field investigations 269 

is 230 m because almost 94% of HD values are less than 230 m (see Table 1). 270 

(g) 

Light steel frame Wooden 

structure 

(h) 
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 271 

    272 

Figure 5. Examples of the determination of the HD thresholds 273 

Table 1. Dataset Ⅰ for physical vulnerability matrix. 274 

No. Year Lon 

(°) 

Lat 

(°) 

Number 

of 

damaged 

buildings 

Impact 

pressure 

Pt (kPa) 

Maximum  

HD (m) 

Maximum  

VD (m) 

1 2006 85.3278 28.3735 21 16.1 162 12 

2 2007 85.5683 29.1875 13 40.6 141 12 

3 2007 85.5528 28.8717 7 37.5 13 7 

4 2008 85.6241 29.1869 21 41.0 119 3 

5 2010 86.0872 29.1625 11 35.5 54 2 

6 2013 85.3112 28.7649 53 24.1 284 29 

7 2015 85.2928 28.4174 9 117.4 160 2 

8 2015 85.3608 28.4074 22 31.1 131 107 

9 2015 85.3542 28.7159 7 17.5 82 13 

10 2015 84.7653 28.7559 38 132 74 15 

Inundated 

area of this 

debris-flow 

event 

(b) (c) 

Buried height 
Debris-flow 

direction 

Main channel 

HD< 30 m 

(a) 
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11 2015 85.4566 28.3868 3 5.1 32 10 

12 2015 85.4413 28.3827 1 32.7 17 6 

13 2015 85.0105 29.1208 3 5.2 133 2 

14 2015 85.2579 29.2603 9 9.8 146 2 

15 2015 85.2759 29.2652 6 14.8 228 10 

16 2015 85.0083 29.1493 4 14.6 171 3 

In order to support the thresholds determination of HD, we further analyzed the frequencies of HD 275 

values for the damaged buildings, as depicted in Table 1, through dividing the HD values into several 276 

intervals. The frequency and accumulative frequency results are shown in Fig. 6. 277 

 278 

Figure 6. The frequency and accumulative frequency distributions of the 228 damaged buildings. 279 

As depicted in Fig. 6, the highest proportion occurs in the range of 10 to 20 m, accounting for 20.1%, 280 

followed by a 15% percentage of HD values falling between 20 to 30 m. Therefore, the proportion 281 

falling within the range of 0 to 30 m is 49.4%, and approximately 82.5% of the HD values is measured 282 

under 100 m. Following the suggestion of Liu et al. (2020), a probability of 50% is considered a 283 

threshold for debris-flow warning, which implies that 30 m in this study can serve as a threshold. 284 

Moreover, the accumulative frequency of 80% is selected as another threshold based on Wei et al. (2018), 285 

corresponding to the HD value of 100 m. Furthermore, 90.5% of the damaged buildings have HD value 286 

less than 160 m, and nearly 98.9% of the damaged buildings fall within the HD range of 0 to 230 m. As 287 

a result, 160 m and 230 m are selected as additional two thresholds. In addition to the determination of 288 

HD threshold values, the maximum flow depth (hmax) in the debris-flow channel is used as a reference to 289 

decide the VD thresholds since the buildings are mostly situated along the channels (Fig. 5(a) and Fig. 7).  290 
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Therefore, calculating the elevation difference between the buildings and the nearest debris-flow 291 

channel is critical to evaluate the safety of the buildings. It’s worth noting that the height of a building 292 

was not considered when estimating the VD values. For example, both the masonry buildings in Fig. 5(a) 293 

and Fig. 7 are close to the debris-flow channel. However, no severe damage is observed for the building 294 

in Fig. 7 because it has a considerable vertical distance from the main channel. To decide the VD 295 

thresholds, the h values of the historical debris flows are presented in Table 6 of Appendix. A. The 296 

average depth of the debris flows is 2.6 m, and nearly all the VD values are less than 4 m. Therefore, 4 m 297 

serves as the first threshold, suggesting that the most severe damage to the buildings may be caused 298 

when the VD is less than 4 m. Whilst a debris-flow depth value of as high as 10 m is suggested (Xie et 299 

al., 2013), which can be found in curved channels. Consequently, we utilize 10 m to indicate the 300 

moderate damage of buildings when the VD is less than 10 m but greater than 4 m. Moreover, a vertical 301 

distance of 14 m above the river level is considered to record the river gauging on the Iowa River using a 302 

digital video camera (Creutin et al., 2003), which indicates a safe VD value to avoid damage caused by 303 

the river discharge. Therefore, 15 m is used as the upper limit of the VD values in this paper. 304 

