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Abstract. With rapid urbanization, the scientific assessment of disaster risk caused by flooding events 10 

has become an essential task for disaster prevention and mitigation. However, adaptively selecting 11 

optimal machine learning (ML) models for flood risk assessment and further conducting spatial and 12 

temporal analyses of flood risk characteristics in urban agglomerations remains challenging. This study, 13 

establishes a “H–E–V–R” risk assessment index system that integrates hazard, exposure, vulnerability, 14 

and resilience based on the factors influencing flood risk in the Yangtze River Delta Urban 15 

Agglomeration (YRDUA). Utilizing Automated Machine Learning (AutoML) and the Analytic 16 

Hierarchy Process (AHP), a comprehensive flood risk assessment model is constructed. Results indicate 17 

that, among those of different assessment models, the accuracy, precision, F1-score, and kappa 18 

coefficient of the CatBoost model for flooded point identification are the highest. Among the flood hazard 19 

factors, elevation ranks highest in importance, with a contribution rate of up to 68.55%. The spatial 20 

distribution of flood risk in the study area from 1990 to 2020 is heterogeneous, with an overall increasing 21 

risk trend. This study is of great significance for advancing disaster prevention, mitigation, and 22 

sustainable development in the YRDUA. 23 

1 Introduction 24 

Under global climate change and accelerated urbanization, China has been experiencing pervasive 25 

flooding ever more frequently (Tang et al., 2024). Floods threaten people's lives, hinder social 26 

development and cause huge economic losses in China(Anon, 2021; Echendu, 2020; Milanesi et al., 27 

2015). Flood formation has been exacerbated by climate change and urbanization, leading to increased 28 

frequency, extent, and intensity of urban flooding, and impacting urban flood risk. (Mahmoud and Gan, 29 

2018; Khadka et al., 2023; Scott et al., 2023; Seemuangngam and Lin, 2024). Modern human society is 30 

faced with the possibility of serious flood hazards and associated challenges, and in addition to post-31 

disaster emergency management, the scientific assessment of disaster risks arising from flood events has 32 

gradually become a crucial aspect in preventing and mitigating disasters. 33 
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Currently, most research in the field of flooding focuses on the flood risks of individual cities. (Wang et 34 

al., 2021, 2023c; Guan et al., 2024). However, in recent years, the frequency and intensity of urban 35 

flooding in China have increased dramatically, and individual cities are no longer able to independently 36 

mitigate the risks arising from floods. Studies indicate that China’s flood risk management needs to be 37 

transformed from the scale of isolated individual cities to the scale of urban agglomerations, conducted 38 

in a regionally coordinated manner (Morales-Torres et al., 2016; Wang et al., 2023b). City clusters, 39 

constituting the spatial organizational structure of cities that have reached an advanced stage of 40 

development, have become key areas for regional disaster management and sustainable development. 41 

Due to the unique geographical location and climate conditions of the YRDUA, as well as the impact of 42 

urbanization over the past 30 years, the frequency and intensity of flood disasters have been increasing, 43 

posing a serious threat to the sustainable development of cities. Therefore, implementing relevant 44 

emergency management strategies for flood risks is urgently needed. Furthermore, the region comprises 45 

multiple cities, among which distinct resource interactions, such as population mobility and risk transfer, 46 

exist (Lu et al., 2022). Thus, it is essential to assess both the overall flood risk characteristics and changes 47 

in the urban agglomeration, as well as the spatial correlations of flood risks between cities, explore the 48 

mutual influences and interaction mechanisms among regional disaster risks, and provide a scientific 49 

basis for sustainable development within the urban agglomeration(Xu et al., 2024). 50 

Statistical analyses of historical disaster statistics(Lang et al., 2004), indicator systems methods(Wang et 51 

al., 2018), scenario simulations methods(Yang et al., 2018), and data-driven methods(Abu-Salih et al., 52 

2023), are the primary flood risk assessment method currently. With the development of artificial 53 

intelligence technology, data-driven methods, such as machine learning, deep learning, and artificial 54 

neural networks, have emerged, providing new opportunities for improving traditional flood risk 55 

assessment methods (Liu Jiafu and Zhang Bai, 2015). As ML algorithms continue to develop and 56 

improve, integrated methods address the limitations of general ML models have emerged (Kazienko et 57 

al., 2015). Various integrated ML methods have been utilized in hydrology, with the Boost algorithm 58 

being extensively applied for flood prediction and assessment (Shafizadeh-Moghadam et al., 2018; 59 

Mirzaei et al., 2021; Yan et al., 2024). However, these integrated models lack preprocessing and feature 60 

selection capabilities, and their application effects vary considerably across different regions. To fully 61 

mine data and discover more effective features, experts have proposed other solutions, namely hybrid 62 
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models such as ANFIS, LSTM-ALO, and LSSVM-GSA (Nayak et al., 2004; Yuan et al., 2018; Adnan 63 

et al., 2017). These methods have achieved good performances for given hydrological time series, 64 

focusing more on data preprocessing and feature selection. Although research on data-driven urban flood 65 

risk assessment methods has increased, certain limitations remain. For example, the physical importance 66 

of urban hydrological processes is often ignored in the model assessment process, interpretation of the 67 

assessment results is weak, and quantifying the boundaries and scales is challenging (Abu-Salih et al., 68 

2023; Guo et al., 2022). 69 

Furthermore, attempting to combine the data processing and feature selection capabilities of hybrid 70 

models with those of integrated models remains challenging (Li et al., 2017). Existing algorithms cannot 71 

perform well for all learning problems; thus, each ML component, such as feature engineering, model 72 

selection, and algorithm selection, must be carefully configured (Li et al., 2017; Raschka, 2020). Hence, 73 

ML applications require the participation of many experts, leading to disproportionate costs for ML 74 

development and improvement(Wagenaar et al., 2020; Sarro et al., 2022; Rashidi Shikhteymour et al., 75 

2023). Additionally, ML is not be fully automated, and its application effect improves empirically(Jordan 76 

and Mitchell, 2015; Nagarajah and Poravi, 2019). AutoML is an innovative ML framework designed for 77 

training ML models and addressing various problems. (He et al., 2021; Consuegra-Ayala et al., 2022). 78 

However, AutoML has not been widely applied in the fields of hydrology and disaster risk management, 79 

and research has mainly focused on optimizing the integrated model to achieve better performance 80 

(Özdemir et al., 2023). Continuous research has highlighted the potential role of AutoML in flood risk 81 

detection and assessment(Guo et al., 2022; Vincent et al., 2023; Munim et al., 2024). Guo et al. (2022) 82 

compared AutoML with three single ML algorithms (CatBoost, XGBoost, and BPDNN) and concluded 83 

that AutoML performed better in building rapid warning and comprehensive analysis models for urban 84 

waterlogging. The model based on AutoML can be applied to areas without water level monitoring and 85 

achieve accurate predictions and rapid warnings of waterlogging depth(Guo et al., 2022; Yan et al., 2024). 86 

Abu-Salih et al. (2023) proposed a data-driven flood risk area detection model that combined the 87 

integrated model with the AutoML tool and successfully solved the problems of data balance and strategy 88 

modeling, while reducing the complexity of flood risk area prediction.  Previous studies have provided 89 

a theoretical basis and scientific reference for the application of AutoML methods to flood risk 90 
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assessment. However, the use of AutoML for research purposes is a complex issue, and many new 91 

opportunities and challenges remain regarding its specific applications. 92 

Although AutoML can objectively and efficiently calculate flood risk, it lacks comprehensiveness and 93 

judgment. Therefore, when evaluating the indicators of various dimensions of flood risk, quantifying the 94 

impacts of different levels of each indicator on flood risk is impossible, and determining the indicator 95 

weight is challenging. Therefore, to determine the indicator weight, using relevant statistical methods is 96 

necessary. Multicriteria decision analysis (MCDA) is a useful tool for considering complex decision-97 

making problems in flood risk management(Fernández and Lutz, 2010). The analytic hierarchy process 98 

(AHP) is one of the most popular MCDA techniques(Donegan et al., 1992). This technique emphasizes 99 

the importance of the subjective judgment of decision makers and the consistency of pairwise 100 

comparisons of standards in the decision-making process (Saaty, 1980). Recent studies have focused on 101 

integrated frameworks of ML models and MCDA technology for flood hazard assessment (Kanani-Sadat 102 

et al., 2019; Khosravi et al., 2019; Gudiyangada Nachappa et al., 2020; Mia et al., 2023). However, 103 

research focusing on using an integrated framework of AutoML and AHP techniques is still limited. 104 

