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Abstract. Snow avalanches are the primary mountain hazard for mechanized skiing operations. Helicopter and snowcat ski 

guides are tasked with finding safe terrain to provide guests with enjoyable skiing in a fast-paced and highly dynamic and 

complex decision environment. Based on years of experience, ski guides have established systematic decision-making 15 

practices that streamline the process and limit the potential negative influences of time pressure and emotional investment. 

While this expertise is shared within guiding teams through mentorship, the current lack of a quantitative description of the 

process prevents the development of decision aids that could strengthen the process. To address this knowledge gap, we 

collaborated with guides at Canadian Mountain Holidays (CMH) Galena Lodge to catalogue and analyze their decision-making 

process for the daily run list, where they code runs as green (open for guiding), red (closed), or black (not considered) before 20 

heading into the field. To capture the real-world decision-making process, we first built the structure of the decision-making 

process with input from guides, and then used a wide range of available relevant data indicative of run characteristics, current 

conditions, and prior run list decisions to create the features of the models. We employed three different modelling approaches 

to capture the run list decision-making process: Bayesian Network, Random Forest, and Extreme Gradient Boosting. The 

overall accuracies of the models are 84.6%, 91.9 %, and 93.3% respectively, compared to a testing dataset of roughly 20,000 25 

observed run codes. The insights of our analysis provide a baseline for the development of effective decision support tools for 

backcountry avalanche risk management that can offer independent perspectives on operational terrain choices based on 

historic patterns or as a training tool for newer guides.  
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1 Introduction 

Snow avalanches are a complex and dynamic natural hazard, responsible for an average of approximately 140 recorded 30 

fatalities annually in North America and Europe (Colorado Avalanche Information Center, 2024; Jamieson et al., 2010; Techel 

et al., 2016). The majority of these avalanche fatalities are backcountry recreationists, and the avalanche is commonly triggered 

by a member of the victim’s party (Schweizer and Lütschg, 2001). Terrain selection is the primary tool for managing avalanche 

risk when travelling in the backcountry. A wide range of factors need to be considered to select appropriate terrain, including 

current avalanche conditions, slope incline, forest density, aspect, elevation, and potential for overhead hazards or terrain traps. 35 

The dynamic nature of avalanche hazard conditions and sheer number of influences on avalanche terrain hazard make choosing 

appropriate terrain challenging.  

Due to the complexity of the terrain selection process, there is a long-standing desire to provide recreationists with decision-

making aids for making better informed decisions about when and where to travel in the backcountry. Early tools such as the 

seminal Graphical Reduction Method (Munter, 1997), the Stop-Or-Go method (Larcher, 1999), the SnowCard (Engler and 40 

Mersch, 2001), the NivoTest (Bolognesi, 2000), or the Avaluator (Haegeli, 2010; Haegeli and McCammon, 2007) provided 

users with relatively simple, analog workflows to combine information on conditions (mainly represented by the danger rating 

published by an avalanche warning service) with terrain information (primarily slope incline) to assess the severity of different 

routes. Current trip planning tools such as WhiteRisk (https://whiterisk.ch/) or Skitourenguru (https://www.skitourenguru.ch/) 

are modern incarnations of the original approaches that take advantage of recent developments in avalanche terrain modelling 45 

to describe the severity of avalanche terrain in more detail. While these tools can be effective for general recreationists, their 

simplicity, particularly their focus on the public avalanche danger rating limits their value for more complex decision-making 

contexts such as professional guiding or advanced amateur recreation. In the case of mechanized ski guiding in Canada, the 

decision-making process includes an added layer of operational considerations, which further increases complexity.  

Based on decades of practical experience, the mechanized skiing industry has developed a structured and iterative process to 50 

select terrain that is appropriate for skiing on a daily basis (Israelson, 2015). The decision-making process consists of four 

major components. First, guides assess current avalanche hazard conditions and produce an avalanche forecast that is relevant 

for the entire guiding tenure. Second, they create a run list which determines which ski runs within their tenure are available 

for guiding based on the current conditions. Based on the run list and operational conditions for the day (e.g., weather 

conditions, snow quality, skills and preferences of guests, flying logistics), the third step is selecting which ski runs will be 55 

used for the day, which is carried out by lead guides in collaboration with the guiding team. The selection of ski runs is an 

ongoing process throughout the day which can be altered by changing avalanche or weather conditions. Finally, many runs 

can be skied in a variety of ways with different terrain characteristics and exposure to avalanche hazard. It is the responsibility 

of the guide of each group to select an appropriate ski line based on evaluation of slope scale avalanche conditions, ski quality, 

and operational considerations.  60 
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The practice of creating a daily run list helps guiding teams to get on the same page for the day and establishes a list of potential 

terrain that has been deemed appropriate for the day’s conditions. Individual ski runs can be coded open for guiding (green), 

closed for guiding (red), or not-considered (black). Black codes essentially represent non-decisions (i.e., default) describing 

the situation when guides do not think the run is worth discussing during their roughly 15-minute run coding meeting. The 

reasons for not discussing a run include insufficient snow coverage on a run, the run being too far away given the current flying 65 

conditions, the terrain being obviously too hazardous to consider for the current conditions, or too much uncertainty for making 

an informed decision. Hence, the causes of a run not being coded clearly differ from a run being coded red versus green. In 

addition, guides’ personal references and biases can impact whether a run is coded as black. The process of coding runs during 

the morning meeting prior to going skiing gives the opportunity for a consensus-based decision process and helps limit 

emotional and time pressures that can impact decision-making in the field. HeliCat Canada, the association of mechanized 70 

skiing operations in Canada, identifies daily run lists as a crucial component of avalanche risk management practices (HeliCat 

Canada, 2024).  

Quantitatively describing the run list coding process in a way that provides insight and offers added value for participating 

operations requires sophisticated model approaches that can consider the wide range of relevant factors and capture the nuanced 

nature of these decisions. Prior research has used regression analysis as a method for capturing decision-making processes 75 

(Sterchi et al., 2019; Thumlert and Haegeli, 2018), which assumes that the decision to open or close a run can be represented 

as a linear combination of factors. These approaches provided useful starting points for capturing the complexity of guiding 

decisions but are limited by the modelling methods. Purely data-driven machine learning methods, such as using self-

organizing maps for grouping runs based on run code patterns (Sterchi and Haegeli, 2019), have also shown promise but are 

prone to detecting spurious relationships, and the black box nature of the algorithms makes them difficult to understand and 80 

trust.  

Recent advances in artificial intelligence and machine learning have led to the development of a wide range of different 

algorithms which show promise for both examining guide decisions in more sophisticated ways and developing meaningful 

operational decision support tools. Bayesian networks (BN) offer an attractive alternative to the existing methods due to their 

ability to use expert knowledge to model complex decision processes (Fenton and Neil, 2019). Decision tree base methods, 85 

such as Random Forests (RF) and Extreme Gradient Boosting (XGB), are also attractive for modelling complex decision-

making tasks due to their ability to automatically account for complex relationships within the data and their track record of 

producing accurate predictions in a variety of modelling domains (Breiman, 2001; Chen and Guestrin, 2016). Furthermore, 

improvement of methods for interpreting the output of machine learning models has led to a greater ability to understand what 

is going on under the hood of black box models, which makes them more transparent and has the potential to improve 90 

trustworthiness in implementing these tools in operational settings (Molnar, 2022).  
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The objective of this paper is to describe the run list coding process at a mechanized skiing operation using BN, RF, and XGB 

approaches and discuss their potential for the design of operational decision support tools for the mechanized skiing industry. 

We explore the factors that influence run list decisions and the relationships within the decision-making process. The empirical 

foundation of the decision-making models is based on seven seasons of operational data (winter 2015/16 - winter 2022/23) as 95 

well as high resolution avalanche terrain modelling. We test and compare the performance of the decision-making models as 

predictive tools and use interpretable machine learning methods to understand the inner workings of the black box models. 

The insights from this study lay the foundation to collaborate with guiding operations to create real world decision support 

tools that capture historic decision-making patterns with the potential for integration into guide training and daily operational 

decision-making practices. 100 

2 Methods 

Capturing the critical factors for the run list coding process at an operation requires a variety of different data sets, which can 

be grouped into factors that characterize the terrain within each ski run, current conditions, and operational factors and 

constraints. This section first introduces the study area and data sets that we used to capture the run list decision-making 

process. It then discusses the three modelling methods and our approach to model evaluation in detail. A table of all variables 105 

included in the decision support models is in Appendix A, including a description of the variable, a histogram of the variable 

distribution, and how it is applied in each model. The code necessary to reproduce our analysis are available at 

https://doi.org/10.17605/OSF.IO/6DHMX (Sykes et al., 2024), all code is written in the R program for statistical computing 

(R Core Team, 2024). Due to the large number of data sources and variables included in the present analysis, it is not possible 

to describe every processing step in complete detail within the constraints of this paper. However, interested readers are 110 

encouraged to reach out to the corresponding author for more details. 

2.1 Study area 

Canadian Mountain Holidays (CMH) Galena Lodge is a mechanized skiing operation located in the Selkirk Mountains near 

Trout Lake, BC, Canada (Figure 1). The Selkirk Mountains have a transitional snow climate, prone to persistent weak layers 

of surface hoar and faceted layers associated with icy crusts (Haegeli and McClung, 2007). Most of the terrain in the CMH 115 

Galena tenure is forested, but there are also high alpine zones with glaciated ski runs. Within their roughly 1,200 km2 tenure 

are 295 predefined individual ski runs (Figure 1), which are individually coded as green, red, or black each morning. For this 

research we only included ski runs that are completely within the operating boundaries of CMH Galena’s tenure, where we 

have collected at least 10 GPS tracks over the study period (see Section 2.2.2), and where information about operational 
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considerations was available (see Section 2.2.3). This results in an analysis dataset for 192 ski runs, which are highlighted in 120 

yellow in Figure 1. 

      

Figure 1: Canadian Mountain Holidays Gelena tenure, showing the lodge location and ski runs included in the analysis. Each run is 

coded using the run list during the daily morning guides meeting. 

2.2 Run characteristics 125 

To characterize the terrain in the CMH Galena tenure, we modelled avalanche start zones and runout zones using state-of-the-

art avalanche terrain modelling methods. The output of these models describes the terrain across the entire tenure but to better 

understand the characteristics of the terrain where guides commonly travel, we focused on the characteristics of raster pixels 

within a 20 m buffer of GPS tracks that have been collected by the research team to record guides’ terrain choices since the 

2015/16 winter season. Based on discussions with guides, we learned that guides only consider the ‘most conservative line’ 130 

within the run during the run list coding process, therefore on runs that are heavily used we applied a clustering approach to 

identify the most conservative ski line from the collected GPS tracks to extract relevant raster pixels. To include the terrain 

characteristics in decision support tools we calculated summary statistics to represent the terrain on each ski run. In addition 

to the physical terrain characteristics, we also included operational factors for each ski run that play a role in the decision-

making process. The following paragraphs explain each of these steps in more detail.  135 
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2.2.1 Avalanche terrain modelling 

The data we used to characterize avalanche terrain at CMH Galena include elevation, forest cover, exposure to potential 

avalanche release areas (PRA), and avalanche runout zones. Elevation data came from a SPOT 6 satellite 

stereophotogrammetry 5 m DEM and forest cover was estimated using land cover classification of Rapid Eye 5 m satellite 

imagery (Sykes et al., 2022). We used a potential release area (PRA) model to estimate the extent and size of avalanche start 140 

zones based on slope angle, aspect, curvature, roughness, and forest density (Bühler et al., 2013, 2018, 2022; Sykes et al., 

2022). To quantify exposure to overhead hazard, we used the large-scale hazard indication modelling approach described by 

Bühler at al. (2022) including the avalanche dynamics model RAMMS (Christen et al., 2010) to simulate the runout distance, 

velocity, impact pressure, and flow height for avalanches originating from all 111,937 identified PRA polygons.  