 305 

Figure 7. Example of the determination of the VD threshold, and VD in this figure indicates the height 306 

4<VD<10 m 

Masonry structure 
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difference between the river table and the masonry structure without considering the height of this 307 

building.  308 

3.3 Physical vulnerability matrix (h(Pt, HD, VD)) 309 

The proposed physical vulnerabilities of residential buildings are listed in Table 2. Extensive 310 

damage or even complete damage may occur when a non-RC building is located near the debris-flow 311 

channel with HD less than 30 m and VD less than 4 m. However, a significant improvement in resistance 312 

ability can be observed when the non-RC frame is replaced by the RC frame considering the same 313 

impact pressure, HD and VD values. In general, the buildings hardly suffer damage when the VD is 314 

greater than 10 m. Therefore, the economic loss of a building can be calculated based on the proposed 315 

physical vulnerabilities and economic values. 316 

Table 2. Physical vulnerability matrix 317 

Pt 

(kPa) 

Building 

structure 

HD<30 m 30 <HD< 100 m 

4< 

VD 

4<VD< 

10 

10<VD<

15 

4< 

VD 

4<VD< 

10 

10<VD<

15 

<30 RC frame 0.3 0.2 0.1 0.2 0.1 / 

Non-RC 

frame 

0.8 0.7 0.6 0.7 0.6 0.4 

30-70 RC frame 0.6 0.5 0.4 0.5 0.4 0.2 

Non-RC 

frame 

1 0.9 0.8 0.9 0.8 0.6 

70-100 RC frame 0.7 0.6 0.5 0.6 0.5 0.3 

Non-RC 

frame 

1 1 0.9 1 0.9 0.7 

>100 RC frame 0.8 0.7 0.6 0.7 0.6 0.4 

Non-RC 

frame 

1 1 0.9 1 1 0.8 

Pt 

(kPa) 

Building 

structure 

100<HD<160 m 160<HD<230 m 

4< 

VD 

4<VD< 

10 

10<VD<

15 

4< 

VD 

4<VD< 

10 

10<VD<

15 

<30 RC frame 0.1 / / / / / 

Non-RC 

frame 

0.6 0.4 0.1 0.4 0.1 / 

30-70 RC frame 0.4 0.2 / 0.2 / / 

Non-RC 

frame 

0.8 0.6 0.3 0.6 0.3 / 

70-100 RC frame 0.5 0.3 / 0.3 / / 

Non-RC 

frame 

0.9 0.7 0.4 0.7 0.4 / 

>100 RC frame 0.6 0.4 0.1 0.4 0.1 / 

Non-RC 1 0.8 0.5 0.8 0.5 0.1 
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frame 

3.4 Prediction model development and assessment 318 

The debris flows in Table 6 (see Appendix. A) were divided into a training set and a validation set 319 

with a ratio of 7:3, and the training set is used to train the prediction model. The validation results are 320 

plotted in Fig. 8. Additionally, the performance of the developed model is assessed using the three 321 

indexes (Eqs. (14)-(16)). As indicated in Fig. 8, the prediction results show minor errors to the actual 322 

values, and the MAPE, RMSE and MAE values are 9.70%, 3.98 kPa and 2.74 kPa, respectively. RMSE 323 

value can reflect the extreme errors, and the calculated RMSE value can indicate that there are no 324 

extreme values observed in the prediction results. Additionally, MAPE reflects the error percentage 325 

between the measured and predicted values, and the model is more reliable if the MAPE is closer to 0. 326 

Therefore, it can be concluded that this model performed well in predicting the volume of a future 327 

debris-flow event. 328 

 329 

Figure 8. Plots of deviations between the prediction results in hollow triangle estimated by the machine 330 

learning model and actual values represented by a straight line 331 

4 Case study 332 

4.1 Geological setting 333 

We selected the Longxihe Basin (Fig. 9) in Dujiangyan, Sichuan Province, to conduct a case study 334 
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(see Fig. 1 about the geographic location of this area), which is 15 km away from the epicenter of the 335 

2008 Wenchuan earthquake. There are three faults crossing this area, namely the Southern Branch of the 336 

Yingxiu-Beichuan Fault, the Northern Branch of the Yingxiu-Beichuan Fault, and the Feilaifeng 337 

