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Abstract 

Landslides pose a significant threat in the Northeastern Himalayas, driven by monsoonal rains and 

exacerbated by rapid urbanization. This research establishes moisture (primarily rainfall) thresholds that 

can cause landslides in Northeastern Himalayas ‘hotspots’ based on 490 rain-driven landslides catalogued 

between 2006 and 2019. Coupling the innovative Regularized Expectation-Maximization approach with 15 

non-crossing quantile regression, we reveal critical insights into antecedent moisture conditions and their 

role in shallow to deep landslide genesis. Our derived moisture threshold for the Northeastern Himalayan 

region, E (mm) = -11.10 + 0.62 D (hour), for 24 < D <1440 hr, fits within global bounds for both deep 

and shallow landslides. The spatial analysis demonstrates significant heterogeneity, with Guwahati 

(located at 26.14° N, 91.74° E in Assam) and Shillong (located at 25.58° N, 91.89° E in Meghalaya) 20 

requiring higher cumulative rainfall for landslide triggers compared to Aizwal (located at 23.73° N, 

92.72° E in Mizoram). Our analysis shows that environmental controls, e.g., elevation, slope, land use 

types, CND, and rock types, play significant roles in shaping rainfall thresholds to trigger landslides. The 

insights from this research offer effective landslide risk management strategies and advance the predictive 

capabilities of Landslide Early Warning Systems with broader implications for climate resilience and 25 

disaster preparedness.  

1 Introduction 

Landslides, which accounted for to around 5% of all natural disasters globally between 1990 and 2005 

(EM-DAT, 2023), severely threaten both lives and infrastructure, causing extensive economic and human 
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losses each year. The Himalayas, particularly the Indian Himalayan region, are notably vulnerable, 30 

accounting for approximately 15% of the global landslides recorded between 2004 and 2017 (Das et al., 

2023; Froude and Petley, 2018; Poornima et al., 2024; Sharma, 2021).  Increased water infiltration from 

rain and snowmelt causes moisture-driven landslides (MDLs), which raise subsurface moisture levels, 

exacerbating the risk of landslides (Johnston et al., 2021; Monga and Ganguli, 2024; Whiteley et al., 

2019). A recent report in May 2024 highlighted a surge in landslides in the NE region, attributing the 35 

increase to heavy monsoon rains and unplanned urban development, emphasizing an urgent need for 

robust mitigation efforts (Telegraph India, 2024). Rainfall, a crucial driver, not only increases the pore 

pressure but also decreases the effective stress of the soil, reducing soil shear strength and eventually 

making slopes more susceptible to failure(Lepore et al., 2013; Liu et al., 2024; Ravindran and Gratchev, 

2021). The intensifying risk is further compounded by rapid urbanization, the expansion of infrastructure 40 

in landslide-prone areas, and altered precipitation dynamics due to climate change (Intergovernmental 

Panel On Climate Change (Ipcc), 2023). The variability in landslide triggers, ranging from low-intensity 

prolonged rains causing high degree of sub-surface percolation to high-intensity short-duration rain events 

linked to erosion and floods, underscores the complexity of predicting and managing these hazards 

(Tsunetaka, 2021; Zhang and Liu, 2010). NE Region of India (hereafter NERI; see Figure 1), which 45 

comprises eight Indian states, namely, Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, 

Nagaland, Sikkim, and Tripura, are susceptible to various degrees of landslides due to a combination of 

steep terrain of the northeast (NE) Himalayan range, extreme rainfall, earthquakes and other 

anthropogenic activities. According to the most recent report from 2023, most landslides over the NERI 

are shallow translational (planar) types triggered by rainfall, accounting for approximately 19% of 50 

landslides in India (Jain et al., 2023). Therefore, the implementation of an effective climate-informed 

Landslide Early Warning System (LEWS) in the Northeastern Himalayan (NEH) has become crucial.  

While such systems can facilitate timely evacuations and potentially save lives and are vital for advancing 

landslide prediction and mitigation(Harilal et al., 2019; Ramesh et al., 2023), an understanding of the 

intricate interactions between hydrometeorological conditions, terrain, and land surface processes across 55 

the NEH remains elusive owing to sparser observational networks, steep and inaccessible terrain, and 

heavy monsoon rainfall in much of this region. 
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Empirical thresholds for rainfall-induced landslides are crucial in developing the LEWS, serving 

as essential tools for predicting and mitigating landslide hazards (Dixit et al., 2024; Jordanova et al., 2020; 

Singh and Kumar, 2021). Several studies have established rainfall thresholds across various regions of 60 

India; however, significant gaps remain, particularly in the NEH. For instance, Harilal et al. (2019) 

identified rainfall thresholds in Sikkim, while Mandal and Sarkar (2021) and Abraham et al. (2022) 

focused on the Darjeeling Himalayan region, demonstrating the effectiveness of empirical thresholds in 

landslide prediction. These studies, however, often overlook the unique geological and climatic 

conditions of the NEH (Abraham et al., 2022; Harilal et al., 2019; Mandal and Sarkar, 2021) and have 65 

considered at-site (gauge) rainfall time series with limited observations to derive rain thresholds. 

Recently, Saha and Bera (2024) investigated rainfall thresholds using five stations across western 

Himalaya, which utilize NASA POWER rainfall products. Although NASA POWER rainfall products 

are helpful for large-scale applications, they lack finer spatial resolution, being available at  0.5° x 0.625° 

latitude/longitude grids.  Hence, their credibility in capturing extreme events and local scale variability is 70 

limited, leading to potential underestimations in regions with complex terrain (Setiya et al., 2024; NASA 

POWER, 2024). A significant limitation of the current state-of-the-art practices in the LEWS 

development is the lack of comprehensive regional studies addressing the finer spatial variability of MDL 

thresholds required for credible landslide predictions.  