This study constructs a flood risk assessment model based on AutoML and AHP by examining the factors 105 

influencing flood risk in the YRDUA. Based on the proposed flood risk assessment model, the risk, 106 

exposure, vulnerability, and resilience as well as their corresponding weights of flooding in the YRDUA 107 

are calculated, and the regional flood risk level zoning map is obtained. Comparative analysis of the 108 

superimposed flooded points data reveals that the distribution of flooded points in the study area is 109 

basically consistent with the distribution of high and medium-to-high risk areas of flooding. The 110 

proportion of quantifying the distribution is 87.45%, indicating that the model in this paper performs well 111 

and has high credibility for flood risk assessment. The analysis of spatial and temporal patterns of flood 112 

risk change over the past 30 years provides scientific basis and theoretical support for disaster prevention 113 

and mitigation in the YRDUA. 114 

2 Materials and methods 115 

In this section, the study area is briefly introduced (Section 2.1), and each individual component of the 116 

study is further discussed along with the basic geographic information, meteorology, social statistics, 117 

historical disaster data, and other fields involved in the study of urban agglomeration flood disasters and 118 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 

5 

 

their risks (Section 2.2). The framework of the flood risk assessment model is shown in Figure 1. The 119 

factors influencing flood risk in the YRDUA are explored, and a flood risk assessment index system is 120 

established (Section 2.3). The optimal model in AutoML is selected to calculate the importance of flood 121 

hazard and hazard characteristic factors (Section 2.4), and the model is combined with AHP to determine 122 

the weight of each risk indicator (Section 2.5). Ultimately, a flood risk assessment model based on 123 

AutoML and AHP is constructed. 124 

 125 

Figure 1: Flood risk assessment modeling framework. 126 

 127 

2.1 Study area  128 

The Yangtze River Delta Urban Agglomeration, located in the eastern coastal region of China(27° 04′–129 

34° 49′ N; 115° 75′–122° 95′ E), includes 27 cities: 8 in Anhui Province, 9 in Jiangsu Province, 9 in 130 

Zhejiang Province, and Shanghai(Figure 2)(Yang et al., 2024). Influenced by the East Asian summer 131 

monsoon, the study area features low-lying plains in the northern region and higher hilly terrain in the 132 

southern region, along with numerous waterways(Ding et al., 2021). With the recent accelerated climate 133 

change and urbanization, extreme precipitation events in the Yangtze River Delta (YRD) have been 134 

occurring ever more frequently, and the temporal and spatial distribution differences in precipitation have 135 

increased. Additionally, the increase in impervious surfaces, narrow plains rivers, and poor drainage may 136 

result in more frequent and widespread urban flooding and waterlogging disasters (Wan et al., 2013). 137 

This region is economically developed and densely populated , making it the largest urban agglomeration 138 

in Asia(Sun et al., 2023). In 2008, the Gross Domestic Product (GDP) of the YRD accounted for 17.5% 139 
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of the GDP of the entire country, i.e., 4.3 trillion yuan, and the per capita GDP was 44,468 yuan, i.e., 140 

twice the national average level. The population has reached 97.2 million, i.e., 7.3% of China’s total 141 

population, and the region’s average population density is 877 persons/km2, i.e., approximately twice the 142 

national average (Gu et al., 2011). Therefore, the potential risks of flood and waterlogging disasters are 143 

substantial. 144 

 145 

Figure 2: Study area. 146 

 147 

2.2 Data sources 148 

The study of flood disasters and their associated risks in urban agglomerations involves complex natural 149 

and social factors. Therefore, we collected and preprocessed data from multiple fields, such as basic 150 

geography, meteorology, social statistics, and historical disasters. Table 1 lists the data types and 151 
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resolutions collected for the research area. 152 

Table 1: Data sources. 153 

Dataset Data name 
Spatial 

resolution 
Data source 

Basic 

geographic 

information data 

Basic 

geographic 

information 

data 

Vector data 

Resources and Environmental Science and 

Data Center, Chinese Academy of Sciences 

(https://www.resdc.cn/) 

Digital 

elevation model 
30 m 

The U.S. geological survey 

(https://earthexplorer.usgs.gov/) 

River network 

density data 
Vector data 

Resources and Environmental Science and 

Data Center, Chinese Academy of Sciences 

(https://www.resdc.cn/) 

Land use data 30 m 
Wuhan University CLCD dataset 

(https://zenodo.org/records/8176941) 

Normalized 

difference 

vegetation 

index data 

30 m 

National Science and Technology 

Infrastructure - National Ecosystem 

science Data Center 

(http://www.nesdc.org.cn) 

Building data Vector data 
OpenStreetMap 

(https://openstreetmap.maps.arcgis.com/) 

Meteorological 

data 

Precipitation 

data 
Site data 

National Meteorological Information 

Center, China Meteorological 

Administration 

Social statistics 

Population data Prefecture-level 
Provincial and municipal statistical 

yearbooks and bulletins 

Gross domestic 

product 
Prefecture-level 

Provincial and municipal statistical 

yearbooks and bulletins 

Unemployment 

figures 
Prefecture-level 

Provincial and municipal statistical 

yearbooks and bulletins 

Health care 

statistics 
Prefecture-level 

Provincial and municipal statistical 

yearbooks and bulletins 

Historical 

disaster data 

Historical 

flooding data 
250 m Global Flood Database 

Historical flood 

hazard data 
The statistics 

EM-DAT database 

(https://www.emdat.be/) 

 154 

2.3 Establishment of an flood risk assessment indicator system 155 

Although risk is a universal concept, it has no universal definition (Aven, 2016; Mishra and Sinha, 2020). 156 

Based on the hazard–exposure–vulnerability (H–E–V) disaster risk framework, we considered the 157 
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particularity of flood risk research at the urban agglomeration scale, incorporated resilience indicators 158 

into the existing framework, and constructed a four-dimensional flood risk assessment framework of 159 

hazard–exposure–vulnerability–resilience (H–E–V–R) that can assess regional flood risks more 160 

comprehensively and systematically. The conceptual description of flood risk in this study can be 161 

expressed in the Eq. (1): 162 

𝑅𝑖𝑠𝑘 = 𝑓(𝐻, 𝐸, 𝑉, 𝑅) = ∑ 𝜔𝐻𝐻𝑖 + ∑ 𝜔𝐸𝐸𝑖 + ∑ 𝜔𝑉𝑉𝑖 + ∑ 𝜔𝑅𝑅𝑖
𝑑
𝑖=1

𝑐
𝑖=1

𝑏
𝑖=1

𝑎
𝑖=1 ,  (1) 163 

where 𝐻, 𝐸, 𝑉, and 𝑅 represent the danger of, exposure to, vulnerability to, and resilience in response 164 

to floods, respectively; 𝜔𝐻, 𝜔𝐸, 𝜔𝑉, and 𝜔𝑅 are the weights of danger, exposure, vulnerability, and 165 

resilience, respectively; 𝐻𝑖, 𝐸𝑖, 𝑉𝑖, and 𝑅𝑖 are the values of items i of the indicators, respectively; and 166 

𝑎, 𝑏, 𝑐, and 𝑑 are the numbers of the indicators, respectively. 167 

We constructed a flood risk assessment index system for the YRDUA based on the “H–E–V–R” 168 

framework, the actual situation of the study area, the formation mechanisms of flood disasters, and the 169 

findings of relevant studies (Gain et al., 2015; Criado et al., 2019; Hsiao et al., 2021). We selected four 170 

first-level indicators (i.e., hazard, exposure, vulnerability, and resilience indices) and 19 second-level 171 

indicators: Average annual precipitation (PREC), Annual Cumulative Heavy Rainfall Duration (DURA), 172 

Digital Elevation Model (DEM), SLOPE, Drainage Density (DD), and Normalized Difference 173 

Vegetation Index (NDVI) were selected as hazard indicators to evaluate the sensitivity of flood-prone 174 

environments; land area (AREA), Population Density (DPOP), GDP Density (DGDP), and Building 175 

Density (DBUI) were selected as exposure indicators to measure the degree of exposure of the natural 176 

environment or social system to flooding; Proportion of Child Population (PPOP_CHI), Proportion of 177 

Elderly Population (PPOP_ELD), Proportion of Uneducated Population (PPOP_UEDU), and 178 