We simulated PRAs and overhead hazard for two different avalanche scenarios (Figure 2): A frequent scenario targeting 145 

smaller storm snow slab avalanches that are commonly encountered (Sykes et al., 2022), and a large scenario that is intended 

to capture deeper and more connected avalanches that are more typical of periods with active persistent weak layers. For the 

frequent scenario we use the 10-year return period parameters to identify potential release area polygons and to increase the 

size for the large scenario we used the 30-year parameters from prior research conducted by Bühler et al., 2022. The size of 

potential avalanche release areas is typically larger for the large avalanche scenario, but the extent to which the release area 150 

polygons differ between the two scenarios depends on the local terrain characteristics. For the frequent scenario we use a 

release depth of 0.5 m for the RAMMS simulations and for the large scenario we use a release depth of 1 m. The release depth 

values are based on discussion with local guides and targeted around the type of avalanche activity we aim to capture with the 

simulations.  
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 155 

Figure 2: Comparison of PRA polygons and runout impact pressure for frequent and large runout simulations.  

2.2.2 GPS tracking 

Starting in the winter of 2015/2016 the Simon Fraser University Avalanche Research Program has collaborated with several 

mechanized ski guiding operations in Western Canada to collect high-resolution information on the terrain skied. The location 

information was collected with custom-designed GPS trackers which recorded participating guides’ positions every 4 sec over 160 

the course of a week (Thumlert and Haegeli, 2018). At CMH Galena, the research team has collected 15,111 GPS tracks over 

seven winter seasons (2020/21 season is missing due to COVID-19 restrictions).  

We leverage the GPS tracking data in our run list decision-making model by using the GPS track coordinates to extract terrain 

characteristics for each run. This method is more accurate than using the predefined run polygons (Figure 3) because it focuses 

the spatial extent of the terrain characterization to only the portion of the run polygon that is actually skied. Since the most 165 

conservative ski line matters the most for opening or closing a run, we used a clustering approach to further refine the portion 

of the run that we use to characterize the terrain on heavily used runs, which we defined as having 50 or more GPS tracks over 

the data collection period (n = 65).  
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To identify the most conservative line within the available GPS tracks associated with a ski run polygon, we grouped the tracks 

using fuzzy analysis clustering, a probabilistic variant of the k-medoid clustering approach described in Chapter 4 of Kaufman 170 

and Rousseeuw (2005) and implemented in the fanny function of the cluster package in R (Maechler et al., 2022). In 

comparison to hard or deterministic clustering, fuzzy clustering calculates membership probabilities for each datapoint to 

describe how likely they belong to a particular cluster. This allows the method to provide better insight into datasets where the 

differences between clusters are more gradual (Kaufman and Rousseeuw, 2005). The distance matrix used for the clustering 

was a combination of two normalized distance matrices: one for the geographic location represented by the start and end point 175 

of the GPS tracks (i.e., coordinates of landing and pickup locations) and one for the terrain characteristics of the tracks, which 

included the 95th percentiles of slope incline, PRA area for the frequent and large scenario, runout pressure for the frequent 

and large scenarios, as well as the proportion of the track in forested terrain. Terrain characteristics that likely did not exhibit 

a multimodal distribution (as tested with Hartigans' dip test from the diptest R package by Maechler, 2021) were eliminated 

from the terrain characteristics distance matrix. Based on our initial explorations, the default values for the weight of the terrain 180 

characteristics in the overall distance matrix and the fuzzy parameter that determines the crispness of the cluster solutions were 

0.15 and 1.7 respectively. For each ski run, we calculated solutions for 2 to 10 clusters and selected be best solution based on 

the average silhouette width, one of the commonly used measures for assessing how well the data points are represented by 

their clusters. Subsequently, the most conservative line within the selected cluster solution was identified by examining the 

distributions of the terrain characteristics of DEM raster cells touched by the GPS tracks associated with the different clusters. 185 

To minimize the influence of outliers, only GPS tracks with a cluster membership probability higher than 0.75 were included 

in these assessments. The selected cluster solutions and most conservative lines were verified by CMH Galena guides, and if 

necessary, the algorithm was rerun with slightly modified parameter values to produce a more realistic solution. Figure 3 

presents the identified ski lines for several runs to illustrate the output of the clustering algorithm. 
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 190 

Figure 3: Example of GPS clustering approach, with most conservative cluster of GPS tracks shown with black lines and other GPS 

track clusters shown by color coded lines.  

2.2.3 Summarizing terrain characteristics 

Since the unit of decision-making for the run list coding is an individual ski run, we needed to simplify the terrain information 

for each run into a single number summary for each terrain characteristic. We carried this out by extracting the mean, median, 195 

95th percentile, and maximum values for PRA area, runout depth, runout impact pressure, runout velocity, and slope incline 

based on the values of all raster cells within a 20 m buffer of the relevant GPS tracks. For the PRA and runout terrain layers 

we calculated these summaries for the output of both the frequent and large avalanche scenarios. In addition, we calculated the 

percentage of each run that was within PRA, covered by forest, and the proportion of each run within each cardinal aspect. To 

further characterize the aspect of the runs we calculated the average northness of each run, which uses a cosine transformation 200 

to determine the degree of northern exposure of a run ranging from -1 (south) to 1 (north) (Olaya, 2009). Since separate 

avalanche hazard assessments are produced for alpine, treeline and below treeline, we also calculated the percentage of each 
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run in the different elevation bands using elevation thresholds from local guides (alpine > 2250 m, treeline 2250 – 1850 m, 

below treeline < 1850 m). Finally, we extracted the maximum and minimum elevation of each run.  

2.2.4 Operational considerations 205 

The final component of run characterization aims to capture the operational perspective of each run. One key source of this 

information was the work of Wakefield (2019) who developed a ski run characterization survey to capture the guides’ personal 

perception and operational knowledge of their skiing terrain (Wakefield, 2019). The collected information contains a wealth 

of knowledge from CMH guides, but the present study only incorporates a limited subset including a) whether weak layers are 

intentionally managed by destroying them on the surface using skier traffic, b) whether a run fills a specific operational role 210 

(e.g., lunch run or destination run), c) the approximate flight distance required to access a ski run, d) the overall ski quality of 

the run, and e) the overall accessibility of the run and the landing zone for each run.  

2.3 Current conditions 

There is a multitude of condition factors that can impact run list coding at CMH Galena, but in this manuscript we present a 

relatively sparse model that focuses on the major decision drivers. We selected the variables based on the operational 215 

experience of Roger Atkins and looked for relationships within the data. In the absence of high-quality weather station data in 

our study area, we relied on field observations, lodge weather observations, and daily avalanche hazard assessments to capture 

the current conditions. In addition, we include the following daily-changing operational factors relevant to the daily run list 

coding: a) the percent of the tenure that was observed the prior day, b) how long it had been since the run had been skied last. 

In addition, c) whether the guiding program was on an exchange day, where guests change, guides teams are swapped out, and 220 

operational logistics such as transporting food and equipment to the lodge impact the daily operations. These factors help to 

incorporate real world operational considerations that have an impact on the decision-making process, which are independent 

from the terrain hazard or avalanche hazard conditions. The following sections describe how the condition variables were 

derived in detail. 

2.3.1 Weather conditions 225 

Snowfall loading rates are the most critical factor to determine the size and likelihood of avalanches. Therefore, we included 

three variables related to snow loading in our decision-making models: the height of new snow over the past 72 hours (hn72), 

24 hours (hn24), and 12 hours (h2d) as recorded in the daily field observations and morning lodge observations from the 

guiding team. We also include the daily average height of snow (hs) observed in the field as a proxy for the overall snow 

coverage in the tenure. Additional weather factors captured from guides field observations include wind speed, sky cover, and 230 
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current precipitation rate. As an indicator of seasonal changes to operational practices and general mountain conditions we 

also included the time of season as an ordinal variable (early-winter, mid-winter, early-spring, and spring).  

2.3.2 Avalanche conditions 

To capture the guiding team’s understanding of the avalanche hazard conditions, we extracted daily avalanche hazard ratings 

for each elevation band, avalanche likelihood and avalanche size information of the identified avalanche problems, and the 235 

strategic mindset from their morning assessments (Atkins, 2014; Statham et al., 2010, 2018). Since recent avalanche 

observations play a large role in avalanche hazard assessment, we also included the total number and maximum size of the 

avalanches observed within the CMH Galena tenure from the past 72 hours and the past week. We elected to separate avalanche 

likelihood and size information for persistent and non-persistent avalanche problems to capture the effect of different types of 

avalanche problems on the decision-making process more precisely.  240 

2.3.3 Run coding 

The daily run list codes are the output variable for our decision-making models. While working with Roger Atkins to 

understand the CMH Galena run list coding process, we realized that transition periods are the most interesting and useful 

target for a decision-making model as they indicate a change in operational conditions from the status quo. However, these 

transition periods are relatively infrequent, only accounting for roughly 11% of the run list codes in our data set, while runs 245 

remain red roughly 18%, remain green roughly 59%, and remain black in roughly 12% of run list codes. To maximize the 

utility of the decision support tools we constructed our target variable to explicitly highlight transitions from the prior day’s 

run code. The run list target variable in our models includes five categories: ‘closing’, ‘status black’, ‘status red’, ‘status green’, 

‘opening’. We consider runs transitioning from ‘green’ to either ‘red’ or ‘black’ as the run ‘closing’. Conversely, anytime a 

run transitions from ‘red’ or ‘black’ to ‘green’ we consider it ‘opening’.  250 

We also included the run list coding from the prior day as a variable in our decision-making models. This captures the iterative 

nature of the run coding, where codes are updated daily based on prior observations and new information. Including the prior 

run list code as an anchor for the daily run list coding is realistic to the real-world decision-making process and allows us to 

explicitly identify periods of transition within the run coding. 

2.4 Model development and evaluation 255 

We tested three different statistical models to develop decision-support tools for the run list coding process: a Bayesian network 

(BN), random forest (RF), and extreme gradient boosting (XGB). The BN approach has the advantage of being explicitly 

grounded in expert understanding of the decision-making process. This type of model is new to the avalanche field but has 

been applied in other applications where uncertainty and dynamic conditions are integral to the decision-making context 
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(Fenton and Neil, 2019). We selected two ensemble-based machine learning approaches to test their potential for developing 260 

a decision support tool: Random Forest (RF) because it is a commonly used model across a variety of domains, including other 

applications in the avalanche field (Mayer et al., 2022; Richter et al., 2023), and Extreme Gradient Boosting (XGB) because 

it is well known as a state-of-the-art model for high predictive performance (Chen and Guestrin, 2016).  

2.4.1 Bayesian network 

Bayesian networks (BN), also known as belief networks or probabilistic graphical models, are a type of statistical model that 265 

are used to represent and analyze uncertain complex relationships among multiple variables that include both inputs and out-

puts (Scutari and Denis, 2021). The foundation of a BN is a directed acyclic graph (DAG), which illustrates variables as nodes 

and relationships between them as arcs. The graphical structure of a BN cannot contain any cycles, and nodes that are not 

connected by an arc are assumed to be conditionally independent given their parents (Fenton and Neil, 2019; Scutari and Denis, 

2021). One major advantage of BNs over other types of modern machine learning algorithms is that the structure of the network 270 

can be constructed based on input from domain experts, which allows the network to take on a form which is authentic to real 

world decision-making thought processes. The quantitative foundation of BN are conditional probability tables (CPT), which 

can be estimated manually or based on observed data for each node. BNs have been applied in a variety of fields, including 

medical diagnosis and operational risk analysis (Fenton and Neil, 2019). Once a BN has been estimated, it can be used for a 

variety of tasks related to probabilistic inference, prediction, and decision support, which make BNs well suited to our task. In 275 

this analysis we used the R packages bnlearn (Scutari, 2010) and gRain (Højsgaard, 2012) to fit and apply the BN.  

The main driver for deciding what nodes to include in the BN and how to set arcs between nodes was the expert opinion of 

Roger Atkins, a long-time guide at CMH Galena. The primary objective of this step was to capture realistic patterns of decision-

making in the arc pathways within the DAG of the BN. We then used the data described in the previous section to calculate 

the conditional probability distributions of the BN based on the structure provided by the domain expert.  280 

We constructed the DAG based on the thought process of using three different types of relationships to set arcs (Figure 4). 