Second, while a few assessments in India and elsewhere in the Aisa have considered event-based 75 

rain events and assumed to follow a power-law relationship between rainfall intensity-duration (ID) 

(Choo et al., 2024; Das and Ganguli, 2022; Dikshit and Satyam, 2018; Kim et al., 2021; LIU et al., 2023), 

the total rainfall-duration (ED) space can consider two different storm types responsible for landslides 

(Leonarduzzi and Molnar, 2020): short-duration intense storm events and antecedent moisture content 

(AMC), resulting from long-duration persistent rain events with less intensity. The AMC significantly 80 

influences landslide initiation by pre-saturating the soil, reducing its strength, and making it more 

susceptible to slope failure during subsequent rainfall events(Bogaard and Greco, 2018). This motivates 

the importance of Event-Duration (ED) moisture thresholds, which consider both the duration of rainfall 

events and the antecedent moisture conditions, responsible for landslide triggers, thereby enhancing the 

predictability and effectiveness of the LEWS. 85 
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Third, very few studies have so far linked rainfall thresholds to trigger landslides with potential 

environmental controls, despite their critical role in landslide susceptibility. The influence of 

environmental controls, e.g., Land Use/Land Cover (LULC) (Bourenane and Bouhadad, 2021), slope 

(Zhao et al., 2023), Topographic Wetness Index (TWI) (Sørensen et al., 2006), and Channel Network 

Distance (CND) (Godt and McKenna, 2008), is well established in the literature. The review of the 90 

literature (Singh et al., 2024; Yesuph and Dagnew, 2019) suggests that regions with dense forests and 

robust rock formations typically require higher rainfall to trigger landslides. This finding is further 

supported by an earlier assessment (Peruccacci et al., 2017), who demonstrated that forests and areas 

underlain by strong rock structures generally demand more rainfall to initiate landslides. Understanding 

the contributions of potential environmental controls in shaping spatial variability of rain thresholds is 95 

hence critical to inform landslide risk and enhancing the predictive capabilities of LEWS. 

 This study adds value to the existing state-of-the-art in moisture-driven landslide prediction by 

enhancing methodological practices in MDL threshold development on multiple fronts: (1) We 

reconstructed the gauge-based daily rainfall time series of the NERI using the Regularized Expectation-

Maximization (RegEM) approach, a method extensively applied in climate studies (Li et al., 2005.; 100 

Schneider, 2001), to obtain a long-term continuous rainfall series. (2) Unlike earlier studies, which simply 

relied on graphical measures to determine lag-times for the AMC, we estimate the optimal lag-time of the 

AMC on landslide genesis by employing a quantitative approach considering (a) the scaling-relationship 

between accumulated versus triggering rainfall (Aleotti, 2004; Dikshit et al., 2019), considering the 

concept of “scattering bias” from the literature (Dahal and Hasegawa, 2008), and (b) the non-parametric 105 

dependence measure, Kendall’s τ considering 3 to 60 days lag times. (3) we employed non-crossing 

quantile regression to derive moisture ED thresholds, ensuring monotonic and accurate quantile estimates 

that address the limitations of ordinary quantile regressions(Liu and Wu, 2009). Second, from an 

operational perspective, our study develops MDL thresholds considering a large array of landslide-prone 

sites across the NERI and derives a regional rain threshold curve to trigger MDLs, aiming to contribute 110 

effective LEWS.  For this, we seek to understand the effects of triggering versus antecedent moisture 

contents on landslide genesis and assess landslide hazards by formulating regional and at-site ED rainfall 

threshold curves. Finally, we link the rainfall thresholds for triggering MDLs with potential 
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environmental controls, establishing an association between physical drivers and the spatial variability in 

these rain thresholds across different sites, which is lacking for the NEH region. 115 

Acknowledging the challenges posed by inconsistent rainfall records, spatial heterogeneity, and 

land use changes, we emphasize that our approach provides an effective LEWS framework by considering 

both antecedent and triggering rain events in developing ED thresholds that can aid in the operational 

forecast of climate-induced landslides (Guzzetti et al., 2020). The insights drawn from this research 

extend beyond the NEH to other regions with similar geophysical characteristics, aiding community 120 

resilience and mitigating landslide hazards. 

2 Study Area and Data 

The focus of this investigation is the NE regions of the Himalayas. Figure 1 shows the NERI area and the 

locations of eight hydrometric observatories that are situated within highly landslide-susceptible urban 

areas of the NEH range (Jaiswal, 2023). These eight hydrometric observatories are part of major glacial 125 

melt river basin systems, such as Mahananda (Darjeeling), Teesta (Kalimpong and Gangtok), Barak 

(Aizwal), Brahmaputra (Guwahati and Shillong), Dhansiri (Kohima), and Manipur River Basin (Imphal). 

Figure S1 shows the landslide distributions from 2007–2019 within a 30 km radius of each IMD 

hydrometric observatory in each of the sub-catchments. The NERI considered here is characterized by 

the Ganga (its tributary Mahananda) and Brahmaputra River basin systems (major tributaries include 130 

Teesta, Manas, and Subansiri) and their numerous tributaries (Figures S1). The climatic pattern of the 

region shows a distinct Southwest monsoon season from June to September and westerly disturbances 

from October to March(Sarkar et al., 2006; Saitluanga et al., 2021). The temperatures in the plains range 

from 15°C in January to 28°C in August, while hilly areas experience temperatures varying from 9°C in 

January to 21°C during monsoon seasons (Shrestha and Devkota, 2010). The annual rainfall often exceeds 135 

1200 mm, supporting a rich diversity of forest cover from evergreen to semi-evergreen types (Singh et 

al., 2021). 

We collected the daily meteorological records from eight hydrometric observatories for the period 

1980 to 2019: Aizawl (in Mizoram), Darjeeling (in West Bengal), Gangtok (in Sikkim), Kalimpong (in 

West Bengal), Kohima (in Nagaland), Guwahati (in Assam), Shillong (in Meghalaya), and Imphal (in 140 

https://doi.org/10.5194/nhess-2024-152
Preprint. Discussion started: 19 September 2024
c© Author(s) 2024. CC BY 4.0 License.



6 

 

Manipur) (Figure 1). We obtained the station-based daily rainfall time series with a few data gaps from 

the India Meteorological Department’s (IMD) Data Supply Portal (https://dsp.imdpune.gov.in/). We 

choose daily temporal resolutions instead of hourly time scales to develop operational MDL thresholds 

at a regional scale. This is because of the limited to no-record availability of hourly records in several 

sites across the NERI. Second, daily forecasts are generally more reliable than hourly forecasts, providing 145 

credibility in an operational setting (Leonarduzzi and Molnar, 2020). We reconstructed the daily time 

series from intermittent temporal gaps by infilling each station record using openly accessible gridded 

daily rainfall records from the IMD (Pai et al., 2014) available at a high spatial resolution (0.25°, i.e., ~ 

27.5 km), focusing on approximately 10-12 grids around each station, within a 50 km radius. Further, we 

compiled the comprehensive landslide catalogue by integrating landslide information from the NASA’s 150 

Cooperative Open Online Landslide Repository (COOLR) (Kirschbaum et al., 2015) and the Geological 

Survey of India (GSI)’s Bhukosh Catalogue (https://bhukosh.gsi.gov.in). The compiled catalogue 

encompasses over eleven thousand MDLs recorded between 2007 and 2019. Local landslide events, 

particularly those triggered by rainfall in the NEH, were detailed through the GSI’s landslide inventory, 

which, despite often lacking precise time stamps (in the form of dates and hours), provides valuable 155 

information for understanding the spatial and temporal distribution (from year information) of landslides. 