Urbanization Rate (UR) were selected as vulnerability indicators to reflect the vulnerability to flooding; 179 

GDP per capita, Unemployment Rate (UEMP), Number of Doctors (DOCS), Number of Medical 180 

Institutions (INSTS), and Number of Hospital Beds (BEDS) were selected as resilience indicators. A 181 

detailed description of the flood risk assessment index system is presented in Figure 3. 182 
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Figure 3: Flood risk assessment index system for the YRDUA based on the H–E–V–R framework. 183 

 184 

2.4 Flood risk calculation method based on AutoML 185 

2.4.1 Feature selection 186 

The training sample dataset was generated based on flooded and non-flooded points in the study area. 187 

The main factors affecting flood risk were considered during input feature selection. Rainfall and 188 

rainstorms are important factors that lead to floods, and flooding is closely related to topography, slope, 189 

vegetation cover, and hydrological conditions. Therefore, six indicator factors, namely PREC, DURA, 190 

DEM, SLOPE, NDVI, and DD, were selected as the input features of the model. To verify the model, 191 

70% of the data in the sample were set as the training dataset and the remaining 30% of the data were set 192 

as the testing dataset through random sampling. 193 

When the number of samples is small, data balancing is essential to ensure uniform sampling and reduce 194 

the deviations among the training, validation, and original datasets. Data balancing refers to the process 195 

of achieving a balanced distribution of data for each labeled category; it is particularly important when 196 

the number of observations in each class is significantly different. One way to address an imbalanced 197 

dataset is to oversample the minority classes. In this study, we assessed flood risk based on the 198 

identification of flooded point in the sample, which is essentially a binary classification problem; 199 

therefore, the output features are 0, i.e., negative categories (non-flooded points), versus 1, i.e., positive 200 

categories (flooded points). The processed dataset comprised 278 positive samples (flooded points) and 201 

278 negative samples (non-flooded point). 202 
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2.4.2 Model training and hyperparameter optimization 203 

Training samples were generated using the data from flooded and non-flooded points in the study area, 204 

and the Auto-Sklearn was used for model training, its principle is shown in Figure 4. The Auto-sklearn 205 

framework has multiple built-in machine learning algorithms. We selected 9 models that are more typical 206 

or have better performance in flood hazard research: random forest (RF), extreme gradient boosting 207 

(XGBoost), Light Gradient Boosting Machine (LightGBM), categorical feature boosting (CatBoost), 208 

extra trees, decision tree, nearest neighbors, neural network, and linear. The training and testing datasets 209 

were used to train the 9 machine learning models, and the hyperparameters were continuously adjusted 210 

and optimized. 211 

 212 

Figure 4: Principles of Auto-Sklearn 213 

 214 

Hyperparameter optimization is an important step in ML model training. The aim of this step is to 215 

determine a hyperparameter combination to generate a ML model that performs well on a specific dataset 216 

and reduces the effect of the predefined loss function on a given dataset. In this study, we used a grid 217 

search strategy for optimization. For each set of hyperparameter combinations, k-fold cross-validation 218 

was used to evaluate the model and determine the hyperparameter combination of the optimal model that 219 

achieved the highest prediction accuracy. Briefly, the training dataset was divided into K parts, of which 220 

one was selected as the test set and the rest were used as the training set. The cross-validation was 221 

repeated K times and the results were averaged K times. The model with the best average result among 222 

all models was selected as the optimal model, and the final classification prediction result was the output. 223 

In this study, we used 5-fold cross-validation. 224 
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2.4.3 Performance evaluation 225 

To better compare the accuracy of the 14 selected ML models in the Auto-Sklearn framework for flood 226 

risk assessment, multiple accuracy evaluation indicators were used to assess the test dataset. The 227 

following combinations of the true category of the sample point and the category predicted by the 228 

classifier were used: True Positive (TP)—the sample point is a flooded point, and the model classifier 229 

also predicts that it is a flooded point; True Negative (TN)—the sample point is a non-flooded point, and 230 

the model classifier also predicts that it is a non-flooded point; False Positive (FP)—the sample point is 231 

a flooded point, and the model classifier mistakenly predicts that it is a non-flooded point; False Negative 232 

(FN)—the sample point is a non-flooded point, and the model classifier mistakenly predicts that it is a 233 

flooded point. Therefore, four related indicators were selected: Accuracy, Precision, Recall and F1-score, 234 

and the consistency metric kappa coefficient, the calculation formula is as follows Eq. (2), Eq. (3), Eq. 235 

(4), Eq. (5), Eq.  (6). A combination of multiple indicators can be used to better compare the 236 

performances of several models in the Auto-Sklearn framework for flood point identification and flood 237 

risk assessment. The equations for calculating the above indicators are shown below. The most intuitive 238 

precision performance indicator is accuracy. As the Auto-Sklearn framework uses data balancing to 239 

ensure adaptive balanced class distribution, the model with the highest accuracy value is the best 240 

performing model in flood point identification in this study. 241 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 ,  (2) 242 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,  (3) 243 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,  (4) 244 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 ,  (5) 245 

Among the indicators, Accuracy is determined based on the accuracy rate and can also be understood as 246 

the consistency of the prediction, indicating the degree of closeness or distance between the predicted 247 

category given by a set of data and its true category. Precision is the accuracy rate and refers to the degree 248 

of closeness or dispersion among the predicted categories. Recall is the recall rate and refers to the ability 249 

of the prediction result to correctly classify and identify the flooded points. F1-score is the harmonic 250 
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mean of Precision and Recall and is equivalent to the comprehensive evaluation index of the precision 251 

and recall rates and can better reflect the recognition performance of the model. 252 

Kappa is an indicator of consistency in statistics, it is used to measure the effects of classification, and it 253 

was calculated based on the confusion matrix of the true and predicted categories in this study. Its value 254 

range is [-1, 1]. A model with a low Kappa value indicates an unbalanced confusion matrix. Its formula 255 

is as Eq. (6), Eq. (7). 256 

𝐾𝑎𝑝𝑝𝑎 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦−𝑃𝑒

1−𝑃𝑒
,  (6) 257 

𝑃𝑒 =
(𝑇𝑃+𝐹𝑃)+(𝑇𝑃+𝐹𝑁)+(𝑇𝑁+𝐹𝑁)+(𝑇𝑁+𝐹𝑃)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)2 ,  (7) 258 

where 𝑃𝑒 represents the accidental consistency. 259 

2.5 Method for determining flood risk index weights based on AHP 260 

2.5.1 Establishing a hierarchical model 261 

According to the decision-making objectives, factors, and applications in decision-making problems, the 262 

AHP can be divided from bottom to top into the target, criterion, and application layers. Among them, 263 

the target layer is the problem to be solved (i.e., final flood risk). The criterion layer is the intermediate 264 

link, including the factors to be considered and the decision making criteria. The factors can be divided 265 

into different evaluation indicators, including four first-level indicators (danger, exposure, vulnerability, 266 

and resilience) and their corresponding 19 second-level indicators. The criterion layer comprises various 267 

weight combination schemes linked to the target layer. The application layer is the final optional scheme 268 

and specific application of the decision. The final weight scheme and evaluation results of this study 269 

were applied to the YRDUA. 270 

2.5.2 Constructing the judgment matrix 271 

After the hierarchical structure was established, a judgment matrix was constructed based on the 272 

relationship between the criteria and indicators. Different elements in the sublevel were compared 273 

pairwise, and the relative importances of all elements in the current layer and previous layer were 274 

compared. Typically, a pairwise comparison matrix is used as representative. In this study, we adopted 275 

the 1–9 scale method as the importance measurement standard. The importance comparison relationship 276 
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is presented in Table 2, where the matrix element 𝑎𝑖𝑗  represents the comparison result of the 𝑖𝑡ℎ element 277 

relative to the 𝑗𝑡ℎ element. 278 

Table 2: Pairwise comparison point-based rating scale of AHP. 279 

Ranking Importance Level 

1 Equally important 

3 i is slightly more important than j 

5 i is much more important than j 

7 i is very much more important than j 

9 i is extremely important than j 

2, 4, 6, 8 Intermediate value of two adjacent judgements 

Reciprocal Comparative judgement of j vs.，𝑎𝑗𝑖 = 1/𝑎𝑖𝑗 

 280 

2.5.3 Solving the eigenvector of the judgment matrix 281 

Based on the judgment matrix, the square root method was used to solve the eigenvector and eigenroot. 282 

