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Abstract.

On April 2nd, 2024, a Mw 7.4 earthquake struck Taiwan’s eastern coast, triggering numerous landslides and severely impact-

ing infrastructure. To create the
:
a preliminary inventory of

::
the

:
earthquake-induced landslides in Eastern Taiwan ( 3,300 km2)

we deployed automated landslide detection methods by combining Earth Observation (EO) data with Artificial Intelligence

(AI) models. The models allowed us to identify
:::::::
identified

:
7,090 landslide events covering >75 km2, in about

::
≈

:
3 hours after5

the acquisition of the EO imagery. This research underscores
:::::::
showcase

:
AI’s role in enhancing

::
for

:::::
rapid

:
landslide detection

for disaster responseand situational awareness, and the
:
.
:::
The

:::::::::
generated

:
landslide inventory can

:::
also

:::
be

::::
used

::
to
:

improve the

understanding of earthquake-landslide interactions to improve seismic hazard mitigation.

1 Introduction

Taiwan is an island that is prone to high landslide hazards due to frequent rainfall and earthquake events (Hung, 2000; Chuang10

et al., 2021; Shou and Chen, 2021). A significant portion of Taiwan’s population and its infrastructure are vulnerable to these

landslide hazards (Lee and Fei, 2015). On 2nd of April 2024, the island of Taiwan was hit by a Mw 7.4 earthquake (United

States Geological Survey - USGS, 2024). The shaking resulted in a large number of landslides along transport routes with

>1,100 people injured (https://disasterphilanthropy.org/disasters/2024-taiwan-earthquake/). Currently, no landslide inventory

for the 2024 Hualien City earthquake has been released, even through international and authoritative entities such as the15

Copernicus Emergency Management Service and the Disaster Charter. A complete and up-to-date landslide inventory is im-

portant not only as a support during the emergency response but
:::::::
(Amatya

::
et

:::
al.,

:::::
2023)

:::
and

:
also for a better understanding of

the spatio-temporal relationships between landslide occurrence and driving factors (Lombardo et al., 2020). Such information

can redefine triggering thresholds for landslide early warnings and hazard zoning for land use planning.
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Over the last decades, spaceborne Earth Observation (EO) has become a predominant source for mapping landslides, which20

are particularly useful to first responders (Amatya et al., 2023; Novellino et al., 2024). Mapping landslides using Earth Obser-

vation (EO) data has become crucial for providing vital situational awareness to first responders during large-scale landslide

eventsaffecting regional or national scales. Recently, there ’s
::::
have

:
been significant advances in AI-based automated landslide

detection and mapping (Novellino et al., 2024). These approaches include utilizing crowdsourced data (Catani, 2021) and Un-

manned Aerial Vehicles (UAVs) (Dai et al., 2023), as well as analyzing LIDAR (Fang et al., 2022) and satellite optical imagery25

(Amatya et al., 2021; Bhuyan et al., 2023), and SAR (Nava et al., 2022).

Figure 1. Peak Ground Velocity (PGV) values, Peak Ground

Acceleration (PGA) contours and epicentre for the Hualien

City earthquake (from USGS, 2024). The 0.2%g is in black

bold and represents the area of study of this work. Sources:

Esri, DeLorme, HERE, TomTom, Intermap, increment P

Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase,

IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri

China (Hong Kong), swisstopo, MapmyIndia, and the GIS

User Community.

Additionally, there is a growing trend toward training DL
:::
deep

:::::::
learning

::::
(DL) models capable of providing reliable predictions in new

areas for rapid assessment of emerging MLEs
:::::::::
widespread

:::::::
multiple

:::::::
landslide

::::::
events

:::::::
(MLEs). We find studies focusing on a single data30

source, such as Copernicus Sentinel-2 (Prakash et al., 2021) and Plan-

etScope (Meena et al., 2023), while others investigate the integration

of multisource data (Fang et al., 2024; Xu et al., 2024) to enhance

accuracy and improve transferability.

However
::::::
Despite

::::
this

::::
large

:::::::
amount

::
of

:::::::
research, there remains a scarcity of real-world applications leveraging AI techniques35

and deriving actionable insights from them
::
in

::::
new,

::::::
unseen

:::::
large

::::::::
landslide

:::::
events. Currently, to our best knowledge, Amatya

et al. (2023) stand out as one of the few research where automatic landslides
::::::
studies

:::::
where

:::::::::
automatic

::::::::
landslide

:
mapping

methods were applied as part of disaster response activities following the 2021 earthquake in Haiti. However, as areas and

methods change, more investigation of such applications as well as AI-based methods must be undertaken to speed up the trust

and understanding of how such automated systems can efficiently improve hazard assessment. This underscores the pressing40

need for more such applications to fully harness the potential of AI in enhancing the efficiency and effectiveness of landslide

mapping during emergencies.
::::::
disaster

::::::::
response.

