
Dear Editor and Reviewers, 

We sincerely appreciate the time and effort that the editor and reviewers have 

devoted to reviewing our manuscript. We are truly grateful for your insightful 

comments and constructive suggestions, which have greatly contributed to 

improving the overall quality, clarity, and rigor of our work. We have carefully 

addressed each point raised and revised the manuscript accordingly. Below, we 

provide detailed, point-by-point responses to all reviewer comments, along with 

explanations of the modifications made to the manuscript. 

Thank you once again for your valuable feedback and continued support. 

 

Editor Comment  

a) Figure 2 may contain a territory that is disputed according to the United Nations (small map 

in the upper left corner). 

Response: Thank you for pointing this out. We have replaced the map to address this issue. The 

upper-left inset map in Figure 2 has been changed: it now shows the location of the Yangtze 

River Delta Urban Agglomeration (YRDUA) within the Euro-Asia continent, without including 

any disputed territories. The position of the YRDUA is indicated using a red five-pointed star 

symbol, ensuring both clarity and compliance with the journal’s map policies. 

 

Figure 1: The schematic map of the YRDUA. 

 



b) Section "Author contribution": please use initials for the authors' names. 

Response: Thank you for your suggestion. We have revised the Author Contributions section to 

use initials for all authors’ names, in accordance with the journal’s formatting requirements. 

The revised author contributions are as follows: 

YG: Writing - original draft preparation, Validation, Software, Methodology, Conceptualization HL: 

Writing-review & editing, Visualization, Supervision, Formal analysis. YZ: Methodology, Formal 

analysis. HJ: Writing - review & editing, Methodology. SW: Software, Formal analysis. YG: 

Visualization, Software. SZ: Writing-review & editing, Resources, Project administration, Funding 

acquisition, Conceptualization . 

Reply on RC1 

1. Figure 2. Please change m to m asl, as I suggested before. 

Response: Thank you very much for your constructive suggestions. 

We have made the following modifications to Figures 2: 

(1) The elevation unit has been corrected from "m" to "m asl" (meters above sea level) in 

Figure 2. 

(2) The inset map in the upper-left corner has been replaced: it now shows the position of the 

YRDUA within the Euro-Asia continent, and no longer includes any disputed territories. 

(3) The location of the study area is now marked with a red five-pointed star, making it easily 

identifiable. 

 

Figure 2: The schematic map of the YRDUA. 



2. L165: please add more information about which kind of kriging you use and information 

about the semivariogram adopted. 

Response: Thank you for your helpful suggestion. We have revised the manuscript to specify 

the type of Kriging interpolation used and the semivariogram model employed. 

In this study, we applied ordinary Kriging, which assumes a constant but unknown mean within 

the local neighborhood. The semivariogram model adopted was the spherical model, which is 

widely used in environmental geostatistics due to its smooth and bounded nature. 

This clarification has been added to the revised manuscript in Section 2.2 (Data Preprocessing) 

as follows: 

“To generate continuous spatial surfaces from discrete data points, we applied the Ordinary 

Kriging interpolation method, which assumes a constant but unknown local mean (Cressie, 

1990). A spherical semivariogram model was adopted to capture spatial autocorrelation, as it is 

widely used in environmental geostatistics for its bounded range and smooth continuity 

(Webster and Oliver, 2007). The interpolation process was carried out using ArcGIS 10.8.” 

We believe this addition improves methodological transparency and will help readers better 

understand the spatial processing procedure. 

3. I’m curious about why the testing performance in several metrics is better in the testing 

dataset (e.g., extra trees or decision trees) than with the training set. The authors should try to 

explain that strange behavior. 

Response: Thank you for this insightful observation. We agree that it is uncommon for a model 

to perform better on the test set than on the training set. However, we believe this phenomenon 

in our study is justifiable due to several technical and methodological considerations, as detailed 

below. 

