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Abstract.

On April 2nd, 2024, a Mw 7.4 earthquake struck Taiwan’s eastern coast, triggering numerous landslides and severely im-

pacting infrastructure. To create the preliminary inventory of earthquake-induced landslides in Eastern Taiwan ( 3,300 km2) we

deployed automated landslide detection methods by combining Earth Observation (EO) data with Artificial Intelligence (AI)

models. The models allowed us to identify 7,090 landslide events covering >75 km2, in about 3 hours after the acquisition5

of the EO imagery. This research underscores AI’s role in enhancing landslide detection for disaster response and situational

awareness, and the landslide inventory can improve the understanding of earthquake-landslide interactions to improve seismic

hazard mitigation.

1 Introduction

Taiwan is a country that is prone to high landslide hazards due to frequent rainfall and earthquake events (Hung, 2000; Chuang10

et al., 2021; Shou and Chen, 2021). A significant portion of Taiwan’s population and its infrastructure are vulnerable to these

landslide hazards (Lee and Fei, 2015). On 2nd of April 2024, the island of Taiwan was hit by a Mw 7.4 earthquake (United

States Geological Survey - USGS, 2024). The shaking resulted in a large number of landslides along transport routes with

>1,100 people injured (https://disasterphilanthropy.org/disasters/2024-taiwan-earthquake/). Currently, no landslide inventory

for the 2024 Hualien City earthquake has been released, even through international and authoritative entities such as the Coper-15

nicus Emergency Management Service and the Disaster Charter. A complete and up-to-date landslide inventory is important

not only as a support during the emergency response but also for a better understanding of the spatio-temporal relationships

between landslide occurrence and driving factors (Lombardo et al., 2020). Such information can redefine triggering thresholds

for landslide early warnings and hazard zoning for land use planning.

Over the last decades, spaceborne Earth Observation (EO) has become a predominant source for mapping landslides, which20

are particularly useful to first responders (Amatya et al., 2023; Novellino et al., 2024). Mapping landslides using Earth Obser-
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vation (EO) data has become crucial for providing vital situational awareness to first responders during large-scale landslide

events affecting regional or national scales. Recently, there’s been significant advances in AI-based automated landslide detec-

tion and mapping (Novellino et al., 2024). These approaches include utilizing crowdsourced data (Catani, 2021) and Unmanned

Aerial Vehicles (UAVs) (Dai et al., 2023), as well as analyzing LIDAR (Fang et al., 2022) and satellite optical imagery (Amatya25

et al., 2021; Bhuyan et al., 2023), and SAR (Nava et al., 2022).

Figure 1. Peak Ground Velocity (PGV) values, Peak Ground

Acceleration (PGA) contours and epicentre for the Hualien

City earthquake (from USGS, 2024). The 0.2%g is in black

bold and represents the area of study of this work. Sources:

Esri, DeLorme, HERE, TomTom, Intermap, increment P

Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase,

IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri

China (Hong Kong), swisstopo, MapmyIndia, and the GIS

User Community.

Additionally, there is a growing trend toward training DL models

capable of providing reliable predictions in new areas for rapid as-

sessment of emerging MLEs. We find studies focusing on a single

data source, such as Copernicus Sentinel-2 (Prakash et al., 2021) and30

PlanetScope (Meena et al., 2023), while others investigate the integra-

tion of multisource data (Fang et al., 2024; Xu et al., 2024) to enhance

accuracy and improve transferability.

However, there remains a scarcity of real-world applications lever-

aging AI techniques and deriving actionable insights from them. Cur-35

rently, to our best knowledge, Amatya et al. (2023) stand out as one of

the few research where automatic landslides mapping methods were

applied as part of disaster response activities following the 2021 earth-

quake in Haiti. However, as areas and methods change, more inves-

tigation of such applications as well as AI-based methods must be40

undertaken to speed up the trust and understanding of how such auto-

mated systems can efficiently improve hazard assessment. This under-

scores the pressing need for more such applications to fully harness

the potential of AI in enhancing the efficiency and effectiveness of

landslide mapping during emergencies.45

In this Brief Communication, we test in practice state-of-the-art AI

techniques on different EO satellite data for the automatic detection

and mapping of landslides associated with the event. We further pro-

vide suggestions about how these tools can support future rapid land-

slide mapping efforts following major disasters worldwide. Lastly, we50

provide the preliminary co-seismic landslide inventory for updating

landslide hazard models and supporting resilience to future events.
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2 Hualien City earthquake and study area