:

In this Brief Communication, we test in practice state-of-the-art AI

techniques on different EO satellite data for the automatic detection

and mapping of landslides associated with the event. We further pro-45

vide suggestions about how these tools can support future rapid land-

slide mapping efforts following major disasters worldwide. Lastly, we

provide the preliminary co-seismic landslide inventory for updating

landslide hazard models and supporting resilience to future events.

2 Hualien City earthquake and study area50

On the 2nd of April 2024 (23:58 UTC), a Mw 7.4 earthquake struck

the eastern coast of Taiwan (USGS, 2024). The event was located at
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a depth of 40km with an epicentre near the town of Hualien (Figure

1) as a result of a reverse NE-SW fault near the boundary between

the Eurasian and Philippine Sea plates. The main earthquake was fol-55

lowed by a Mw 6.5 aftershock 13 minutes later. Eastern Taiwan is not only tectonically active but is also relentlessly battered

by hurricanes, making this location particularly prone to the rapid erosion of the mountain chains built by tectonics. Following

information about the earthquake epicentre and effect (PGA) and reports on landslides from social media through the Global

Landslide Detector (Pennington et al., 2022), we defined a 3,300 km2 area of interest (AoI) for mapping landslides centred

around the town of Hualien
::
(>

:::::
0.2%

:::::
PGA). The extent of the AoI is a trade-off between the extent of the shaking and the60

availability of cloud-free images in the aftermath of the event.

3 Automated Landslide Detection and Mapping

Figure 2. Timeline of satellite image acquisitions and models deployment in April 2024.

The landslide maps have been generated using the Synthetic Aperture Radar (SAR) Landslide Rapid Assessment (SAR-

LRA) tool based on Convolutional Neural Networks (Nava et al., 2024) and a Vision Transformer (ViT) model (Tang et al.,

2022; Fang et al., 2024).65

The SAR-LRA tool was trained and validated on 11 MLEs globally distributed and uses pre- and post-event SAR imagery

in a change-detection-like approach to identify surface changes due to co-seismic slope failures. No transfer learning or fine-
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tuning was necessary; the model was directly deployed in the area. The tool is freely available at https://doi.org/10.5281/

zenodo.14898556. SAR-LRA was applied over five Sentinel-1 acquisitions at 10m resolution. This included one acquisition

on April 8, 2024, for the ascending geometry (over two different tracks), five SAR acquisitions within 60 days preceding70

the event, and one acquisition on April 10, 2024, for the descending geometry. SAR data enabled landslide detection even

under cloudy conditions, which prevented the use of optical Sentinel-2 data for several weeks post-earthquake (see Figure 2).

Additionally, SAR-LRA led us to identify preliminary hotspots of changes on the ground, where higher resolution datasets

could be considered, and to time such changes
:::::::::::::
landslide-related

:::::::
surface

:::::::
changes.

The ViT model was pre-trained and validated on a multi-source landslide segmentation dataset (Fang et al., 2024), the75

Globally Distributed Coseismic Landslide Dataset (GDCLD). GDCLD is a diverse and comprehensive collection of
:::
The

:::::::
GDCLD

::::::
dataset

::::::::
integrates

:
multi-source remote sensing images. This dataset includes imageryfrom

:::::::
imagery,

::::::::
including

:
Plan-

etScope, Gaofen-6, Map World, and Unmanned Aerial Vehicles, covering a wide range of geographical and geological contexts

worldwide.
::::
UAV

::::
data,

::::::::
covering

::::::::
landslides

::::::::
triggered

:::
by

::::
nine

:::::
MLEs

::::::
across

::::::
diverse

:::::::::
geological

::::
and

:::::::::::::::
geomorphological

:::::::
settings

:::::::::
worldwide.

:::::
Since

::
AI

:::::::
models

:::
map

:::::::
spectral

:::::::::
reflectance,

:::::
their

::::::::::
performance

::
is

::::::::
influenced

:::
by

:::
the

::::::
contrast

:::::::
between

:::::::::::::::
landslide-affected80

::::
areas

::::
and

::::
their

:::::::::::
surroundings.

