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The authors sincerely thank the Editor and the anonymous reviewers for their valuable suggestions and 
constructive feedback. We greatly appreciate the time and effort dedicated to improving this manuscript. 

Reviewer #1  

RC: The authors presented a brief communication about the sinergic use of AI remote sensing tools, based on radar 
and optical imagery, and their implementation as a potential rapid mapping tool to be implemente for emergency 
response. The paper is very interesting and promising in its goal, as well as well presented. I have some minor 
comments which I hope will help its comprehension: 

AR: Thank you for your feedback and suggestions. We answer to your comments point by point as follows: 

RC: Would you mind to improve the overall quality and readability of Figure 1? the study area boundaries and its 
topography are barely visible as it is. Figure 2, it would be more effective to use the sum of the days after the triggering 
of the events in the timeline, instead of the dates. 

AR: We agree and we will improve the figure according to your suggestions. Specifically, in Figure 1 we improved 
the transparency and thickness of the study area boundary, and added “Study Area” in the image . In Figure 2 we 
added the sum of days without optical images, along with the dates to give a clearer overall picture. 

RC: line 25: what LMEs stand for? 

AR: We amended and added the extended version: Multiple landslide events (MLEs) 

RC: you used the GDCLD database to train the model over Taiwan case of study. It would be more insightful to add 
some description of such database. Are these landslides comparable, in terms of geological geomorphological and 
land use setting, geometric and topographic features, to those triggered in Taiwan? Please, specify it. 

AR: Thank you for your comment. We agree that providing more details on the GDCLD database would improve 
clarity. The GDCLD integrates multi-source remote sensing imagery, including data from PlanetScope, Gaofen-6, 
Map World, and uncrewed aerial vehicles (UAVs). It covers landslides triggered by nine multiple landslide events 
(MLEs) across different geological and geomorphological settings worldwide, specifically in Jiuzhaigou, Hokkaido, 
Mainling, Palu, Mesetas, Nippes, Sumatra, Lushan, and Luding. These sites encompass diverse land use patterns, 
geometric characteristics, and topographic conditions. Regarding the comparability of these landslides to those in 
Taiwan, we acknowledge that the geological information in the GDCLD is limited. However, in terms of 
geomorphology, both the GDCLD dataset and the Taiwan case study primarily focus on mountainous terrains, 
which share similarities in their topographic features. Moreover, since our AI model primarily maps spatial 
features based on spectral reflectance, its performance is influenced by the contrast between landslide-affected 
areas and their surroundings. In densely vegetated regions, landslides typically exhibit distinct spectral signatures 
due to vegetation removal. Given that the majority of landslides in the GDCLD dataset occur in densely vegetated 
areas, as is the case in the Hualien MLE, we can expect the model to generalize well in this context. We thank you 
again and will clarify these points in the manuscript to enhance transparency regarding the dataset and its 
applicability to the Taiwan case study. Added in lines 75 to 82. 

RC: You mentioned that 814 landslides were manually mapped. Are these landslides mapped in a specific area of 
Taiwan or allover the country? Did you focus on specific landslides or features? 

AR: Thank you for your question. We manually annotated 816 landslides using PlanetScope imagery following the 
Hualien earthquake. These landslides were mapped across the affected area rather than all of Taiwan, and no 
specific landslide features were pre-selected. However, we included some negative samples (e.g., riverbeds and 
bare land) to improve model generalization. We will release this portion of the data as supplementary materia and 
we will add this information to the manuscript. Added in lines 84 to 86. 

RC: I would like to see some lines about how to validate these landslides. Validation is completely missing here. Please, 
consider to add some remarks on how to validate landslides mapped by automatic tools. 

AR: We thank you and agree with this comment. This is also aligned to a suggestion of reviewer 2.  
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We applied the following approaches to evaluate our inventory:  

i) We conducted a qualitative validation by visually inspecting pre- and post-event PlanetScope imagery. This 
allowed us to confirm that detected landslides corresponded to actual surface changes and correct minor errors, 
particularly where the AI model slightly overestimated or merged nearby landslides. 

Following your comments, we have now added the following validation steps: 

ii) we computed and compared FAD exponents with those from similar earthquake-triggered landslide 
inventories. Landslide size distributions typically follow a power-law relationship, with exponents around ~2 for 
similar seismic events. Our AI-derived exponent (~2.0) aligns well with previously observed values, including: 
2015 Gorkha, Nepal: 2.15 (Roback et al., 2018); 2018 Papua New Guinea: 2.04 (Tanyas et al., 2022); 2016 Kaikoura, 
New Zealand: 2.45 (Tanyas et al., 2022b); 2008 Wenchuan, China: 2.13 (Fan et al., 2018). This consistency suggests 
that our model captures a realistic distribution of landslide sizes. 

iii) We compared our AI-based inventory with the Chen et al. (2025) inventory and found a significant difference 
in mapped landslide numbers (Chen: 1,243; AI-based: ~7,000). While there is overlap in certain mapped 
landslides, Chen et al. noted that cloud cover and resolution constraints likely led to an underestimation of smaller 
landslides. Our AI model’s pre-event prediction on Google imagery identified 2,611 landslides, while the co-seismic 
AI prediction on PlanetScope imagery (after subtracting pre-event landslides) mapped 7,090 landslides larger 
than 250 m². To further investigate these differences, we analyzed the power-law exponents (α) and rollover 
points of the inventories. While our AI-derived exponent remains close to 2.0, Chen’s manual dataset exhibits a 
steeper exponent (2.43), confirming the underrepresentation of smaller landslides suggested by the authors. The 
rollover point, computed as the most frequent landslide area, is also much lower in the AI-based inventory 
(~342.52 m² vs. ~2,345 m² in the manual inventory), reinforcing that the AI model detects smaller events more 
effectively. However, this also introduces well-known challenges, such as amalgamation (where multiple adjacent 
landslides are merged) and fragmentation (where a single landslide is split into multiple patches). These artifacts 
are typical of pixel-based AI models, as observed in previous studies (Bhuyan et al., 2023). Please see the figures  
at the end of the comment for additional visual insights. 