The first step is to calculate the square root 𝑎𝑖𝑗  of the product of each row of the judgment matrix 𝑛, 283 

then normalize it, and finally calculate the maximum eigenroot of the judgment matrix. The formula is 284 

as Eq. (8), Eq. (9), Eq. (10). 285 

𝑀𝑖 = √∏ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑛
,  (8) 286 

𝑊𝑖 =
𝑀𝑖

∑ 𝑀𝑖
𝑛
𝑖=1

,  (9) 287 

𝜆𝑚𝑎𝑥 = ∑
(𝐴𝑊)𝑖

𝑛𝑊𝑖

𝑛
𝑖=1 ,  (10) 288 

2.5.4 Consistency check 289 

After the eigenvector calculation is completed, a consistency test is required to reduce the subjectivity in 290 

the judgment matrix and enhance the scientific nature of the data and calculations. The consistency 291 

indicator (CI) is used to measure the deviation of the judgment matrix from the consistency: the smaller 292 

the CI, the greater the consistency of the judgment matrix. When CI = 0, the judgment matrix is 293 

completely consistent. The CI calculation formula is as Eq. (11). 294 

𝐶𝐼 =
𝜆−𝑛

𝑛−1
,  (11)                                                        295 
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To quantify the standard, the relative consistency (CR) index was further calculated as Eq.  (12). 296 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
,  (12) 297 

where average Random Consistency Index (RI) represents the average random consistency, which is only 298 

related to the order of the judgment matrix. The RI values of judgment matrices of order Table 3:Table 299 

3. 300 

Table 3: Consistency index (RI) for a randomly generated matrix. 301 

n 1 2 3 4 5 6 7 8 9 10 

RI 0.00 0.00 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 

 302 

CR was determined based on the RI value. When CR < 0.1, the consistency of the judgment matrix is 303 

considered good. When CR > 0.1, the consistency of the judgment matrix is unacceptable, and the 304 

judgment matrix must be adjusted and modified. In such cases, the corresponding judgment matrix was 305 

further constructed, and the eigenvector and eigenroot were calculated using the following formulas:  306 

Finally, the judgment matrix that passed the consistency test was used to calculate the weights of the 307 

indicators at the different levels. 308 

3 Results and discussion 309 

3.1 Model flood risk results and evaluation 310 

3.1.1 AutoML optimal model selection 311 

In the experiment, 9 typical ML models under the Auto-Sklearn framework were used to process the 312 

sample dataset, with 70% of the sample set being used as the training dataset and 30% being used as the 313 

testing dataset. The results of the comparative analysis of the model performance based on the test dataset 314 

are presented in Table 4. A comprehensive analysis of the results revealed that the accuracy of the models 315 

followed the order of CatBoost (0.8960) = LightGBM (0.8960) > Extra Trees (0.8880) > other models > 316 

Nearest Neighbors. In terms of the precision index, CatBoost had the highest value (0.9030), followed 317 

by those of LightGBM (0.8960) and Extra Trees (0.8893). Meanwhile, CatBoost had the highest recall 318 

rate of 0.8883, followed by that of Extra Trees at 0.8870. The F1-score and Kappa coefficient of the 319 

CatBoost model were also markedly higher than those of the other models, reflecting the model’s good 320 

consistency. A comprehensive comparison showed that the accuracy, precision, F1-score, and kappa 321 
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coefficient of the CatBoost model were the highest, with its accuracy reaching 0.8960, indicating that the 322 

recognition and prediction accuracy of the flooded points in the study area based on the CatBoost model 323 

were obviously better than those of other common machine learning models. Since flood data often 324 

involve various environmental factors and complex interactions, the CatBoost model is highly effective 325 

at handling these intricate nonlinear relationships and feature interactions. Additionally, the model 326 

incorporates multiple regularization mechanisms during tree construction, which helps prevent 327 

overfitting and enhances the model's generalization capability. 328 

Table 4: Comparative analysis of the performances of different ML models. 329 

Models Accuracy Precision Recall F1-score Kappa 

CatBoost 0.8960 0.9030 0.8883 0.8960 0.7915 

XGBoost 0.8640 0.8748 0.8640 0.8624 0.7256 

LightGBM 0.8960 0.8960 0.7890 0.8015 0.7324 

Random Forest 0.8320 0.8482 0.8320 0.8309 0.6662 

Extra Trees 0.8880 0.8893 0.8870 0.8877 0.7751 

Decision Tree 0.8720 0.8810 0.8720 0.8708 0.7419 

Linear 0.8480 0.8682 0.8480 0.8450 0.6926 

Nearest Neighbors 0.7440 0.7747 0.7440 0.7390 0.4937 

Neural Network 0.8480 0.8682 0.8480 0.8450 0.6926 

 330 

By comparing the performances of the 9 models, we found that the CatBoost model was more effective 331 

in identifying flooded points. To further verify the excellent performance of the model, the receiver 332 

operating characteristic (ROC) curve and area enclosed by the coordinate axes (corresponding area under 333 

the curve [AUC] value) were plotted based on the test dataset to determine the accuracy of the model’s 334 

binary classification effect: the larger the AUC value, the more accurate the model prediction. When 335 

AUC > 0.8, the model prediction effect is very good (Sinha et al., 2008). The verification results are 336 

shown in Figure 5. The AUC value of the CatBoost model reached 0.91, guaranteeing the performance 337 

and prediction reliability of the CatBoost model. Based on this, the CatBoost model was selected to 338 

calculate the flood risk in the YRDUA. 339 
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 340 

Figure 5: Receiver operating characteristic (ROC) curves and corresponding area under the curve (AUC) 341 

values of the CatBoost model. 342 

 343 

3.1.2 Analysis of hazard factors 344 

(1) Ranking of importance 345 

Among the six characteristic factors affecting flood risk, in order to clarify the main factors affecting 346 

flood risk in the YRDUA, this study quantifies the degree of importance of each risk indicator factor 347 

through the CatBoost model, and its importance ranking is shown in Figure 6. The results indicated that 348 

there are obvious differences in the degree of influence of the indicators on flood risk within the study 349 

area. DEM is the primary factor affecting flood risk, with an importance level of 68.55%, which far 350 

exceeds the other factors, which is also in line with the findings of many researchers within the 351 

region(Mei et al., 2021; Wan et al., 2013). Analyzing the main reasons, compared to higher terrain areas, 352 

low-lying and relatively flat depressions become natural catchment areas. Additionally, since the main 353 

urban areas of the YRDUA predominantly consist of impervious surfaces, the surface runoff formed is 354 

difficult to infiltrate, further exacerbating the risk of water accumulation and flooding in low-lying areas. 355 

At the same time, although rainfall is the primary disaster-causing factor for storm-induced flooding, the 356 
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importance of the PREC is relatively low. Instead, the factor representing the DURA contributes 10.07% 357 

to the flood risk. This indicates that extreme weather events leading to heavy rainfall are more likely to 358 

cause considerable flood hazards. 359 

 360 
Figure 6: Importance Ranking of Hazard Factors Based on the CatBoost Model 361 

 362 

(2) SHAP interpretability analysis 363 

To further analyze the interpretability of the model and understand the impact of individual flood hazard 364 

indicators on the model's classification results, this paper calculates Shapley Additive Explanations 365 

(SHAP) to indicate the contribution of each feature in the sample(Lundberg and Lee, 2017). SHAP is a 366 

post-hoc interpretability method for models. Its core idea is to calculate the marginal contribution of 367 

features to the model's output(Wang et al., 2023a). For each prediction sample, the model produces a 368 

predicted value. The SHAP value is the value assigned to each feature in the sample, thereby determining 369 

the contribution and explaining the model. Figure 7(a) shows the scatter plot generated by SHAP in the 370 

training set, which can be analyzed in conjunction with the connotations and significance of flood hazard 371 

characteristic factors. In the Figure 7(a), each row represents a feature, and the horizontal axis is the 372 

SHAP value. The features are ranked according to the average absolute value of SHAP, which can be 373 

understood as the most important features. The wider areas indicate a large concentration of samples. 374 
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Each point represents a sample, with redder colors indicating higher feature values and bluer colors 375 

indicating lower feature values. The results indicate that for risk features, DEM, SLOPE, and NDVI have 376 

varying degrees of negative impact on flood risk, while DD, annual DURA, and PREC have varying 377 

degrees of positive impact on flood risk. This indicates that the higher DEM, the steeper SLOPE, and the 378 

greater the vegetation cover, the lower the flood hazard in the area. Conversely, higher DD, DURA, and 379 

higher PREC increase the flood hazard. At the same time, the absolute value of DEM is the highest, with 380 