::::::
Given

:::
that

:::::
most

::::::::
landslides

::
in
::::::::

GDCLD
:::::
occur

::
in

:::::::
densely

::::::::
vegetated

:::::
areas,

::::::
similar

::
to
::::::::
Hualien,

:::
we

:::::
expect

:::
the

:::::
model

::
to
:::::::::
generalize

::::
well

::
in

:::
this

:::::::
context. The GDCLD is available at https://doi.org/10.5281/zenodo.11369484 (Fang

et al., 2024). We fine-tune the model (Bhuyan et al., 2023) on 814 landslides manually mapped within the Taiwan study area

.
:::::::
affected

::
by

:::
the

:::::
2024

::::::::::
earthquake.

:::::
These

:::::::::
landslides

::::
were

:::::::
mapped

::::::
across

:::
the

:::::::
affected

::::
area

::::::
rather

::::
than

::
all

:::
of

:::::::
Taiwan,

:::
and

:::
no

::::::
specific

::::::::
landslide

:::::::
features

::::
were

:::::::::::
pre-selected.

::::::::
However,

:::
we

::::::::
included

::::
some

::::::::
negative

:::::::
samples

::::
(e.g.,

::::::::
riverbeds

::::
and

::::
bare

:::::
land)

::
to85

:::::::
improve

:::::
model

::::::::::::
generalization

::::
(the

::::::
subset

::
is

::::::::
available

::
in

:::::::::::::
Supplementary

:::::::::
Materials).

:
Satellite images from the Google Earth

Pro archive have been used for the pre-event stage,
:
whose collection includes data from CNES and Airbus acquired up to

September 2023. For the post-event stage, ViT has been applied on
::
to 33 composited PlanetScope images at 3m

:
3

::
m

:
spatial

resolution acquired on the 17th and 29th of April, 2024.

4 Results and Discussion90

We retrieved a total of 7090 co-seismic landslides along with the 2,617 pre-seismic ones. SAR-LRA outputs 262 SAR-LRA

bounding boxes: 63 in the ascending geometry and 199 in the descending geometry (Figure 3a). The co-seismic landslides

encompass new failuresand reactivation or enlargement of existing failures
:
,
:::::::::::
reactivations

:::::
and/or

:::::::::::::
remobilizations

:::
of

:::::::
existing

::::::::
landslides

:
(Figures 3b-c). Most co-seismic

::::
slope

:
failures occurred on slopes between 30 and 50 degrees on the SE slopes

(Figure 3d). The total co-seismic landslide area resulting from the earthquake equals 75.3 km2 with an individual polygon95

minimum size set to 250 m2, due to the resolution of Planet images, up to a maximum of 2.9 km2 (Figure 3e). We specifically

targeted areas with the most severe ground-shaking conditions for our analysis. By meticulously examining daily pre- and

post-event imagery, we achieved a precise understanding of when co-seismic landslides occurred, addressing a significant

challenge often encountered in post-disaster landslide inventories. This comprehensive dataset is indispensable for emergency

responders, providing critical insights that are essential for orchestrating swift and effective relief efforts on a large scale.100

4

https://doi.org/10.5281/zenodo.14898556
https://doi.org/10.5281/zenodo.14898556
https://doi.org/10.5281/zenodo.14898556
https://doi.org/10.5281/zenodo.11369484


Figure 3. Overview of the landslide inventory (a). A zoom of the co-seismic landslides mapped with squares of SAR-LRA and the polygons

of ViT (b-c). Density plot of slope vs aspect for the co-seismic landslides (d). Frequency area distribution of pre- and co-seismic landslides

(e). Sources: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster

NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, and the GIS User Community. Map data ©2024

Google.

Our processing workflow demonstrated remarkable time efficiency: SAR-LRA yielded results in approximately
::
≈ 20 min-

utes, while ViT analysis, including both pre- and post-processing tasks, took about 2 hours. This quick turnaround allowed us
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to produce reliable findings
::::::::
co-seismic

:::::::::
inventories

:
within hours of satellite image acquisition. The SAR-LRA tool was funda-

mental in initially identifying landslide locations, even under persistent cloud cover . In areas partially obscured by clouds, this

approach provided the location of landslides
::
as

:::::
cloud

:::::
cover

::::
was

::::::::
persistent

:::
for

::
≈

::
15

::::
days

::::
after

:::
the

:::::
event.105

Reflecting on our methodology, initial reservations about
:::
our

:::::
initial

::::::::
concerns

::::::::
regarding

:
the suitability of SAR imagery

for
:::::::
Taiwan’s

:
steep slopes were mitigated

:::::::
alleviated

:
by its successful validation once

:
in
:

cloud-free areasbecame available.