Structure. These faults and structures cause the incised valleys and uplifting of the land surface, resulting 338 

in large areas of exposed rocks. Additionally, this study area belongs to the subtropical monsoon climate, 339 

with annual precipitation reaching 1,134.8 mm. Over 80 % of the annual rainfall occurs from May to 340 

September. Consequently, the abundant rainfall and complex geological structure give birth to frequent 341 

debris flows. It was reported that 13 debris-flow events occurred in this basin on 12th May, 24th June, 342 

25th September 2008, and 17th July 2009. In particular, 45 debris-flow events were recorded on 13th 343 

August 2010 due to a high-intense rainfall event, causing severe damage to 233 buildings and resulting 344 

in the entire economic loss of 7.2×107 € (Yu et al., 2011). There are one town and two villages 345 

distributed in this basin. The impacts of the Wenchuan earthquake still pose threats to the local people 346 

since a time period of at least 20 years is required if the occurrence frequency of debris flows before the 347 

earthquake is expected (Yu et al., 2014). 348 

 349 
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Figure 9. The Longxihe Basin located in north-western part of Dujiangyan, China with a total area of 350 

70.56 km2 and elevation ranging from 794 m to 3,245 m.  351 

4.2 Estimation of economic loss of buildings 352 

4.2.1 Determination of physical vulnerability 353 

To estimate the potential physical damage of the buildings in the Longxihe Basin, the developed 354 

prediction model was applied to predict the potential impact pressure to buildings. As illustrated in Fig. 355 

10(c), the debris-flow catchments within this basin were generated since we mainly focus on the regions 356 

with the distribution of buildings and estimate the possible economic loss of the buildings when debris 357 

flows occur. Therefore, we extracted a total of 386 buildings in three regions based on the Gaofen-2 358 

satellite images (Fig. 10(a), Fig. 10(b), Fig. 10(d), and Fig. 10(e)). After that, we selected the catchments 359 

that are the nearest to the buildings to conduct analysis (see highlighted catchments with red lines in Fig. 360 

10(c)). The input information of these catchments for impact pressure prediction and the predicted 361 

results are all listed in Table 3. 362 

 363 

Figure 10. The residential areas (a), (b), (d), and (e) in the Longxihe Basin with highlighted buildings 364 

and (c) the debris-flow catchments that were prepared for the establishment of impact pressure 365 

(a) 

(b) 

(c) (d) 

(e) 
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estimation model when future debris flows occur 366 

Table 3. Prediction results using developed prediction model 367 

No. A / km2 L / km R / m J Predicted 

Pt (kPa) 

1 0.4226 0.70 116 0.3024 22.0 

2 0.8849 1.00 123 0.3503 26.7 

3 0.1447 0.25 113 0.4055 18.0 

4 2.9068 0.91 145 0.1668 22.1 

5 0.3637 0.58 125 0.2998 19.2 

6 0.9317 0.88 130 0.2551 20.9 

7 4.1780 1.84 141 0.0751 16.0 

8 0.1632 0.61 117 0.3419 19.3 

9 0.0932 0.69 112 0.3622 17.3 

10 0.1087 0.69 112 0.3542 17.5 

11 0.2355 0.73 159 0.6828 16.5 

12 1.3027 1.46 145 0.3944 25.2 

13 2.8095 1.30 158 0.2466 26.5 

14 0.3802 0.89 129 0.4299 19.2 

15 0.2177 0.70 136 0.5690 15.8 

16 0.1529 0.84 162 0.6821 14.4 

17 3.5789 2.23 153 0.3047 33.6 

18 0.3179 0.69 127 0.5400 17.4 

19 0.1970 0.74 96 0.4056 15.0 

20 0.2201 0.90 110 0.4599 13.0 

In addition to the predicted impact pressures to the buildings by the potential debris flows, the 368 

horizontal and vertical distances between each building and the nearest debris-flow channel were 369 

measured using GIS. As a result, the physical vulnerabilities of the buildings in Longxihe Basin can be 370 

decided based on the proposed physical vulnerability matrix, and the results are shown in Figs. 11(a)-(d). 371 

       372 

(a) (b) 
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       373 

Figure 11. (a)-(d) Physical vulnerabilities of the buildings for residential areas of the Longxihe Basin 374 

corresponding to Figs. 10(a), 10(b), 10(d), and 10(e) 375 

Table 4. Statistical results of the buildings with different physical vulnerabilities 376 

