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Abstract. With rapid urbanization, the scientific assessment of disaster risk caused by flooding events 10 

has become an essential task for disaster prevention and mitigation. However, adaptively selecting 11 

optimal machine learning (ML) models for flood risk assessment and further conducting spatial and 12 

temporal analyses of flood risk characteristics in urban agglomerations remain challenging. This study, 13 

establishes a “H–E–V–R” risk assessment index system that integrates hazard, exposure, vulnerability, 14 

and resilience based on the factors influencing flood risk in the Yangtze River Delta Urban 15 

Agglomeration (YRDUA). Utilizing Automated Machine Learning (AutoML) and the Analytic 16 

Hierarchy Process (AHP), a comprehensive flood risk assessment model is constructed. Results indicate 17 

that, among those of different assessment models, the accuracy, precision, F1-score, and kappa 18 

coefficient of the Categorical Boosting (CatBoost) model for flooded point identification are the highest. 19 

Among the flood hazard factors, elevation ranks highest in importance, with a contribution rate of up to 20 

68.55%. The spatial distribution of flood risk in the study area from 1990 to 2020 is heterogeneous, with 21 

an overall increasing risk trend. This study is of great significance for advancing disaster prevention, 22 

mitigation, and sustainable development in the YRDUA. 23 

1 Introduction 24 

Under global climate change and accelerated urbanization, China has been experiencing pervasive 25 

flooding ever more frequently (Tang et al., 2024). Floods threaten people's lives, hinder social 26 

development and cause huge economic losses in China (Anon, 2021; Echendu, 2020; Milanesi et al., 27 

2015). Flood formation has been exacerbated by climate change and urbanization, leading to increased 28 

frequency, extent, and intensity of urban flooding, and impacting urban flood risk (Mahmoud and Gan, 29 

2018; Khadka et al., 2023; Scott et al., 2023; Seemuangngam and Lin, 2024). Modern human society is 30 

faced with the possibility of serious flood hazards and associated challenges, and in addition to post-31 

disaster emergency management, the scientific assessment of disaster risks arising from flood events has 32 

gradually become a crucial aspect in preventing and mitigating disasters. 33 
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Currently, most research in the field of flooding focuses on the flood risks of individual cities (Wang et 34 

al., 2021, 2023b; Guan et al., 2024). However, in recent years, the frequency and intensity of urban 35 

flooding in China have increased dramatically, and individual cities are no longer able to independently 36 

mitigate the risks arising from floods. Studies indicate that China’s flood risk management needs to be 37 

transformed from the scale of isolated individual cities to the scale of urban agglomerations, conducted 38 

in a regionally coordinated manner (Morales-Torres et al., 2016; Wang et al., 2023a). City clusters, 39 

constituting the spatial organizational structure of cities that have reached an advanced stage of 40 

development, have become key areas for regional disaster management and sustainable development. 41 

Due to the unique geographical location and climate conditions of the YRDUA, as well as the impact of 42 

urbanization over the past 30 years, the frequency and intensity of flood disasters have been increasing, 43 

posing a serious threat to the sustainable development of cities. Therefore, implementing relevant 44 

emergency management strategies for flood risks is urgently needed. Furthermore, the region comprises 45 

multiple cities, among which distinct resource interactions, such as population mobility and risk transfer, 46 

exist (Lu et al., 2022). Thus, it is essential to assess both the overall flood risk characteristics and changes 47 

in the urban agglomeration, as well as the spatial correlations of flood risks between cities, explore the 48 

mutual influences and interaction mechanisms among regional disaster risks, and provide a scientific 49 

basis for sustainable development within the urban agglomeration (Xu et al., 2024). 50 

Statistical analyses of historical disaster statistics (Lang et al., 2004), indicator systems methods (Wang 51 

et al., 2018b), scenario simulations methods (Yang et al., 2018), and data-driven methods (Abu-Salih et 52 

al., 2023), are the primary flood risk assessment method currently. With the development of artificial 53 

intelligence technology, data-driven methods, such as machine learning, deep learning, and artificial 54 

neural networks, have emerged, providing new opportunities for improving traditional flood risk 55 

assessment methods (Liu Jiafu and Zhang Bai, 2015). Ensemble methods are a class of machine learning 56 

(ML) techniques that combine multiple base learners to form a stronger predictive model (Webb and 57 

Zheng, 2004). They are designed to overcome several limitations of individual models, such as high 58 

variance, overfitting, sensitivity to noise, and poor generalization (Yang et al., 2013). By aggregating the 59 

outputs of weak learners, ensemble methods significantly enhance model stability, accuracy, and 60 

robustness—especially in high-dimensional and complex classification or regression tasks (Kazienko et 61 

al., 2015). Various ensemble ML techniques, including bagging (e.g., Random Forest), boosting (e.g., 62 
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XGBoost, CatBoost), and stacking, have been widely used in hydrology, with boosting algorithms in 63 

particular showing strong performance in flood prediction and risk assessment (Shafizadeh-Moghadam 64 

et al., 2018; Mirzaei et al., 2021; Yan et al., 2024). However, ensemble ML techniques often lack 65 

preprocessing and feature selection capabilities, and their application effects vary considerably across 66 

different regions. To fully mine data and discover more effective features, experts have proposed other 67 

solutions, namely hybrid models such as ANFIS, LSTM-ALO, and LSSVM-GSA (Nayak et al., 2004; 68 

Yuan et al., 2018; Adnan et al., 2017). These methods have achieved good performances for given 69 

hydrological time series, focusing more on data preprocessing and feature selection. Although research 70 

on data-driven urban flood risk assessment methods has increased, certain limitations remain. For 71 

example, the physical importance of urban hydrological processes is often ignored in the model 72 

assessment process, interpretation of the assessment results is weak, and quantifying the boundaries and 73 

scales is challenging (Abu-Salih et al., 2023; Guo et al., 2022). 74 

Furthermore, attempting to combine the data processing and feature selection capabilities of hybrid 75 

models with those of integrated models remains challenging (Li et al., 2017). While ML algorithms have 76 

demonstrated strong performance in many domains, no single algorithm consistently performs best 77 

across all types of problems (Wolpert and Macready, 1997). Therefore, to achieve optimal performance, 78 

it is essential to carefully configure key components of the ML pipeline, including feature engineering, 79 

model selection, and hyperparameter tuning (Li et al., 2017; Raschka, 2020). Hence, ML applications 80 

require the participation of many experts, leading to disproportionate costs for ML development and 81 

improvement (Wagenaar et al., 2020; Sarro et al., 2022; Rashidi Shikhteymour et al., 2023). The 82 

effectiveness of ML improves with experience, where “experience” refers to the model’s iterative 83 

exposure to training data and its ability to learn patterns from labeled examples (Jordan and Mitchell, 84 

2015; Nagarajah and Poravi, 2019). One key challenge addressed in this study is how to automatically 85 

optimize model components such as feature selection and algorithm configuration in flood risk prediction, 86 

while maintaining high accuracy and adaptability across complex hydrological conditions. AutoML is 87 

an innovative ML framework that automates key stages of the model development pipeline, including 88 

feature selection, model selection, hyperparameter tuning, and ensemble learning (He et al., 2021a). By 89 

addressing these challenges, AutoML reduces reliance on expert knowledge and minimizes subjectivity 90 

in model building (He et al., 2021b; Consuegra-Ayala et al., 2022). In the context of this study, AutoML 91 
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enables the automatic optimization of hazard factor selection, model construction, and parameter 92 

adjustment for flood risk assessment tasks, thereby improving efficiency, objectivity, and reproducibility 93 

in model development. However, AutoML has not been widely applied in the fields of hydrology and 94 

disaster risk management, and research has mainly focused on optimizing the integrated model to achieve 95 

better performance (Özdemir et al., 2023). Continuous research has highlighted the potential role of 96 

AutoML in flood risk detection and assessment (Guo et al., 2022; Vincent et al., 2023; Munim et al., 97 