First are arcs between run characteristic nodes, which represent the natural physical relationships in avalanche terrain and 

operational relationships in the guide survey nodes. Second are arcs between condition variables, which represent the 

relationships between observations and guides’ assessments, which are roughly modelled after the theoretical foundation of 

the conceptual model of avalanche hazard (Statham et al., 2018). Third are decision arcs that connect nodes that could have a 285 

direct impact on how a run is coded. Each of these three types of arcs are included in the BN for different purposes, but all are 

relevant for meaningfully model the decision-making process with a BN. 

To reduce the complexity of building the BN and make it easier to understand, we elected to use categorical variables for all 

the nodes in the network. This required converting the numeric variables into categorical, which we undertook manually and 

aimed to minimize the number of categories with very small proportions of the data to reduce the overall size of the conditional 290 
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probability table for the run list output node. Reducing the number of categories in each variable significantly reduces the 

computer processing time to apply the BN in a predictive capacity and lead to more accurate predictions. See Appendix A for 

a list of all variables and to compare the original numeric distribution to the categorized version of the variables.  

2.4.2 Machine learning approaches 

Both machine learning approaches are based on decision trees but differ in their specific implementation. A decision tree is a 295 

common statistical approach to classification where a simple tree structure is built to split data into leaves or nodes based on a 

training dataset that includes both feature values and the desired classification. The internal nodes of a decision tree represent 

a test on an individual feature in the data, with the branches descending from each internal node representing the outcome of 

the test (Breiman, 2001). The terminal nodes, or leaves of the tree, represent the classification prediction. One of the main 

advantages of decision trees is that they automatically detect relationships within the data without the analyst needing to a 300 

priory specify them and naturally handle interactions among features (Kuhn and Johnson, 2013). However, when applied to 

predictive problems individual decision trees tend to overfit the sample observations, which means they do not tend to 

generalize well to observations outside of the training data set.  

Random forests (RF) are an ensemble-based machine learning approach which uses hundreds of independent decision trees to 

produce more accurate and generalizable predictions. Independent decision trees are fit by using a random subsample of the 305 

training data, using a process called bagging, and the feature used at each node within the tree is selected from a random subset 

of all the features available. These practices allow the individual trees within the RF to be substantially different from one 

another, which improves overall performance of the ensemble (Breiman, 2001). A majority voting scheme is used to determine 

the prediction of the RF, which means whichever classification level gets the most votes of all the trees becomes the overall 

prediction.  310 

While RF uses bagging and random sampling to create a forest of independent trees, Extreme Gradient Boosting (XGB) uses 

a technique called gradient boosting to sequentially build decision trees that correct the errors made by previous trees (Chen 

and Guestrin, 2016). Gradient boosting creates an ensemble of simple weak learners, defined as a simple classifier with 

performance slightly better than random chance, to form a strong learner, defined as a classifier that achieves arbitrarily good 

accuracy, by optimizing a loss function when each new tree is fit. Essentially each subsequent weak learner in the ensemble 315 

focuses on the misclassified cases from prior weak learners to focus training on cases the model previously got wrong. This 

method allows XGB to produce classification models with reduced bias and variance which leads to better predictive 

performance. Compared to RF, XGB tends to build more complex models that capture more nuanced patterns in the data. 

Fitting XGB models typically requires more computer processing time and tuning of several model parameters to achieve 

optimal results.  320 
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To fit the machine learning models to our dataset we included all variables from the BN and added additional variables related 

to the run list decision-making process as determined by conversations with expert guides and evaluated whether they were 

improving predictive performance. While the RF model easily adopted the categorical variables that we developed for the BN 

approach, they needed to be manually encoded using one-hot encoding before including them in the XGB method, using the 

R package fastDummies (Kaplan, 2020). To ease interpretation of the XGB model we elected to use the native numeric 325 

representations of the run characteristic and conditions variables where possible. In addition, we tested treating ordered factors 

as both dummy coded variables and as ordered integers in the XGB model.  

To tune the RF model parameters, we performed a grid search on the ‘mtry’ parameter, which determines how many variables 

are randomly sampled at each split in the decision trees using the R packages caret (Kuhn, 2008) and RandomForest (Liaw, 

Andy and Wiener, Matthew, 2002). For the XGB model we used the ‘gbtree’ booster and carried out a more extensive process 330 

of tuning the ‘nrounds’, ‘eta’, ‘gamma’, ‘max_depth’, ‘subsample’, ‘colsample_bytree’, and ‘min_child_weight’ model 

parameters using the R packages caret (Kuhn, 2008) and XGBoost (Chen and Guestrin, 2016). We aimed to optimize overall 

accuracy and used the default ‘softmax’ objective function from the summary function ‘multiClassSummary’. Our process for 

tuning the XGB model parameters required five steps; 1) roughly tune ‘nrounds’, ‘eta’, and ‘max_depth’ while limiting the 

max value of ‘nrounds’ to 1000 to limit processing time of the tuning procedure and using default values for other parameters, 335 

2) tune ‘max_depth’ and ‘min_child_weight’ using ‘nrounds’ values from 50 to 1000 using tuned ‘eta’ value from round 1 and 

defaults for other parameters, 3) tune ‘colsample_bytree’ and ‘subsample’ using tuned parameters for ‘eta’, ‘max_depth’, and 

‘min_child_weight’ while using default parameter for ‘gamma’, 4) tune ‘gamma’ using ‘nrounds’ values from 50 to 1000 and 

tuned parameters for all other values, and finally 5) tune ‘eta’ and ‘nrounds’ a second time using tuned parameters for all other 

inputs and testing a larger range of ‘nrounds’ values from 100 to 5000. This process is intended to sequentially tune parameters 340 

in batches to limit computer processing time while still testing a wide range of potential parameter combinations.  

We tested both the RF and XGB models with and without class weights, which are intended to improve accuracy for 

imbalanced classification tasks. We used a class weights scheme based on the inverse proportion of the sample size, so that 

errors in classes with lower sample sizes are penalized more heavily than classes with larger sample sizes. 

2.4.3 Model evaluation 345 

To assess how well our decision-making models match real world decisions, we used each model as a predictive tool to classify 

whether runs would be coded as ‘closing’, ‘status black’, ‘status red’, ‘status green’, or ‘opening’ based on run characteristics 

and current conditions. We used 70% of our run list dataset to train the models and 30% to test the prediction accuracy. To 

compare the models, we used a multiclass confusion matrix. Specifically, we examined the overall accuracy and Cohen’s 

kappa, which are metrics for the overall performance of the classifier, and the sensitivity of individual classes to evaluate 350 

performance in greater detail. The overall accuracy is the proportion of cases where the model predicts the same run list code 
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as the CMH guides. Cohen’s kappa measures how well the classifier performs compared to a model that simply predicted the 

most frequent class, also known as the no information rate. In addition to the confusion matrix approach, we calculated the 

area under the receiver operating curve (AUROC) for each model using the R package pROC (Robin et al., 2011). AUROC 

considers the sensitivity and specificity of the model and evaluates the overall performance of the classifier, with an AUROC 355 

of 0.5 indicating random chance and 1.0 indicating a perfect classifier. Since our output variable has multiple classes, the 

AUROC is calculated using a one versus one approach, with each class considered as the positive case and compared against 

every possible pairwise combination of classes. The model AUROC is then calculated as the average of the pairwise AUROC 

values (Hand and Till, 2001; Robin et al., 2011).  

To better understand the patterns captured in the RF and XGB models, we also looked at the feature importance for these 360 

models. Feature importance provides an assessment of which variables contribute to the classification task most strongly, 

which is determined by the mean decrease in the Gini coefficient (Breiman, 2001). This measures how much each feature 

contributes to homogeneity of the nodes in the decision trees, which leads to more accurate classification. To dig deeper into 

understanding the relative contribution of different features, we created Shapley additive explanations (SHAP) plots, which 

are a more advanced method for interpretating black box machine learning models (Lundberg and Lee, 2017; Molnar, 2022). 365 

In addition to measuring which features strongly contribute to the classification task, SHAP also show how the range of values 

for each feature contributes to the classification (Flora et al., 2024). SHAP can be calculated for both the overall model and 

the individual levels of the classification. These methods help to visualize how the machine learning models create their 

classifications and provide some insight into the patterns that drive these black box models.  

3 Results  370 

3.1 Bayesian network 

Our decision-making network aimed at capturing the daily run list coding at CMH Galena contains 24 nodes and 44 arcs 

(Figure 4). To fit the BN, we used 63,581 cases to train the network and kept 27,254 cases to test the accuracy of the BN. 

Overall, the network structure represents the complexity of the decision-making process by containing many potential 

pathways to the run list node. This realistically represents the real-world decision-making process, where the driving factor for 375 

the coding of runs depends on a multitude of factors related to current conditions and run-specific characteristics.  

3.1.1 Input nodes – terrain characteristics and operational factors 

We included seven nodes in the BN that represent terrain characteristics from the avalanche terrain model output (light blue 

nodes). Potential avalanche release area size (pra) represents the 95th percentile start zone polygon size for the frequent scenario 

within each ski run, which is categorized into four classes (0-10,000 m2, 10,000-15,000 m2, 15,000-20,000 m2, > 20,000 m2). 380 
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PRA size is aimed at capturing the high end of the distribution of avalanche release areas that could be triggered on the run. 

The percentage of the ski run that is within potential avalanche release areas (pra_perc) intends to capture the overall amount 

of exposure to areas where avalanche could be triggered along the run (0-25 %, 25-40 %, 40-55 %, 55-100 %). Runout size 

(runout_size) represents the 95th percentile impact pressure from the large avalanche simulation, which was included to 

represent the high-end potential avalanche runout size, or overhead hazard, during periods where large avalanches are possible 385 

(0-50 kPa, 50-100 kPa, 100-150 kPa, > 150 kPa). Runout depth (runout_depth) is determined by taking the 95th percentile 

runout height for the frequent avalanche scenario, which captures the potential of terrain traps to cause deep burial in case of 

a relatively small human triggered avalanche (0-1 m, 1-1.5 m, 1.5-2 m, > 2 m). The node for run steepness (slope) represents 

the steepest portion of each run by using the 95th percentile of its slope angle distribution, which is then categorized into four 

classes (0-35°, 35-40°, 40-45°, > 45°). We chose to use the 95th percentile value to capture the upper end of the distribution 390 

for PRA size, slope angle, runout size, and runout depth instead of the maximum value to minimize the potential for local 

DEM artifacts to give unrealistically high maximum values. To represent the elevation (elev) of a run we used all the elevation 

bands a run includes, so runs that cover multiple elevation bands include multiple elevation bands (alpine-treeline, alpine-

treeline-below treeline, treeline-below treeline, below treeline). Forest cover (forest) was summarized based on the percentage 

of raster cells within 20 m of GPS tracks that are forested and split into categories of 0-25 %, 25-50 %, 50-75 %, or 75-100 %. 395 

There are several inherent correlations among the run characteristics that need to be accounted for in the model with arcs. PRA 

size is connected by arcs to runout size and runout depth because the surface area of the start zone has a strong impact on 

potential avalanche size and burial depth. PRA percent is connected by an arc to forest cover percent (forest) because avalanche 

start zones tend to inhibit the growth of forests. Elevation band (elev) and runout size also have an arc connected to forest 

because large avalanche paths and higher elevations both inhibit the growth of forests. 400 
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Figure 4: Directed acyclic graph (DAG) for run list BN at CMH Galena. Arcs are defined based on the expert opinion of our 

collaborating guide as well as natural physical relationships of avalanche terrain characteristics.  