 0 - 0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 - 1.0 

Number 237 52 45 18 34 

Percentage 61.4% 13.5% 11.6% 4.7% 8.8% 

The statistical results in Table 4 illustrate that most buildings nearly suffer no damage when a 377 

debris-flow event occurs. This is because these buildings are RC-frame structures, which allow them to 378 

stay undamaged or only suffer slight damage even though they are close to the debris-flow channels. 379 

However, non-RC frame buildings may always suffer severe damage during a debris-flow event if their 380 

locations are near the channels. As indicated in Figs. 11(a)-(d), the buildings with high and very-high 381 

physical vulnerabilities are mainly brick and light steel structures. The difference in resistance ability 382 

allows a greater possibility for RC-frame buildings to keep structures undamaged during the same 383 

debris-flow event when compared to a non-RC building, which is consistent with the field investigation 384 

results in Fig. 4(b). Moreover, a non-RC frame building can also avoid damage even though it is close to 385 

the debris-flow channel. This is because a higher vertical distance to the debris-flow channel can allow 386 

this non-RC building to suffer no damage or light damage. Therefore, a comprehensive analysis by 387 

considering the structure type, spatial distances to debris-flow channel, and potential impact pressure is 388 

significant to establish a reliable physical vulnerability matrix to benefit the determination of the 389 

(d) (c) 
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potential damage degree of buildings. 390 

In order to validate the efficiency and accuracy of our method in estimating the physical damages of 391 

buildings, the damaged buildings caused by debris flows on 13th August 2010 are employed here to 392 

assess the reliability of this method. As depicted in Fig. 12(a), the RC-frame buildings suffer a moderate 393 

damage (see red dashed circles in Fig. 11(a)) because there are no obvious damages of external or 394 

internal walls observed during the field investigations based on the HAZUS building classification 395 

scheme (Rojahn, 1988). However, the debris-flow event caused extensive damage (see yellow dashed 396 

circles in Fig. 11(a)) to the brick structures due to the partly destroyed external or internal walls (Fig. 397 

12(b)). As a result, evacuation of people is necessary and reconstruction is required. Overall, our 398 

proposed method can provide a reliable evaluation of physical vulnerability of buildings caused by a 399 

debris-flow event and therefore benefit their estimation of economic loss. 400 

    401 

Figure 12. (a) The RC-frame buildings which suffered moderate damage with no obvious damage of 402 

external and internal walls found caused by a debris-flow event on 13 August 2010, and (b) extensive 403 

damage was observed on the brick buildings (non-RC frame structure) during the same debris-flow 404 

event. 405 

4.2.2 Economic loss 406 

Based on the estimated physical damage, we can further provide a reliable estimation of the 407 

economic loss. Six categories of buildings were identified in this study area based on the field 408 

(a) (b) 
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investigations. They are residential buildings, factory buildings, office buildings, and livestock houses. 409 

Table 5. Unit price (P) of a building in this area 410 

Element Categories Unit price Value based on 

Buildings 

Residential buildings 

(RC-frame) 
1050.44 €/m2 Average market price 

Residential buildings 

(Brick structure) 
158.38 €/m2 Construction cost 

Business buildings 

(RC-frame) 
1371.47 €/m2 Average market price 

Office buildings 

(RC-frame) 
1050.44 €/m2 \ 

Factory buildings 

(Light steel structure) 
237.57 €/m2 Construction cost 

Livestock houses 

(Brick structure) 
7.92 €/m2 

Restoration and 

reconstruction cost 

The economic value of a residential building in this area is based on the market price, which is 411 

provided by the Housing and Urban-rural Construction Agency. As for the unit price of a business 412 

building, we refer to the price ratio of a residential building and a business building in the city center of 413 

Dujiangyan. The unit price of a business building is normally 30% higher than a residential building. An 414 

office building belongs to the national assets, which cannot be rented or sold. However, possible damage 415 

still cannot be avoided if a debris-flow event occurs, which therefore requires restoration or 416 

reconstruction. Therefore, we refer to the unit price of a residential building to estimate the economic 417 

loss of an office building. Unlike the high construction cost and business value of a residential building 418 

and a business building, the construction cost of a factory building is low because of its light steel 419 

structure. Meanwhile, this kind of building is normally situated at a distance from the city center and 420 

residential areas, primarily to mitigate effects of noise and environmental pollution. Most importantly, a 421 

factory building invariably occupies a large area, potentially raising the construction cost when situated 422 

in the city center due to the exorbitant land prices. Considering the average market price of a factory 423 

building, we decide the unit price as 237.57 €/m2. Finally, the livestock house is still considered here 424 

since two villages are included in the analysis, and the livestock house is built for sheep and cattle. 425 