2024). Guo et al. (2022) compared AutoML with three single ML algorithms (CatBoost, XGBoost, and 98 

BPDNN) and concluded that AutoML performed better in building rapid warning and comprehensive 99 

analysis models for urban waterlogging. The model based on AutoML can be applied to areas without 100 

water level monitoring and achieve accurate predictions and rapid warnings of waterlogging depth (Guo 101 

et al., 2022; Yan et al., 2024). Abu-Salih et al. (2023) proposed a data-driven flood risk area detection 102 

model that combined the integrated model with the AutoML tool and successfully solved the problems 103 

of data balance and strategy modeling, while reducing the complexity of flood risk area prediction.  104 

Previous studies have provided a theoretical basis and scientific reference for the application of AutoML 105 

methods to flood risk assessment. However, the use of AutoML for research purposes is a complex issue, 106 

and many new opportunities and challenges remain regarding its specific applications. 107 

In the field of flood risk assessment, AutoML has been preliminarily demonstrated to perform well in 108 

flood hazard prediction (Guo et al., 2022c). As an efficient “black-box” modeling approach, AutoML 109 

provides strong support for flood risk modeling through automated feature selection, model training, and 110 

parameter optimization (Hutter et al., 2019; He et al., 2021a). In urban agglomerations, flood risk 111 

assessment is a highly complex task involving diverse natural and socioeconomic factors derived from 112 

heterogeneous and often multi-source datasets (Wang et al., 2023c). These factors—such as rainfall, 113 

topography, land use, drainage, and population density—differ in type and often interact in non-linear 114 

and uncertain ways (Shuster et al., 2005; Zhang et al., 2017; Wang et al., 2018a). Under such complex 115 

circumstances, AutoML struggles to systematically evaluate the multi-dimensional indicators of flood 116 

risk. To address this limitation, this study introduces a multicriteria decision analysis (MCDA) approach 117 

to quantify the importance of various indicators within the evaluation framework (Pham et al., 2021). 118 

MCDA facilitates the integration of such heterogeneous indicators into a unified evaluation framework 119 

by constructing structured weighting schemes, thereby aligning the assessment results more closely with 120 

real-world conditions and expert knowledge (Fernández and Lutz, 2010). In cases where data are limited 121 
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or certain indicators are difficult to quantify, MCDA methods allow for the incorporation of expert 122 

judgment through scoring systems and pairwise comparison matrices, enhancing the practical 123 

applicability and robustness of the model (Hites et al., 2006). The analytic hierarchy process  (AHP) is 124 

one of the most popular MCDA techniques (Donegan et al., 1992). This technique emphasizes the 125 

importance of the subjective judgment of decision makers and the consistency of pairwise comparisons 126 

of standards in the decision-making process (Saaty, 1980). Recent studies have focused on integrated 127 

frameworks of ML models and MCDA technology for flood hazard assessment (Kanani-Sadat et al., 128 

2019; Khosravi et al., 2019; Gudiyangada Nachappa et al., 2020; Mia et al., 2023). However, research 129 

focusing on using an integrated framework of AutoML and AHP techniques is still limited. 130 

This study develops a flood risk assessment model for the YRDUA by analyzing the factors influencing 131 

flood risk and integrating AutoML and AHP methods. In this model, AutoML is employed to construct 132 

the flood hazard sub-model, using indicators that represent natural environmental drivers as input 133 

features. The hazard is modeled as a binary classification problem (i.e., whether flooding occurs), and 134 

the resulting feature importance rankings provide an objective basis for subsequent indicator weighting. 135 

Nevertheless, as a data-driven approach, AutoML alone cannot structurally interpret the relative 136 

influence of social and systemic factors within a multi-dimensional flood risk assessment framework. 137 

Therefore, this study incorporates the AHP to calculate the weights of flood exposure, vulnerability, and 138 

resilience in the YRDUA, based on expert knowledge and existing literature. A regional flood risk zoning 139 

map is then generated. A comparative analysis with observed inundation points data shows a strong 140 

spatial alignment between the distribution of flooded points and the high to medium-high risk zones, 141 

highlighting the reliability and applicability of the proposed model. The remainder of this paper is 142 

structured as follows: Section 2 describes the study area, data sources, and methodology; Section 3 143 

presents the results and analysis; Section 4 discusses the findings and their implications; and Section 5 144 

concludes the study with key insights and recommendations. 145 

2 Materials and methods 146 

In this section, the study area is briefly introduced (Section 2.1), and each individual component of the 147 

study is further discussed along with the basic geographic information, meteorology, social statistics, 148 

historical disaster data, and other fields involved in the study of urban agglomeration flood disasters and 149 
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their risks (Section 2.2). The framework of the flood risk assessment model is shown in Figure 1. The 150 

factors influencing flood risk in the YRDUA are explored, and a flood risk assessment index system is 151 

established (Section 2.3). The optimal model in AutoML is selected to calculate the importance of flood 152 

hazard and hazard characteristic factors (Section 2.4), and the model is combined with AHP to determine 153 

the weight of each risk indicator (Section 2.5). Ultimately, a flood risk assessment model based on 154 

AutoML and AHP is constructed. 155 

 156 

Figure 1: Flood risk assessment modeling framework. 157 

 158 

2.1 Study area  159 

The Yangtze River Delta Urban Agglomeration, located in the eastern coastal region of China (27° 04′–160 

34° 49′ N; 115° 75′–122° 95′ E), includes 27 cities: 8 in Anhui Province, 9 in Jiangsu Province, 9 in 161 

Zhejiang Province, and Shanghai (Figure 2) (Yang et al., 2024). Influenced by the East Asian summer 162 

monsoon, the study area features low-lying plains in the northern region and higher hilly terrain in the 163 

southern region, along with numerous waterways (Ding et al., 2021). With the recent accelerated climate 164 

change and urbanization, extreme precipitation events in the Yangtze River Delta (YRD) have been 165 

occurring ever more frequently, and the temporal and spatial distribution differences in precipitation have 166 

increased. Additionally, the increase in impervious surfaces, narrow plains rivers, and poor drainage may 167 

result in more frequent and widespread urban flooding and waterlogging disasters (Wan et al., 2013). 168 

This region is economically developed and densely populated , making it the largest urban agglomeration 169 

in Asia (Sun et al., 2023). In 2008, the Gross Domestic Product (GDP) of the YRD accounted for 17.5% 170 
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of the GDP of the entire country, i.e., 4.3 trillion yuan, and the per capita GDP was 44,468 yuan, i.e., 171 

twice the national average level. The population has reached 97.2 million, i.e., 7.3% of China’s total 172 

population, and the region’s average population density is 877 persons/km2, i.e., approximately twice the 173 

national average (Gu et al., 2011). Therefore, the potential risks of flood and waterlogging disasters are 174 

substantial. 175 

 176 

Figure 2: The schematic map of the YRDUA.  177 

 178 

2.2 Data sources and Processing 179 

2.2.1 Data sources 180 

The study of flood disasters and their associated risks in urban agglomerations involves complex natural 181 

and socio-economic factors. Therefore, we collected and preprocessed data from multiple fields, such as 182 

basic geography, meteorology, social statistics, and historical disasters. Table 1 lists the data types and 183 
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resolutions collected for the research area. 184 

Table 1: Description of the Datasets Used for Flood Risk Assessment, Their Characteristics, and Data Sources. 185 

Category Details Resolution Data Source 

Basic 

Geographic 

Information 

Data 

Administrative boundaries and river 

network density data. 

30m 

-Resources and 

Environmental Science 

and Data Center, CAS 

 (https://www.resdc.cn/). 

-USGS 

(https://earthexplorer.usg

s.gov/).  

-Wuhan University 

CLCD dataset 

(https://zenodo.org/recor

ds/8176941).  

- National Ecosystem 

Science Data Center 

(nesdc.org.cn). 