The initial skepticism likely stemmed from the unconventional appearance
:::::
visual

::::::::::::
characteristics

:
of SAR data, which makes it

difficult for the human eye to confirm the presence of landslides. However,
::
the

::::::::
landslide

::::::::
predicted

::
by

:::
the

:::
AI

:::::
model.

:::
As complete

cloud coverage over an entire region is rare, highlighting the potential for a hybrid SAR-Optical AI approach. Advancements110

in this direction could enhance the reliability and
:::
the

:::::::::
SAR-based

::::::::::
predictions

:::::
could

::
be

:::::::
partially

::::::::
validated

:::::
using

:::
the

:::::::::
landslides

:::::
visible

:::
on

:::::::
optical.

::::
This

::::
step

:::
can

:::::::
increase

:::
the

:
trustworthiness of our rapid assessment modelsand significantly improve their

performance under diverse and challenging weather conditions.

:
. Regarding the optical-based predictions, after model fine-tuning, the results were

::::::::
generally reliable, with few false positives

in flat areas that were easily masked out . Here a clear advantage
::::::::
manually.

:::
The

:::::::::
advantage

::
of

::::
this

:::::::
approach

:
is that we get the115

exact extent of the slope failures
::::::::
landslides. However, since our approach relied solely on post-event imagery, we had to deploy

the model also on pre-event imagery and subtract the two inventories to identify the co-seismic landslides. Reflecting on this,

approaches that integrate change-detection mechanisms within the model are preferable
:
a
:::::
single

::::::
model

:::
are

:::::::::
preferable

::::
and

:::::::::
advocated.

::::::::
Validating

::::::::
AI-based

::::::::
landslide

::::::::
detection

::::::
during

::
an

::::::::::
emergency

::
is

:::::::::
challenging

::::
due

::
to

:::
the

::::
lack

::
of

:::
an

:::::::::
immediate

:::::::::::
ground-truth120

::::::::
inventory

::
for

::::::::::
comparison.

:::
To

:::::::
validate

:::
our

::::::::
inventory,

:::
we

::::::::
conducted

::
a

:::::
visual

::::::::
inspection

::
of

::::
pre- and welcome

::::::::
post-event

::::::::::
PlanetScope

:::::::
imagery,

:::::
which

:::::::
allowed

::
us

::
to

:::::::
confirm

:::
that

:::::::
detected

:::::::::
landslides

:::::::::::
corresponded

::
to

:::::
actual

::::::
surface

::::::::
changes.

::::
This

::::::
process

::::
also

::::::
helped

::
us

::::::
correct

:::::
minor

::::::
errors,

::::::::::
particularly

:::::
where

:::
the

:::
AI

:::::
model

:::::::
slightly

:::::::::::
overestimated

::::::::
landslide

::::::
extents

::
or

:::::::
merged

::::::
nearby

:::::::::
landslides.

:::
We

:::
also

::::::::
analyzed

:::
the

:::::::::::::
Frequency-Area

::::::::::
Distribution

::::::
(FAD)

:::::::
exponent

:::
of

:::
our

:::::::::
co-seismic

::::::::
inventory

:::
and

:::::::
compare

::
it

::::
with

::::
those

:::::
from

::::
other

:::::::::::::::::
earthquake-triggered

::::::::
landslide

::::::::::
inventories.

:::::::::
Landslide

:::
size

:::::::::::
distributions

::::::::
typically

:::::
follow

::
a
:::::::::
power-law

:::::::::::
relationship,

::::
with125

::::::::
exponents

::
≈

:::
2-3

:::
for

:::::::
seismic

::::::
events.

::::
Our

:::::::::
AI-derived

::::::::
exponent

::::
(2.0)

:::::
aligns

::::
well

:::::
with

:::::
values

:::::::
reported

:::
for

::::::::
previous

::::::::::
earthquakes

:::::::
triggered

::::::
MLEs,

::::::::
including

:::::::
Gorkha

::::
2015

::::::
(2.15,

::::::
Roback

::
et

:::
al.,

::::::
2018),

:::::
Papua

:::::
New

::::::
Guinea

::::
2018

::::::
(2.04,

::::::
Tanyas

::
et

:::
al.,

:::::
2022),

::::
and

::::::::
Wenchuan

:::::
2008

:::::
(2.13,

::::
Fan

:
et
:::
al.,

::::::
2018).