Therefore, the unit price of a livestock building is low (see Table 5). The economic loss of the buildings 426 
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in the Longxihe Basin are presented in Fig. 13.  427 

       428 

       429 

Figure 13. (a)-(d) Estimated economic loss of the buildings for residential areas of the Longxihe Basin 430 

corresponding to Figs. 10(a), 10(b), 10(d), and 10(e) 431 

The distribution characteristics of economic loss are different from physical vulnerability. For 432 

example, Fig. 11(a) illustrates that the buildings are more likely to suffer severe damage if they are close 433 

to the debris-flow channel, especially the non-RC frame structures. However, these non-RC frame 434 

buildings require lower reconstruction or restoration costs when compared to the RC-frame buildings 435 

(see Fig. 13(a)). In this case, the economic loss is low since it relies on the multiplication of physical 436 

vulnerability and economic value of a building (see red dashes in Fig. 13(b)). As indicated in Fig. 13(d), 437 

the factory buildings (see Fig. 11(d) and Fig. 13(d)) may suffer an economic loss of 3.2×105€. As for 438 

(a) (b) 

(c) (d) 
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the reason why a low unit price of a factory building (see Table 5) results in a high economic loss may 439 

be due to the large area of this factory building. Therefore, the site selection of a factory building is 440 

significant. Although the location of the factory buildings in mountainous areas can avoid noise 441 

pollution in urban development and decrease construction costs, the possible economic loss caused by 442 

natural hazards cannot be neglected. Additionally, the residential building should not be built on the 443 

outlet of the debris-flow catchment directly opposite (see red dash circles in Fig. 13(d)), especially when 444 

the foundation of the residential buildings is only slightly higher than the riverway (see yellow contours 445 

in Fig. 13(d)). For example, the highest economic loss is found in a residential building (see the image in 446 

Fig. 13(d)), reaching 5.1×105€. Therefore, at least a 4 m of residential building (RC frame) foundation 447 

is essential if the buildings are close to the debris-flow channel based on Table 2. Overall, the analysis of 448 

economic loss for buildings in mountainous areas can provide decision-makers with guidance about 449 

urban planning. 450 

5. Discussion 451 

The proposed integrated method has been applied for the determination of the damage degree for 452 

buildings in the Longxihe Basin, Sichuan, China. The involvement of debris-flow intensities, building 453 

attributes, and spatial position between the buildings and debris-flow channel can help to suggest a more 454 

reasonable damage degree value caused by debris flows. Specifically, the debris-flow intensity is 455 

expressed in impact pressure here, which can indicate the possible consequence of a building if the 456 

flowing materials strike the building directly. However, an overestimation of the damage degree may be 457 

caused since the spatial positions between the building and debris-flow channel is not a one-dimensional 458 

problem. In general, the elevation of a building is greater than that of the debris-flow channel in the 459 

horizontal direction. This is because the long-term water flow and historical debris flows move the soils 460 

and rocks, causing erosion of the channel bottom and therefore decreasing its elevation. As a result, the 461 
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elevation difference between the buildings and the debris-flow channel could cause a loss of impact 462 

pressure. Therefore, simply utilizing impact pressure is not enough to reflect the actual damage to a 463 

building. In contrast, the introduction of HD and VD is an effective supplement to improve the 464 

estimation of physical damage that the buildings may suffer. Furthermore, the damage degree may vary 465 

when subjected to different building structures. In this case, two major types of buildings are considered 466 

in this study to distinguish the impact resistance capacities of different building types. Overall, this 467 

developed matrix comprehensively describes the factors impacting the damage degree of buildings 468 

caused by debris flows. 469 

By utilizing the proposed matrix, we can estimate the damage degree of a building. However, the 470 

possible damage in future scenarios is still unclear due to the change in debris-flow magnitude. 471 

Therefore, an ensemble machine learning (ML) model is used to predict the volume of a future debris-472 

flow event so that the debris-flow intensities can be calculated based on the empirical relationships. This 473 