In our study, AutoML (Auto-sklearn) was employed to construct a binary classification model 

for flood hazard prediction. Only the six second-level hazard indicators were used as input 

features: Average Annual Precipitation (PREC), Annual Cumulative Heavy Rainfall Duration 

(DURA), Digital Elevation Model (DEM), Slope (SLOPE), Drainage Density (DD), and 

Normalized Difference Vegetation Index (NDVI). These variables represent the natural drivers 

of flood events. The classification task was based on 556 points (278 flooded + 278 non-flooded) 

selected from the historical inundation areas, verified using remote sensing and flood databases. 

The sample set was split into a 70% training set and a 30% test set (as detailed in Section 2.3 

and Section 3.1.1). 

Regarding your question, several technical factors may explain the slightly better performance 

observed in some metrics on the test set: 



(1) Small Sample Size and Statistical Variability: 

The total sample size (556) is relatively limited. With a test set of ~167 samples, minor 

variations (e.g., one or two easier-to-classify cases) can noticeably influence performance 

metrics like precision or F1-score. These fluctuations are within the range of statistical 

randomness and are not indicative of data leakage or overfitting. 

(2) Random Partitioning and Class Balance: 

Although the dataset was balanced (1:1 flooded to non-flooded), the training and test sets were 

split randomly. This could lead to the test set containing slightly “ easier ”  or more 

representative instances, whereas the training set might include a few borderline or noisy 

samples. Thus, the model may generalize better to the test set purely by chance. 

(3) Regularization and AutoML Behavior: 

All models were trained under AutoML's hyperparameter tuning pipeline, which uses internal 

cross-validation and enforces regularization (e.g., tree depth limits or minimum leaf size). As a 

result, the model may slightly underfit the training data to avoid overfitting. This behavior, 

particularly with models like Extra Trees that average multiple randomized trees, can result in 

slightly higher test performance under certain conditions. 

(4) Evaluation Metric Sensitivity: 

Precision, recall, and F1-score are sensitive to class distribution and small sample shifts. A few 

additional true positives or fewer false positives in the test set can raise these metrics, especially 

in a dataset of this size. 

(5) No Data Leakage: 

We confirm that the training/test split was performed before any modeling or hyperparameter 

tuning, and all parameter optimization was confined to the training set. The test set was never 

seen during training or model selection, ruling out data leakage. If leakage had occurred, we 

would expect all metrics to be uniformly higher—not just marginally so in a few models. 

(6) Consistency with Other Studies: 

Similar patterns of test performance exceeding training performance in individual metrics have 

been observed in other flood-related studies. For instance, Wang et al. (2024) reported a 

comparable result in their study on the Spatio-temporal evolution of public opinion on urban 

flooding during the 7.20 Henan extreme flood event. 

To clarify this in the manuscript, we have added the following sentence to Section 3.1.1 

(AutoML optimal model selection): 



“Interestingly, in a few cases (e.g., Extra Trees), test set performance slightly exceeded that of 

the training set in certain metrics. This is not uncommon in small, balanced datasets and may 

result from a combination of factors such as random sampling variation, slightly easier test 

samples, or appropriate regularization that reduces overfitting in the training set.” 

In conclusion, the slight outperformance on the test set is a result of normal statistical variability, 

model regularization, and careful design of a balanced dataset. This behavior is well-

documented in prior literature and does not indicate methodological issues. 

4. Data availability statement. Please take care of this section and write all the availability 

statements, as I requested before. Nowadays, it is not enough to write “Data will be made 

available on request.” 

Response: The revised “Data availability” section now explicitly lists each dataset and its 

corresponding provider, along with web links to public repositories or official data platforms 

where applicable. We have also removed the previous general statement “Data will be made 

available on request,” as advised. 

Administrative boundaries and river network density were obtained from the Resource and 

Environmental Science and Data Center, Chinese Academy of Sciences 

(https://www.resdc.cn/DataList.aspx). Digital elevation data were derived from the SRTM1 

dataset provided by USGS (https://earthexplorer.usgs.gov/). Land use data were sourced from 

the China Land Cover Dataset (CLCD) developed by Wuhan University 

(https://zenodo.org/records/8176941). Hourly precipitation data from 120 meteorological 

stations were obtained from the National Meteorological Information Center, China 

Meteorological Administration (https://data.cma.cn/). Historical flood inundation data were 

obtained from the MODIS-based Global Flood Database and validated using the EM-DAT 

disaster database 

(https://developers.google.com/earthengine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS

_EVENTS_V1).  