3 Methods 

We focused exclusively on MDLs, reflecting the significant impact of monsoonal and extreme 

precipitation events over the NERI. Prior to 2006, the lack of comprehensive landslide documentation 

suggests the unavailability of reliable landslide assessment and mapping in this region. Our catalogued 160 

landslide point information (in Table 1), indicates that between 2006 and 2019, 490 landslides were 

reported within a 30 km radius of each station. Of these, approximately 67% occurred during the monsoon 

season, highlighting the critical influence of seasonal rains on landslide triggers in this 

geomorphologically sensitive region. Figure 2 shows the detailed workflow for the analysis. 
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3.1 Treatment of Missing Daily Rainfall Time Series 165 

Addressing gaps in gauge-based rainfall time series often involves the application of machine learning 

techniques to reconstruct incomplete precipitation records (Kim and Pachepsky, 2010; Schneider, 2001). 

In this study, we utilized the RegEM method to infill the missing gaps in time series across multiple 

locations (Li et al., 2005). RegEM, a widely adopted method in climate research, employs regularized 

ridge regression for parameter estimation and leverages extended cross-validation to ensure accuracy 170 

(Houdouin et al., 2023; Schneider, 2001). Unlike the conventional EM algorithm, RegEM initializes with 

estimates derived from the nearest observations rather than selecting missing values randomly. This 

iterative procedure involves an initial guess followed by the estimation step (E-step), which computes the 

missing values using the initial parameters. The optimization continues with the maximization step (M-

step) to refine the estimates, iterating until convergence is achieved, thereby ensuring robust 175 

reconstruction of the missing data points, i.e., rainfall observations (Li et al., 2005). The effectiveness of 

this approach in infilling missing rainfall records is well-documented in the literature (Feng et al., 2013; 

Stahle et al., 2020; Þórðarson et al., 2021). 

To enhance the accuracy of our reconstructions, we considered seasonal stratifications rather than 

treating the entire year as a single time series. To reconstruct gauge-based missing rainfall, we utilized 180 

high-resolution (0.25°×0.25°) gridded daily rainfall records from the IMD (see Section 2).  For each 

station, we selected rain grids within a 50 km radius, encompassing approximately 10–12 neighbouring 

grids per rain gauge. The 50 km search radius is consistent with previous assessments in areas with 

complex topography, enhancing the performance of the RegEM algorithm (Bellido-Jiménez et al., 2021; 

Livneh and Rajagopalan et al., 2017). 185 

To evaluate the performance of the reconstructed time series, we compared them against the 

available observed rainfall series. For each season, randomly we discarded 30% rainfall records from the 

daily series, and then the efficacy of the infilled time series is evaluated using the RegEM algorithm using 

the multiple criteria (Beck et al., 2017). For rainfall magnitude, we analysed the mean annual precipitation 

(ΔMAP), differences at the 90% exceedance probability (Δq10), and the timing differences of the center 190 

of mass (ΔCOM) for observed versus simulated rainfall events using circular statistics (Stewart et al., 

2005). Then we evaluate the efficacy of the temporal signatures using Spearman’s rank correlation to 
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measure the coherence between the daily and weekly time series of observed and the infilled time series. 

In particular, we utilize nonparametric Spearman’s rank correlations, which mitigate the influence of 

outliers to compare the observed versus infilled daily and the 5-day accumulated rainfall records. To 195 

compute an overall score, we normalized rainfall signatures using the standard deviation of the observed 

time series, thereby emphasizing smaller values. The comprehensive accuracy of the reconstructed 

rainfall time series was quantified by calculating an overall performance score (Beck et al., 2017), 

integrating all five indices, with the final score being the median of the rainfall and temporal signatures. 

 200 

3.2 Seasonal Rainfall Thresholds and Landslide Trigger Analysis 

Identifying seasonal rain thresholds to identify rain events is crucial for understanding the patterns that 

lead to MDLs. The IMD typically classifies a rainy day with a threshold of 2.5 mm/day, but this measure 

fails to consider regional and seasonal differences (Segoni et al., 2018). To address this limitation, we 

adopt a rain threshold to define a ‘rainy day’ equivalent to 10% of the seasonal mean rainfall (Ratan and 205 

Venugopal, 2013). To determine these seasonal rain thresholds, the year is divided into four seasons: 

winter (January-March), summer (April-June), monsoon (July-September), and fall (October-December). 

Then we determine each season's threshold across sites by determining the number of rainy days per 

season with rainfall magnitude > 1 mm/day. The total seasonal accumulation (𝑇𝑠𝑎) is then determined as 

the sum of daily rainfall magnitudes. The mean seasonal rainfall (𝜇𝑡ℎ) is derived from the ratio between 210 

𝑇𝑠𝑎 to the total number of rainy days. The seasonal threshold (Th) is then determined as 10% of the mean 

seasonal rainfall: Th=𝜇𝑡ℎ ∗ 0.01. Following this method, thresholds are calculated across all four seasons 

for each station. 

We use the seasonal thresholds to analyze triggering and antecedent rainfall events and identify 

'rainy days'. Following (Kim et al., 2021), a triggering rain event is defined as the continuous rainfall due 215 

to tropical cyclones, monsoon fronts, or localized convective storms and is assumed to begin following 

at least 24 hours without rain events (Figure S2). Antecedent rainfall, the cumulative rainfall preceding a 

triggering event, is crucial for assessing the likelihood of a landslide. Initially, we employed Crozier’s 

formulation (Crozier and Eyles, 1980) to quantify AMC over the periods of 3, 5, 7, 11, 15, 21, 25, 30, 35, 

40, 45, 50, 55, and 60 days (Kim et al., 2021), using a decay constant, K = 0.9. The choice of K is based 220 

https://doi.org/10.5194/nhess-2024-152
Preprint. Discussion started: 19 September 2024
c© Author(s) 2024. CC BY 4.0 License.



9 

 

on drainage capacity and hydrological properties (Capecchi and Focardi, 1988). This constant proved 

effective even for capturing rainfall impacts of 60 days or more before landslides, considering both 

shallow to deep-seated landslides (Capecchi and Focardi, 1988): 

𝐴𝑅𝑥𝑛 = 𝐾𝑅1 + 𝐾2𝑅2 + ⋯ + 𝐾𝑛𝑅𝑛                   (1) 

where 𝐴𝑅𝑥𝑛 is the antecedent rainfall for triggering event 𝑥. This approach enables precise measurement 225 

of antecedent rainfall, essential for determining the E-D thresholds and improving landslide predictability. 