::::
This

::::::::::
consistency

:::::::
suggests

::::
that

:::
our

::::::::::
AI-mapped

::::::::
inventory

:::::::
captures

:
a
:::::::
realistic

::::::::
landslide

:::
size

::::::::::
distribution.

:

::::::
Overall,

:::::
when

::::::::::
performing

:::::::::
automated

:::::::
landslide

::::::::
mapping

::
in

::::
new

::::::
events,

::
we

:::::
need

::
to

::::::::
maximize

:::
the

:::::::
chances

:::
our

::::::::
AI-model

::::
will130

::::::
predict

::::::::
landslides

:::::::::
accurately.

:::
To

:::
do

:::
so,

::::::
transfer

:::::::
learning

::::::
and/or

::::::::::
fine-tuning

:
a
::::::::::
generalized

::::::
model

:::::
within

:::
the

:::::::
affected

::::
area

::
is
::
a

:::::::::::::
well-established

::::::::
approach

:::
that

:::::::::::
significantly

:::::::
improves

:::
AI

::::::
model

::::::::::
performance

::
in

::::
new

::::::
regions

::::::::
(Bhuyan

::
et

::
al.,

::::::
2023).

::::
This

::::::
allows

::
us

::
to

::::::
assume

:::
that

:::
the

::::::
model

:::
will

:::::::
perform

:::::::
reliably

::::::
despite

::
the

:::::::
absence

::
of

:::::::::
immediate

::::
field

:::::::::
validation.

:::::::::::
Additionally,

:::::::
checking

:::::
FAD

::::::::
exponents

::::::
serves

::
as

:
a
:::::::

further
::::::
control

::
to

::::::
ensure

:::
that

::::::::::
anomalous

::::::::
detections

::::
are

:::::::::
minimized.

::::::
Lastly,

:::::
while

::::::::
AI-based

::::::::::
predictions

::::::
provide

::
a

::::
rapid

::::::::
mapping

::::::::
solution,

:
a
::::::::::::::
semi-automated

::::::::
approach

:::::::
remains

::::::::
preferable.

:::::::::::::
Double-checking

:::
AI

::::::
results

::::
with

:::::::
manual135

:::::::::
verification

:::::
using

::::
pre-

:::
and

:::::::::
post-event

:::::::
imagery

:::
will

::::::::
continue

::
to

::
be

:::::::::
necessary

::
to

:::::
refine

::::::
outputs

:::
and

::::::::
improve

:::::::
accuracy.

:
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::::
Since

::::::::
available,

:::
we

:::::::::
compared

:::
our

:::::::
AI-based

::::::::
inventory

::::
with

:::
the

:::
one

:::::::::
published

::
by

:::::
Chen

:
et
:::
al.

::::::
(2025).

:::::
Their

::::::::
inventory

::::::::
identified

:::::
1,243

::::::::
landslides,

:::::::
whereas

::::
our

:::
has

::
≈

:::::
7,000.

:::::
While

:::::
there

::
is

::::::
overlap

:::::::
between

:::::
many

::::::::
polygons

::
in

:::
the

:::
two

::::::::::
inventories,

:::
our

::::::::
approach

::::::
mapped

:::::
many

:::::
more

:::::::::
landslides.

::::
Chen

::
et
:::
al.

:::::
noted

:::
that

:::::
cloud

:::::
cover

:::
and

:::::::::
resolution

:::::::::
limitations

:::::
likely

:::
led

::
to

::
an

::::::::::::::
underestimation

::
of

::::::
smaller

:::::::::
landslides.

:::::::::::
Additionally,

:::
the

::::
FAD

:::::::
rollover

:::::
point

:::::::::
(computed

::
as

:::
the

:::::
most

:::::::
frequent

::::::::
landslide

::::
size)

::
is
:::::::::::
significantly

:::::
lower140

::
in

::
the

::::::::
AI-based

::::::::
inventory

:::
(≈

:::::
342.5

:::
m2

:::
vs.

::
≈

:::::
2,345

:::
m2

::
in

:::
the

::::::
manual

:::::::::
inventory),

:::::::::
confirming

::::
that

::
AI

:::::::::
effectively

::::::
detects

:::::::
smaller

::::::::
landslides.