Digital Elevation Model (DEM) based 

on SRTM1 (30m), mosaicked and 

clipped to the study area (27 core 

cities). 

Land use data from CLCD (30m), 

includes 7 types: farmland, forest, 

shrubland, grassland, water, bare land, 

and impervious surfaces. 

NDVI data (2000–2020) calculated 

using the GEE platform. 

Meteorological 

Data 

Hourly precipitation data from 120 

meteorological stations. Data 

preprocessed for outlier removal and 

missing value handling.  

Station data 

National Meteorological 

Information Center, 

China Meteorological 

Administration 

Social Statistics 

Population, unemployment, GDP, and 

healthcare statistics at the prefecture 

level. 

Prefecture- 

level 

Provincial and municipal 

statistical yearbooks and 

bulletins 

Urbanization rate calculated using 

urban population proportion. 

GDP density and per capita GDP 

derived from total GDP and land 

area/population.  

Historical 

Disaster Data 

Flood inundation data from the 

MODIS-based Global Flood Database 

(2000–2018), processed to focus on 

the YRDUA region. To ensure 

comprehensive selection of 

inundation points, the inundated areas 

within the time frame were overlaid to 

produce a historical flood map. 

250m 
Global Flood Database 

(https://www.emdat.be/). 

 186 

http://www.nesdc.org.cn/
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2.2.2 Data Standardization and Preprocessing 187 

Due to variations in data sources and formats, the collected flood disaster risk data exhibit differences in 188 

spatial resolution, dimensions, and magnitude. To ensure consistency and comparability, standardization 189 

of both spatial scale and numerical range was performed before using these datasets as flood risk 190 

indicators. 191 

(1) Unification of spatial scale means aligning data within the same coordinate range and resolution. The 192 

research data is standardized through projection transformation, converting all datasets into the same 193 

geographic and projected coordinate systems. To generate continuous spatial surfaces from discrete data 194 

points, we applied the Ordinary Kriging interpolation method, which assumes a constant but unknown 195 

local mean (Cressie, 1990). A spherical semivariogram model was adopted to capture spatial 196 

autocorrelation, as it is widely used in environmental geostatistics for its bounded range and smooth 197 

continuity (Webster and Oliver, 2007). The interpolation process was carried out using ArcGIS 10.8. 198 

Finally, if the spatial data has different resolutions, resampling is performed to standardize all data to the 199 

same resolution, which in this study is unified to 30m×30m. 200 

(2) Normalization of the numerical range can be achieved using a normalization process. In this study, 201 

the Min-Max normalization method is applied. Specifically, the minimum and maximum values of each 202 

feature are computed only from the training set, and both the training and test sets are then normalized 203 

using these training-derived parameters. This ensures that the normalized values in the training set are 204 

scaled to the range [0,1], while the values in the test set may exceed this range if they fall outside the 205 

training set’s value distribution. The formula is as follows: 206 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑡𝑟𝑎𝑖𝑛

𝑥𝑚𝑎𝑥
𝑡𝑟𝑎𝑖𝑛−𝑥𝑚𝑖𝑛

𝑡𝑟𝑎𝑖𝑛 (1) 207 

2.3 Historical Flood Inundation Point Extraction 208 

The historical flood inundation map of the study area is shown in Figure 3 (a). The flood inventory map 209 

used in this study was created based on inundation data from the Global Flood Database and the EM-210 

DAT flood disaster database, and further verified through satellite imagery, Google Earth, and 211 

documented historical flood records. The actual flooded areas were delineated from flood traces in the 212 

inundation dataset and image interpretation. A flooded point is defined as a location that lies within the 213 

inundation extent of at least one recorded flood event during the study period. Based on this definition, 214 
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278 flooded points were randomly selected from the validated inundated areas. These points serve as the 215 

foundation for subsequent statistical analysis and model training, with their spatial distribution shown in 216 

Figure 3 (b). 217 

To calculate flood hazard, it is necessary to select training samples. The task of identifying flooded and 218 

non-flooded points using AutoML is essentially a binary classification problem, which requires a 219 

balanced number of samples. An imbalanced ratio of positive and negative samples can result in 220 

unreliable classification outcomes. Previous studies (Pham et al., 2021; Bostan et al., 2012) have shown 221 

that the best classification performance is achieved when the ratio of flooded to non-flooded points is 222 

1:1. Therefore, after selecting the flooded points, 278 non-flooded points were randomly sampled to 223 

ensure a balanced 1:1 ratio, excluding high-altitude areas, based on the region's actual characteristics. 224 

Finally, the flooded and non-flooded points were used as sample data and divided into a 7:3 ratio (70% 225 

for training and 30% for testing) for model training. 226 

 227 

Figure 3: (a) Flood inundation map of the study area. (b) Spatial Distribution of Flooded and Non-Flooded 228 

Points in the YRDUA. 229 

 230 

2.4 Establishment of an flood risk assessment indicator system 231 

Although risk is a universal concept, it has no universal definition (Aven, 2016; Mishra and Sinha, 2020). 232 

Based on the hazard–exposure–vulnerability (H–E–V) disaster risk framework, we considered the 233 

particularity of flood risk research at the urban agglomeration scale, incorporated resilience indicators 234 
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into the existing framework, and constructed a four-dimensional flood risk assessment framework of 235 

hazard–exposure–vulnerability–resilience (H–E–V–R) that can assess regional flood risks more 236 

comprehensively and systematically. The conceptual description of flood risk in this study can be 237 

expressed in the Eq. (2): 238 

𝑅𝑖𝑠𝑘 = 𝑓(𝐻, 𝐸, 𝑉, 𝑅) = ∑ 𝜔𝐻𝐻𝑖 + ∑ 𝜔𝐸𝐸𝑖 + ∑ 𝜔𝑉𝑉𝑖 + ∑ 𝜔𝑅𝑅𝑖
𝑑
𝑖=1

𝑐
𝑖=1

𝑏
𝑖=1

𝑎
𝑖=1 ,  (2) 239 

where 𝐻, 𝐸, 𝑉, and 𝑅 represent the danger of, exposure to, vulnerability to, and resilience in response 240 

to floods, respectively; 𝜔𝐻, 𝜔𝐸, 𝜔𝑉, and 𝜔𝑅 are the weights of danger, exposure, vulnerability, and 241 

resilience, respectively; 𝐻𝑖 , 𝐸𝑖, 𝑉𝑖, and 𝑅𝑖  are the values of items i of the indicators, respectively; and 242 

𝑎, 𝑏, 𝑐, and 𝑑 are the numbers of the indicators, respectively. 243 

We constructed a flood risk assessment index system for the YRDUA based on the “H–E–V–R” 244 

framework, the actual situation of the study area, the formation mechanisms of flood disasters, and the 245 

findings of relevant studies (Gain et al., 2015; Criado et al., 2019; Hsiao et al., 2021). We selected four 246 

first-level indicators (i.e., hazard, exposure, vulnerability, and resilience indices) and 19 second-level 247 

indicators. A detailed description of the flood risk assessment index system is presented in 错误!未找248 

到引用源。. 249 

 

Figure 4: Flood risk assessment index system for the YRDUA based on the H–E–V–R framework. 250 

 251 

The hazard indicators consisted of six indices: Average annual precipitation (PREC), Annual Cumulative 252 

Heavy Rainfall Duration (DURA), Digital Elevation Model (DEM), SLOPE, Drainage Density (DD), 253 

and Normalized Difference Vegetation Index (NDVI). Rainfall is the primary factor leading to flooding, 254 

particularly extreme rainstorms caused by climate change. According to the Meteorological Bureau's 255 
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definition, a heavy rainstorm event is characterized by rainfall of 50mm or more within 24 hours. DURA 256 

is defined as the total number of days with heavy rainstorm events occurring at all meteorological stations 257 

within the study area each year. The more days heavy rainstorms accumulate and the longer their duration, 258 

the greater the likelihood of flooding and other disaster events. DEM and SLOPE are important 259 

topographical indicators. Areas with low DEM and SLOPE values are generally more susceptible to 260 

flood threats. DD refers to the area of rivers or lakes per unit of land surface area and is a crucial indicator 261 

of a watershed's structural characteristics. It determines the watershed's capacity to withstand flooding. 262 