 

3.3 Determining the Optimal Time Lag for Rain-Triggered Landslides 

Understanding the impact of AMC on landslide genesis necessitates identifying the optimal lag time to 

establish the correlation between antecedent rainfall and landslides. The review of the literature has shown 230 

that the effects of antecedent rainfall on landslide triggers vary with geological and precipitation 

characteristics, necessitating site-specific research. Prior evaluations have considered time lags ranging 

from 3 to 180 days depending on shallow to deep-seated (Das et al., 2023; Guzzetti et al., 2007) (Aleotti, 

2004; Dikshit et al., 2019; Lazzari et al., 2018). In this study, cumulative antecedent rainfall was 

calculated at lag periods from 3 to 60 days. We consider two different criteria to identify an optimal time 235 

lag for landslide genesis: (i) Examining the correlation between triggering and antecedent rainfall events. 

(ii) The second criterion is based on establishing a simple quantitative relationship of normalized 

triggering versus normalized antecedent rainfall magnitudes. We evaluate a non-parametric scale-free 

measure, Kendall's τ correlation, to determine dependence between triggering and antecedent rainfall 

events. Given pairs (𝑋𝑖,𝑌𝑖) and (𝑋𝑗, 𝑌𝑗) random variables, Kendall's τ is determined as: 𝜏 =
𝑁𝑐−𝑁𝑑

𝑁𝑐+𝑁𝑑
 ,where 240 

𝑁𝑐  and 𝑁𝑑   represent the number of concordant and discordant pairs, respectively. A 𝜏  value of +1 

indicates perfect concordance, –1 indicates perfect discordance whereas 0 indicates independence. The 

p-value associated with Kendall's τ  assesses the likelihood of a significant correlation (p-value < 0.10) at 

the 10% significance level under the null hypothesis of no correlation.  

The next quantitative metric involved comparing the normalized triggering versus antecedent 245 

rainfall at various lag times (3, 5, 7, 15, 21, 25, 30, 35, 40, 45, 50, 55, and 60 days) using the following 

formula: 
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                      𝑋𝑛 = (
𝑋−𝑚𝑖𝑛(𝑋)

𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)
)                                                            (2) 

where  𝑋𝑛 is the normalized value, 𝑋 is the original data, 𝑚𝑖𝑛(𝑋) is the minimum value of the time series 

and 𝑚𝑎𝑥(𝑋)  is the maximum value of the series. A graphical comparison of normalized values of 250 

triggering versus antecedent precipitation events reveals a 1:1 diagonal line in the graph, distinguishing 

the scattering bias with the assumption of an equal contribution from triggering versus antecedent rainfall 

to landslides (Dahal and Hasegawa, 2008). However, for a large array of sites, a graphical assessment of 

sites remains analytically intractable. Therefore, we determine the proportion of landslide points above 

and below the 1:1 reference line, assuming a square box of unit edge lengths correspond to different lag 255 

times to assess the contributions of daily rainfall at slope failure versus the AMC preceding the failure. 

This analysis aids in determining whether landslides is governed primarily by triggering events or 

antecedent rainfall. 

 

3.4 Estimation of ED Thresholds Using Non-Crossing Quantile Regression 260 

To establish at-site and regional ED MDL thresholds, first we determine the optimal time lag, estimating 

the role of AMC in landslide trigger. ED thresholds quantify the duration of rainfall events necessary to 

trigger landslides, providing a quantitative basis for predicting landslides. This is essential for early 

warning systems and risk management, particularly in landslide-prone areas (Guzzetti et al., 2007; Sarkar 

et al., 2023). 265 

In this study, ED thresholds were estimated using non-crossing quantile regression, which 

calculates the conditional quantiles of a response variable  (Liu and Wu, 2009). Unlike ordinary least 

squares regression that estimates the mean of the response variable, the quantile regression focuses on 

specific quantiles, offering a detailed understanding of the role of predictors in influencing the response 

variable distribution (Villarini and Slater, 2018). The method involves minimizing an asymmetrically 270 

weighted sum of absolute errors to estimate the intercept and slope for different quantiles. Considering 

training data (𝑥𝑖 , 𝑦𝑖), … , (𝑥𝑛, 𝑦𝑛) , the objective is to estimate the 𝑝th conditional quantile function 𝑓𝑝(𝑥), 

𝑃(𝑌 ≤ 𝑓𝜏(𝑿)|𝑿 = 𝒙)= 𝑝th. Koenker and Bassett (1978) introduced the check function, 𝑝𝜏(𝑟), to estimate 

this function by minimizing the following objective function: 
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𝑚𝑖𝑛
𝑓𝜏

∑ 𝑝𝜏(𝑦𝑖 − 𝑓𝜏(𝑥𝑖))𝑛
𝑖=1                                       (3) 275 

To avoid overfitting and enhance generalization, a regularization framework is applied: 

𝑚𝑖𝑛
𝑓𝜏 ∈ Ϝ

∑ 𝑝𝜏(𝑦𝑖 − 𝑓𝜏(𝑥𝑖)) + 𝜆𝐽(𝑓𝜏)𝑛
𝑖=1                    (4) 

where 𝜆 ≥ 0 is the regularization parameter, and 𝐽(𝑓𝜏) represents the roughness penalty of the 

function. 𝑓𝜏(.). 

Standard quantile regression can result in non-monotonic and inaccurate quantile estimations due 280 

to crossing quantile curves. To address this issue, non-crossing quantile regression, which ensures 

monotonicity and accuracy, was proposed in the literature (Liu and Wu, 2009). The approach involves 

the inclusion of a linear programming optimization routine (Eq. 5), incorporating non-crossing constraints 

for any positive definite kernel function 𝐾 (·, ·), which  is expressed as (Liu and Wu, 2009): 

𝑚𝑖𝑛
b, 𝛼1, … , 𝛼𝑛

∑ 𝑝𝜏(𝑦𝑖 − 𝑏 − ∑ 𝛼𝑗𝐾(𝑥𝑖 , 𝑥𝑗)𝑛
𝑗=1 ) + 𝜆𝑛

𝑖=1 𝛼𝑇𝐾𝛼                (5) 285 

where 𝜶 is a vector of length 𝑛, and K is an n × n matrix with elements 𝐾 (𝑥𝑖 , 𝑥𝑗), b is the regression 

coefficients (slope). The estimated quantile function is given by: 

𝑓𝜏̂(𝑥) = 𝑏̂ + ∑ 𝛼𝑘𝑖̂
𝑛
𝑖=1 𝐾(𝑥, 𝑥𝑖)                                    (6) 

The kth quantile fit is provided by: 

                        𝑓𝜏𝑘̂(𝑥) = 𝑏𝑘̂ + ∑ 𝛼𝑘𝑖̂
𝑛
𝑖=1 𝐾(𝑥, 𝑥𝑖)                                                                                (7) 290 

the non-crossing version is solved as: 