ML method can effectively avoid over-fitting when training prediction models due to the existence of a 474 

regular term. Most importantly, the strong ability in establishing a reliable relationship between a group 475 

of independent variables and a dependent variable enables a wider application of ML methods when 476 

compared to empirical and regression methods. Therefore, a precise prediction can be expected based on 477 

the established relationship using the ML method to indicate the potential damage to buildings caused by 478 

a future debris-flow event. However, we are also aware that the current sample size may not support a 479 

robustness performance in estimating impact pressure to buildings. For broader applications, continuous 480 

input of debris-flow data globally is essential, which may beyond the scope of this study. However, 481 

further improvement can also be achieved if the floors of buildings are considered when developing the 482 

physical vulnerability matrix. This is because the degree of loss presents a negative correlation with the 483 

number of floors (Fuchs et al., 2019). Nevertheless, the limitation cannot alter the fact that our work can 484 
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benefit the subdivision of buildings in different vulnerability levels and provide suggestions about the 485 

site selection of future residential areas.  486 

6. Conclusion 487 

In this paper, an integrated method for vulnerability assessment of buildings caused by future debris 488 

flows was proposed. This method includes a physical matrix and a machine learning model, in which 489 

this matrix was developed by considering the debris-flow process, building structure, and spatial 490 

positions between the buildings and debris-flow channels. To be more specific, the debris-flow process 491 

is represented by impact pressure (Pt), which can be estimated based on the debris-flow volume through 492 

field investigations. As for the definition of spatial positions, HD and VD are used to describe the 493 

position relation between the buildings and the debris-flow channel. By combining the three parameters, 494 

the actual impact pressure on the buildings can be decided. However, the damage degree may vary for 495 

different building structures. Therefore, the building structure is further considered to provide a precise 496 

estimation of the buildings, including the RC frame and non-RC frame (brick structure, light steel 497 

structure, and masonry structure). Therefore, a total of six types of buildings are included in this study. 498 

They are residential buildings (RC frame and brick structure), business buildings (RC frame), office 499 

buildings (RC frame), factory buildings (light steel structure), and livestock houses (brick structure). At 500 

the same time, an ML model (XGBoost) was developed to predict the impact pressure to buildings 501 

caused by future debris flows. On the basis of the proposed physical vulnerability matrix and machine 502 

learning model, we selected the Longxihe Basin, Sichuan, China, to conduct a case study. The results 503 

show that the non-RC buildings may be more likely to suffer severe damage if they are close to the 504 

debris-flow channels. The buildings with high and very-high physical vulnerabilities are mainly brick 505 

and light steel structures. Consequently, the factory buildings occupy the highest economic loss, 506 

reaching 2.41×105 € due to their large area. In addition, the buildings may suffer severe economic loss if 507 
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they are located the directly opposite of the outlet of the debris-flow catchment. Overall, our studies can 508 

achieve a reliable assessment of the physical damage and corresponding economic loss of buildings and 509 

therefore provide suggestions and scientific support for the future construction planning of buildings. 510 
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Appendix. A 628 

1. Mechanism of XGBoost 629 

The mechanism of XGBoost is to constantly develop a new decision tree which acts as a weak 630 

learner and fits the residual error of the last prediction. After the training of a total of k trees, the final 631 

prediction result is the sum of the score of each leaf node in each developed tree. The target function of 632 

regression in XGBoost is: 633 

 ( ) ( ) ( )
1 1

,
m t

i i k

i k

L l y y f
= =

= +    (10) 634 

where ( )
1

,
m

i i

i

l y y
=

  represents the loss function, and ( )
1

t

k

k

f
=

  is the regularisation term. 
iy  and 

iy  635 

are prediction value and true value, respectively. m is the number of samples. fk is the kth tree model. As 636 

mentioned above, the newly generated tree needs to fit the residual error of the last prediction, and 637 

therefore the prediction result can be presented as: 638 
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Substitute the Eq. (12) into Eq. (11) to rewrite the objective function as: 640 
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   (12) 641 

Furthermore, Taylor’s second order expansion is introduced to find fk to minimize the objective 642 

function: 643 

 ( )
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where gi is the first derivation, and the hi represents the second derivation 645 

2. Calculation results of impact pressure Pt 646 

Table 6. Dataset Ⅱ for developing the impact pressure prediction model 647 

No. A 

(km2) 

L  

(km) 

R 

(m) 

J Pt 

(kPa) 

No. A 

(km2) 

L  

(km) 

R 

(m) 

J Pt 

(kPa) 