Reply on RC2 

1. Line 57 - What are the limitations that have been addressed by ensemble methods? What are 

ensemble methods?  

Response: Thank you for this helpful comment. In the revised manuscript, we have clarified 

the definition of ensemble methods and explicitly listed the limitations of traditional machine 

learning models that ensemble methods aim to address. Specifically, we now explain that 

ensemble methods are a class of ML techniques that combine multiple base learners to form a 

stronger predictive model, and they are designed to mitigate issues such as high variance, 

https://www.resdc.cn/DataList.aspx
https://earthexplorer.usgs.gov/
https://zenodo.org/records/8176941


overfitting, sensitivity to noise, and poor generalization.  

The revised sentence now reads: 

"Ensemble methods are a class of machine learning techniques that combine multiple base 

learners to form a stronger predictive model (Webb and Zheng, 2004). They are designed to 

overcome several limitations of individual models, such as high variance, overfitting, 

sensitivity to noise, and poor generalization(Yang et al., 2013). By aggregating the outputs of 

weak learners, ensemble methods significantly enhance model stability, accuracy, and 

robustness—especially in high-dimensional and complex classification or regression tasks 

(Kazienko et al., 2015)." 

2. Line 58 - What are integrated ML methods? 

Response: Thank you for pointing out this ambiguity. In the original manuscript, the term 

“integrated ML methods” was intended to refer to ensemble machine learning techniques. To 

avoid confusion, we have revised the sentence to use the more accurate and standard term 

“ensemble ML techniques.” Additionally, we have provided specific examples of ensemble 

methods such as bagging (Random Forest), boosting (XGBoost, CatBoost), and stacking, and 

clarified their relevance to hydrological modeling.  

The revised sentence reads: 

"Various ensemble ML techniques, including bagging (e.g., Random Forest), boosting (e.g., 

XGBoost, CatBoost), and stacking, have been widely used in hydrology, with boosting 

algorithms in particular showing strong performance in flood prediction and risk assessment 

(Shafizadeh-Moghadam et al., 2018; Mirzaei et al., 2021; Yan et al., 2024)." 

3. Line 71 - The statement is unclear and seems incorrect - the authors have themselves pointed 

out that by carefully configuring ML models, they can in fact perform well across varied 

problems. 

Response: Thank you for your careful reading and insightful comment. We acknowledge that 

the original statement may appear contradictory. In the revised version, we have clarified our 

point by emphasizing that while machine learning algorithms can achieve strong performance 

in many cases, no single algorithm universally outperforms others across all tasks. Therefore, 

careful configuration of each component in the ML pipeline—such as feature engineering, 

model selection, and hyperparameter tuning—is essential to adapt to different problems.  

The revised sentence reads: 

"While machine learning algorithms have demonstrated strong performance in many domains, 

no single algorithm consistently performs best across all types of problems. Therefore, to 

achieve optimal performance, it is essential to carefully configure key components of the ML 



pipeline, including feature engineering, model selection, and hyperparameter tuning (Li et al., 

2017; Raschka, 2020)." 

4. Line 76 - What does experience mean? 

Response: Thank you for your insightful comment. We have revised the sentence to explicitly 

define what “experience” refers to in the context of machine learning. We also revised the 

structure of the sentence for clarity and to maintain a logical flow into the key research 

challenge addressed in our study.  

The updated sentence now reads: 

"The effectiveness of ML improves with experience, where “experience” refers to the model’

s iterative exposure to training data and its ability to learn patterns from labeled examples 

(Jordan and Mitchell, 2015; Nagarajah and Poravi, 2019). One key challenge addressed in this 

study is how to automatically optimize model components such as feature selection and 

algorithm configuration in flood risk prediction, while maintaining high accuracy and 

adaptability across complex hydrological conditions. " 

5. Line 80 - What are some of the various problems being addressed by AutoML? 

Response: Thank you for your helpful comment. We agree that the original wording was too 

general and did not adequately specify the kinds of problems AutoML addresses. In the revised 

manuscript, we now explicitly state that AutoML automates several key processes in the 

machine learning pipeline, including feature selection, model selection, hyperparameter tuning, 

and ensemble learning. These steps are critical to improving model performance and reducing 

subjectivity. 