SHAP values showing pronounced clustering below zero and a relatively dispersed sample distribution, 381 

indicating that the elevation factor is the most hazard factor affecting flooding. 382 

 383 

Figure 7: (a) Scatter Plot of Hazard Indicators from SHAP Analysis. (b) SHAP Dual Dependence Analysis of 384 

Elevation and Slope Factors. 385 

 386 

To directly capture the interaction effects between paired indicator factors, this study used SHAP 387 

interaction values based on game theory, ensuring consistency while also explaining the interaction 388 

effects of individual predictions. For the DEM feature, which had the highest importance in the SHAP 389 

analysis, the factor most strongly correlated with it was SLOPE. Therefore, to illustrate how one feature 390 

interacts with another to affect the model training results, this study used DEM and SLOPE as examples 391 

to plot the SHAP interaction scatter plot, representing the dependency of the DEM feature. The results 392 

are shown in Figure 7(b) This dependency plot takes the form of a logarithmic function, indicating that 393 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 

19 

 

as DEM increases, the flood hazard decreases. Additionally, the slope has a negative effect on the flood 394 

hazard in relation to elevation; that is, at lower elevations and gentler slopes, the flood hazard is greater. 395 

3.1.3 Determination of flood risk index weights 396 

A judgment matrix was constructed for 19 indicator factors. A hazard index was constructed based on 397 

feature importance calculated using AutoML. The exposure, vulnerability, and resilience indicators were 398 

determined based on existing literature and relevant expert scores (Hsiao et al., 2021). Combined with 399 

the actual characteristics of the YRDUA, the 1–9 scale method was used to compare item-by-item any 400 

two indicators and determine their relative importances and assign weights. Finally, the judgment matrix 401 

results were tested for consistency, and the CR value was 0.0058, i.e., << 0.100, indicating that the results 402 

passed the consistency test and that the flood risk index weight values calculated using the AHP were 403 

acceptable. The specific indicator weights and attribute representations of flood risk are shown in Table 404 

5. 405 

Table 5: Flood risk index weights. 406 

Dimension Indicator Unit Attribute Weight 

Hazard 

(0.4798) 

PREC mm + 4% 

DURA Day + 10.8% 

NDVI  - 7.6% 

DEM km - 22.99% 

SLOPE ° - 6.4% 

DD km/km2 + 3.2% 

Exposure 

(0.1083) 

AREA km2 + 1.1% 

DPOP people/km² + 4.32% 

DGDP 
10,000 

yuan/km² 
+ 3.84% 

DBUI km2 + 1.16% 

Vulnerability 

(0.1312) 

PPOP_CHI % + 4.92% 

PPOP_ELD % + 3.04% 

PPOP_UEDU % + 2.11% 

UR % - 2.05% 

Resilience 

(0.2807) 
GDP per capita 

100 million 

yuan/10,000 

People 

- 4.43% 
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Dimension Indicator Unit Attribute Weight 

UEMP % + 5.04% 

DOCS Per person - 4.13% 

INSTS Each - 0.45% 

BEDS Per bed - 6.28% 

 407 

The weighted results reflect the degrees of influence of the different indicator factors on flood risk. 408 

Danger was the decisive factor affecting flood risk, with a weight of 0.4798, followed by resilience and 409 

vulnerability. Exposure had a relatively low impact on flood risk. In terms of danger, the topography and 410 

DURA were the main factors affecting the occurrence of flooding. These two indicators determined the 411 

characteristics of flood disasters in the YRDUA from the perspective of disaster-prone environments and 412 

driving factors, respectively. In terms of exposure, the YRDUA is a typical area with rapid social, 413 

economic, and population growths in China. High population and GDP densities increase the risk of 414 

flood exposure. In addition, the uneven age distribution and education levels of the population are 415 

important social factors affecting the risk of flood disasters in urban agglomerations. In terms of 416 

resilience, improving health and medical infrastructure, developing the regional economy, and reducing 417 

unemployment rates are conducive to improving the overall disaster response capacity of the region and 418 

reducing the risk of flood disasters in the YRDUA. 419 

3.1.4 Model results verification 420 

Based on AutoML and AHP, the levels of danger, exposure, vulnerability, and resilience were calculated 421 

for floods in the YRDUA and the spatial distribution of flood risks in the region was obtained according 422 

to the weights determined by the model. Combined with the natural breakpoint classification method, a 423 

flood risk zoning map of the YRDUA was constructed. The extracted flood points were superimposed 424 

on the map to verify whether the model exhibited good flood risk assessment capabilities. The results are 425 

shown in Figure 8, indicating that the distribution of flood points was consistent with the distribution of 426 

high and medium-to-high risk areas in the region, with the model assessment results corresponding well 427 

with the actual flooding situation. To specifically illustrate the correspondence of the results, the 428 

proportion of flood points distributed in high and medium-to-high risk areas was quantitatively calculated. 429 
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The obtained value was 87.45%, indicating that the flood risk assessment results of the model in this 430 

study were highly credible, and subsequent analysis could be conducted. 431 

As shown in Figure 8, the high and medium-to-high risk areas in the YRDUA were mainly located in the 432 

northern part of the region, concentrated in Chizhou, Anqing, Ma'anshan, and Xuancheng Cities in Anhui 433 

Province, Yancheng and Yangzhou Cities in Jiangsu Province, and Taizhou City in Zhejiang Province. 434 

Meanwhile, most areas of Hangzhou City had the lowest risk. The flood risks in cities such as Shanghai, 435 

Nanjing, and Jinhua were also relatively low. The overall analysis showed that the flood risk in the study 436 

area was low in the southwest and high in the northeast, determined largely by natural terrain and 437 

meteorological factors. The spatial distribution of the flood hazard class was similar to the distribution 438 

of flood risks; exposure decreased stepwise from Shanghai to the surrounding areas, reflecting that 439 

densely populated and economically developed cities have higher exposure. Areas with higher 440 

vulnerability were mainly concentrated in Chizhou, Anqing, Xuancheng, Chuzhou, and Yancheng Cities. 441 

The number of vulnerable people in these cities was relatively high. Vulnerability has aggravated the 442 

flood risks in Chizhou and Anqing Cities on the basis of flood risk. Meanwhile, Shanghai had the best 443 

resilience performance, followed by those of Hangzhou, Suzhou, and Nanjing Cities, greatly lessening 444 

the flood risks in these cities. 445 

 446 

Figure 8: Flood risk level distribution and verification results based on a flood risk assessment model. 447 

 448 
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3.2 Analysis of changes in the spatiotemporal characteristics of flood risk 449 

The flood risk results for the YRDUA from 1990 to 2020 were obtained based on the flood risk 450 

assessment model proposed in this study. As the interannual difference in flood risk in the region was 451 

small and the change response was weak, we selected the flood risk results for 1990, 2000, 2010, and 452 

2020 to analyze the changes in the spatiotemporal pattern. Regarding spatial patterns (Figure 9), the flood 453 

risk in the YRDUA showed clear spatial heterogeneity. The southwestern part of the study area and 454 

Shanghai have shown low flood risks over the past 30 years, whereas the central and northern parts of 455 

the region have been more likely to face flood risks depending on the natural conditions, population, 456 

economic conditions, and recovery capacity of the region. Regarding temporal patterns, from 1990 to 457 

2010, areas with high and medium-to-high risk decreased markedly. By 2010, most of the YRDUA 458 

(except for a few areas) was in a state of medium risk or below, with the southwestern region exhibiting 459 

a large range of low risk levels. The corresponding areas for each risk level are shown in Figure 10. From 460 

1990 to 2010, areas of low and low-to-medium risk levels gradually increased, maximizing in 2010, 461 

whereas areas of medium risk and above continued to decrease. By 2020, the number of high risk areas 462 

for flooding increased. There is a tendency for areas of medium-to-high risk in the central region to shift 463 

towards high risk areas in 2020, as compared to the state in 1990. Meanwhile, high risk areas for floods 464 

also appeared in Chizhou and Anqing Cities in Anhui Province, which was mainly due to the 465 

intensification of extreme weather, unbalanced population, and economic development in recent years. 466 
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 467 

Figure 9: Spatial distributions of flood risk in the YRDUA in different years during 1990–2020. 468 