However, validating AI-based landslide detection during an emergency is inherently difficult due to the lack of an 
immediate ground-truth inventory for comparison. In such cases, alternative validation strategies must be 
considered. Transfer learning and fine-tuning a generalized model within the affected area is a well-established 
approach that significantly improves AI model performance in new regions (Bhuyan et al., 2023). This allows us 
to reasonably assume that the model will perform reliably despite the absence of immediate field validation. 
Additionally, checking FAD exponents serves as a further control to ensure that anomalous detections are 
minimized. Lastly, while AI-based predictions provide a rapid mapping solution, a semi-automated approach 
remains preferable. Double-checking AI results with manual verification using pre- and post-event imagery will 
continue to be necessary to refine outputs and improve accuracy. 

We have added this validation steps and considerations at lines 120 to 143. 

Reviewer #2 

RC: The rapid extraction of landslides after the earthquake is an important task of post-earthquake relief and 
disaster assessment, and this manuscript carries out the post-earthquake landslide extraction of 2024 Hualien City 
Earthquake in Taiwan based on AI technology, which is an interesting work. 

AR: Thank you for your feedback and suggestions. We answer to your comments point by point as follows: 

RC: The author said in the manuscript that no landslide inventory 15 for the 2024 Hualien City earthquake has been 
released, in fact, there are a number of articles on the landslide after the 2024 Hualien City Earthquake in Taiwan has 
been published. 

AR: Thank you for your comment. You are correct that landslide inventories for the 2024 Hualien earthquake do 
exist, and we have identified two relevant studies: Chang et al. (2024) and Chen et al. (2025). However, only the 
inventory from Chen et al. is openly available. Please find a comparison between our AI-based and Chen et al.’s 
inventories in the answer to your 3rd comment, and in the manuscript at lines 137 to 143. 
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RC: page2: what DL and LMEs stand for? 

AR: We amended and added the extended version: Multiple landslide events (MLEs). 

RC: How to verify the accuracy of landslide extraction after the 2024 Hualien City Earthquake in Taiwan based on AI 
technology? 

AR: We thank you for your comment. This is also aligned to a comment of reviewer 1. 

We applied the following approaches to evaluate our inventory:  

i) We conducted a qualitative validation by visually inspecting pre- and post-event PlanetScope imagery. This 
allowed us to confirm that detected landslides corresponded to actual surface changes and correct minor errors, 
particularly where the AI model slightly overestimated or merged nearby landslides. 

Following your comments, we have now added the following validation steps: 

ii) we computed and compared FAD exponents with those from similar earthquake-triggered landslide 
inventories. Landslide size distributions typically follow a power-law relationship, with exponents around ~2 for 
similar seismic events. Our AI-derived exponent (~2.0) aligns well with previously observed values, including: 
2015 Gorkha, Nepal: 2.15 (Roback et al., 2018); 2018 Papua New Guinea: 2.04 (Tanyas et al., 2022); 2016 Kaikoura, 
New Zealand: 2.45 (Tanyas et al., 2022b); 2008 Wenchuan, China: 2.13 (Fan et al., 2018). This consistency suggests 
that our model captures a realistic distribution of landslide sizes. 

iii) We compared our AI-based inventory with the Chen et al. (2025) inventory and found a significant difference 
in mapped landslide numbers (Chen: 1,243; AI-based: ~7,000). While there is overlap in certain mapped 
landslides, Chen et al. noted that cloud cover and resolution constraints likely led to an underestimation of smaller 
landslides. Our AI model’s pre-event prediction on Google imagery identified 2,611 landslides, while the co-seismic 
AI prediction on PlanetScope imagery (after subtracting pre-event landslides) mapped 7,090 landslides larger 
than 250 m². To further investigate these differences, we analyzed the power-law exponents (α) and rollover 
points of the inventories. While our AI-derived exponent remains close to 2.0, Chen’s manual dataset exhibits a 
steeper exponent (2.43), confirming the underrepresentation of smaller landslides suggested by the authors. The 
rollover point, computed as the most frequent landslide area, is also much lower in the AI-based inventory 
(~342.52 m² vs. ~2,345 m² in the manual inventory), reinforcing that the AI model detects smaller events more 
effectively. However, this also introduces well-known challenges, such as amalgamation (where multiple adjacent 
landslides are merged) and fragmentation (where a single landslide is split into multiple patches). These artifacts 
are typical of pixel-based AI models, as observed in previous studies (Bhuyan et al., 2023). Please see the figures  
at the end of the comment for additional visual insights. 

However, validating AI-based landslide detection during an emergency is inherently difficult due to the lack of an 
immediate ground-truth inventory for comparison. In such cases, alternative validation strategies must be 
considered. Transfer learning and fine-tuning a generalized model within the affected area is a well-established 
approach that significantly improves AI model performance in new regions (Bhuyan et al., 2023). This allows us 
to reasonably assume that the model will perform reliably despite the absence of immediate field validation. 
Additionally, checking FAD exponents serves as a further control to ensure that anomalous detections are 
minimized. Lastly, while AI-based predictions provide a rapid mapping solution, a semi-automated approach 
remains preferable. Double-checking AI results with manual verification using pre- and post-event imagery will 
continue to be necessary to refine outputs and improve accuracy. 

We have added this validation steps and considerations at lines 120 to 143. 
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