The operational factors included in the BN (dark blue nodes) are whether skier traffic is used to mitigate weak layer 

development (skitraf), the flight distance from the lodge to the run (flight), and whether the run serves a specific operational 405 

role (oprole). The nodes oprole and flight both have arcs connecting to skier traffic because runs that are maintained with skier 

traffic tend to be in closer proximity to the lodge and serve a specific operational role because they can typically be used during 

periods of elevated avalanche hazard. The skier traffic node also has input arcs from forest and runout_size because forest 

cover can break up potential avalanche start zones into multiple smaller start zones, which are more suitable for this type of 

mitigation, and runs with exposure to large overhead avalanche paths are typically not suitable for skier mitigation.  410 

3.1.2 Input nodes – current conditions 

Twelve nodes are included in the BN model to represent current avalanche conditions (orange nodes). These nodes include 

both direct observations and guide assessments of the conditions. The relationships among these condition variables are driven 

by physical principles and the avalanche hazard assessment process described by the conceptual model of avalanche hazard 
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(Statham et al., 2018). The primary weather condition variables in the BN are the height of new snow within 72 hours (hn72) 415 

and the height of new snow within 12 hours (h2d). These nodes are included in the model to represent the amount of new snow 

loading within the current storm and overnight respectively and naturally have arcs connected to non-persistent avalanche size 

(axsz), non-persistent avalanche likelihood (axlk), size of persistent avalanches (axszp), and likelihood of persistent avalanches 

(axlkp). In addition, hn72 has arcs connected to the status of persistent (p) and deep persistent (dps) avalanche problems, which 

have values of 0 when the avalanche problem is not active and 1 when active. Time of season (season) is a secondary condition 420 

variable that is oriented towards the development of snowpack characteristics over the course of a winter season. Season is 

connected to the status of deep persistent avalanche problems, which tends to be less likely in the early winter and more likely 

in the mid-winter, early-spring, and spring. The number of avalanche observations (axobnum) and maximum size of avalanche 

observations (axobsize) within 72 hours from the guides’ field observations represent their direct evidence of current avalanche 

activity. There are arcs connecting observed avalanche size to expected avalanche size for persistent and non-persistent 425 

avalanche problems, and from number of observed avalanches to expected avalanche likelihood for both persistent and non-

persistent avalanche problems. The status of persistent and deep persistent avalanche problems are each connected with arcs 

to persistent avalanche likelihood and size. As described in the conceptual model of avalanche hazard (Statham et al., 2018), 

avalanche size and likelihood nodes for both persistent and non-persistent avalanche problems have arcs to daily maximum 

avalanche danger rating (axhzd) as they are the key determining factors of avalanche hazard. Since the daily maximum 430 

avalanche danger rating is specific to the elevation bands included in each run, an arc connects elevation band to avalanche 

hazard.  

3.1.3 Output node 

The target output node is run list, which captures the change in the run list status from the prior day using the classes closing, 

status black, status red, status green, and opening. This node has input arcs from avalanche size, avalanche likelihood, 435 

persistent avalanche size, persistent avalanche likelihood, avalanche hazard, runout size, runout depth, percent of PRA, slope 

angle, skier traffic mitigation, and the run list status from the prior day (runlist_y). By combining condition variables, run 

characteristics, and prior status we aimed to capture the interactions between the range of potential factors that drive the run 

coding decisions for different types of runs. 

3.1.4 BN performance 440 

The BN has an overall accuracy of 84.6 percent compared to the test cases with an area under the receiver operating curve 

(AUROC) of 0.87 and a kappa statistic of 0.74 (Table 1). The no information rate for the BN sample is 59.0 %, which is the 

class frequency of ‘status green’. For the transition classes ‘closing’ and ‘opening’ the BN has a sensitivity of 27.8  % and 

24.4 % respectively. For complete results of the confusion matrix for the BN model see Appendix B. The BN fitting process 
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does not include a method for class weighting. However, as an alternative to prioritize performance of the transition classes 445 

we tested manually setting the classification threshold for ‘closing’ and ‘opening’ to 25% instead of simply selecting the class 

with the highest probability. We found that the performance in transition classes improved substantially from 27.8% to 40.5% 

for ‘closing’ and 24.4% to 34.7% for ‘opening’. However, manually setting the classification threshold to improve sensitivity 

for transition cases results in a decrease in overall accuracy and Cohen’s kappa, from 84.6% to 81.7% and 0.74 to 0.70 

respectively.  450 

Table 1: Accuracy metrics for three decision support tools using 30% of run list data for model evaluation. 

 BN RF XGB 

n features 23 42 58 

Size of test dataset 27,254 20,899 20,898 

AUROC 0.87 0.97 0.98 

Overall accuracy 84.6 91.9 93.3 

Kappa 0.74 0.87 0.89 

‘closing’ sensitivity 27.8 70.5 72.0 

‘opening’ sensitivity 24.4 50.2 56.8 

3.2 Random Forest 

3.2.1 Features included 

To fit the RF model, we started with the same features that we included in the BN but added additional features to provide 

more detailed information about the run characteristics and current conditions. Due to missing data in the additional features 455 

for the RF, the overall dataset was slightly smaller than the BN, with 48,755 cases in the training data set and 20,899 in the 

testing data set. The final set of features was tested by trial and error and evaluated against the accuracy metrics from the 

testing data set. Our grid search for tuning the ‘mtry’ parameter resulted in a value of 9, which means that nine features were 

randomly selected and tested at each split while growing the decision trees. We used the default value of 500 for the number 

of trees in the RF. To account for the imbalance in the run list classification target variable, we used inverse proportional 460 

weighting to penalize errors in the minority classes more heavily while training the model. This improved performance for the 

transition periods closing and opening, which makes the model more useful as an operational decision support tool.  

The additional terrain characteristics included in the RF model are 95th percentile PRA size for the large avalanche scenario 

(pra30y), average PRA size along the run for the frequent (pra_mean) and large scenarios (pra30y_mean), 95th percentile 

runout pressure for the frequent scenario (runout_press), 95th percentile runout height for the large scenario 465 

(runout_height_1m), and the aspect (aspect) of the run with the highest proportion of raster cells within 20 m of GPS tracks. 
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Each of these variables was manually converted to a categorical variable for inclusion in the RF. These additional features 

help to capture the unique characteristics of each run based on the exposure to avalanche start zones and runout zones.  

We also added several additional operational factors to the RF model to help capture the some of the more nuanced operational 

considerations that can impact run list coding. Those features are the number of days since the run was last skied (last_skied), 470 

the overall quality of skiing on the run (ski_quality), overall accessibility of the run (access_gen), accessibility of the landing 

zone (access_land), and whether there was an exchange of guests or guides (exchange) taking place that could impact 

operational logistics. The features capturing number of days since the run was skied and guest exchange were manually 

converted to categorical variables, while the others originate from categorical variables from the guide perspective survey data. 

To capture the current conditions in more detail, we also added additional features to the RF model focused on weather 475 

conditions, field observations, and avalanche hazard assessment. The weather condition features we added are the height of 

new snow in the past 24 hours (hn24), the wind speed observed from the field (wind), sky cover observed from the lodge in 

the morning (sky), and the current precipitation rate from the lodge in the morning (precip). Additional field observations 

include the total snowpack height (hs) observed in the field the day prior, the percent of the tenure observed on the prior day 

(perc_observed), and the maximum size of avalanche observations over the past week (axobs_sizeweek). We also replaced the 480 

daily max avalanche hazard feature from the BN with avalanche hazard ratings for each elevation band (alpine – alp_hzd, 

treeline – tl_hzd, below treeline – btl_hzd). To capture the shared mindset of the guiding team, we included the strategic 

mindset (mindset) as a feature for the RF model. Finally, we removed the status of deep persistent avalanche problem and 

persistent avalanche problem from the RF model because the persistent likelihood and size features capture this information 

implicitly, and the overall accuracy of the RF decreased with these avalanche problem features included.  485 

3.2.2 Feature importance 

The feature with by far the highest feature importance for the RF model is the run list from the prior day, which naturally 

emerges from the fact that in roughly 90 % of cases the run list code stays the same as the prior day (Figure 5). Features 2 

through 7 by feature importance are all related to current conditions, with the most important features being strategic mindset, 

new snow in past 24 hours, treeline hazard rating, overall height of snow, alpine hazard rating, and likelihood of persistent 490 

avalanches. The below treeline hazard rating is also ranked relatively highly in 15th. The remaining features that capture snow 

loading, three-day snow loading (hn72) and 12-hour snow loading (h2d), are ranked 19th and 21st by feature importance. The 

avalanche observation features that are most important are the percent of the tenure observed the prior day (perc_observed) 

and total number of avalanches observed over a 3-day period (axobs_num72) which are ranked 10th and 18th.  

Operational features with the highest feature importance are overall accessibility of the run (access_gen) ranked 8th and flight 495 

distance (flight_dist) in 9th. Other highly ranked operational features are the quality of the skiing experience on the run 

(ski_quality) in 17th and whether a run is maintained by skier traffic (skier_mitig) in 26th.  The least important features in the 
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RF model are operational role (op_role) in 41st, which designates runs as having a specific value to operational logistics beyond 

physical characteristics, and whether the guiding program is on an exchange day (exchange) in 42nd. 

The terrain characteristics that are highest ranked by feature importance occupy positions 11 through 14 and are the aspect of 500 

the run (aspect), runout height for the frequent scenario (runout_height), runout height for the large scenario 

(runout_height_1m), and runout pressure for the frequent scenario (runout_press). Features related to PRA are generally 

ranked lower compared to those runout features, with the most important PRA features being PRA size for the frequent scenario 

(pra) ranked 20th, mean size of PRA for the large scenario (pra30y_mean) ranked 22nd, mean size of PRA for the frequent 

scenario (pra_mean) ranked 25th, and percent of raster cells in PRA areas (pra%) ranked 27th.  505 

 

Figure 5: Feature importance for RF model for all classes of the run list output variable color coded by the feature type. 

3.2.3 RF performance 

The RF overall accuracy is 91.9% with an AUROC of 0.97 and a kappa statistic of 0.87. The no information rate for the RF 

data set is 57.4 %, which is the class frequency of status green. The improvement in predictive performance of the RF model 510 
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over the BN is 7.3 percentage points in overall accuracy, 0.10 for AUROC, and 0.13 for kappa. The sensitivity for the ‘closing’ 

and ‘opening’ classes for the RF is 70.5 % and 50.2 % respectively, which is an improvement of 42.7 and 25.8 percentage 

points respectively compared to the BN with default classification thresholds. For complete results of the confusion matrix for 

the RF model see Appendix B. Tuning the RF model without class weighting resulted in a higher overall accuracy by 0.8 

percentage points and a higher Cohen’s kappa by 0.01. However, the class weighted RF has higher sensitivity for closing and 515 

opening classes by 15.1 and 9.7 percentage points respectively.  

3.3 Extreme Gradient Boosting 

3.3.1 Features included 

For the XGB model we used the same features as the RF. However, since the XGB model requires numeric features, we 

reverted to the original numeric data structure wherever possible. For features that did not originate as numeric variables, we 520 

converted ordered factors into integers and unordered factors into dummy coded categorical features. The only features that 

were dummy coded were the categorical strategic mindset and the run list from the day prior. For elevation, we switched from 

categorizing which elevation bands are part of each run in the RF to calculating the percentage of each run in the alpine 

(perc_alp), treeline (perc_tl), and below treeline (perc_btl) elevation bands. We also included the maximum (elev_max) and 

minimum elevation (elev_min) for each run. To accurately capture the influence of slope aspect we switched from using a 525 

categorical variable representing the majority aspect in the RF to calculating the average northness of each run (northness). 

This is relevant for the run list decision-making context because southerly slopes and northerly slopes can have dramatically 

different snowpack structures due to the influence of solar radiation.  

Sample sizes for the XGB training and testing data sets are almost identical to the RF, with 48,756 cases for training and 

20,898 cases for testing. The grid search procedure to optimize the XGB model parameters resulted in ‘nrounds’ of 4,400, 530 

‘eta’ of 0.05, ‘max_depth’ of 6, ‘gamma’ of 0.05, ‘colsample_bytree’ of 0.4, ‘min_child_weight’ of 2, and ‘subsample’ of 1.  