The higher the DD, the greater the likelihood of flooding and the higher the potential flood risk. 263 

Vegetation plays a role in water storage, retention, and infiltration. The lower the vegetation coverage, 264 

the weaker the buffering capacity, making it more likely for surface water to accumulate. The NDVI 265 

index measures the relative abundance of green vegetation, with values ranging from -1 to 1. The higher 266 

the value, the greater the vegetation coverage, and the lower the risk of flooding. 267 

Land area (AREA), Population Density (DPOP), GDP Density (DGDP), and Building Density (DBUI) 268 

were selected as exposure indicators to assess the degree of vulnerability of both the natural environment 269 

and social systems to flooding. The land area for each administrative unit at the prefecture-level city is 270 

calculated individually. A larger land area corresponds to a greater extent exposed to flooding. DPOP 271 

and DGDP represent the concentration of population and assets, respectively. Areas with higher DPOP 272 

and DGDP are more susceptible to potential threats from pluvial flooding. DBUI, the ratio of total 273 

building area to total land area in a region, indicates the building density. A higher DBUI reflects greater 274 

exposure to flooding. 275 

Vulnerability indicators focus more on the social aspects of flood disasters. This study selects four 276 

vulnerability indicators: Proportion of Child Population (PPOP_CHI), Proportion of Elderly Population 277 

(PPOP_ELD), Proportion of Uneducated Population (PPOP_UEDU), and Urbanization Rate (UR). Age 278 

is a key feature of social vulnerability, and both the population aged 0-14 and those over 65 are considered 279 

vulnerable groups, as these age groups are more susceptible to flood damage. The uneducated population 280 

generally has a weaker awareness of disaster risks and lower self-protection capacity, which makes this 281 

group more vulnerable to flooding. The urbanization rate refers to the proportion of the urban population 282 

in the total resident population of a region. This indicator is inversely related to flood vulnerability. In 283 

general, a higher urbanization rate indicates greater social development and stronger protective capacities, 284 

which can reduce vulnerability to flooding to some extent. 285 
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The resilience indicators selected in this study include Gross Domestic Product (GDP) per capita, 286 

Unemployment Rate (UEMP), Number of Doctors (DOCS), Number of Medical Institutions (INSTS), 287 

and Number of Hospital Beds (BEDS). GDP per capita is the ratio of a region's GDP to its total resident 288 

population over a specified period, reflecting the region's economic condition. A higher GDP per capita 289 

indicates a more developed economy, which is associated with a greater capacity to recover quickly after 290 

a flooding event. The Unemployment Rate (UEMP) measures the proportion of the idle labor force, 291 

indirectly reflecting the stability of urban development. A high unemployment rate signals economic 292 

instability, which weakens the capacity to cope with floods and extends the time required for post-disaster 293 

recovery, thus impeding disaster response efforts. The indicators of DOCS, INSTS, and BEDS provide 294 

insights into a region’s healthcare and medical support capabilities. Areas with stronger healthcare 295 

systems are better positioned to manage flood risks and recover more effectively from such disasters. 296 

 297 

2.5 Flood risk calculation method based on AutoML 298 

2.5.1 Feature selection 299 

The flood inventory map in this paper was developed using inundation data from the Global Flood 300 

Database and flood disaster data from the EM-DAT database, supplemented by satellite and Google 301 

image interpretation and verified against existing historical flood records. The actual flood-affected areas 302 

were delineated based on flood traces from the inundation datasets and image interpretations. For this 303 

study, 278 flood inundation points were randomly selected within the inundation data range during the 304 

study period, and the location of each point was used as the basis for subsequent statistical analysis of 305 

flood events. The main factors affecting flood risk were considered during input feature selection. 306 

Rainfall and rainstorms are important factors that lead to floods, and flooding is closely related to 307 

topography, slope, vegetation cover, and hydrological conditions. Therefore, six indicator factors, 308 

namely PREC, DURA, DEM, SLOPE, NDVI, and DD, were selected as the input features of the model. 309 

To verify the model, 70% of the data in the sample were set as the training dataset and the remaining 30% 310 

of the data were set as the testing dataset through random sampling. 311 

When the number of samples is small, data balancing is essential to ensure uniform sampling and reduce 312 

the deviations among the training, validation, and original datasets. Data balancing refers to the process 313 

of achieving a balanced distribution of data for each labeled category; it is particularly important when 314 
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the number of observations in each class is significantly different. One way to address an imbalanced 315 

dataset is to oversample the minority classes. In this study, we assessed flood risk based on the 316 

identification of flooded point in the sample, which is essentially a binary classification problem; 317 

therefore, the output features are 0, i.e., negative categories (non-flooded points), versus 1, i.e., positive 318 

categories (flooded points). The processed dataset comprised 278 positive samples (flooded points) and 319 

278 negative samples (non-flooded points), with each label consisting of 278 points representing the 320 

entire dataset. 321 

2.5.2 Model training and hyperparameter optimization 322 

Training samples were generated using the data from flooded and non-flooded points in the study area, 323 

and the Auto-Sklearn was used for model training, its principle is shown in Figure 5. The Auto-sklearn 324 

framework has multiple built-in machine learning algorithms. We selected 9 models that are more typical 325 

or have better performance in flood hazard research: random forest (RF), extreme gradient boosting 326 

(XGBoost), Light Gradient Boosting Machine (LightGBM), categorical feature boosting (CatBoost), 327 

Extra trees, Decision tree, Nearest Neighbors, Multi-layer Perceptron (MLP) neural network, and Linear 328 

Regression. The training and testing datasets were used to train the 9 machine learning models, and the 329 

hyperparameters were continuously adjusted and optimized. 330 

 331 

Figure 5: Principles of Auto-Sklearn 332 

 333 

Hyperparameter optimization is an important step in ML model training. The aim of this step is to 334 

determine a hyperparameter combination to generate a ML model that performs well on a specific dataset 335 

and reduces the effect of the predefined loss function on a given dataset. In this study, we used a grid 336 

search strategy for optimization. For each set of hyperparameter combinations, k-fold cross-validation 337 

was used to evaluate the model. To quantify the balance between Precision and Recall, the F1-score was 338 

used as the primary evaluation metric. The hyperparameter combination corresponding to the model with 339 



 

15 

 

the highest average F1-score was selected as optimal. Briefly, the training dataset was divided into K 340 

parts, of which one was selected as the test set and the rest were used as the training set. The cross-341 

validation was repeated K times and the results were averaged K times. The model with the best average 342 

result among all models was selected as the optimal model, and the final classification prediction result 343 

was the output. In this study, we used 5-fold cross-validation. 344 

It is important to note that 5-fold cross-validation was employed at two distinct stages in this study. First, 345 

it was conducted within the training set during hyperparameter tuning as part of the AutoML model 346 

selection process. Second, following final model selection, an independent 5-fold cross-validation was 347 

applied to the entire dataset to evaluate the generalization performance of the model and identify potential 348 

overfitting. The data partitions used in the two stages were entirely separate, ensuring that no data leakage 349 

occurred. 350 

2.5.3 Performance evaluation 351 

To better compare the performance of the 9 selected ML models in the Auto-Sklearn framework for flood 352 

risk assessment, multiple evaluation indicators were used to assess the test dataset. The following 353 

combinations of the true category of the sample point and the category predicted by the classifier were 354 

used: True Positive (TP)—the sample point is a flooded point, and the model classifier also predicts that 355 

it is a flooded point; True Negative (TN)—the sample point is a non-flooded point, and the model 356 

classifier also predicts that it is a non-flooded point; False Positive (FP)—the sample point is a non-357 

flooded point, and the model classifier mistakenly predicts that it is a flooded point; False Negative 358 