𝑚𝑖𝑛
b𝑘+1𝜶(𝒌+𝟏)

𝜆𝜶𝑘+1
𝑇 𝑲𝜶(𝒌+𝟏) + ∑ 𝑝𝜏𝑘+1(𝑦𝑖 − 𝑏(𝑘+1) − ∑ 𝛼𝑗(𝑘+1)𝐾(𝑥𝑖 , 𝑥𝑗)𝑛

𝑗=1 )𝑛
𝑖=1        (8) 

subjected to constraints  

𝑏̂𝑘 + ∑ 𝛼𝑘𝑖̂
𝑛
𝑗=1  𝐾(𝑥𝑖 , 𝑥𝑗) + 𝛿0 ≤ 𝑏̂𝑘+1 + ∑ 𝛼(𝑘+1)𝑗̂𝑛

𝑗=1  𝐾(𝑥𝑖 , 𝑥𝑗) 𝑓𝑜𝑟 𝑖 = 1,2 … 𝑛,                      (9) 

Following the literature (Schwanghart, 2023), we employ a MATLAB-based tool ‘ncquantreg.m’ for 295 

determining non-crossing polynomial quantile regression at different quantile levels: 

𝐸 = 𝑎 + 𝑏(𝐷)                                 (10) 
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where 𝑎 and 𝑏 are regression coefficients, and 𝐷 is the event duration in days. This linear relationship 

provides a straightforward estimation of ED thresholds. 

3.5 Environmental Controls in ED Threshold Variability 300 

The ED thresholds across the eight stations exhibit significant spatial variability, driven by key 

environmental controls(Singh et al., 2024; Sørensen et al., 2006; Yesuph and Dagnew, 2019; Zhao et al., 

2023). To identify the relative contributions of each of the environmental controls in triggering landslides, 

we employ a relative entropy-based approach, Mutual Information (MI) criteria, that measures the 

distance between two probability distributions of underlying variables (Zhou et al., 2022). MI quantifies 305 

the dependency between two variables, with higher MI values indicating greater interdependence. MI 

between two variables a and b is defined as: 

𝑀𝐼(𝑎; 𝑏) = 𝐻(𝑎) − 𝐻(𝑎|𝑏)                     (11) 

where 𝐻(𝑎)  represents the entropy of 𝑎 , and 𝐻(𝑎|𝑏) is the conditional entropy of 𝑎  given 𝑏 

(Latham and Roudi, 2009). For our analysis, we selected a suite of environment controls: vegetation, 310 

crops, built area, bare ground, rangeland, elevation, slope, TWI, and CND (Gupta et al., 2024) within a 

30-km radius of each site. 

 Further, we compared the geological compositions across stations, encompassing sedimentary, 

metamorphic, and igneous rocks. Sedimentary rocks, characterized by high jointing and shearing, 

facilitate rapid water infiltration, resulting in quick soil saturation and reduced shear strength (Zhuang et 315 

al., 2024). Conversely, metamorphic and igneous rocks exhibit higher cohesion and structural integrity, 

requiring higher rainfall magnitude to induce landslides (Schmidt, 2023). This comparison highlights the 

crucial role of geological characteristics in mediating rain thresholds for landslide initiation (Lu et al., 

2024; Xu et al., 2024). 

 320 

4 Results  

4.1 Performance and Variability of the RegEM Method 

Figure S3 delineates the efficacy of the RegEM method in addressing data gaps within the rainfall time 

series from 1980 to 2019 across all sites. The heat map showcases the performance scores of the RegEM 
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method, spanning from 0.99, indicative of excellent time series reconstruction, to 0.45, denoting a modest 325 

outcome. Notably, Guwahati and Shillong exhibit scores consistently above 0.8, underscoring the 

method's superior performance in these regions. In contrast, Aizwal and Kohima, characterized by fewer 

observations with significant data gaps, display variable effectiveness, with scores occasionally falling 

into the moderate range (0.4-0.6). This figure highlights the differential efficacy of the RegEM approach 

in managing missing rainfall data, dependency on the initial volume and quality of available data for 330 

achieving optimal performance over the full temporal spectrum. 

 The rain threshold distribution (Figure S4) for detecting rain events across different seasons 

reveals distinct seasonal and spatial variations. During the Southwest Monsoon, from June to September, 

the region encounters peak rainfall, with June typically recording the highest amounts. The analysis 

reveals that the monsoon season (July to September), shows the most pronounced rainfall thresholds, with 335 

a median value of 12.9 mm/day. In comparison, the summer season (April to June) presents a median 

threshold of 3.3 mm/day, while the fall (October to December) and winter (January to March) seasons 

both register considerably lower median thresholds of 1.0 mm/day. This temporal variability in seasonal 

rain thresholds underscores the sharp contrast in rainfall intensity between the monsoon and non-monsoon 

periods within the NEH region. 340 

 

4.2 Correlation of Antecedent Rainfall at Different Lags versus Triggering Rain Events Showing 

Antecedent Rainfall Controls on Landslides 

Figure 3 illustrates the Kendall’s τ correlation coefficients between triggering rainfall events and 

antecedent accumulated rainfall across various time lags at selected sites with significant correlations (p 345 

< 0.05). Finally, the optimal time lag is selected considering the trade-offs between the highest correlation 

value and the scattering bias of daily rainfall at slope failure versus the AMC preceding the failure (see 

Section 3.3 for details). Figure S5 explores the agreement between normalized cumulative antecedent 

rainfall and triggering rainfall events across various time lags for Gangtok. Both the 30-day and 35-day 

lags show a significant bias toward normalized triggering rainfall with only 13% rainfall contribution to 350 

trigger landslides, highlighting the substantial influence of long-term antecedent moisture in landslide 

trigger (Figure S5). Despite similar biases at both 30- and 35-day lags, the 35-day time lag is selected as 
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the optimal period due to its slightly stronger correlation with triggering rainfall events, offering a more 

reliable prediction of landslide events.  