3.3.2 Feature importance 

Figures 6 and 7 visualize the feature contributions by plotting the SHAP values for all possible outcomes of the run list target 

variable (Figure 6) as well as for the individual transition classes closing and opening (Figure 7). The features on the SHAP 

plots are ordered on the y-axis by their feature importance and the x-axis shows the SHAP value. The top three features by 535 

feature importance for the overall classification are the dummy coded features that represent the status of the run from the prior 

day. This indicates that the prior days run list code is the strongest predictor of the current days run list code. Since the run list 

code only changes in roughly 10% of cases it makes sense that these features have the strongest contribution to predictive 

performance. The points along the x-axis for each feature show the distribution of feature values ranging from low (yellow) to 
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high (purple). The distribution of the points is shown by the shape of the bee swarm plot, with a higher density of feature 540 

values shown as a thicker section of the point distribution. For the top two features in Figure 6, prior run list green and prior 

run list red, we see that high feature values have high SHAP values, which indicates that the prior run list code being green or 

red (coded as 1 for dummy variables) has a very strong contribution to the run list classification. In contrast the prior run list 

being black, shown by a high feature value, has a much lower SHAP value. This means that the prior run list being black 

contributes much less to the run list classification than green or red. Since the run list code black is considered a non-decision 545 

that can have a variety of reasons unrelated to current conditions or terrain characteristics, it makes sense that this run list code 

would contribute less to the XGB model predictions. 

Of the remaining top 20 features shown in Figure 7 there is a mix of operational factors, terrain characteristics, and current 

conditions. The operational factors included in the top 20 features are number of days since the run was last skied, flight 

distance to the run, and percent of tenure observed the prior day. For both number of days since last skied and percent of terrain 550 

observed higher values have a stronger contribution to the overall classification. Whereas lower values of flight distance have 

a higher contribution to the classification.  
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Figure 6: SHAP plot for XGB model with the top 20 features on the y-axis ordered by feature importance and x-axis showing the 

SHAP value. The color-coded points show the distribution of the individual features with hotter colors indicating high feature values 555 
and cooler colors indicating low feature values.   

The terrain characteristics with the highest contribution to the XGB classification are runout impact pressure from the frequent 

avalanche scenario, runout impact pressure from the large avalanche scenario, runout height from the frequent avalanche 

scenario, degree of northness of the run, and the maximum elevation of the run. In general, lower values of runout pressure for 

the frequent and large scenario contribute more strongly to the classification, whereas higher values of runout height have a 560 

stronger contribution. Runs with low values of northness (i.e. run with southern aspects) have higher contributions, along with 

runs that start at higher elevations.  

Nine out of the 20 top features for the overall classification represent the current conditions. The total snowpack height as well 

as all three snow loading features (72-hour, 24-hour, and 12-hour) are included. The avalanche hazard rating for all three 

elevation bands is also included, with a general trend that low or high values have stronger contribution compared to 565 

intermediate values. This in intuitive because high avalanche hazard or low avalanche hazard both represent hazard scenarios 

with greater certainty about current conditions, whereas a wide range of conditions can be observed under moderate or 

considerable avalanche hazard ratings. High values in the number of avalanche observations in a 72-hour period have a strong 

contribution to the classification. Finally, the avalanche likelihood for persistent slab avalanches shows that the lower values 

tend to have a stronger impact on the classification.  570 
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Figure 7: SHAP plots for transition classes ‘closing’ and ‘opening’. Features are ordered on the y-axis by their feature importance 

for each individual class. Negative SHAP values indicate that features are associated with that class being less likely while positive 

values indicate that the class is more likely. Color coded points show the relative values of the features with yellows indicating low 

values and purple high values. Note that the order of features on the y-axis and x-axis range differs for the two plots.  575 

 

Feature importance for transition classes 

Looking at the SHAP values for closing and opening specifically can provide additional insights about how individual features 

and feature values contribute to these particular decisions (Figure 7). To simplify interpretation, we removed the prior run list 

feature that corresponds to the current run code (i.e., prior run list red for closing class), which has the highest feature 580 

importance for both classes since to open or close the run must change status from the day prior. Fifteen out of the 20 most 

important features are shared by both response classes, although the order of importance differs between the two classes. The 

15 shared features include a mix of current conditions, terrain characteristics, and operational considerations. In general, the 

relationship of feature values and SHAP values is reversed for opening versus closing runs. For example, high feature values 

for the height of new snow in 24 hours (hn24) contributes strongly to run closing (the more new snow, the more likely a run 585 

gets closed), whereas lower values of hn24 are more important for run opening, as expected. However, the overall importance 

of hn24 for opening runs is much lower than for closing runs as indicated by the difference in feature importance (rank 17 

versus rank 1). 

The additional five features that are only included in the top 20 features for run closing are the likelihood of persistent 

avalanches, flight distance to access the run, below treeline and alpine avalanche hazard ratings, and maximum avalanche 590 

observation size over 72 hours. Low feature values of persistent avalanche likelihood align with negative SHAP values 

indicating that when persistent avalanches are less likely runs are less likely to be closed. Longer flight distances appear to 

also have a negative contribution to runs being closed, which may indicate that runs that are further from the lodge tend to 

change from open to closed less frequently. Avalanche hazard rating for all elevation bands have a similar distribution of 

feature values and SHAP values, with lower ratings leading to less runs closing and higher ratings leading to more runs closing. 595 

Similarly, field observations of smaller avalanches contribute less to the decision to close runs than observations of larger 

avalanches.  

The features that are only included in the top 20 for runs opening are the strategic mindset stepping out, maximum elevation 

of the run, degree of northness, total distance in PRA, and percentage of sky cover. When the guides strategic mindset is 

stepping out runs are more likely to open, which is unsurprising but also encouraging as their stated mindset corresponds to 600 

patterns in their run list practices. Run elevation and aspect seems to contribute more to the decision to open a run for low 

elevation and more southerly runs than for more northerly or high elevation runs. The percentage of a run that is within PRA 

has the expected of effect, with lower values contributing to runs opening more heavily. Finally, runs tend to open more when 
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the percentage of sky cover is low. This is likely due to increased access to a larger portion of the CMH Galena tenure due to 

greater visibility and flying conditions from stable weather. These differences reveal some of the unique patterns identified by 605 

the XGB model in the decision-making drivers that impact the run list coding process. 

Feature importance for status quo classes 

The overall factors that have the largest contribution to runs staying open is their exposure to avalanche runout zones, the 

overall avalanche hazard conditions, how much recent snow loading has taken place, and whether the runs are maintained 

using skier traffic. Within the top 20 features by feature importance for status green there are four different avalanche runout 610 

features, with low values in all these features having a strong contribution to runs remaining open (Appendix C). The avalanche 

hazard ratings for alpine, treeline, and below treeline are also included in the top 20 features with low values having a strong 

contribution to runs remaining open. The same can be said for the three snow loading features, where low values contribute 

more strongly to runs staying open. Other terrain characteristics that contribute to runs staying open are whether they are 

maintained by skier traffic to mitigate persistent weak layers on the surface, lower values in the mean and 95th percentile PRA 615 

size for the frequent avalanche simulation and runs with southern aspects.   

The characteristics of runs that tend to remain closed are the opposite of runs that tend to remain open, with higher runout 

exposure and overall higher percentage of PRA. Runs that are further away tend to remain closed more often and so do runs 

that start at higher elevations and have a more northerly exposure. Conditions that lead to runs remaining closed include higher 

avalanche hazard ratings in the alpine elevation band and higher likelihood of persistent avalanches. Snow loading over a 72-620 

hour period contributes to the decision to keep a run closed more strongly than the 24-hour or 12-hour snowfall, which play a 

more important role in closing a run in the first place. 

When a run is coded black it is simply not considered for the day, which is not necessarily an indication that it was deemed 

unsafe under the current conditions. Instead, there are a wide variety of operational factors that could play into whether a run 

is discussed during the morning guides meeting. Our analysis reveals several features with strong contributions to black run 625 

codes that seem to have stronger ties to operational decision-making than hazard evaluation. For example, runs that are often 

skied tend to have stronger contribution to being coded black, which may be an indication that guides use this code to put 

frequently used runs on pause during uncertain conditions instead of closing them (Appendix C). This interpretation is further 

supported by the observation that periods of high avalanche hazard at the treeline and below treeline elevation bands also 

contribute strongly to runs being coded black. Similarly, periods of higher likelihood for persistent avalanches tend to 630 

contribute to runs being coded black. Other operational considerations that contribute to runs being coded black include the 

flight distance, with runs further away having a strong contribution to black run codes, as well as the height of snow, with low 

overall snowpack heights having a strong contribution to black run codes. This pattern is likely related to more runs being 

coded black at the beginning of the season.  
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3.3.3 XGB Performance 635 

The XGB model has the highest overall accuracy at 93.3%, an improvement of 1.4 percentage points over the RF. The AUROC 

and kappa for the XGB model are 0.98 and 0.89 respectively, which are improvements of 0.01 for AUROC and 0.02 for kappa 

over the RF model. The sensitivity of the transition classes for the XGB model are 72.0 % for closing and 56.8 % for opening, 

an improvement over the RF by 1.5 and 6.6 percentage points respectively. We used the same class weights scheme for the 

XGB model as the RF model, with weights determined using the inverse proportion of the class frequency. Tuning the model 640 

without class weights resulted in a slightly higher overall accuracy by 0.3 percentage points. However, the improvement in 

sensitivity for the transition classes ‘closing’ and ‘opening’ of 6 percentage points for both classes justify using the class 

weights for our application. A subset of the confusion matrix results is presented in Table 1, but interested readers are referred 

to Appendix C for the complete output. 

4 Discussion 645 

The objective of this research is to better understand the decision-making process of professional guides in terms of their daily 

run list coding and develop models that can meaningfully capture this decision-making process to provide decision support by 

producing run list predictions based on past decisions. In this section we compare the relative strengths and weaknesses of the 

three different models, discuss the insights that each model provides into the decision-making process, and reflect on potential 

applications and implications for incorporating this type of predictive model into the real-world decision-making process in 650 

mechanized skiing.  

4.1 Summary and comparison of models 

While the predictive accuracy is clearly much higher for the machine learning models than the BN, there are pros and cons to 

both approaches. The biggest benefit of the BN is the process of manually constructing the decision-making network by 

working closely with domain experts to understand the nature of the decision-making process. This collaboration required 655 

considerable time and energy to drill down into the details of the decision drivers, but the insights gained from this process not 

only benefitted the construction of the BN model but also the curation of the datasets and selection of features for the machine 

learning models. The DAG that forms the foundation of the BN is a beneficial byproduct of this process, which helps to 

visualize the decision-making process and captures the theoretical underpinnings (Figure 4). In addition, the combination of 

being based on expert input and having the predicted probabilities calculated as a simple conditional probability of input nodes 660 

makes the output of the BN much more transparent and therefore possibly more trustworthy for adoption by practitioners.  

Even though the interviews with domain experts identified many factors that contribute to the decision-making process, the 

best performing BN was limited to 23 input nodes. We found that including additional input nodes beyond what is presented 
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in the final model (Figure 4) decreased the predictive performance and significantly increase the computation time required to 

process the predictions. The increase in processing time is due to the exponential growth of the conditional probability table 665 

for the output node as more input nodes are added (Fenton and Neil, 2019). The reason for the predictive accuracy of the BN 

decreasing when including additional variables is not obvious. Many of the additional variables that we tested in the BN were 

shown to be strong predictors in the machine learning approaches (e.g. hn24, last_skied). Two potential causes could be that 

there are strong correlations between these additional input nodes and existing nodes in the DAG or that further increasing the 

number arcs directly linked to the output node is creating too large of a conditional probability table, causing relatively small 670 

sample sizes for each potential combination of input node conditions despite our relatively large overall sample size. Due to 

this trade-off between computation time and predictive performance with complexity, we manually fit and tested many 

versions of the BN. To select the final version, we considered both the theoretical accuracy, as determined by our domain 

expert, and prediction accuracy to arrive at a relatively simple final model. While the BN is a meaningful representation of the 

high-level decision-making process, the fact that it only includes roughly half as many features compared to the machine 675 

learning approaches may prevent the BN from capturing subtle patterns in the decision-making process and therefore contribute 

to lower overall performance.  

Both machine learning approaches performed better than the BN in terms of predictive performance in all accuracy metrics. 

The advantage of the machine learning models was greatest in the sensitivity of the transition classes closing and opening, 

with a roughly twofold increase in the percentage of cases where the actual run list was a transition class correctly identified. 680 

This reveals that the machine learning models are much better at capturing the conditions and terrain characteristics of runs 

which are likely to transition from closed to open or vice versa. The cause of the machine learning models higher skill in the 

transition cases is likely due to multiple factors, including the increased number of features in the models, the inclusion of 

class weights in the model fitting process which intentionally penalizes errors in the transition cases more severely, the ability 

of decision tree models to naturally integrate all types of interactions between features, and the greater complexity of the 685 

machine learning models being able to identify more subtle patterns in the data.  