 469 

 470 

Figure 10: Areas at different levels of flood risk in the YRDUA in different years during 1990–2020. 471 

 472 

To further analyze the changes in flood risk in the region, we calculated the change rate of the area of 473 

different risk levels every 10 years and the overall change rate over 30 years. The interannual rate of 474 

change was expressed in Eq. (13). 475 

𝑅𝑙,𝑖𝑗 =
𝑅𝑖𝑠𝑘𝑙,𝑗−𝑅𝑖𝑠𝑘𝑙,𝑖

𝑅𝑖𝑠𝑘𝑙,𝑖
× 100%,  (13) 476 
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where 𝑅𝑙,𝑖𝑗 is the rate of change of the flood risk area of a certain level 𝑙 in a certain year, 𝑖 and 𝑗 are 477 

different years, and 𝑅𝑖𝑠𝑘𝑙,𝑗  and 𝑅𝑖𝑠𝑘𝑙,𝑗  are the areas corresponding to the flood risk of this level in 478 

different years. 479 

The interannual variation rate of the flood risk is shown in Table 6. Results showed that the interannual 480 

variation between the areas of low and high risk was relatively large. The low risk area maximized in 481 

2010, and both R 2000–1990 and R 2010–2000 showed a positive variation rate. The high risk area showed the 482 

largest interannual variation rate from 2010 to 2020, reaching 12.218% and causing the high risk flood 483 

area in 2020 to spread, resulting in a large high risk area. 484 

Table 6: Interannual change rates of flood risk areas of different levels. 485 

 R2000-1990 R2010-2000 R2020-2010 R2020-1990 

I 1.766 1.443 -0.672 1.213 

II 0.543 0.152 -0.491 -0.096 

III -0.106 -0.4 0.81 -0.029 

IV -0.653 0.252 1.254 -0.02 

V -0.528 -0.796 12.218 0.274 

 486 

Analyzing the flood risk of the entire urban agglomeration does not reveal the spatial scale effect of flood 487 

risk, nor does it consider the correlation and impact of flood risk at different spatial scales. To reflect the 488 

distribution of and changes in flood risk at different spatial scales within the region, the risk intensity of 489 

different provinces was further analyzed, and the results are shown in Figure 11, respectively. In Figure 490 

11, the average flood risk reflects the differences in risk development of the provincial administrative 491 

units in Shanghai, Anhui, Zhejiang, and Jiangsu in terms of time and space. Overall, all administrative 492 

units in the YRDUA exhibited the highest flood risk in 2020, and the overall risk trend increased. At the 493 

provincial level, Shanghai’s flood risk was consistently low, showing a trend of first decreasing from 494 

0.152 in 1990 to 0.123 in 2000 and then gradually increasing to 0.311 in 2020. Among the other three 495 

provinces, Jiangsu and Anhui had relatively high flood risks, reaching 0.525 and 0.516, respectively, in 496 

2020, whereas Zhejiang had a relatively low flood risk, which remained stable between 1990 and 2010, 497 

with no distinct changes. 498 
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 499 

Figure 11: Distribution of Average Flood Risk in Each Province of the Yangtze River Delta Urban 500 

Agglomeration from 1990 to 2020 501 

 502 

4 Conclusion 503 

Flood risk assessment at the scale of urban agglomeration is a hot research topic in the field of disaster 504 

prevention and mitigation. In this study, the flood risk assessment indexes for YRDUA were determined 505 

in different dimensions of danger, exposure, vulnerability and resilience, and a flood risk assessment 506 

model based on AutoML and AHP was constructed to study the changes of spatial and temporal 507 

characteristics of flood risk in the region in the last 30 years from 1990 to 2020, aiming to provide 508 

scientific basis for the prevention and resilience of the YRDUA. The main conclusions of this study are 509 

as follows: 510 

(1) In the flood risk calculation, the CatBoost model has the highest Accuracy, Precision, F1-score, and 511 

Kappa, and its Accuracy can reach 0.8960. Further analysis of the ROC curve and the corresponding 512 

AUC value of the model shows that its AUC value is 0.91, which indicates that the CatBoost model has 513 

the best performance and prediction reliability. Therefore, the CatBoost model was selected to calculate 514 

the flood risk in the YRDUA.  515 
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 (2) Using the flood risk assessment model based on AutoML and AHP to obtain the flood risk of the 516 

YRDUA, superimposed on the flooded point data for comparative analysis, we found that the distribution 517 

of flooded points in the study area is basically consistent with the distribution of high and medium-to-518 

high risk areas of flooding, and the proportion of the distribution of the quantification of its distribution 519 

is 87.45%, which indicates that the model in this study has a good performance and credibility regarding 520 

the assessment of flood risk. 521 

(3) The spatial distribution of flood risk in the YRDUA during the 30-year study period shows obvious 522 

heterogeneity, with the southwestern part of the region and Shanghai City having a low flood risk, 523 

whereas the north-central part of the region faces a relatively high probability of flood risk. Between 524 

1990 and 2010, there was a substantial decrease in the high and medium-to-high risk flood zones; yet by 525 

2020, there was an increase in the high risk flood zones. There is a tendency for the medium-to-high risk 526 

area in the center of the region to shift to a high risk area, whereas high risk areas also occur in the cities 527 

of Chizhou and Anqing in Anhui Province. 528 

(4) All administrative units of the YRD urban agglomeration exhibited the highest flood risk in 2020, 529 

with an overall trend of increasing risk. At the provincial level, Jiangsu and Anhui Provinces possess 530 

relatively high flood risks, whereas Zhejiang Province has a relatively low flood risk.  531 

Data availability. 532 

Data will be made available on request. 533 

Competing interests. 534 

The authors declare that they have no competing financial interests or personal relationships that may 535 

have influenced the work reported in this study. 536 

Author contributions. 537 

Yu Gao: Writing - original draft preparation, Validation, Software, Methodology, Conceptualization 538 

Haipeng Lu: Writing-review & editing, Visualization, Supervision, Formal analysis. Yaru Zhang: 539 

Methodology, Formal analysis. Hengxu Jin: Writing - review & editing, Methodology. Shuai Wu: 540 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 

27 

 

Software, Formal analysis. Yixuan Gao: Visualization, Software. Shuliang Zhang: Writing-review & 541 

editing, Resources, Project administration, Funding acquisition, Conceptualization . 542 

Acknowledgements 543 

This study was supported by the National Natural Science Foundation of China (Grant Nos. 42271483 544 

and 42071364) and Jiangsu Provincial Natural Resources Science and Technology Project 545 

(JSZRKJ202405). We would like to thank Editage (www.editage.cn) for English language editing. 546 

References 547 

Abu-Salih, B., Wongthongtham, P., Coutinho, K., Qaddoura, R., Alshaweesh, O., and Wedyan, M.: The 548 

development of a road network flood risk detection model using optimised ensemble learning, Eng. Appl. 549 

Artif. Intell., 122, 106081, https://doi.org/10.1016/j.engappai.2023.106081, 2023. 550 

Adnan, R. M., Yuan, X., Kisi, O., and Anam, R.: Improving Accuracy of River Flow Forecasting Using 551 

LSSVR with Gravitational Search Algorithm, Advances in Meteorology, 2017, 1–23, 552 

https://doi.org/10.1155/2017/2391621, 2017. 553 

Anon: Identification of sensitivity indicators of urban rainstorm flood disasters: A case study in China, 554 

J. Hydrol., 599, 126393, https://doi.org/10.1016/j.jhydrol.2021.126393, 2021. 555 

Aven, T.: Risk assessment and risk management: Review of recent advances on their foundation, 556 

European Journal of Operational Research, 253, 1–13, https://doi.org/10.1016/j.ejor.2015.12.023, 2016. 557 

Consuegra-Ayala, J. P., Gutiérrez, Y., Almeida-Cruz, Y., and Palomar, M.: Intelligent ensembling of 558 

auto-ML system outputs for solving classification problems, Inform. Sci., 609, 766–780, 559 

https://doi.org/10.1016/j.ins.2022.07.061, 2022. 560 

Criado, M., Martínez-Graña, A., San Román, J. S., and Santos-Francés, F.: Flood risk evaluation in urban 561 

spaces: The study case of Tormes River (Salamanca, Spain), International journal of environmental 562 

research and public health, 16, 5, 2019. 563 

Ding, T., Chen, J., Fang, Z., and Chen, J.: Assessment of coordinative relationship between 564 

comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban 565 

Agglomerations, China, Ecol. Indic., 133, 108454, https://doi.org/10.1016/j.ecolind.2021.108454, 2021. 566 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 