Figure 4 quantifies the scattering bias between triggering rainfall events and antecedent 355 

accumulated rainfall across varying lag times up to 60 days. In Gangtok, this bias stabilizes beyond the 

35-day lag, where landslide occurrences are predominantly driven by long-term antecedent moisture, with 

a pronounced bias toward lower triggering rainfall values. Imphal shows a preference for shorter-term 

antecedent rainfall, with the highest landslide activity occurring at a 25-day lag. Kalimpong also identifies 

a 25-day lag as optimal, reflecting a similar pattern. Darjeeling demonstrates a strong association at a 15-360 

day lag. In contrast, Shillong, Kohima, Aizwal, and Guwahati show peaks at an 11-day lag, underscoring 

the consistent impact of short-term antecedent moisture across these locations. Table 2 summarizes these 

optimal lag times, identifying critical periods ranging from 11 to 35 days, and provides key insights into 

the interaction between triggering rainfall and antecedent conditions, a crucial step in calculating regional 

ED thresholds. 365 

Following the above criteria, for Darjeeling, we selected a 15-day lag (τ ≈ 0.84), while for 

Kalimpong, a 25-day time lag (τ ≈ 0.57) emerged as optimal. Imphal, in contrast, shows positive 

correlations at 15-day and 21-day lags, with the 25-day lag (τ ≈ 0.41) selected as optimal considering the 

scattering bias between triggering and antecedent rainfall at d = 25-day time lag (Figure 3). The analysis 

also highlights instances where no significant correlations were observed, indicating that Kendall’s τ 370 

correlation alone may not be adequate to assess the impact of AMC on MDL trigger.  

 

4.3 ED Threshold Analysis 

Figure 5 illustrates the ED thresholds for landslide prediction across multiple locations, using non-

crossing quantile regression to analyze varying rainfall percentiles ranging from 10th, 20th, and 50th 375 

percentiles. We determine the ED MDL thresholds for each site considering the ideal time lags for the 

AMC that vary from 11 to 35 days (Table 2) across different sites of the NEH. A few sites, e.g., Aizwal, 

Imphal, and Kalimpong, require less rainfall to trigger landslides compared to Guwahati and Shillong. 
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This differential response is quantified in Table S1, detailing the intercepts and slopes considering the 

20th percentile rain thresholds. Apparently, the slope for the rain thresholds at Shillong is the highest, 380 

whereas Imphal offers the lowest slope for triggering rain-induced landslides. 

 Figure S6 displays the ROC-AUC curves for a few representative sites, namely, Gangtok, 

Kohima, and Kalimpong, validating the effectiveness of the derived ED thresholds for landslide 

prediction through non-crossing quantile regression. Gangtok, with an AUC of 0.78, demonstrates robust 

predictive capability, indicating the effectiveness of the developed model. Likewise, Kohima and 385 

Kalimpong show strong predictive performance with AUC values of 0.76 and 0.75, respectively. These 

results highlight the credibility of the derived thresholds. 

Figure 6 portrays aggregated rainfall thresholds triggering MDLs considering all eight sites across 

the NEH, representing the regional ED thresholds (Eq. 14). The figure further compares these regional 

ED threshold curves, derived using non-crossing quantile regression, with two global thresholds: one 390 

representing both shallow and deep-seated landslides (Eq. 12) and the other specifically for deep-seated 

landslides (Eq. 13), proposed by Guzzetti et al (2007). All three equations are shown below:  

𝐸 = 14.82 𝐷0.61                                  𝑅𝑎𝑛𝑔𝑒  0.167 [ℎ𝑟] < 𝐷 < 500    (12) 

𝐸 = 4.93 𝐷0.504                                  𝑅𝑎𝑛𝑔𝑒   0.1 [ℎ𝑟] < 𝐷 < 100    (13) 

𝐸 = −11.10 + 0.62 𝐷                       𝑅𝑎𝑛𝑔𝑒  24 [ℎ𝑟] < 𝐷 < 1440    (14) 395 

where E represents accumulated rainfall (mm) and D is rainfall duration (hours). The NEH 

regional threshold (Eq. 4.3) lies well within the global thresholds for deep and shallow landslides and 

aligns closely with the global threshold curves for the shallow landslide, represented by the black curve. 

The NEH threshold is lower than the global shallow threshold curves for short durations, whereas the 

discrepancy between both curves increases at longer durations. This could be possibly due to the sparser 400 

observation records. This figure highlights the importance of region-specific ED thresholds for landslide 

prediction and disaster management in the NEH region, underpinning the need to consider both trigging 

events and accumulated rain events for threshold derivation. 
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4.4 Geospatial Variability in Rainfall Thresholds 405 

Figure 7 shows a comparative analysis of 3-day and 7-day accumulated rainfall thresholds across the 

NEH, with the rain threshold map (a) representing the 3-day accumulation and the map (b) illustrating 

the 7-day accumulation necessary to trigger landslides. The spatial distribution of rainfall thresholds 

reveals significant regional variability. Notably, Guwahati and Shillong exhibit the highest rainfall 

thresholds, with 3-day accumulations reaching up to 91.8 mm and 66.3 mm, respectively, and the 7-day 410 

accumulations showing the rain thresholds to trigger landslides are 239.5 mm and 163.9 mm, respectively. 

In contrast, Aizwal and Imphal show considerably lower thresholds, with 3-day accumulations of 29.3 

mm and 27 mm, whereas 7-day accumulations of 61.7 mm and 64.1 mm, respectively. The spatial 

variations could be attributed to the diverse geological, vegetative, and elevational conditions across the 

sites. In particular, the dense forests and solid rock formations in Guwahati and Shillong are likely to 415 

necessitate substantially more rainfall to initiate landslides, consistent with an earlier assessment 

(Peruccacci et al., 2017).  

Figure S7 comprehensively assesses the top three LULC classes for each site and the 

corresponding rainfall thresholds, aiming to capture and understand the variability in rainfall thresholds 

across different sites of the NEH. For instance, almost all sites predominantly feature vegetation, except 420 

for Imphal, where crop land a is major land use type. Likewise, Gangtok is characterized by bare ground, 

whereas Guwahati is characterized by water bodies (~18%). This spatial variability in major LULC 

features potentially controls the rain thresholds to trigger MDLs.  

Figure 8 shows the contribution of different environmental drivers to control the rainfall 

thresholds to trigger MDLs based on MI analysis. Elevation, with a MI value of 0.53, is the most critical 425 

control dictating the rain threshold. This is followed by the vegetation with an MI of 0.52, indicating its 

robust control in rain threshold. Rangeland (MI = 0.49) and CND (MI = 0.48) also play a significant role, 

influencing the water movement and its distribution in the landscape and contributing to the landslide 

trigger (Deliveris et al., 2023). Other drivers, e.g., bare ground, slope, TWI, and built areas, though less 

influential, still mediate rain thresholds to trigger landslides with MI values ranging from 0.37-0.44.  430 
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5 Discussion 

5.1 Multi-hazard Risk in the Himalayan Region 

Landslides represent a significant hazard in the Himalayan region, particularly those driven by moisture, 435 

is a typical multi-hazard event that involves compound interactions of multiple hazard drivers within a 

limited time window, e.g., heavy rainfall, flash floods, debris flows, and slope instability, leading to slope 

failures (Gill and Malamud, 2014). Extreme precipitation in NEH often triggers cascades of such natural 

hazards, compounding the risks and quantification of associated uncertainties and challenging disaster 

management (He et al., 2023; Sharma et al., 2024). Our study provides key insights into the predictability 440 

and effectiveness of LEWS within the NERI by establishing robust rainfall thresholds and examining the 

critical role of d-day lagged AMC in landslide initiation. Understanding and addressing the interplay of 

such hazards is vital for enhancing regional resilience and developing integrated disaster mitigation 

strategies across high mountain Asia (March et al., 2024). 