Between the two machine learning models the XGB showed higher performance across all accuracy metrics compared to the 

RF, although the improvements were much smaller than the gap between the BN and the machine learning models (Table 1). 

The largest difference between the RF and XGB was again in the transition classes, specifically the opening class where 

accuracy improved by 6.6 percentage points over the RF. Since this class has the lowest sensitivity overall, these improvements 690 

represent a substantial benefit to model performance. The improvement in accuracy for transition cases in the XGB model is 

likely due to the boosting approach, which builds an ensemble of decision trees that use misclassified cases to sequentially 

improve performance. Essentially the model identifies the cases where it is wrong and trains more decision trees to try and 

improve the fit for those misclassified cases. Through this process the XGB model fitting can focus more training effort on 

difficult to capture cases and potentially extract more subtle patterns in the decision-making process. 695 
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While the XGB model performed best with respect to all predictive accuracy metrics, this improvement comes with a cost 

from the additional feature engineering to prepare data as well as more complexity and computer resources required to tune 

model parameters. Finally, both machine learning models are much less transparent than the BN in terms of understanding the 

pathway to how the models produce their predictions. However, the same techniques for visualizing feature importance and 

contributions of different features to the classification task can be applied to both.  700 

In comparing the feature importance for the RF to the XGB model there are differences in the exact order of the features, but 

the highest ranked features are largely similar (Figure 5 & 6). In both models the run list prior is by far the most important, 

and the snow loading variables hn24 and hn72 are relatively highly ranked in both models. The avalanche hazard assessment 

variables are also highly ranked and include in the same order, with treeline hazard (tl_hzd) rating most important followed by 

alpine (alp_hzd) and below treeline (btl_hzd). Both models rank the percent of tenure observed (perc_observed) and total 705 

number of avalanche observations in 72 hours (axobs_num72) as the most important features related to field avalanche 

observations. Terrain characteristics related to avalanche runout are highly ranked in both models, however the XGB model 

ranks the runout pressure features for the frequent and large scenarios (runout_press, runout_press_1m) as most important 

whereas the RF ranks the runout height features for frequent and large scenarios (runout_height, runout_height_1m) as most 

important. The primary aspect for the RF and northness for the XGB both approximate the impact of solar radiation and are 710 

relatively highly ranked by feature importance. Although the RF ranks aspect as the most important terrain characteristic, 

whereas northness is the fourth highest ranked terrain characteristic in the XGB model. In terms of operational features, the 

flight distance (flight_dist) is highly ranked in both models. 

There are several notable differences in features importance between the two machine learning models. First, the XGB model 

ranks the number of days since the run was last skied (last_skied) as 4th overall, where it is ranked 36th in the RF model. The 715 

SHAP value plot in Figure 6 shows that high values of last_skied have a strong contribution to the overall classification, which 

may not be captured in the RF model. In contrast strategic mindset (mindset) is the second most important feature in the RF 

model and it is not included in the top 20 features of the XGB model. This is likely due to the fact the strategic mindset was 

dummy coded for the XGB model, so instead of determining the feature importance in aggregate across all levels of mindset 

the XGB model considers the importance of each individual level of the mindset feature. The most important levels of mindset 720 

for the XGB model are stepping out and stepping back, which are included in the top 20 features for the class specific SHAP 

plots for opening and closing (Figure 7). Despite these notable differences, the fact that the feature importances are broadly 

similar for both machine learning models points to consistency in the ability of models to detect patterns in the guide’s decision-

making process. 
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4.2 Insights about decision-making process 725 

Each of the models presented in this manuscript offer different insights into the decision-making process of professional guides. 

The BN illustrates the decision-making process as perceived by an expert guide and describes the essential factors that are 

considered when generating run lists. This has the benefit of being directly vetted by domain experts, but the predictive 

accuracy of such a model is likely limited by its relative simplicity compared to the real-world process. Adding more features 

and arcs quickly makes the model difficult to manage and understand. However, it is possible that the accessibility and 730 

transparency of this model could be most beneficial as a tool for training new guides because it illustrates the factors considered 

in the run list coding process and the relationships between the different factors, which could assist newer guides in developing 

a mental model that is in line with the past decisions of the operation. In addition, the BN model is likely more generalizable 

to other operations because it captures the decision process at a higher level of abstraction. 

In contrast, the machine learning approaches can identify subtle patterns in the real-world data and determine which factors 735 

have the strongest relationships with past guiding decisions. The notably higher accuracy of the machine learning model 

predictions supports the complexity of the real-world decision-making process, with a multitude of factors impacting daily 

decision-making practices beyond what is possible to capture in a manually defined decision-making model. The complexity 

of the models required to capture their decision-making process to the best of our ability given the data available is a testament 

to the complex and dynamic environment that guides operate in.  740 

Interpreting the output of the machine learning models using feature importance and SHAP value plots reveals that the patterns 

identified by the models seem to align with practical decision-making patterns. The relatively consistent ranking of feature 

importance between the RF and XGB models indicate that the models are not detecting spurious relationships, but homing in 

on specific factors that impact decisions under a particular set of conditions. By diving deeper into the contributions of model 

features for specific run list codes we can see that the factors that impact the decision-making process differ during static 745 

periods versus transition periods when runs are more likely to open and close.  

4.3 Implications for development of decision support tools 

The ultimate goal of our research is to develop meaningful and practical tools that have the potential to be integrated into the 

real-world decision-making process of professional guides. While the academic value of each of these models is laid out in the 

manuscript, there remains a question of whether guides on the ground will trust the output enough so that they can add value 750 

to the guiding operation. A key consideration along these lines is the transparency of the model and how the output compares 

to the guides lived experience. The BN stands above the machine learning approaches in terms of transparency and being 

grounded in a representation of the decision-making process of real-world guides. The decision of which model to 

operationalize is in the hands of the people who are accepting the real-world risk that these models aim to help mitigate.  
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In the case of the black box machine learning models, one approach to instil confidence in their predictions could be to front 755 

load the transparency onto the features used as input to fit the models. If guides have confidence in the data that goes into the 

models and know that they are trained and evaluated against their own real-world decisions, then the lack of exact details of 

how the predictions are made may become less important. For the models presented here, much of the data originates from 

guides on the ground. Field observations, hazard assessments, and operational logistics are all extracted directly from guides 

or records of guiding operations which represent their perspective and past decisions. Our avalanche terrain modelling 760 

approach was originally tuned against the input of local guides (Sykes et al., 2022), and we could improve transparency and 

confidence in the terrain model data by providing a web mapping platform for guides to interact with the various terrain layers 

and gain an intuitive and personal understanding of their strengths and weaknesses.  

To apply the models in day to day guiding operations, one approach would be to use the run list classification to populate a 

web map, with runs color coded according to the run list status the model predicts is most likely based on the current conditions 765 

(Figure 8). This would give the guides easy access to the model output without requiring technical knowledge to interpret the 

model predictions. Using the model predictions as a post assessment after their morning run list meeting could highlight cases 

where the guides are making decisions that are opposed to what the historic data from their operation indicates. Additional 

information captured in the terrain characterization, such as the GPS tracks or clustering results, PRA model output, and runout 

model output, could be presented for individual runs to further help guides be on the same page about the avalanche hazard 770 

potential of the terrain in their tenure.  

A potential drawback of using predictive models as decision support tools is the potential to bias guides by revealing the 

predicted run list status before they have created their manual assessment. By anchoring their discussion with the model output 

first, a tendency to default to the model predictions could hamper guides likelihood of having a critical discussion about the 

run list. The potential for this type of unintended consequence of adopting decision support tools is a real concern, and careful 775 

consideration of how to apply these tools should include both developers of the tools as well as experienced guides and 

operation managers.  
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Figure 8: Example visualization of run list codes based on predictions of decision-making tools. Runs are color coded by run list 

prediction status. 780 

4.4 Limitations 

While our analyses offer valuable insights, there are several limitations to consider when interpreting the results. Our focus on 

predictive performance as the benchmark for comparing model performance might undervalue the potential applications of 

BN for modelling the run list coding process. Since the data set of observed run list decisions we use to evaluate performance 

was not validated, it can include errors, biases and inconsistencies, as well as potentially undesirable practices. While our 785 

analyses assume that our dataset at large represents meaningful decisions, it is difficult if not impossible to assess whether they 

were truly “correct” decisions. This is an inherent limitation of working with human judgment datasets that do not have 

objective validation criteria. Under these circumstances, machine learning algorithms will inherently do a better job capturing 

the existing patterns in a dataset. However, decision support tools developed with BN might be theoretically more valid and 

produce more desirable predictions due to their grounding in a DAG. In addition, there are a huge number of potential designs 790 

to capture the run list coding decision-making process using a DAG. Our approach is based on the expertise of one experienced 

guide and our best assessment of meaningful relationships within the data, however alternative design strategies may be able 

to better incorporate additional variables in the BN and improve predictive performance.  

Furthermore, both our training and validation data sets were specific to the CMH Galena tenure, and therefore the accuracy of 

the models does not apply to any other guiding tenures. Finally, our decision to convert features to numeric values for the XGB 795 

model was driven by the requirements of the model and a desire for ease of interpretation. However, differences in model 
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performance compared to the RF, which used the categorical variables from the BN, may reflect these differences in our feature 

engineering choices and not purely capture the inherent advantages of the XGB model.  

5 Conclusions 

Our research aimed to combine avalanche terrain modelling, GPS tracking data, and avalanche conditions information to 800 

examine the run coding process and explore the potential for a decision support tool for mechanized ski guides. We develop 

three decision support tools aimed at capturing the run list process that Canadian mechanized ski guides use to determine what 

terrain is available for guiding each day. To characterize the important decision-making factors, we work closely with local 

guides at CMH Galena to understand their process. We applied data which captures current weather and avalanche hazard 

conditions, operational considerations, and terrain characteristics of each run. Weather and avalanche conditions were 805 

extracted from the records of CMH Galena from the 2015/16 winter season through the 2022/23 winter season. We utilize 

survey data from local guides to capture the general terrain and operational characteristics of the runs included in this study.  

To represent the potential avalanche terrain hazards for each run we simulate avalanche start zones and runout zones using 

state of the art GIS, avalanche dynamics simulation and remote sensing methods (Bühler et al., 2022; Sykes et al., 2022). The 

simulations represent two different avalanche scenarios, a frequent scenario aimed at smaller magnitude avalanche events that 810 

are regularly encountered and a large scenario aimed at capturing conditions where persistent weak layers cause larger and 

more connected avalanches. To extract the avalanche terrain data and apply it to the decision-making models we used GPS 

tracks collected from guides over seven seasons to determine the portion of each run where guides regularly travel. On runs 

that are heavily used, we apply a clustering approach to determine the most conservative line within the run based on terrain 

characteristics and pickup and landing locations to further refine the portion of the terrain data used in the decision-making 815 

models.  

The three decision-making models were fit using Bayesian Network (BN), Random Forest (RF), and Extreme Gradient 

Boosting (XGB) approaches. The BN was built manually in close collaboration an experienced guide and is based on the 

theoretical real world decision-making process. The RF and XGB were fit on an expanded set of features and were each tuned 

to address the class imbalance in the run list classification and to optimize the parameters of the models. Overall, the XGB 820 

model demonstrates the highest predictive performance, with an overall accuracy of 93.3 % and an area under the receiver 

operating curve of 0.98. All three models struggled to precisely capture cases where the run list status changed from open to 

closed or vice versa, with the XGB having the highest sensitivity for these classes at 72.0 % for runs closing and 56.8 % for 

runs opening.  

While the present research represents a substantial step towards the design of practical decision support tools from operational 825 

datasets, a thorough understanding of the practical applications and consideration of unintended side effects is key to address 
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before operationalizing predictive models. Hence, future research should focus on how decision support tools such as the 

models presented in this manuscript can be applied in a meaningful way to support operational decision-making. Based on the 

methods developed in this manuscript, expanding the decision support tools to additional operations would be a natural next 

step. However, one of the biggest hurdles to applying these methods in Canada is the relative lack of high-resolution digital 830 

elevation models (DEM). Recent development in automated Avalanche Terrain Exposure Scale (ATES) mapping (Sykes et 

al., 2024; Toft et al., 2024) could provide a low-cost alternative to characterize avalanche terrain hazard without the need to 

invest in development of high-resolution DEM data.  