28 

 

Donegan, H. A., Dodd, F. J., and McMaster, T. B. M.: A New Approach to Ahp Decision-Making, 567 

Journal of the Royal Statistical Society: Series D (The Statistician), 41, 295–302, 568 

https://doi.org/10.2307/2348551, 1992. 569 

Echendu, A. J.: The impact of flooding on Nigeria’s sustainable development goals (SDGs), Ecosyst. 570 

Health Sustainability, 6, 1791735, https://doi.org/10.1080/20964129.2020.1791735, 2020. 571 

Fabian, P.: Scikit-learn: Machine learning in Python, Journal of machine learning research 12, 2825, 572 

2011. 573 

Fernández, D. S. and Lutz, M. A.: Urban flood hazard zoning in Tucumán Province, Argentina, using 574 

GIS and multicriteria decision analysis, Eng. Geol., 111, 90–98, 2010. 575 

Gain, A. K., Mojtahed, V., Biscaro, C., Balbi, S., and Giupponi, C.: An integrated approach of flood risk 576 

assessment in the eastern part of Dhaka City, Nat. Hazards, 79, 1499–1530, 577 

https://doi.org/10.1007/s11069-015-1911-7, 2015. 578 

Gu, C., Hu, L., Zhang, X., Wang, X., and Guo, J.: Climate change and urbanization in the Yangtze River 579 

Delta, Habitat Int., 35, 544–552, https://doi.org/10.1016/j.habitatint.2011.03.002, 2011. 580 

Guan, X., Yu, F., Xu, H., Li, C., and Guan, Y.: Flood risk assessment of urban metro system using 581 

random forest algorithm and triangular fuzzy number based analytical hierarchy process approach, 582 

Sustainable Cities and Society, 109, 105546, https://doi.org/10.1016/j.scs.2024.105546, 2024. 583 

Gudiyangada Nachappa, T., Tavakkoli Piralilou, S., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., and 584 

Blaschke, T.: Flood susceptibility mapping with machine learning, multi-criteria decision analysis and 585 

ensemble using Dempster Shafer Theory, Journal of Hydrology, 590, 125275, 586 

https://doi.org/10.1016/j.jhydrol.2020.125275, 2020. 587 

Guo, Y., Quan, L., Song, L., and Liang, H.: Construction of rapid early warning and comprehensive 588 

analysis models for urban waterlogging based on AutoML and comparison of the other three machine 589 

learning algorithms, J. Hydrol., 605, 127367, 2022a. 590 

Guo, Y., Quan, L., Song, L., and Liang, H.: Construction of rapid early warning and comprehensive 591 

analysis models for urban waterlogging based on AutoML and comparison of the other three machine 592 

learning algorithms, J. Hydrol., 605, 127367, https://doi.org/10.1016/j.jhydrol.2021.127367, 2022b. 593 

He, X., Zhao, K., and Chu, X.: AutoML: A survey of the state-of-the-art, Knowledge-Based Systems, 594 

212, 106622, https://doi.org/10.1016/j.knosys.2020.106622, 2021. 595 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 

29 

 

Hsiao, S.-C., Chiang, W.-S., Jang, J.-H., Wu, H.-L., Lu, W.-S., Chen, W.-B., and Wu, Y.-T.: Flood risk 596 

influenced by the compound effect of storm surge and rainfall under climate change for low-lying coastal 597 

areas, Science of the total environment, 764, 144439, 2021. 598 

Jordan, M. and Mitchell, T.: Machine learning: Trends, perspectives, and prospects, Science, 349, 255–599 

260, https://doi.org/10.1126/science.aaa8415, 2015. 600 

Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., and Nasseri, M.: A new approach to flood 601 

susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria 602 

decision-making method, J. Hydrol., 572, 17–31, https://doi.org/10.1016/j.jhydrol.2019.02.034, 2019. 603 

Kazienko, P., Lughofer, E., and Trawinski, B.: Editorial on the special issue “Hybrid and ensemble 604 

techniques in soft computing: recent advances and emerging trends,” Soft Comput., 19, 3353–3355, 605 

https://doi.org/10.1007/s00500-015-1916-x, 2015. 606 

Khadka, D., Babel, M. S., and Kamalamma, A. G.: Assessing the Impact of Climate and Land-Use 607 

Changes on the Hydrologic Cycle Using the SWAT Model in the Mun River Basin in Northeast Thailand, 608 

Water, 15, 3672, https://doi.org/10.3390/w15203672, 2023. 609 

Khosravi, K., Shahabi, H., Pham, B. T., Adamowski, J., Shirzadi, A., Pradhan, B., Dou, J., Ly, H.-B., 610 

Gróf, G., Ho, H. L., Hong, H., Chapi, K., and Prakash, I.: A comparative assessment of flood 611 

susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods, 612 

J. Hydrol., 573, 311–323, https://doi.org/10.1016/j.jhydrol.2019.03.073, 2019. 613 

Lang, M., Barriendos, M., Llasat, M. C., Francés, F., Ouarda, T., Thorndycraft, V., Enzel, Y., Bardossy, 614 

A., Coeur, D., and Bobée, B.: Use of Systematic, Palaeoflood and Historical Data for the Improvement 615 

of Flood Risk Estimation. Review of Scientific Methods, Nat. Hazards, 31, 623–643, 616 

https://doi.org/10.1023/B:NHAZ.0000024895.48463.eb, 2004. 617 

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H.: Feature Selection: A 618 

Data Perspective, ACM Comput. Surv., 50, 94:1-94:45, https://doi.org/10.1145/3136625, 2017. 619 

Liu Jiafu and Zhang Bai: Progress of Rainstorm Flood Risk Assessment, 地理科学, 35, 346–351, 620 

https://doi.org/10.13249/j.cnki.sgs.2015.03.013, 2015. 621 

Lu, H., Lu, X., Jiao, L., and Zhang, Y.: Evaluating urban agglomeration resilience to disaster in the 622 

Yangtze Delta city group in China, Sustainable Cities and Society, 76, 103464, 2022. 623 

Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, in: Advances in 624 

Neural Information Processing Systems, 2017. 625 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 

30 

 

Mahmoud, S. H. and Gan, T. Y.: Urbanization and climate change implications in flood risk management: 626 

Developing an efficient decision support system for flood susceptibility mapping, Science of The Total 627 

Environment, 636, 152–167, https://doi.org/10.1016/j.scitotenv.2018.04.282, 2018. 628 

Mei, C., Liu, J., Wang, H., Shao, W., Yang, Z., Huang, Z., Li, Z., and Li, M.: Flood risk related to 629 

changing rainfall regimes in arterial traffic systems of the Yangtze River Delta, Anthropocene, 35, 630 

100306, https://doi.org/10.1016/j.ancene.2021.100306, 2021. 631 

Mia, Md. U., Rahman, M., Elbeltagi, A., Abdullah-Al-Mahbub, Md., Sharma, G., Islam, H. M. T., Pal, 632 

S. C., Costache, R., Islam, A. R. Md. T., Islam, M. M., Chen, N., Alam, E., and Washakh, R. M. A.: 633 

Sustainable flood risk assessment using deep learning-based algorithms with a blockchain technology, 634 

Geocarto International, 38, 1–29, https://doi.org/10.1080/10106049.2022.2112982, 2023. 635 

Milanesi, L., Pilotti, M., and Ranzi, R.: A conceptual model of people’s vulnerability to floods, Water 636 

Resources Res., 51, 182–197, https://doi.org/10.1002/2014WR016172, 2015. 637 

Mirzaei, S., Vafakhah, M., Pradhan, B., and Alavi, S. J.: Flood susceptibility assessment using extreme 638 

gradient boosting (EGB), Iran, Earth Sci. Inf., 14, 51–67, https://doi.org/10.1007/s12145-020-00530-0, 639 

2021. 640 

Mishra, K. and Sinha, R.: Flood risk assessment in the Kosi megafan using multi-criteria decision 641 

analysis: A hydro-geomorphic approach, Geomorphology, 350, 106861, 642 

https://doi.org/10.1016/j.geomorph.2019.106861, 2020. 643 

Morales-Torres, A., Escuder-Bueno, I., Andrés-Doménech, I., and Perales-Momparler, S.: Decision 644 