On the 2nd of April 2024 (23:58 UTC), a Mw 7.4 earthquake struck

the eastern coast of Taiwan (USGS, 2024). The event was located at a55

depth of 40km with an epicentre near the town of Hualien (Figure 1) as a result of a reverse NE-SW fault near the boundary

between the Eurasian and Philippine Sea plates. The main earthquake was followed by a Mw 6.5 aftershock 13 minutes later.

Eastern Taiwan is not only tectonically active but is also relentlessly battered by hurricanes, making this location particularly

prone to the rapid erosion of the mountain chains built by tectonics. Following information about the earthquake epicentre and

effect (PGA) and reports on landslides from social media through the Global Landslide Detector (Pennington et al., 2022), we60

defined a 3,300 km2 area of interest (AoI) for mapping landslides centred around the town of Hualien. The extent of the AoI is

a trade-off between the extent of the shaking and the availability of cloud-free images in the aftermath of the event.

3 Automated Landslide Detection and Mapping

Figure 2. Timeline of satellite image acquisitions and models deployment in April 2024.

The landslide maps have been generated using the Synthetic Aperture Radar (SAR) Landslide Rapid Assessment (SAR-

LRA) tool based on Convolutional Neural Networks (Nava et al., 2024) and a Vision Transformer (ViT) model (Tang et al.,65

2022; Fang et al., 2024).
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The SAR-LRA tool was trained and validated on 11 MLEs globally distributed and uses pre- and post-event SAR im-

agery in a change-detection-like approach to identify surface changes due to co-seismic slope failures. No transfer learning

or fine-tuning was necessary; the model was directly deployed in the area. The tool is freely available at https://github.com/

lorenzonava96/SAR-and-DL-for-Landslide-Rapid-Assessment. SAR-LRA was applied over five Sentinel-1 acquisitions at70

10m resolution. This included one acquisition on April 8, 2024, for the ascending geometry (over two different tracks), five

SAR acquisitions within 60 days preceding the event, and one acquisition on April 10, 2024, for the descending geometry.

SAR data enabled landslide detection even under cloudy conditions, which prevented the use of optical Sentinel-2 data for

several weeks post-earthquake (see Figure 2). Additionally, SAR-LRA led us to identify preliminary hotspots of changes on

the ground, where higher resolution datasets could be considered, and to time such changes.75

The ViT model was pre-trained and validated on a multi-source landslide segmentation dataset (Fang et al., 2024), the

Globally Distributed Coseismic Landslide Dataset (GDCLD). GDCLD is a diverse and comprehensive collection of multi-

source remote sensing images. This dataset includes imagery from PlanetScope, Gaofen-6, Map World, and Unmanned Aerial

Vehicles, covering a wide range of geographical and geological contexts worldwide. The GDCLD is available at https://doi.

org/10.5281/zenodo.11369484 (Fang et al., 2024). We fine-tune the model (Bhuyan et al., 2023) on 814 landslides manually80

mapped within the Taiwan study area. Satellite images from the Google Earth Pro archive have been used for the pre-event

stage whose collection includes data from CNES and Airbus acquired up to September 2023. For the post-event stage, ViT has

been applied on 33 composited PlanetScope images at 3m spatial resolution acquired on the 17th and 29th of April, 2024.