While the target of this research was decision support tools for mechanized guiding operations, the methods developed and 

lessons learn could be adapted to a wide variety of assessment and decision-making tasks in the avalanche safety field. One 835 

key takeaway from this study is the importance of working closely with domain experts to develop decision support tools. A 

thorough understanding of the decision-making context and perspective of real-world practitioners is essential for meaningfully 

developing data sets that can capture the essential features of the decision process and for creating informed methods to 

evaluate predictive models. One main challenge in developing decision support tools that truly add operational value is the 

requirement of large data sets which capture multiple seasons and contain a variety of avalanche conditions. We encourage 840 

operations who are interested in incorporating decision support tools into their daily practices to invest in the curation of high-

quality operational records that capture the essential factors for their own decision-making processes. 
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Appendix A – Variable Table 

Table A1: Description of variables included in decision support models. Variable distributions are shown with the mean and 

maximum values labelled for numerical variables and all classes labelled for categorical variables.  

Full name  Abbrev.  Description Nature and distribution BN  RF  XGB  

Terrain characteristics of ski run 

Probable 
release area 
max size – 
frequent 
scenario 

pra  95th percentile of start zone 
polygon size of the DEM pixels 
covered by the GPS tracks of a 
run. Represents exposure of run 
to largest potential start zones 
during periods with smaller 
avalanches. 

PRA Polygon size in m2 

  
Categorical  
sml: 0-10k m2  
med: 10k-15k m2  
lrg: 15k-20k m2  
vlrg: > 20k m2  

Same as BN  Original 
numerical 
value  

Probable 
release area 
max size – large 
scenario 

pra30y  95th percentile of start zone 
polygon size of the DEM pixels 
covered by the GPS tracks of a 
run. Represents exposure of run 
to largest potential start zones 
during periods with larger 
avalanches. 

PRA Polygon size in m2 

 
 

Not included Categorical  
sml: 0-10k m2  
med: 10k-15k m2  
lrg: 15k-20k m2  
vlrg: > 20k m2  

Original 
numerical 
value  

Probable 
release area 
mean size – 
frequent 
scenario 

pra_mean  Mean of start zone polygon size of 
the DEM pixels covered by the 
GPS tracks of a run. Represents 
average size of potential start 
zones on a run during periods with 
smaller avalanches. 

PRA Polygon size in m2 

 
 

Not included Categorical  
vsml: 0-1.5k m2  
sml: 1.5k-3k m2 
med: 3k-4.5k m2 
lrg: 4.5k-8k m2 
vlrg: > 8k m2 

Original 
numerical 
value  

Probable 
release area 
mean size – 
large scenario 

pra30y 
mean  

Mean of start zone polygon size of 
the DEM pixels covered by the 
GPS tracks of a run. Represents 
average size of potential start 
zones on a run during periods with 
larger avalanches. 

PRA Polygon size in m2 

 
 

Not included Categorical  
vsml: 0-1.5k m2  
sml: 1.5k-3k m2 
med: 3k-4.5k m2 
lrg: 4.5k-8k m2 
vlrg: > 8k m2 

Original 
numerical 
value  

Probably 
release area 
percent of ski 
run  

pra_perc  Proportion of DEM pixels covered 
by the GPS tracks on a run that 
are within probable release areas. 

Numeric value 0 to 1 

 

Categorical  
low: 0 – 0.25 
med: 0.25 – 0.4 
high: 0.4 – 0.55 
vhigh: > 0.55 

Same as BN  Original 
numerical 
value  

Runout max 
depth – 
frequent 
scenario 

runout 
height 

95th percentile of RAMMS runout 
height of the DEM pixels covered 
by the GPS tracks of a run. 
Represents exposure of run to 
avalanche runout deposition 
zones during periods with smaller 
avalanches. 

Runout depth in m 

 

Categorical 
0 -1 m 
1 - 1.5 m 
1.5 - 2 m 
>2 m 

Same as BN Original 
numerical 
value 
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Runout max 
depth – large 
scenario 

runout 
height_1m 

95th percentile of RAMMS runout 
height of the DEM pixels covered 
by the GPS tracks of a run. 
Represents exposure of run to 
avalanche runout deposition 
zones during periods with larger 
avalanches. 

Runout depth in m 

 

Not included Categorical 
0 – 2.5 m 
2.5 – 3.0 m 
3.5 – 4.5 m 
> 4.5 m 

Original 
numerical 
value 

Runout max 
impact 
pressure – 
frequent 
scenario 

runout 
press 

95th percentile of RAMMS runout 
impact pressure of the DEM pixels 
covered by the GPS tracks of a 
run. Represents potential 
avalanche runout size during 
periods with smaller avalanches. 

Impact pressure in kPa 

 

Categorical 
low: 0 – 50 kPa 
mod: 50 – 100 kPa 
high: 100 – 150 kPa 
vhigh: > 150 kPa 

Same as BN Original 
numerical 
value 

Runout max 
impact 
pressure – large 
scenario 

runout 
press_1m 

95th percentile of RAMMS runout 
impact pressure of the DEM pixels 
covered by the GPS tracks of a 
run. Represents potential 
avalanche runout size during 
periods with larger avalanches. 

Impact pressure in kPa 

 

Not included Categorical 
low: 0 – 100 kPa 
mod: 100 – 250 kPa 
high: > 250 kPa 

Original 
numerical 
value 

Forested 
percent of  ski 
run 

forest_perc  Proportion of DEM pixels covered 
by the GPS tracks on a run that 
are within forested areas. 

Numeric value 0 to 1 

 

Categorical  
0 - 0.25% 
0.25 - 0.50% 
0.50 - 0.75% 
0.75 - 1.0% 

Same as BN  Original 
numerical 
value  

Slope incline 
max 

slope 95th percentile of slope incline of 
the DEM pixels covered by the 
GPS tracks of a run. Represents 
the steepest terrain within the 
run. 

Slope incline degrees 

 

Categorical  
0 - 35° 
35 - 40° 
40 - 45° 
45 - 100° 

Same as BN Original 
numerical 
value 

Aspect most 
frequent 

aspect The most frequently occurring 
(mode) cardinal aspect of the 
DEM pixels covered by the GPS 
tracks of a run. Represents the 
most prominent aspect of the run. 

Cardinal direction 

 

 Not included Categorical 
north: 315 - 45° 
east: 45 - 135° 
south: 135 - 225° 
west: 225 - 315° 

Not 
included 

Northness 
mean 

northness The average of the northness 
values for each DEM pixel covered 
by the GPS tracks of a run. 
Represents to degree of northern 
(1) versus southern (-1) exposure. 

Numerical value -1 to 1 

 

Not included Not included Original 
numerical 
value 

 Elevation 
bands 

elev The list of elevation bands 
containing at least 10 % of the 
DEM pixels covered by the GPS 
tracks of a run. Represents the 
general elevation characteristics 
of the run. 

Elevation bands covered 

 

 Categorical 
alp, tl 
alp, tl, btl 
tl, btl 
btl 

 Same as BN  Not 
included 

Alpine percent 
of run 

perc_alp Percentage of DEM pixels covered 
by GPS tracks above 2250m. 
Represents the degree of 
exposure to alpine avalanche 
conditions for the run. 

Numerical value 0 to 1 

 

Not included Not included  Original 
numerical 
value 
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Treeline 
percent of run 

perc_tl Percentage of DEM pixels covered 
by GPS tracks between 1850 to 
2250 m. Represents the degree of 
exposure to treeline avalanche 
conditions for the run. 

Numerical value 0 to 1 

 

Not included Not included  Original 
numerical 
value 

Below treeline 
percent of run 

perc_btl Percentage of DEM pixels covered 
by GPS tracks below 1850 m. 
Represents the degree of 
exposure to below treeline 
avalanche conditions for the run. 

Numerical value 0 to 1 

 

Not included Not included  Original 
numerical 
value 

Elevation 
minimum 

elev_min Lowest elevation DEM pixels 
covered by GPS tracks. 

Elevation in m 

 

Not included Not included  Original 
numerical 
value 

Elevation max elev_max Highest elevation DEM pixels 
covered by GPS tracks. 

Elevation in m 

 

Not included Not included  Original 
numerical 
value 

Nature of snow and avalanche conditions 

72 hour new 
snow 

 hn72 Total snowfall in cm over the past 
3 days based on afternoon field 
observations. 

Snowfall in cm 

 

 Categorical 
0 cm 
1 - 15 cm 
15 - 30 cm 
30 - 50 cm 
50 - 100 cm 

 Same as BN Original 
numerical 
value 

24 hour new 
snow 

hn24 Total snowfall in past 24 hours 
based on afternoon field 
observations. 

Snowfall in cm 

 

Not included Categorical 
0 cm 
1 - 5 cm 
5 - 15 cm 
15 - 30 cm 
30 - 50 cm 

Original 
numerical 
value 

12 hour new 
snow 

h2d Total snowfall over past 12 hours 
based on morning lodge weather 
observations. 

Snowfall in cm 

 

Categorical 
0 cm 
1 - 5 cm 
5 - 15 cm 
> 15 cm 

Same as BN Original 
numerical 
value 

 Total 
snowpack  
height 

hs Total snowpack height as 
measured in the field in a 
representative treeline location. 

Snow height in cm 

 

 Not included Categorical 
0 - 150 cm 
150 - 200 cm 
200 - 250 cm 
250 - 300 cm 
> 350 cm 

 Original 
numerical 
value 
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Wind speed wind Average wind speed based on 
afternoon field observations. 

Categorical wind speed 

 

Not included Categorical 
calm: 0 km/h 
light: 1 - 25 km/h 
mod: 26 - 40 km/h  
strong/extreme: > 40 
km/h 

Included 
as ordered 
factor 

Precipitation 
rate 

precip Rate of precipitation based on 
afternoon field observations. 

Categorical precip rate 

 

Not included Categorical  
none 
light: S – 1, RV, RL 
moderate: S1, RM 
heavy: ≥ S2, RH 

Included 
as ordered 
factor 

Sky cover 
percentage 

sky Portion of sky covered in clouds 
based on afternoon field 
observations. 

Categorical sky cover 

 

Not included Categorical 
CLR: no clouds 
FEW: < 2/8 clouds 
SCT: 2/8 - 4/8 clouds 
BKN: 4/8 - 8/8 clouds 
OVC: complete clouds 
X: sky obscured 

Included 
as ordered 
factor 

Time of season season General time period of winter 
season based on date. The 
represents operational and 
snowpack differences across the 
season. 

Categorical season 

 

Categorical 
erly win: Nov 15 – Jan 14 
mid win: Jan 15 – Feb 14 
erly spring: Feb 15–Mar 14 
spring: Mar 15 – Apr 15 

Same as BN Included 
as ordered 
factor 

Observed 
avalanche size 
72 hours 

axobs 
size72 

Maximum size of avalanches 
observed in the tenure over the 
past 3 days. 

Avalanche destructive 
size 

 

Categorical: 
no observations 
D1 - D1.5 
D2 - D2.5 
≥ D3 

Same as BN Included 
as ordered 
factor 

Observed 
avalanche size 
1 week 

axobs 
sizeweek 

Maximum size of avalanches 
observed in the tenure over the 
past week. 

Avalanche destructive 
size 

 

Categorical: 
no observations 
D1 - D1.5 
D2 - D2.5 
≥ D3 

Same as BN Included 
as ordered 
factor 

Observed 
avalanche 
number 72 
hours 

axobs 
num72 

Total number of avalanches 
observed in the tenure over the 
past 3 days. 

Total number of 
avalanches 

 

Categorical  
0 
1 - 5 
5 - 10 
> 10 

Same as BN Included 
as ordered 
factor 

       

Persistent 
avalanche 
likelihood 

axlkp Likelihood rating for persistent or 
deep persistent avalanches 
based on guide hazard 
assessment. 