Support Tool for energy-efficient, sustainable and integrated urban stormwater management, 645 

Environmental Modelling & Software, 84, 518–528, https://doi.org/10.1016/j.envsoft.2016.07.019, 2016. 646 

Munim, Z. H., Sørli, M. A., Kim, H., and Alon, I.: Predicting maritime accident risk using Automated 647 

Machine Learning, Reliab. Eng. Syst. Saf., 248, 110148, https://doi.org/10.1016/j.ress.2024.110148, 648 

2024. 649 

Nagarajah, T. and Poravi, G.: A Review on Automated Machine Learning (AutoML) Systems, in: 2019 650 

IEEE 5th International Conference for Convergence in Technology (I2CT), 2019 IEEE 5th International 651 

Conference for Convergence in Technology (I2CT), 1–6, 652 

https://doi.org/10.1109/I2CT45611.2019.9033810, 2019. 653 

Nayak, P. C., Sudheer, K. P., Rangan, D. M., and Ramasastri, K. S.: A neuro-fuzzy computing technique 654 

for modeling hydrological time series, J. Hydrol., 291, 52–66, 2004. 655 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 

31 

 

Özdemir, H., Baduna Koçyiğit, M., and Akay, D.: Flood susceptibility mapping with ensemble machine 656 

learning: a case of Eastern Mediterranean basin, Türkiye, Stoch. Env. Res. Risk A., 37, 4273–4290, 657 

https://doi.org/10.1007/s00477-023-02507-z, 2023. 658 

Raschka, S.: Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning, 659 

https://doi.org/10.48550/arXiv.1811.12808, 10 November 2020. 660 

Rashidi Shikhteymour, S., Borji, M., Bagheri-Gavkosh, M., Azimi, E., and Collins, T. W.: A novel 661 

approach for assessing flood risk with machine learning and multi-criteria decision-making methods, 662 

Appl. Geogr., 158, 103035, https://doi.org/10.1016/j.apgeog.2023.103035, 2023. 663 

Sarro, F., Moussa, R., Petrozziello, A., and Harman, M.: Learning From Mistakes: Machine Learning 664 

Enhanced Human Expert Effort Estimates, IEEE Trans. Softw. Eng., 48, 1868–1882, 665 

https://doi.org/10.1109/TSE.2020.3040793, 2022. 666 

Scott, D., Hall, C. M., Rushton, B., and Gössling, S.: A review of the IPCC Sixth Assessment and 667 

implications for tourism development and sectoral climate action, J. Sustain. Tour., 0, 1–18, 668 

https://doi.org/10.1080/09669582.2023.2195597, 2023. 669 

Seemuangngam, A. and Lin, H.-L.: The impact of urbanization on urban flood risk of Nakhon 670 

Ratchasima, Thailand, Appl. Geogr., 162, 103152, https://doi.org/10.1016/j.apgeog.2023.103152, 2024. 671 

Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., and Shirzadi, A.: Novel forecasting 672 

approaches using combination of machine learning and statistical models for flood susceptibility 673 

mapping, Journal of environmental management, 217, 1–11, 2018. 674 

Sinha, R., Bapalu, G. V., Singh, L. K., and Rath, B.: Flood risk analysis in the Kosi river basin, north 675 

Bihar using multi-parametric approach of Analytical Hierarchy Process (AHP), J. Indian Soc. Remote 676 

Sens., 36, 335–349, https://doi.org/10.1007/s12524-008-0034-y, 2008. 677 

Sun, B., Fang, C., Liao, X., Guo, X., and Liu, Z.: The relationship between urbanization and air pollution 678 

affected by intercity factor mobility: A case of the Yangtze River Delta region, Environ. Impact Assess. 679 

Rev., 100, 107092, https://doi.org/10.1016/j.eiar.2023.107092, 2023. 680 

Tang, Z., Wang, P., Li, Y., Sheng, Y., Wang, B., Popovych, N., and Hu, T.: Contributions of climate 681 

change and urbanization to urban flood hazard changes in China’s 293 major cities since 1980, J. Environ. 682 

Manage., 353, 120113, https://doi.org/10.1016/j.jenvman.2024.120113, 2024. 683 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 

32 

 

Vincent, A. M., K.s.s., P., and Jidesh, P.: Flood susceptibility mapping using AutoML and a deep learning 684 

framework with evolutionary algorithms for hyperparameter optimization, Appl. Soft Comput., 148, 685 

110846, https://doi.org/10.1016/j.asoc.2023.110846, 2023. 686 

Wagenaar, D., Curran, A., Balbi, M., Bhardwaj, A., Soden, R., Hartato, E., Mestav Sarica, G., Ruangpan, 687 

L., Molinario, G., and Lallemant, D.: Invited perspectives: How machine learning will change flood risk 688 

and impact assessment, Nat. Hazard. Earth Sys., 20, 1149–1161, https://doi.org/10.5194/nhess-20-1149-689 

2020, 2020. 690 

Wan, H., Zhong, Z., Yang, X., and Li, X.: Impact of city belt in Yangtze River Delta in China on a 691 

precipitation process in summer: A case study, Atmos. Res., 125–126, 63–75, 692 

https://doi.org/10.1016/j.atmosres.2013.02.004, 2013. 693 

Wang, M., Li, Y., Yuan, H., Zhou, S., Wang, Y., Adnan Ikram, R. M., and Li, J.: An XGBoost-SHAP 694 

approach to quantifying morphological impact on urban flooding susceptibility, Ecol. Indic., 156, 111137, 695 

https://doi.org/10.1016/j.ecolind.2023.111137, 2023a. 696 

Wang, M., Fu, X., Zhang, D., Chen, F., Liu, M., Zhou, S., Su, J., and Tan, S. K.: Assessing urban flooding 697 

risk in response to climate change and urbanization based on shared socio-economic pathways, Science 698 

of The Total Environment, 880, 163470, https://doi.org/10.1016/j.scitotenv.2023.163470, 2023b. 699 

Wang, P., Li, Y., Yu, P., and Zhang, Y.: The analysis of urban flood risk propagation based on the 700 

modified susceptible infected recovered model, J. Hydrol., 603, 127121, 701 

https://doi.org/10.1016/j.jhydrol.2021.127121, 2021. 702 

Wang, T., Wang, H., Wang, Z., and Huang, J.: Dynamic risk assessment of urban flood disasters based 703 

on functional area division—A case study in Shenzhen, China, J. Environ. Manage., 345, 118787, 704 

https://doi.org/10.1016/j.jenvman.2023.118787, 2023c. 705 

Wang, Y., Liu, G., Guo, E., and Yun, X.: Quantitative Agricultural Flood Risk Assessment Using 706 

Vulnerability Surface and Copula Functions, Water, 10, 1229, https://doi.org/10.3390/w10091229, 2018. 707 

Xu, H., Hou, X., Pan, S., Bray, M., and Wang, C.: Socioeconomic impacts from coastal flooding in the 708 

21st century China’s coastal zone: A coupling analysis between coastal flood risk and socioeconomic 709 

development, Sci. Total Environ., 917, 170187, 2024. 710 

Yan, M., Yang, J., Ni, X., Liu, K., Wang, Y., and Xu, F.: Urban waterlogging susceptibility assessment 711 

based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, 712 

China, J. Hydrol., 630, 130695, 2024. 713 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 

33 

 

Yang, W., Xu, K., Lian, J., Ma, C., and Bin, L.: Integrated flood vulnerability assessment approach based 714 

on TOPSIS and Shannon entropy methods, Ecol. Indic., 89, 269–280, 715 

https://doi.org/10.1016/j.ecolind.2018.02.015, 2018. 716 

Yang, X., Li, H., Zhang, J., Niu, S., and Miao, M.: Urban economic resilience within the Yangtze River 717 

Delta urban agglomeration: Exploring spatially correlated network and spatial heterogeneity, Sustainable 718 

Cities and Society, 103, 105270, https://doi.org/10.1016/j.scs.2024.105270, 2024. 719 

Yuan, X., Chen, C., Lei, X., Yuan, Y., and Muhammad Adnan, R.: Monthly runoff forecasting based on 720 

LSTM–ALO model, Stoch. Env. Res. Risk A., 32, 2199–2212, https://doi.org/10.1007/s00477-018-721 

1560-y, 2018. 722 

 723 

https://doi.org/10.5194/nhess-2024-144
Preprint. Discussion started: 16 September 2024
c© Author(s) 2024. CC BY 4.0 License.