(FN)—the sample point is a flooded point, and the model classifier mistakenly predicts that it is a non-359 

flooded point. Therefore, four related indicators were selected: Precision, Recall and F1-score, and the 360 

consistency metric Kappa coefficient. The calculation formulas are as follows:  361 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,  (3) 362 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,  (4) 363 

𝐹1 −𝑠𝑐𝑜𝑟𝑒=
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 ,  (5) 364 

Among the indicators, Precision refers to the proportion of correctly predicted flooded points among all 365 

predicted flooded points, reflecting the model’s ability to avoid false positives. Recall measures the 366 
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proportion of correctly identified flooded points among all actual flooded points, representing the 367 

model’s sensitivity. F1-score is the harmonic mean of Precision and Recall, providing a balanced 368 

evaluation of both metrics and reflecting the overall recognition performance of the model. 369 

Kappa coefficient is a statistical consistency metric used to measure classification performance, which 370 

is calculated based on the confusion matrix of true and predicted categories. Its value ranges from [-1,1]: 371 

A Kappa value of 1 indicates perfect agreement, 0 means the classification is no better than random 372 

guessing, and negative values suggest the classification is worse than random prediction. Kappa is 373 

calculated using Eq. (6), where 𝑃𝑒  is given by Eq. (7). 374 

𝐾𝑎𝑝𝑝𝑎 =
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
,  (6) 375 

𝑃𝑒 =
(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)+(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)2 ,  (7) 376 

where 𝑃𝑒 represents the expected agreement by chance. 377 

Combining multiple indicators allows for a more comprehensive evaluation of models within the Auto-378 

Sklearn framework for flood point identification and flood risk assessment. 379 

2.6 Method for determining flood risk index weights based on AHP 380 

2.6.1 Establishing a hierarchical model 381 

According to the decision-making objectives, factors, and applications in decision-making problems, the 382 

AHP can be divided from bottom to top into the target, criterion, and application layers. Among them, 383 

the target layer is the problem to be solved (i.e., final flood risk). The criterion layer is the intermediate 384 

link, including the factors to be considered and the decision making criteria. The factors can be divided 385 

into different evaluation indicators, including four first-level indicators (danger, exposure, vulnerability, 386 

and resilience) and their corresponding 19 second-level indicators. The criterion layer comprises various 387 

weight combination schemes linked to the target layer. The application layer is the final optional scheme 388 

and specific application of the decision. The final weight scheme and evaluation results of this study 389 

were applied to the YRDUA. 390 
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2.6.2 Constructing the judgment matrix 391 

After the hierarchical structure was established, a judgment matrix was constructed based on the 392 

relationship between the criteria and indicators. Different elements in the sublevel were compared 393 

pairwise, and the relative importances of all elements in the current layer and previous layer were 394 

compared. Typically, a pairwise comparison matrix is used as representative. In this study, we adopted 395 

the 1–9 scale method as the importance measurement standard. The importance comparison relationship 396 

is presented in Table 2, where the matrix element 𝑎𝑖𝑗  represents the comparison result of the 𝑖𝑡ℎ element 397 

relative to the 𝑗𝑡ℎ element. 398 

Table 2: Pairwise comparison point-based rating scale of AHP. 399 

Ranking Importance Level 

1 Equally important 

3 i is slightly more important than j 

5 i is much more important than j 

7 i is very much more important than j 

9 i is extremely important than j 

2, 4, 6, 8 Intermediate value of two adjacent judgments 

Reciprocal Comparative judgment of j vs.，𝑎𝑗𝑖 = 1/𝑎𝑖𝑗 

 400 

2.6.3 Solving the eigenvector of the judgment matrix 401 

Based on the judgment matrix, the square root method was used to solve the eigenvector and eigenroot. 402 

The first step is to calculate the square root 𝑎𝑖𝑗  of the product of each row of the judgment matrix 𝑛, 403 

then normalize it, and finally calculate the maximum eigenroot of the judgment matrix. The formula is 404 

as Eq. (8), Eq. (9), Eq. (10). 405 

𝑀𝑖 = √∏ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑛
,  (8) 406 

𝑊𝑖 =
𝑀𝑖

∑ 𝑀𝑖
𝑛
𝑖=1

,  (9) 407 

𝜆𝑚𝑎𝑥 = ∑
(𝐴𝑊)𝑖

𝑛𝑊𝑖

𝑛
𝑖=1 ,  (10) 408 
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2.6.4 Consistency check 409 

After the eigenvector calculation is completed, a consistency test is required to reduce the subjectivity in 410 

the judgment matrix and enhance the scientific nature of the data and calculations. In a pairwise 411 

comparison matrix, consistency means that the decision-maker's judgments must exhibit logical 412 

coherence and transitivity. Specifically, if option A is considered more important than option B, and 413 

option B is considered more important than option C, then consistency requires that option A must also 414 

be judged more important than option C (Saaty, 1984). 415 

The consistency indicator (CI) is used to measure the deviation of the judgment matrix from the 416 

consistency: the smaller the CI, the greater the consistency of the judgment matrix. When CI = 0, the 417 

judgment matrix is completely consistent. The CI calculation formula is as Eq. (11). 418 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
,  (11)                                                        419 

To quantify the standard, the relative consistency (CR) index was further calculated as Eq. (12). 420 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
,  (12) 421 

Where average Random Consistency Index (RI) represents the average random consistency which 422 

depends only on the order of the judgment matrix. The RI values for judgment matrices of order 1 to 10 423 

are shown in Table 3. 424 

Table 3: Consistency index (RI) for a randomly generated matrix. 425 

n 1 2 3 4 5 6 7 8 9 10 

RI 0.00 0.00 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 

 426 

CR was determined based on the RI value. When CR < 0.1, the consistency of the judgment matrix is 427 

considered good. When CR > 0.1, the consistency of the judgment matrix is unacceptable, and the 428 

judgment matrix must be adjusted and modified. In such cases, the corresponding judgment matrix was 429 

further constructed, and the eigenvector and eigenroot were calculated using the following formulas:  430 

Finally, the judgment matrix that passed the consistency test was used to calculate the weights of the 431 

indicators at the different levels. 432 
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2.7 Determination of flood risk levels 433 

The classification of flood risk levels often involves manually setting thresholds, which can introduce 434 

subjectivity and influence the accuracy of the risk assessment outcomes (Ma et al., 2022). To calculate 435 

the flood risk, we employed the natural breakpoint classification method, which groups data into classes 436 

based on natural divisions within the dataset (Lin et al., 2019). This method works by identifying points 437 

where the data distribution changes most significantly and dividing the data into ranges based on these 438 

breaks. Unlike clustering methods, which do not focus on the number and range of elements in each 439 

group, the natural breakpoint method ensures that the range and number of elements in each group are as 440 

balanced as possible (Ma et al., 2022). 441 

3 Results and discussion 442 

3.1 Model flood risk results and evaluation 443 

3.1.1 AutoML optimal model selection 444 

In the experiment, 9 typical ML models under the Auto-Sklearn framework were used to process the 445 

sample dataset, with 70% of the sample set being used as the training dataset and 30% being used as the 446 

testing dataset. The results of the comparative analysis of the model performance based on the test dataset 447 

are presented in Table 4. A comprehensive analysis of the results on the testing data revealed that, in 448 

terms of Precision, CatBoost had the highest value (0.9030), followed by LightGBM (0.8960) and Extra 449 

Trees (0.8893). Meanwhile, CatBoost had the highest recall rate of 0.8883, followed by that of Extra 450 