Likelihood rating 

 

Categorical 
none 
unlikely 
possible 
likely 
very likely 

Same as BN Included 
as ordered 
factor 
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Persistent 
avalanche size 

axszp Potential size of persistent and 
deep persistent avalanches 
based on guide hazard 
assessment. 

Avalanche destructive 
size 

 

Categorical 
none 
D2 – 2.5 
D3 – 3.5 
≥ D4 

Same as BN Included 
as ordered 
factor 

Avalanche 
likelihood 

axlk Likelihood rating for non 
persistent avalanches based on 
guide hazard assessment. 

Likelihood rating 

 

Categorical 
possible 
likely 
very likely 
almost certain 

Same as BN Included 
as ordered 
factor 

Avalanche size axsz Potential size of non persistent 
avalanches based on guide 
hazard assessment. 

Avalanche destructive 
size 

 

Categorical 
D1 – 1.5 
D2 – 2.5 
D3 – 3.5 
≥ D4 

Same as BN Included 
as ordered 
factor 

Daily max 
avalanche 
hazard 

axhzd Maximum avalanche hazard 
rating of the elevation bands 
included in the run. 

Avalanche hazard rating 

 

Categorical 
low 
moderate 
considerable 
high  
extreme 

Not included Not 
included 

Alpine 
avalanche 
hazard 

alp_hzd Daily avalanche hazard rating for 
alpine elevation band. Based on 
daily guide hazard assessment. 

Avalanche hazard rating 

 

Not included Categorical 
low 
moderate 
considerable 
high  
extreme 

Included 
as ordered 
factor 

Treeline 
avalanche 
hazard 

tl_hzd Daily avalanche hazard rating for 
treeline elevation band. Based on 
daily guide hazard assessment. 

Avalanche hazard rating 

 

Not included Categorical 
low 
moderate 
considerable 
high  
extreme 

Included 
as ordered 
factor 

Below treeline 
avalanche 
hazard 

btl_hzd Daily avalanche hazard rating for 
below treeline elevation band. 
Based on daily guide hazard 
assessment. 

Avalanche hazard rating 

 

Not included Categorical 
low 
moderate 
considerable 
high  

Included 
as ordered 
factor 

Strategic 
mindset 

mindset Daily strategic mindset 
determined through consensus at 
the daily guides meeting. 

Strategic mindset 
 

Not included Categorical 
High alert 
Entrenchment 
Initial assessment 
Assessment 
Maintenance 
Reassessment 
Status quo 
Stepping back 
Stepping out 
Spring diurnal  
Open season 

Included 
as dummy 
coded 
factor 
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Operational characteristics of ski run 

Run list code  runlist Run list code for the run as 
determined at the daily guides 
meeting. 

Run list status 

 

 Categorical 
closing 
status black 
status red 
status green 
opening 

 Same as BN  Same as 
BN 

Prior run list 
code 

runlist_y Run list code from the prior day as 
determined by the prior daily 
guides meeting. 

Run list code 

 

Categorical 
black 
green 
red 

Same as BN Included 
as dummy 
coded 
factor 

Run 
accessibility 

access_gen General accessibility of the run as 
determined by an online survey 
completed by CMH Galena 
guides. 

Accessibility rating 

 

Not included Categorical 
always 
lineup 
often 
perfect 

Included 
as ordered 
factor 

Landing 
accessibility 

access_land General accessibility of the 
landing for the run as determined 
by an online survey completed by 
CMH Galena guides. 

Landing access 

 

Not included Categorical 
minimal 
reasonable 
well 

Included 
as ordered 
factor 

Exchange day exchange Binary variable indicating whether 
the day of the week is a typical 
day when guides and guests are 
exchanged. Impact operational 
logistics and decision-making. 

Binary classification 

 

Not included Categorical 
normal  
exchange 

Included 
as binary 
factor 

Flight distance flight Distance from lodge to ski run by 
typical flight path. Impacts run 
accessibility and use frequency. 

Distance in km 

 

Categorical 
near: 0 – 5 km 
mid: 5 – 15 km 
far: 15 – 25 km 
vfar: > 25 km 

Same as BN Original 
numerical 
value 

Days since last 
skied 

last_skied Number of days since the run was 
used for guiding. 

Number of days 

 

Not included Categorical 
0 – 7 
7 – 14 
14 – 30 
> 30 

Original 
numerical 
value 

Operational 
role 

op_role Whether the run serves a specific 
role within the operation, such as 
a destination run or lunch run. 
This impacts how frequently runs 
are used due to operational 
logistics. 

Binary classification 

 

Categorical 
no  
yes 

Same as BN Included 
as binary 
factor 

  
 
 

     

https://doi.org/10.5194/nhess-2024-147
Preprint. Discussion started: 19 August 2024
c© Author(s) 2024. CC BY 4.0 License.



45 

 

Percent of 
tenure 
observed 

perc_obs What percentage of the tenure 
was observed by guides in the 
field the prior day. 

Percentage of tenure 

 

Not included Categorical 
none 
1 – 5% 
5 – 10% 
10 – 25% 
25 – 50% 
50 – 100% 

Original 
numerical 
value 

Skier mitigation ski_traf Whether the operation uses skier 
traffic to destroy surficial weak 
layers prior to becoming buried. 
This created a modified snowpack 
and lowers likelihood of 
persistent avalanches. 

Binary classification 

 

Categorical 
do not maintain 
maintain 

Same as BN Included 
as binary 
factor 

 Ski quality ski_quality Guides perspective of the quality 
of the skiing experience on the run 
as determined by an online survey 
completed by CMH Galena 
guides. 

Ski quality rating 

 

 Not included Categorical 
poor - fair 
good 
very good - excellent 

 Included 
as ordered 
factor 

 975 
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Appendix B – Confusion Matrix Output 

Bayesian Network  

Table B1: Bayesian Network confusion matrix. 

  Reference 

Prediction 

 Closing Status black Status red Status green Opening 

Closing 431 230 118 391 106 

Status black 445 2692 124 163 250 

Status red 40 68 4347 162 627 

Status green 519 70 103 15240 68 

Opening 113 150 335 122 340 

Table B2: Bayesian Network overall Statistics 980 

Accuracy 0.8457 

95% CI (0.8414, 0.85) 

No Information Rate 0.5899 

P-Value [Acc > NIR] <2.2e-16 

Kappa 0.7419 

Mcnemar’s Test P-Value <2.2e-16 

Table B3: Bayesian Network statistics by Class 

 Closing Status black Status red Status green Opening 

Sensitivity 0.27842 0.83863 0.8647 0.9479 0.24443 

Specificity 0.96713 0.95916 0.9596 0.9320 0.97216 

Pos Pred Value 0.33777 0.73272 0.8289 0.9525 0.32075 

Neg Pred Value 0.95700 0.97803 0.9691 0.9255 0.95988 

Precision 0.33777 0.73272 0.8289 0.9525 0.32075 

Recall 0.27842 0.83863 0.8647 0.9479 0.24443 

F1 0.30524 0.78210 0.8465 0.9502 0.27744 

Prevalence 0.05680 0.11778 0.1844 0.5899 0.05104 

Detection Rate 0.01581 0.09877 0.1595 0.5592 0.01248 

Detection Prev 0.04682 0.13481 0.1924 0.5871 0.03889 

Balanced Acc 0.62278 0.89889 0.9122 0.9399 0.60829 
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Random Forest 

Table B4: Random Forest confusion matrix 

  Reference 

Prediction 

 Closing Status black Status red Status green Opening 

Closing 905 77 0 334 62 

Status black 137 2090 0 0 119 

Status red 0 0 3935 0 430 

Status green 191 0 0 11663 0 

Opening 51 44 246 0 615 

Table B5: Random Forest overall statistics 

Accuracy 0.9191 

95% CI (0.9153, 0.9227) 

No Information Rate 0.574 

P-Value [Acc > NIR] < 2.2e-16        

Kappa 0.8682 

Mcnemar’s Test P-Value NA        

Table B6: Random Forest statistics by class 985 

 Closing Status black Status red Status green Opening 

Sensitivity 0.70483 0.9453            0.9412              0.9722         0.50163 

Specificity 0.97589              0.9863            0.9743              0.9785         0.98267 

Pos Pred Value 0.65675              0.8909            0.9015              0.9839         0.64331 

Neg Pred Value 0.98059              0.9935            0.9851              0.9631         0.96936 

Precision 0.65675              0.8909            0.9015              0.9839         0.64331 

Recall 0.70483 0.9453            0.9412              0.9722         0.50163 

F1 0.67994              0.9173            0.9209              0.9780         0.56370 

Prevalence 0.06144              0.1058            0.2001              0.5740         0.05866 

Detection Rate 0.04330              0.1000            0.1883              0.5581         0.02943 

Detection Prev 0.06594              0.1123            0.2089              0.5672         0.04574 

Balanced Acc 0.84036              0.9658            0.9577              0.9754         0.74215 
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Extreme Gradient Boosting 

Table B7: XGB confusion matrix 

  Reference 

Prediction 

 Closing Status black Status red Status green Opening 

Closing 901 50 0 153 50 

Status black 74 2058 0 0 102 

Status red 0 0 3990 0 378 

Status green 236 0 0 11844 0 

Opening 40 39 287 0 696 

Table B8: XGB overall statistics 

Accuracy 0.9326 

95% CI (0.9291, 0.9359) 

No Information Rate 0.5741           

P-Value [Acc > NIR] < 2.2e-16        

Kappa 0.8891           

Mcnemar’s Test P-Value NA        

Table B9: XGB statistics by class 990 

 Closing Status black Status red Status green Opening 

Sensitivity 0.72022   0.95855    0.9329    0.9872   0.56770 

Specificity 0.98712   0.99061    0.9773    0.9735   0.98139 

Pos Pred Value 0.78076   0.92122    0.9135    0.9805   0.65537 

Neg Pred Value 0.98227   0.99523    0.9826    0.9826   0.97328 

Precision 0.78076   0.92122    0.9135    0.9805   0.65537 

Recall 0.72022   0.95855    0.9329    0.9872   0.56770 

F1 0.74927   0.93951    0.9231    0.9838   0.60839 

Prevalence 0.05986   0.10274    0.2047    0.5741   0.05867 

Detection Rate 0.04311   0.09848    0.1909    0.5668   0.03330 

Detection Prev 0.05522   0.10690    0.2090    0.5780   0.05082 

Balanced Acc 0.85367   0.97458    0.9551    0.9804   0.77455 
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Appendix C – SHAP value plots 

SHAP value plots for all classification levels 

 

Figure C1: Grid of SHAP plots for the top 32 features ranked by feature importance relative to the overall classification. 995 
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Figure C2: SHAP value summary plot with features ranked by feature importance relative to the overall classification on the y-axis, 

SHAP value on the x-axis, and the relative value of the individual features shown with color coded points.  
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SHAP value plots for run closing 

 1000 

Figure C3: Grid of SHAP plots for the top 32 features ranked by feature importance relative to the class ‘closing’. 
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Figure C4: SHAP summary plot for top 20 features by feature importance for classification level ‘closing’.
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SHAP value plots for status black 

 1005 

Figure C5: Grid of SHAP plots for the top 32 features ranked by feature importance relative to the class ‘status black’. 
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Figure C6: SHAP summary plot for top 20 features by feature importance for classification level ‘status black’. 
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SHAP value plots for status red 

 1010 

Figure C7: Grid of SHAP plots for the top 32 features ranked by feature importance relative to the class ‘status red’. 
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Figure C8: SHAP summary plot for top 20 features by feature importance for classification level ‘status red’. 
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SHAP value plots for status green 

 1015 

Figure C9: Grid of SHAP plot for the top 32 features ranked by feature importance relative to the class ‘status green’. 
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Figure C10: SHAP summary plot for top 20 features by feature importance for classification level ‘status green’. 
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SHAP value plots for run opening 

 1020 

Figure C11: Grid of SHAP plot for the top 32 features ranked by feature importance relative to the class ‘opening’. 

https://doi.org/10.5194/nhess-2024-147
Preprint. Discussion started: 19 August 2024
c© Author(s) 2024. CC BY 4.0 License.



60 

 

 

Figure C12: SHAP summary plot for top 20 features by feature importance for classification level ‘opening’. 
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