:::::::::
However,

:::
this

::::
also

:::::::::
introduces

:::::::::::
well-known

:::::::
artifacts,

:::::
such

::
as

::::::::::::
amalgamation

::::::::
(merging

::
of

::::::::
adjacent

:::::::::
landslides)

::::
and

:::::::::::
fragmentation

::::::::
(splitting

::
of

:::::
single

::::::::::
landslides),

::
as

::::::::
observed

::
in

:::::::
previous

::::::
studies

::::::::
(Bhuyan

::
et

:::
al.,

:::::
2023).

:

5 Conclusions

Following the Hualien City earthquake event, we semi-automatically map
::
≈

:
7,090 co-seismic landslides from satellite im-145

agery at different resolutions and different data modalities using AI-based approaches. While there is a wealth of literature

on the use of AI for landslide detection, there are few documented cases of its application for rapid mapping in the after-

math of major disasters. Our inventory provides key information for situational awareness and for supporting emergency

responders in the aftermath of the event. Moreover, we provide the co-event landslide inventory, fundamental over the long

term for updating landslide hazard models and supporting resilience to future events. The growing accessibility of satellite150

data alongside processing software and platforms is leading to an increase in new techniques with increasingly accurate results

which has allowed us to collect and compare different outputs. In this case,
::::
This

:::::::
research

::::::
makes

:::
two

:::::::
primary

::::::::::::
contributions.

::::
First,

:::
we

::::::::::
demonstrate

::::
and

:::::::
evaluate

:::
the

::::::::::
application

::
of

:::
AI

::
for

:::::
rapid

::::::::
landslide

:::::::::
assessment

:::
in

::::::
disaster

::::::::
response.

:::::::::::
Specifically,

:::
we

:::::::
highlight

::::
how

:::
the

::::::::::
SAR-based

::::::::
automated

::::::::
approach

:
(SAR-LRA proved fundamental in

::::
Tool)

::::::
played

:
a
::::::
crucial

::::
role

::
in

:::::::::
accurately

identifying landslide locations despite persistent cloud cover over the area
::::::::
coverage. In contrast, while optical datawas more155

precise and interpretable, it was not available until much later. Given the proven effectiveness of the tested
:::::
optical

:::::
data,

:::::
while

::::::
offering

::::::
higher

:::::::::
precision,

::::::
became

::::::::
available

::::
only

:::::
after

:::::::::
significant

::::::
delays.

:::::::
Second,

:::
we

:::::::
provide

::
an

:::::::::::
open-source

::::::::
inventory

::::
that

::::::
delivers

::::::::
essential

::::::::::
information

:::
for

:::::::::
situational

:::::::::
awareness,

::::
aids

:::::::::
emergency

:::::::::
responders

::::::
during

:::::::
disaster

:::::::::
aftermath,

:::
and

:::::::::
facilitates

::
the

::::::::
updating

:::
of

::::::::
landslide

::::::
hazard

:::::::
models,

:::::::
thereby

:::::::::
enhancing

:::::::::
resilience

::
to

::::::
future

::::::
events.

::::::::
Overall,

:::::
given

:::
the

::::::::::::
demonstrated

::::::::::
effectiveness

:::
of

:::::
these approaches and tools, we are confident that these methods

::::
they can be successfully deployed in fu-160

ture large-scale earthquake-triggered landslide events,
::::::::
provided

:::
that

:::::::
manual

::::::
quality

::::::
checks

:::
are

:::::::::::
implemented. Integrating SAR

and Optical AI approaches will further improve the reliability and performance of rapid assessment models, especially in chal-

lenging weather conditions. These advancements are crucial for enhancing disaster response capabilities and decision-making

processes
:::
will

::::::
provide

:::::::
disaster

:::::::::
responders

::::
with

:::::::
valuable

::::::::::
information

::
in
::::::
future

:::::
MLEs.

Code and data availability. The generated inventory and the subset used to fine-tune the ViT is freely available on Zenodo at the link:165

https://zenodo.org/records/11519683. The code and weights of SAR-LRA tool is available at https://github.com/lorenzonava96/SAR-and-

DL-for-Landslide-Rapid-Assessment/tree/main. The Globally Distributed Coseismic Landslide Dataset (GDCLD) is available at https://doi.
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org/10.5281/zenodo.11369484. Planet imagery can be found at https://www.planet.com/. Sentinel-1 imagery can be found in the Copernicus

Data Space Ecosystem at https://dataspace.copernicus.eu/.
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