Trees at 0.8870. The probability thresholds for Precision, Recall, and F1-score range from [0,1], while 451 

the Kappa coefficient ranges from [-1,1]. The F1-score and Kappa coefficient of the CatBoost model 452 

were also markedly higher than those of the other models, reflecting the model’s good consistency. A 453 

comprehensive comparison showed that the precision, F1-score, and Kappa coefficient of the CatBoost 454 

model were the highest, with its precision reaching 0.9030, indicating that the recognition and prediction 455 

precision of the flooded points in the study area based on the CatBoost model were obviously better than 456 

those of other common machine learning models.  457 

Since flood data often involve various environmental factors and complex interactions, the CatBoost 458 

model is highly effective at handling these nonlinear relationships and feature interactions. Additionally, 459 

the model incorporates multiple regularization mechanisms during tree construction, which helps reduce 460 
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overfitting and enhances the model's generalization capability. As shown in Table 4, most models 461 

performed well on the training set, but their performance slightly declined on the test set, highlighting 462 

variations in generalization ability. CatBoost demonstrated strong robustness, achieving a Precision of 463 

0.9319 on the training set and 0.9030 on the test set. Additionally, LightGBM and XGBoost showed 464 

relatively consistent performance between the training and test sets, suggesting better generalization. 465 

However, models such as Decision Tree and Nearest Neighbors exhibited a more significant performance 466 

drop in the test set, indicating a higher sensitivity to overfitting. Interestingly, in a few cases (e.g., Extra 467 

Trees), test set performance slightly exceeded that of the training set in certain metrics. This is not 468 

uncommon in small, balanced datasets and may result from a combination of factors such as random 469 

sampling variation, slightly easier test samples, or appropriate regularization that reduces overfitting in 470 

the training set. To further evaluate overfitting, we used 5-fold cross-validation by comparing the 471 

performance of the training and testing sets. The experimental results indicate that while most models 472 

showed some performance decline on the test set, CatBoost maintained relatively stable performance, 473 

suggesting that the model does not exhibit significant overfitting and has good generalization ability. 474 

Table 4: Comparative analysis of the performances of different ML models. 475 

Models Dataset Precision Recall F1-score Kappa 

CatBoost 

Training set 0.9319 0.9307 0.9547 0.8614 

Testing set 0.9030 0.8883 0.8960 0.7915 

XGBoost 

Training set 0.9017 0.8827 0.8818 0.8640 

Testing set 0.8748 0.8640 0.8624 0.7256 

LightGBM 

Training set 0.9349 0.9307 0.9306 0.8616 

Testing set 0.8960 0.7890 0.8015 0.7324 

Random Forest 

Training set 0.8922 0.8747 0.8745 0.7484 

Testing set 0.8482 0.8320 0.8309 0.6662 

Extra Trees 

Training set 0.8524 0.8240 0.8735 0.7695 

Testing set 0.8893 0.8570 0.8877 0.7751 

Decision Tree 

Training set 0.8886 0.8640 0.8621 0.8040 

Testing set 0.8810 0.8720 0.8708 0.7419 

Linear Regression 

Training set 0.8636 0.8533 0.8525 0.7073 

Testing set 0.8682 0.8480 0.8450 0.6926 

Nearest Neighbors 

Training set 0.7301 0.7907 0.7987 0.6009 

Testing set 0.7747 0.7440 0.7390 0.4937 
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Models Dataset Precision Recall F1-score Kappa 

MLP Neural 

Network 

Training set 0.8998 0.8880 0.8873 0.7765 

Testing set 0.8682 0.8480 0.8450 0.6926 

 476 

By comparing the performances of the 9 models, we found that the CatBoost model was more effective 477 

in identifying flooded points. To further verify the excellent performance of the model, the receiver 478 

operating characteristic (ROC) curve and area enclosed by the coordinate axes (corresponding area under 479 

the curve [AUC] value) were plotted based on the test dataset to assess the model’s binary classification 480 

effectiveness: the larger the AUC value, the better the model distinguishes between classes. When AUC > 481 

0.8, the model prediction effect is very good (Sinha et al., 2008). In this study, both micro- and macro-482 

average ROC curves were plotted. The micro-average ROC curve aggregates the contributions of all 483 

classes to compute the average ROC curve, treating each instance equally, while the macro-average ROC 484 

curve computes the ROC curve for each class independently and then averages the results. These two 485 

methods are commonly used for multi-class classification problems, but in this study, they were used to 486 

give a more comprehensive comparison of model performance. The verification results are shown in 487 

Figure 6. The AUC value of the CatBoost model reached 0.91, guaranteeing the performance and 488 

prediction reliability of the CatBoost model. Based on this, the CatBoost model was selected to calculate 489 

the flood risk in the YRDUA. 490 

 491 

Figure 6: Receiver operating characteristic (ROC) curves and corresponding area under the curve (AUC) 492 

values of the CatBoost model. 493 

 494 
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3.1.2 Importance and Interpretability Analysis of Hazard Factors 495 

In this study, the AutoML model was used specifically to assess flood hazard, which represents the 496 

physical likelihood of flood occurrence and is directly driven by environmental factors such as rainfall, 497 

topography, and drainage characteristics. Therefore, only the six second-level indicators under the hazard 498 

dimension were used as input features in the AutoML model. This approach allowed us to focus the 499 

model on identifying the key natural drivers of flooding, while the other dimensions—exposure, 500 

vulnerability, and resilience—were later incorporated via the AHP method for comprehensive flood risk 501 

evaluation. 502 

To better understand the contribution of different hazard indicators to flood risk in the YRDUA, we 503 

conducted both importance ranking analysis using the CatBoost model and interpretability analysis based 504 

on SHAP. 505 

The CatBoost model was used to quantify the relative importance of six key hazard indicators. The results, 506 

shown in Figure 7, reveal significant differences in their influence. DEM was identified as the most 507 

critical factor, contributing 68.55%, which far exceeds the other factors, which is also in line with the 508 

findings of many researchers within the region (Mei et al., 2021; Wan et al., 2013). Low-lying areas 509 

naturally function as water accumulation zones, increasing flood vulnerability. Additionally, urban areas 510 

in the YRDUA are dominated by impervious surfaces, limiting infiltration and exacerbating flood risks. 511 

While PREC is a primary factor in storm-induced flooding, its direct contribution to flood risk was 512 

relatively low compared to DURA, which accounted for 10.07%. This highlights that the persistence of 513 

extreme rainfall events is a stronger predictor of flood hazard than total annual precipitation. 514 
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 515 
Figure 7: Importance Ranking of Hazard Factors Based on the CatBoost Model 516 

 517 

To further analyze the interpretability of the model and understand the impact of individual flood hazard 518 

indicators on the model's classification results, this paper calculates Shapley Additive Explanations 519 

(SHAP) to indicate the contribution of each feature in the sample (Lundberg and Lee, 2017). SHAP, a 520 

game theory-based post-hoc interpretation method, quantifies the marginal impact of each feature on 521 

model predictions. The SHAP summary plot in Figure 8 (a) ranks features based on their absolute SHAP 522 

values, consistent with the CatBoost importance ranking. Each row represents a feature, where red 523 

indicates higher feature values and blue indicates lower values. The results show that DEM, SLOPE, and 524 

NDVI negatively impact flood risk, meaning that higher elevation, steeper slopes, and greater vegetation 525 

coverage reduce flood hazards. In contrast, DD, DURA, and PREC positively impact flood risk, 526 

indicating that higher drainage density, longer durations of extreme rainfall, and increased precipitation 527 

levels contribute to higher flood hazards. Among these, DEM has the highest absolute SHAP value, with 528 

a strong clustering below zero, reinforcing its dominant role in flood risk determination. 529 
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 530 
Figure 8: (a) Scatter Plot of Hazard Indicators from SHAP Analysis. (b) SHAP Dual Dependence Analysis of 531 