In addition, we have clarified the relevance of AutoML in the context of this study. Specifically, 

AutoML enables automatic optimization of hazard factor selection, model construction, and 

parameter adjustment in the flood risk assessment workflow.  

The revised passage reads: 

“AutoML is an innovative machine learning framework that automates key stages of the model 

development pipeline, including feature selection, model selection, hyperparameter tuning, and 

ensemble learning. By addressing these challenges, AutoML reduces reliance on expert 

knowledge and minimizes subjectivity in model building (He et al., 2021; Consuegra-Ayala et 

al., 2022). In the context of this study, AutoML enables the automatic optimization of hazard 

factor selection, model construction, and parameter adjustment for flood risk assessment tasks, 

thereby improving efficiency, objectivity, and reproducibility in model development.” 

6. Line 95 - The authors have not provided any evidence to support this statement. 



7. Line 96 - The statement is unsupported. 

Response: Thank you for your valuable comments. We agree that the original statements in 

Lines 95–96 lacked sufficient supporting evidence. In the revised manuscript, we have 

restructured this section to improve clarity and provide appropriate citations. Specifically, we 

now cite Guo et al. (2022c) to support the effectiveness of AutoML in flood hazard prediction, 

and Hutter et al. (2019) and He et al. (2021a) to support its methodological advantages. 

The revised text now reads: 

“In the field of flood risk assessment, AutoML has been preliminarily demonstrated to perform 

well in flood hazard prediction (Guo et al., 2022). As an efficient ‘black-box’ modeling 

approach, AutoML provides strong support for flood risk modeling through automated feature 

selection, model training, and parameter optimization  (Hutter et al., 2019; He et al., 2021). ” 

We believe this revision strengthens the foundation for the subsequent discussion on the 

methodological limitations of AutoML and the motivation for incorporating MCDA. 

8. Line 99 -Which complex decision making problems are the authors referring to? 

Response: Thank you for your insightful comment. We agree that the original sentence did not 

sufficiently clarify what types of complex decision-making problems are involved. In the 

revised manuscript, we have elaborated on this point by explaining that flood risk assessment 

in urban agglomerations involves multiple natural and socioeconomic indicators—such as 

rainfall, topography, land use, drainage, and population density — that originate from 

heterogeneous, often multi-source datasets and differ in type. These indicators frequently 

interact in non-linear and uncertain ways, making it difficult to evaluate their relative 

contributions to overall flood risk. 

To address these challenges, we now clarify that multicriteria decision analysis (MCDA) 

provides a structured framework for integrating such diverse indicators into a unified evaluation 

system by constructing weighting schemes that align the results with real-world conditions and 

expert knowledge (Fernández and Lutz, 2010). Furthermore, in cases where certain data are 

missing or difficult to quantify, MCDA allows for the incorporation of expert judgment through 

tools such as scoring systems and pairwise comparison matrices, thus improving the robustness 

and practical applicability of the assessment (Hites et al., 2006). 

The revised passage now reads: 

In urban agglomerations, flood risk assessment is a highly complex task involving diverse 

natural and socioeconomic factors derived from heterogeneous and often multi-source datasets 

(Wang et al., 2023). These factors—such as rainfall, topography, land use, drainage, and 

population density—differ in type and often interact in non-linear and uncertain ways (Shuster 



et al., 2005; Zhang et al., 2017; Wang et al., 2018). Under such complex circumstances, AutoML 

struggles to systematically evaluate the multi-dimensional indicators of flood risk. To address 

this limitation, this study introduces a multicriteria decision analysis (MCDA) approach to 

quantify the importance of various indicators within the evaluation framework (Pham et al., 

2021). MCDA facilitates the integration of such heterogeneous indicators into a unified 

evaluation framework by constructing structured weighting schemes, thereby aligning the 

assessment results more closely with real-world conditions and expert knowledge (Fernández 

and Lutz, 2010). In cases where data are limited or certain indicators are difficult to quantify, 

MCDA methods allow for the incorporation of expert judgment through scoring systems and 

pairwise comparison matrices, enhancing the practical applicability and robustness of the model 

(Hites et al., 2006). 