1 8.55 3.13 269 0.1051 40.9 42 0.05 0.18 85 0.1908 10.3 

2 4.68 1.41 126 0.2162 47.4 43 0.06 0.23 81 0.3038 14.2 
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3 12.88 4.16 269 0.1246 56.0 44 0.33 0.50 162 0.2792 18.4 

4 0.29 0.50 95 0.1638 13.2 45 0.05 0.20 107 0.2661 12.2 

5 0.29 0.29 200 0.4122 23.0 46 1.37 1.11 160 0.1763 34.1 

6 5.73 0.71 260 0.1175 49.4 47 4.83 1.96 277 0.2071 35.5 

7 0.56 0.62 195 0.2475 29.3 48 1.33 0.50 258 0.5117 35.7 

8 2.15 0.73 250 0.2736 24.2 49 0.17 0.62 231 0.4727 21.0 

9 0.32 0.46 276 0.5452 23.0 50 12.47 3.61 366 0.1853 67.9 

10 1.67 0.95 161 0.3699 32.3 51 0.46 0.88 189 0.3819 26.4 

11 11.21 1.93 360 0.1512 34.1 52 1.63 1.98 148 0.3115 28.9 

12 2.85 1.57 232 0.2568 28.3 53 1.34 1.00 158 0.1727 18.7 

13 2.29 1.84 189 0.3581 46.6 54 0.24 0.43 151 0.2867 16.6 

14 0.08 0.42 240 0.3561 16.6 55 0.39 0.75 120 0.1745 15.6 

15 0.18 0.48 366 0.6976 13.0 56 0.02 0.1 132 0.5295 18.0 

16 0.53 0.81 170 0.2943 22.5 57 2.56 1.23 127 0.0998 16.7 

17 0.71 1.74 151 0.6494 166.9 58 1.62 0.71 229 0.1673 19.7 

18 0.49 1.64 162 0.6494 181.2 59 0.49 1.41 182 0.3000 24.0 

19 0.60 1.52 155 0.6469 155.1 60 0.21 0.66 215 0.5384 40.6 

20 0.36 1.15 261 0.8214 127.6 61 0.29 1.31 133 0.5184 64.1 

21 2.73 2.57 190 0.6771 88.2 62 0.85 1.75 163 0.4578 36.0 

22 2.02 2.59 198 0.7028 94.9 63 1.71 2.06 145 0.3879 68.5 

23 0.43 1.30 198 0.7729 94.7 64 1.27 2.16 183 0.3522 84.1 

24 0.19 1.09 181 0.6873 79.2 65 0.89 2.07 127 0.3385 68.1 

25 1.03 2.02 232 0.4369 51.2 66 0.49 1.20 168 0.5681 141.0 

26 3.99 3.78 134 0.4061 36.8 67 0.75 1.58 327 0.5566 165.7 

27 2.88 2.40 313 0.7107 66.5 68 0.37 0.52 199 0.3404 23.6 

28 0.34 1.14 163 0.8571 102.6 69 0.77 0.76 115 0.1566 17.0 

29 2.81 2.84 253 0.5250 80.8 70 0.31 0.87 178 0.1317 25.9 

30 7.18 4.82 400 0.5139 102.4 71 0.36 0.35 261 0.4578 20.6 

31 24.42 9.47 337 0.3153 20.2 72 2.62 1.39 321 0.3482 33.8 

32 2.81 1.74 205 0.3191 31.8 73 0.84 1.39 199 0.4899 14.9 

33 0.43 1.30 200 0.8012 47.5 74 2.72 2.56 528 0.1069 31.2 

34 7.06 4.41 275 0.4473 84.1 75 5.85 0.86 365 0.2962 31.5 

35 1.07 2.05 225 0.4431 71.0 76 2.61 1.28 388 0.5317 44.0 

36 0.86 2.17 149 0.3979 70.6 77 5.45 2.82 261 0.5228 112.0 

37 6.51 2.92 252 0.5029 110.7 78 3.51 0.99 227 0.3839 38.2 

38 0.42 1.64 151 0.4813 149.0 79 7.09 2.29 293 0.1962 52.6 

39 0.51 1.43 153 0.4899 153.1 80 0.02 0.21 110 0.4390 17.8 

40 0.20 0.76 130 0.5520 51.6 81 2.06 1.92 160 0.3211 29.7 

41 0.34 1.25 130 0.4942 56.5       

 648 

 649 