Elevation and Slope Factors. 532 

 533 

To directly capture the interaction effects between paired indicator factors, this study used SHAP 534 

interaction values based on game theory, ensuring consistency while also explaining the interaction 535 

effects of individual predictions. For the DEM feature, which had the highest importance in the SHAP 536 

analysis, the factor most strongly correlated with it was SLOPE. Therefore, to illustrate how one feature 537 

interacts with another to affect the model training results, this study used DEM and SLOPE as examples 538 

to plot the SHAP interaction scatter plot, representing the dependency of the DEM feature. The results 539 

are shown in Figure 8 (b). This dependency plot takes the form of a logarithmic function, indicating that 540 

as DEM increases, the flood hazard decreases. Additionally, the slope has a negative effect on the flood 541 

hazard in relation to elevation; that is, at lower elevations and gentler slopes, the flood hazard is greater. 542 

3.1.3 Determination of flood risk index weights 543 

A judgment matrix was constructed for 19 indicator factors. A hazard index was constructed based on 544 

feature importance calculated using AutoML. The exposure, vulnerability, and resilience indicators were 545 

determined based on existing literature and relevant expert scores (Hsiao et al., 2021). The judgment 546 

matrices were constructed using a hybrid approach. For the hazard indicators, feature importance scores 547 

generated from the AutoML model were used to inform the pairwise comparisons. For the exposure, 548 

vulnerability, and resilience indicators, the weights were determined by the authors based on a 549 

combination of expert judgments, a review of existing studies, and consideration of the local conditions 550 
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in the YRDUA. The Saaty 1–9 scale was applied to assign relative importance to each pair of indicators. 551 

Finally, the judgment matrix results were tested for consistency, and the CR value was 0.0058, i.e., << 552 

0.100, indicating that the results passed the consistency test and that the flood risk index weight values 553 

calculated using the AHP were acceptable. The specific indicator weights and their corresponding 554 

impacts on flood risk are shown in Table 5. The "Attribute" column represents the impact of each 555 

indicator on flood risk, with "+" indicating a positive impact on flood risk and "-" indicating a negative 556 

impact on flood risk. 557 

Table 5: Flood risk index weights. 558 

Dimension Indicator Unit Attribute Weight 

Hazard 

(0.4798) 

PREC mm + 4% 

DURA Day + 10.8% 

NDVI  - 7.6% 

DEM km - 22.99% 

SLOPE ° - 6.4% 

DD km/km2 + 3.2% 

Exposure 

(0.1083) 

AREA km2 + 1.1% 

DPOP people/km² + 4.32% 

DGDP 
10,000 

yuan/km² 
+ 3.84% 

DBUI km2 + 1.16% 

Vulnerability 

(0.1312) 

PPOP_CHI % + 4.92% 

PPOP_ELD % + 3.04% 

PPOP_UEDU % + 2.11% 

UR % - 2.05% 

Resilience 

(0.2807) 

GDP per capita 

100 million 

yuan/10,000 

People 

- 4.43% 

UEMP % + 5.04% 

DOCS Per person - 4.13% 

INSTS Each - 0.45% 

BEDS Per bed - 6.28% 

 559 
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The weighted results reflect the degrees of influence of the different indicator factors on flood risk. 560 

Danger was the decisive factor affecting flood risk, with a weight of 0.4798, followed by resilience and 561 

vulnerability. Exposure had a relatively low impact on flood risk. In terms of danger, the topography and 562 

DURA were the main factors affecting the occurrence of flooding. These two indicators determined the 563 

characteristics of flood disasters in the YRDUA from the perspective of disaster-prone environments and 564 

driving factors, respectively. In terms of exposure, the YRDUA is a typical area with rapid social, 565 

economic, and population growths in China. High population and GDP densities increase the risk of 566 

flood exposure. In addition, the uneven age distribution and education levels of the population are 567 

important social factors affecting the risk of flood disasters in urban agglomerations. In terms of 568 

resilience, improving health and medical infrastructure, developing the regional economy, and reducing 569 

unemployment rates are conducive to improving the overall disaster response capacity of the region and 570 

reducing the risk of flood disasters in the YRDUA. 571 

3.1.4 Model results verification 572 

Based on CatBoost under the AutoML framework and AHP, the levels of flood hazard, exposure, 573 

vulnerability, and resilience were calculated for floods in the YRDUA and the spatial distribution of 574 

flood risks in the region was obtained according to the weights determined by the model. Combined with 575 

the natural breakpoint classification method, a flood risk zoning map of the YRDUA was constructed. 576 

The extracted flood points were superimposed on the map to verify whether the model exhibited good 577 

flood risk assessment capabilities. The results are shown in Figure 9, indicating that the distribution of 578 

flood points was consistent with the distribution of high and medium-to-high risk areas in the region, 579 

with the model assessment results corresponding well with the actual flooding situation. To specifically 580 

illustrate the correspondence of the results, the proportion of flood points distributed in high and medium-581 

to-high risk areas was quantitatively calculated. The obtained value was 87.45%, indicating that the flood 582 

risk assessment results of the model in this study were highly credible, and subsequent analysis could be 583 

conducted. 584 

As shown in Figure 9, the high and medium-to-high risk areas in the YRDUA were mainly located in the 585 

northern part of the region, concentrated in Chizhou, Anqing, Ma'anshan, and Xuancheng Cities in Anhui 586 

Province, Yancheng and Yangzhou Cities in Jiangsu Province, and Taizhou City in Zhejiang Province. 587 

Meanwhile, most areas of Hangzhou City had the lowest risk. The flood risks in cities such as Shanghai, 588 
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Nanjing, and Jinhua were also relatively low. The overall analysis showed that the flood risk in the study 589 

area was low in the southwest and high in the northeast, determined largely by natural terrain and 590 

meteorological factors. The spatial distribution of the flood hazard class was similar to the distribution 591 

of flood risks; exposure decreased stepwise from Shanghai to the surrounding areas, reflecting that 592 

densely populated and economically developed cities have higher exposure. Areas with higher 593 

vulnerability were mainly concentrated in Chizhou, Anqing, Xuancheng, Chuzhou, and Yancheng Cities. 594 

The number of vulnerable people in these cities was relatively high. Vulnerability has aggravated the 595 

flood risks in Chizhou and Anqing Cities on the basis of flood risk. Meanwhile, Shanghai had the best 596 

resilience performance, followed by those of Hangzhou, Suzhou, and Nanjing Cities, greatly lessening 597 

the flood risks in these cities. 598 

 599 

Figure 9: Flood risk level distribution and verification results based on a flood risk assessment model. The 600 

flood hazard, exposure, vulnerability, and resilience of the YRDUA were calculated using CatBoost under the 601 

AutoML framework and AHP. The flood hazard level (a), flood exposure level (b), flood vulnerability level 602 

(c), flood resilience level (d), and flood risk spatial distribution (e) were derived through natural breaks 603 

classification in ArcGIS software based on model-determined weights, resulting in a flood risk zoning map 604 

for the Yangtze River Delta region. 605 

 606 

3.2 Analysis of changes in the spatiotemporal characteristics of flood risk 607 

The flood risk results for the YRDUA from 1990 to 2020 were obtained based on the flood risk 608 

assessment model proposed in this study. The differences in flood risk among cities in the YRDUA over 609 
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the past few decades are primarily due to a complex interplay of various factors, including geographic 610 

and climatic conditions, urbanization processes, socio-economic factors, ecological changes, and 611 

historical flood events. The topography and precipitation patterns of different cities affect their capacity 612 

for rainwater drainage and accumulation, while urbanization leads to an increase in impervious surfaces 613 

and variations in infrastructure development, impacting flood management capabilities. Additionally, 614 

differences in DPOP, economic development levels, and flood management policies can exacerbate flood 615 

risk. Furthermore, the increasing frequency of extreme weather events due to climate change further 616 

elevates flood risk. These factors determine the varying levels of flood risk among cities within the 617 

YRDUA. 618 

As the interannual difference in flood risk in the region was small and the change response was weak, 619 

we selected the flood risk results for 1990, 2000, 2010, and 2020 to analyze the changes in the 620 

spatiotemporal pattern. In this analysis, variables such as PREC and DURA exhibit clear temporal 621 

variability, as they change year by year due to weather patterns. However, other factors like DEM, 622 