 445 

5.2 Spatial Variability in Rainfall Thresholds 

Our analysis reveals significant spatial variability in rainfall thresholds across the NEH region, influenced 

by environmental controls, e.g., elevation, LULC, slope, TWI, CND, and geological conditions. Guwahati 

and Shillong show notably higher rainfall thresholds, requiring substantial rainfall accumulations over 

both short and extended periods to trigger landslides. In contrast, Aizwal and Imphal exhibit much lower 450 

rain thresholds to trigger slides, indicating the diverse geological and environmental controls that 

contribute to varying levels of landslide susceptibility. The geological characteristics at each station also 

potentially play a crucial role in this variability. For example, Aizawl, with sedimentary rocks, e.g., 

sandstone, siltstone, and shale, is more prone to landslides even with moderate rainfall due to rapid water 

infiltration and reduced shear strength (Lalmuankimi, 2021; Lee et al., 2024). Conversely, the presence 455 

of metamorphic rocks, such as gneiss and schist, in Darjeeling contributes to higher rain thresholds due 

to their resistance to erosion (Prakash and Tewari, 2015). Due to their complex geological formations, 

Kalimpong and Gangtok, characterized by weathered rocks, exhibit moderate to lower thresholds, 

respectively, influenced by their unique geological conditions (Bhasin et al., 2023; Roy et al., 2022; 

Sengupta and Nath, 2022). Likewise, Kohima and Imphal, primarily characterized by fractured and 460 
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permeable rock types, experience increased landslide risks due to high water saturation (Singh and 

Okendro, 2023; Nokendangba Chang et al., 2021; Xu et al., 2021). Guwahati and Shillong, with robust 

granitic and gneissic formations, generally require higher rainfall to trigger landslides, though localized 

weathering can reduce these thresholds (Doley et al., 2021). These details highlight the necessity for 

region-specific thresholds integrating geological and environmental controls into the development of 465 

predictive models, thereby enhancing the precision and effectiveness of early warning systems in the 

NEH region (Bhusan and Goswami, 2013; Sarma et al., 2020). 

 

5.3 Limitations and Future Directions 

Our study, focused on the NERI, provides valuable insights into establishing rainfall thresholds for 470 

landslide prediction. We utilized high-resolution, station-based reconstructed daily rainfall records to 

derive rain thresholds considering both triggering and antecedent rainfall. A few caveats are worth 

highlighting. The sparse historical rainfall availability and uncertainty in landslide inventories introduce 

additional sources of uncertainties, which are common issues in investigating MDL thresholds triggering 

slides. Additionally, our analysis did not consider the impact of snowmelt-driven moisture contribution, 475 

which significantly contributes to antecedent moisture and influences rain thresholds to trigger landslides 

in the Himalayan region (Caracciolo et al., 2017). Furthermore, rain-on-snow events (rainfall + snowmelt) 

can increase soil saturation, particularly in areas where glacial meltwater is identified as another common 

driver for triggering shallow slides (Rautela et al., 2023; Wang et al., 2021).  

Future research can be directed towards integrating deep causal learning-based approaches to 480 

improve the predictability of rainfall thresholds (Tesch et al., 2023). By incorporating complex 

interactions between meteorological, geological, and environmental drivers, including snowmelt and 

atmospheric conditions, deep learning models could significantly improve early warning systems, 

providing timely and precise alerts, contributing to the advancement of landslide emergency planning and 

improving societal resilience. In addition, validating these novel approaches across broader geographic 485 

contexts and evaluating rainfall thresholds across landslide-prone areas across the globe will be essential 

for generalizing the results and ensuring resilience to such hazards, facilitating climate change adaptation 

efforts (Hussain et al., 2023; Nava et al., 2023; Luna et al., 2024). 
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6. Conclusions 490 

This study provides crucial insights into the landslide susceptibility of the NEH region, with several key 

findings: 

• Our analysis identified significant variability in the optimal lag periods for antecedent rainfall, 

ranging from 11 to 35 days across the study sites. Notably, four stations—Guwahati, Shillong, 

Kohima, and Aizwal—exhibited an optimal lag period of 11 days, highlighting the importance of 495 

considering short-term antecedent moisture conditions in triggering landslides. In contrast, 

Gangtok identified a 35-day lag, reflecting the need for considering longer-term moisture 

accumulation in certain areas. This variability underscores the necessity of tailoring LEWS to 

account for local conditions. 

• Guwahati and Shillong emerged as the regions with the highest rainfall thresholds, requiring 91.8 500 

mm and 66.3 mm over 3 days, and 239.5 mm and 163.9 mm over 7 days, respectively, to initiate 

landslides. These thresholds are significantly higher compared to sites, e.g., Aizwal and Imphal, 

where the rain threshold requirement to trigger slides is relatively lower. This spatial variation in 

rain thresholds highlights the distinct susceptibility of different locations to rainfall-induced 

landslides. 505 

• Our analysis underscores the paramount importance of elevation in determining rainfall thresholds 

for landslide initiation across the NEH region. Higher elevations contribute to increased 

gravitational forces on saturated slopes, necessitating more substantial rainfall to trigger landslides 

(Chicas et al., 2024). Similarly, dense vegetation acts as a stabilizing force by enhancing soil 

cohesion and reducing surface runoff, which also raises the thresholds required for landslide 510 

initiation (Rengers et al., 2020). Rangeland and CND further shape how water is distributed across 

the landscape, influencing the moisture content variability and its role in landslide triggers 

(Deliveris et al., 2023). Our analysis highlights the interactions of environmental controls and 

basin geologic conditions in shaping rain thresholds to trigger landslides. 

The insights from this study add value to developing region-specific rainfall thresholds that 515 

incorporate the significant influence of geological and hydrological controls in landslide prediction 
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and risk management. Our method, which combines advanced data reconstruction techniques with 

non-crossing quantile regression, provides a strong quantitative framework for developing credible 

LEWS for the NEH region. This approach not only enhances the accuracy of landslide predictions but 

also strengthens disaster preparedness and resilience in this vulnerable region. 520 
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Table 1: Summary of rainfall-induced landslide incidents (2006-2019) within a 30 km radius of key 

hydrometric stations in the NEH region. 