4 Results and Discussion

We retrieved a total of 7090 co-seismic landslides along with the 2,617 pre-seismic ones. SAR-LRA outputs 262 SAR-LRA85

bound8ing boxes: 63 in the ascending geometry and 199 in the descending geometry (Figure 3a). The co-seismic landslides

encompass new failures and reactivation or enlargement of existing failures (Figures 3b-c). Most co-seismic failures occurred

on slopes between 30 and 50 degrees on the SE slopes (Figure 3d). The total co-seismic landslide area resulting from the

earthquake equals 75.3 km2 with an individual polygon minimum size set to 250 m2, due to the resolution of Planet images,

up to a maximum of 2.9 km2 (Figure 3e). We specifically targeted areas with the most severe ground-shaking conditions for90

our analysis. By meticulously examining daily pre- and post-event imagery, we achieved a precise understanding of when co-

seismic landslides occurred, addressing a significant challenge often encountered in post-disaster landslide inventories. This

comprehensive dataset is indispensable for emergency responders, providing critical insights that are essential for orchestrating

swift and effective relief efforts on a large scale.

Our processing workflow demonstrated remarkable time efficiency: SAR-LRA yielded results in approximately 20 minutes,95

while ViT analysis, including both pre- and post-processing tasks, took about 2 hours. This quick turnaround allowed us to

produce reliable findings within hours of satellite image acquisition. The SAR-LRA tool was fundamental in initially identi-

fying landslide locations, even under persistent cloud cover. In areas partially obscured by clouds, this approach provided the

location of landslides.
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Figure 3. Overview of the landslide inventory (a). A zoom of the co-seismic landslides mapped with squares of SAR-LRA and the polygons

of ViT (b-c). Density plot of slope vs aspect for the co-seismic landslides (d). Frequency area distribution of pre- and co-seismic landslides

(e). Sources: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster

NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, and the GIS User Community. Map data ©2024

Google.

Reflecting on our methodology, initial reservations about the suitability of SAR imagery for steep slopes were mitigated by100

its successful validation once cloud-free areas became available. The initial skepticism likely stemmed from the unconventional
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appearance of SAR data, which makes it difficult for the human eye to confirm the presence of landslides. However, complete

cloud coverage over an entire region is rare, highlighting the potential for a hybrid SAR-Optical AI approach. Advancements

in this direction could enhance the reliability and trustworthiness of our rapid assessment models and significantly improve

their performance under diverse and challenging weather conditions.105

Regarding the optical-based predictions, after model fine-tuning, the results were reliable, with few false positives in flat

areas that were easily masked out. Here a clear advantage is that we get the exact extent of the slope failures. However, since

our approach relied solely on post-event imagery, we had to deploy the model also on pre-event imagery and subtract the two

inventories to identify the co-seismic landslides. Reflecting on this, approaches that integrate change-detection mechanisms

within the model are preferable and welcome.110

5 Conclusions

Following the Hualien City earthquake event, we semi-automatically map 7,090 co-seismic landslides from satellite imagery

at different resolutions and different data modalities using AI-based approaches. While there is a wealth of literature on the use

of AI for landslide detection, there are few documented cases of its application for rapid mapping in the aftermath of major

disasters. Our inventory provides key information for situational awareness and for supporting emergency responders in the115

aftermath of the event. Moreover, we provide the co-event landslide inventory, fundamental over the long term for updating

landslide hazard models and supporting resilience to future events. The growing accessibility of satellite data alongside pro-

cessing software and platforms is leading to an increase in new techniques with increasingly accurate results which has allowed

us to collect and compare different outputs. In this case, SAR-LRA proved fundamental in identifying landslide locations de-

spite persistent cloud cover over the area. In contrast, while optical data was more precise and interpretable, it was not available120

until much later. Given the proven effectiveness of the tested approaches and tools, we are confident that these methods can be

successfully deployed in future large-scale earthquake-triggered landslide events. Integrating SAR and Optical AI approaches

will further improve the reliability and performance of rapid assessment models, especially in challenging weather conditions.

These advancements are crucial for enhancing disaster response capabilities and decision-making processes.

Code and data availability. The generated inventory is freely available on Zenodo at the link: https://zenodo.org/records/11519683. The code125

of SAR-LRA tool is available at https://github.com/lorenzonava96/SAR-and-DL-for-Landslide-Rapid-Assessment/tree/main. The Globally

Distributed Coseismic Landslide Dataset (GDCLD) is available at https://doi.org/10.5281/zenodo.11369484. Planet imagery can be found at

https://www.planet.com/. Sentinel-1 imagery can be found in the Copernicus Data Space Ecosystem at https://dataspace.copernicus.eu/.
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