SLOPE, NDVI, and urbanization indicators such as DPOP and GDP are spatial variables that do not 623 

exhibit direct temporal changes, but their effects on flood risk are influenced by changing socio-economic 624 

and ecological conditions.  625 

Regarding spatial patterns (Figure 10), the flood risk in the YRDUA showed clear spatial heterogeneity. 626 

The southwestern part of the study area and Shanghai have shown low flood risks over the past 30 years, 627 

whereas the central and northern parts of the region have been more likely to face flood risks depending 628 

on the natural conditions, population, economic conditions, and recovery capacity of the region. 629 

Regarding temporal patterns, from 1990 to 2010, areas with high and medium-to-high risk decreased 630 

markedly. By 2010, most of the YRDUA (except for a few areas) was in a state of medium risk or below, 631 

with the southwestern region exhibiting a large range of low risk levels. The corresponding areas for 632 

each risk level are shown in Figure 11. From 1990 to 2010, areas of low and low-to-medium risk levels 633 

gradually increased, maximizing in 2010, whereas areas of medium risk and above continued to decrease. 634 

By 2020, the number of high-risk areas for flooding increased. There is a tendency for areas of medium-635 

to-high risk in the central region to shift towards high-risk areas in 2020, as compared to the state in 1990. 636 

Meanwhile, high-risk areas for floods also appeared in Chizhou and Anqing Cities in Anhui Province, 637 

which was mainly due to the intensification of extreme weather, unbalanced population distribution, and 638 

rapid economic development in recent years. 639 
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 640 

Figure 10: Spatial distributions of flood risk in the YRDUA in different years during 1990–2020. 641 

 642 

 643 

Figure 11: Areas at different levels of flood risk in the YRDUA in different years during 1990–2020. 644 

 645 

To further analyze the changes in flood risk in the region, we calculated the change rate of the area of 646 

different risk levels every 10 years and the overall change rate over 30 years. The interannual rate of 647 

change was expressed in Eq. (13). 648 

𝑅𝑙,𝑖𝑗 =
𝑅𝑖𝑠𝑘𝑙,𝑗−𝑅𝑖𝑠𝑘𝑙,𝑖

𝑅𝑖𝑠𝑘𝑙,𝑖
× 100%,  (13) 649 
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where 𝑅𝑙,𝑖𝑗 is the rate of change of the flood risk area of a certain level 𝑙 in a certain year, 𝑖 and 𝑗 are 650 

different years, and 𝑅𝑖𝑠𝑘𝑙,𝑗  and 𝑅𝑖𝑠𝑘𝑙,𝑗  are the areas corresponding to the flood risk of this level in 651 

different years. 652 

The interannual variation rate of the flood risk is shown in Table 6. Results showed that the interannual 653 

variation between the areas of low and high risk was relatively large. The low-risk area maximized in 654 

2010, and both R 2000–1990 and R 2010–2000 showed a positive variation rate. The high-risk area showed the 655 

largest interannual variation rate from 2010 to 2020, reaching 12.22% and causing the high-risk flood 656 

area in 2020 to spread, resulting in a large high-risk area. 657 

Table 6: Interannual change rates of flood risk areas of different levels (expressed as percentages). 658 

 R2000-1990 R2010-2000 R2020-2010 R2020-1990 

I 1.77% 1.44% -0.67% 1.21% 

II 0.54% 0.15% -0.49% -0.10% 

III -0.11% -0.40% 0.81% -0.03% 

IV -0.65% 0.25% 1.25% -0.02% 

V -0.53% -0.80% 12.22% 0.27% 

 659 

Analyzing the flood risk of the entire urban agglomeration does not reveal the spatial scale effect of flood 660 

risk, nor does it consider the correlation and impact of flood risk at different spatial scales. To reflect the 661 

distribution of and changes in flood risk at different spatial scales within the region, the risk intensity of 662 

different provinces was further analyzed, and the results are shown in Figure 12, respectively. In Figure 663 

12, the average flood risk reflects the differences in risk development of the provincial administrative 664 

units in Shanghai, Anhui, Zhejiang, and Jiangsu in terms of time and space. Overall, all administrative 665 

units in the YRDUA exhibited the highest flood risk in 2020, and the overall risk trend increased. At the 666 

provincial level, Shanghai’s flood risk was consistently low, showing a trend of first decreasing from 667 

0.152 in 1990 to 0.123 in 2000 and then gradually increasing to 0.311 in 2020. Among the other three 668 

provinces, Jiangsu and Anhui had relatively high flood risks, reaching 0.525 and 0.516, respectively, in 669 

2020, whereas Zhejiang had a relatively low flood risk, which remained stable between 1990 and 2010, 670 

with no distinct changes. 671 
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 672 

Figure 12: Distribution of Average Flood Risk in Each Province of the Yangtze River Delta Urban 673 

Agglomeration from 1990 to 2020 674 

 675 

4 Conclusion 676 

Flood risk assessment at the scale of urban agglomeration is a hot research topic in the field of disaster 677 

prevention and mitigation. In this study, the flood risk assessment indexes for YRDUA were determined 678 

in different dimensions of danger, exposure, vulnerability and resilience, and a flood risk assessment 679 

model based on AutoML and AHP was constructed to study the changes of spatial and temporal 680 

characteristics of flood risk in the region in the last 30 years from 1990 to 2020, aiming to provide 681 

scientific basis for the prevention and resilience of the YRDUA. The main conclusions of this study are 682 

as follows: 683 

(1) In the flood risk calculation, the CatBoost model has the highest Precision, F1-score, and Kappa, and 684 

its Precision can reach 0.9030. Further analysis of the ROC curve and the corresponding AUC value of 685 

the model shows that its AUC value is 0.91, which indicates that the CatBoost model has the best 686 

performance and prediction reliability. Therefore, the CatBoost model was selected to calculate the flood 687 

risk in the YRDUA.  688 
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 (2) Using the flood risk assessment model based on AutoML and AHP to obtain the flood risk of the 689 

YRDUA, superimposed on the flooded point data for comparative analysis, we found that the distribution 690 

of flooded points in the study area is basically consistent with the distribution of high and medium-to-691 

high risk areas of flooding, and the proportion of the distribution of the quantification of its distribution 692 

is 87.45%, which indicates that the model in this study has a good performance and credibility regarding 693 

the assessment of flood risk. 694 

(3) The spatial distribution of flood risk in the YRDUA during the 30-year study period shows obvious 695 

heterogeneity, with the southwestern part of the region and Shanghai City having a low flood risk, 696 

whereas the north-central part of the region faces a relatively high probability of flood risk. Between 697 

1990 and 2010, there was a substantial decrease in the high and medium-to-high risk flood zones; yet by 698 

2020, there was an increase in the high-risk flood zones. There is a tendency for the medium-to-high risk 699 

area in the center of the region to shift to a high-risk area, whereas high-risk areas also occur in the cities 700 

of Chizhou and Anqing in Anhui Province. 701 

(4) All administrative units of the YRDUA exhibited the highest flood risk in 2020, with an overall trend 702 

of increasing risk. At the provincial level, Jiangsu and Anhui Provinces possess relatively high flood 703 

risks, whereas Zhejiang Province has a relatively low flood risk.  704 

(5) The findings of this study provide valuable insights for flood risk management and policy-making. 705 

The flood risk maps generated in this study can serve as a scientific basis for urban planning, 706 

infrastructure development, emergency response, and disaster prevention strategies. By integrating these 707 

risk assessments into decision-making processes, government agencies and urban planners can optimize 708 

flood prevention measures and enhance regional resilience. Furthermore, the AutoML framework used 709 

in this study can be applied to other regions for flood risk assessment and can be integrated with future 710 

climate change scenarios to enable long-term forecasting and proactive disaster mitigation strategies. 711 
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