 870 

 

 

  

Station WMO ID 
Latitude (in 

degrees) 

Longitude (in 

degrees) 

No. of 

Landslides (30 

km) 

Aizwal 42727 23.73 92.73 19 

Darjeeling 42295 27.05 88.27 47 

Gangtok 42299 27.33 88.62 114 

Kalimpong 42296 27.07 88.62 84 

Kohima 42527 25.63 94.17 19 

Guwahati 42410 26.1 91.58 53 

Shillong 42516 25.57 91.87 47 

Imphal 42623 24.77 93.9 11 
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Table 2: Summary of optimal time lags for landslide trigger across eight sites, highlighting critical lag 

durations and corresponding bias assessments. 

Station 

Name 

Optimal 

Lag 

Duration 

(days) 

Kendall's τ 

(Optimal) 

p-value 

(Optimal) 

Bias (%) 

Darjeeling 15   0.84 < 0.05 60.1 

Kalimpong 25 0.57 < 0.05 58.8 

Gangtok 35 0.31 < 0.05 86.7 

Guwahati 11 0.76 0.53 69.2 

Shillong 11 0.6 0.48 70 

Kohima 11 0.4 < 0.05 73.3 

Imphal 25 0.41 0.1 36.4 

Aizwal 11 0.5 0.48 70 
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Figure 1: Schematics of NERI region showing the elevation map. The locations of eight hydrometric 

observatories under considerations are marked in red circles over the map. The inset on left shows 

the NERI (in red boundary) over India map. 

  

https://doi.org/10.5194/nhess-2024-152
Preprint. Discussion started: 19 September 2024
c© Author(s) 2024. CC BY 4.0 License.



3
6
 

 

 

F
ig

u
re

 2
: 

D
et

ai
le

d
 w

o
rk

fl
o

w
 o

f 
d

at
a 

co
ll

ec
ti

o
n
, 

p
re

p
ro

ce
ss

in
g

, 
an

d
 a

n
al

y
si

s 
fo

r 
es

ta
b
li

sh
in

g
 r

ai
n
fa

ll
 t

h
re

sh
o
ld

s 
an

d
 u

n
d

er
st

an
d
in

g
 

la
n

d
sl

id
e 

d
y
n

am
ic

s 
in

 
th

e 
N

E
R

I.
 
T

h
e 

sy
m

b
o
ls

 
T

h
 
an

d
 𝜇

𝑡ℎ
, 

re
p

re
se

n
ti

n
g
 
se

as
o

n
al

 
th

re
sh

o
ld

s 
an

d
 
m

ea
n
 
se

as
o
n

al
 
ra

in
fa

ll
, 

re
sp

ec
ti

v
el

y
, 
ar

e 
u

se
d

 t
h

ro
u

g
h

o
u
t 

th
e 

fl
o

w
ch

ar
t 

to
 d

en
o
te

 k
ey

 a
n

al
y
ti

ca
l 

co
m

p
o
n

en
ts

 o
f 

th
e 

st
u

d
y

. 

    

https://doi.org/10.5194/nhess-2024-152
Preprint. Discussion started: 19 September 2024
c© Author(s) 2024. CC BY 4.0 License.



3
7
 

 

 

F
ig

u
re

 3
: 

K
en

d
al

l’
s 

τ 
co

rr
el

at
io

n
 c

o
ef

fi
ci

en
ts

 s
h

o
w

in
g

 t
h

e 
co

rr
el

at
io

n
 b

et
w

ee
n

 a
n
te

ce
d

en
t 

ra
in

fa
ll

 a
cc

u
m

u
la

te
d

 o
v
er

 d
-d

a
y 

ti
m

e 
la

g
 a

n
d
 

th
e 

tr
ig

g
er

in
g

 r
ai

n
 e

v
en

ts
 a

cr
o

ss
 r

ep
re

se
n

ta
ti

v
e 

g
au

g
es

. 
S

ig
n
if

ic
an

t 
co

rr
el

at
io

n
s 

(p
 <

 0
.0

5
) 

ar
e 

m
ar

k
ed

 w
it

h
 '

X
'. 

T
h
e 

o
v

al
s 

su
rr

o
u

n
d

in
g

 t
h

e 
‘x

’ 
sy

m
b

o
ls

 s
h

o
w

s 
th

e 
o

p
ti

m
al

 l
ag

-t
im

e 
co

n
si

d
er

in
g
 t
h

e 
tr

ad
e-

o
ff

s 
b
et

w
ee

n
 s

ig
n

if
ic

an
t 

co
rr

el
at

io
n
 a

n
d
 s

ca
tt

er
in

g
 

b
ia

s 
o

f 
tr

ig
g
er

in
g

 v
s 

an
te

ce
d

en
t 

ra
in

fa
ll

. 
 

https://doi.org/10.5194/nhess-2024-152
Preprint. Discussion started: 19 September 2024
c© Author(s) 2024. CC BY 4.0 License.



3
8
 

 

 

F
ig

u
re

 4
 L

an
d

sl
id

e 
o

cc
u
rr

en
ce

s 
(i

n
 %

) 
v

er
su

s 
an

te
ce

d
en

t 
ra

in
fa

ll
 a

t 
d
if

fe
re

n
t 

ti
m

e 
la

g
s.

 D
as

h
ed

 l
in

es
 i

n
d
ic

at
e 

th
e 

la
g
 t

im
es

 c
o
rr

es
p
o
n
d
s 

to
 t

h
e 

h
ig

h
es

t 
fr

eq
u

en
cy

 o
f 

la
n

d
sl

id
es

 f
o

r 
ea

ch
 s

ta
ti

o
n

. 

https://doi.org/10.5194/nhess-2024-152
Preprint. Discussion started: 19 September 2024
c© Author(s) 2024. CC BY 4.0 License.



39 

 

 

Figure 5: Empirical rain thresholds for cumulative rainfall Event (E) vs. Duration (D) at 10th (in 

grey), 20th (in red), and 50th (in green) percentiles, highlighting regional variations in 

landslide susceptibility with Guwahati and Shillong showing relatively higher thresholds, 

indicating low susceptibility. 

  

https://doi.org/10.5194/nhess-2024-152
Preprint. Discussion started: 19 September 2024
c© Author(s) 2024. CC BY 4.0 License.



40 

 

 

Figure 6: Empirical ED thresholds for the NERI at the 10th (in grey), 20th (in red), and 50th (in 

green) percentiles compared with global thresholds for deep (in cyan) and shallow (in 

black) landslides, indicating the regional susceptibility for shallow to deep landslides. 
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Figure 8: Mutual information (MI) of rainfall thresholds versus environmental controls for landslides 

across eight NERI stations 
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