9. Line 171 - Was the normalization done prior to or after splitting the data into training and 

test sets? Doing it prior to split can give incorrectly optimistic results due to data leakage. For 

example, if training data only had GDP up to $1000 per capita, then the normalized value of 

1.0 will refer to that. In test data, if a value of $1500 is observed, it would now be input as a 

value > 1.0 using the normalization logic from the training set. However, by normalizing prior 

to the split, the normalization logic would have already “seen” the $1500 value and assigned 

1.0 to it, hence the data has been leaked. 

Response: Thank you for your valuable comment. We appreciate your observation and 

acknowledge that the original wording in the manuscript may have led to misunderstanding. 

We would like to clarify that in this study, the normalization was conducted after splitting the 

dataset into training and testing subsets, which effectively avoids data leakage. Specifically, the 

minimum and maximum values used for normalization were computed only from the training 

set, and the same values were used to normalize both the training and test sets. As a result, the 

normalized values in the training set are guaranteed to lie within the range [0,1], while values 

in the test set may exceed this range if they fall outside the value range of the training data. 

To ensure clarity and correctness, we have revised the relevant sentence in the manuscript as 

follows: 

(2) Normalization of the numerical range can be achieved using a normalization process. In this 

study, the Min-Max normalization method is applied. Specifically, the minimum and maximum 

values of each feature are computed only from the training set, and both the training and test 

sets are then normalized using these training-derived parameters. This ensures that the 

normalized values in the training set are scaled to the range [0,1], while the values in the test 

set may exceed this range if they fall outside the training set’s value distribution. The formula 

is as follows: 



𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑡𝑟𝑎𝑖𝑛

𝑥𝑚𝑎𝑥
𝑡𝑟𝑎𝑖𝑛 − 𝑥𝑚𝑖𝑛

𝑡𝑟𝑎𝑖𝑛
 

10. Line 177 - What is the definition of a flooded point given that multiple historical floods are 

being considered? 

Response: Thank you for your insightful comment. We agree that the definition of a “flooded 

point” should be clearly stated, especially when multiple historical flood events are involved. 

In the revised manuscript, we have clarified that: 

A flooded point is defined as a location that lies within the inundation extent of at least one 

recorded flood event during the study period.  

This definition reflects the cumulative spatial footprint of flood events over time. All flooded 

points were selected from validated inundated areas identified through flood traces in the 

Global Flood Database and the EM-DAT database, and further verified through satellite 

imagery, Google Earth, and historical flood records. This ensures that the flooded points used 

in model training accurately represent locations that were affected by at least one historical 

flood. 

11. Figure 4 - How were the second-level factors selected? Surely, there are 10’s-100’s of other 

factors each of which could contribute to H-E-V-C, so what led to the specific choices to select 

this subset? 

Response: Thank you for your valuable comment. We agree that each dimension of the H-E-V-

R framework includes a wide range of potential indicators.  

In this study, the selection of second-level indicators was based on the following considerations: 

(1) Theoretical framework and literature support: The indicator system was developed with 

reference to studies based on the H-E-V-R framework or similar vulnerability– resilience 

analytical approaches. It was specifically adapted to the characteristics of the Yangtze River 

Delta urban agglomeration. The selected variables have been widely used in existing flood risk 

assessments to quantify meteorological hazards, exposure, vulnerability, and resilience, and are 

proven to be representative and practical (Gain et al., 2015; Criado et al., 2019; Liu et al., 2019; 

Hsiao et al., 2021; Bin et al., 2023). 

(2) Data availability and spatial applicability: All indicators used in this study are based on 

publicly available datasets with broad spatial coverage. Their resolution is appropriate for 

regional-scale analysis, particularly at the urban agglomeration level. This ensures consistency 

and comparability across the entire study area. 

 

(3) Representativeness and reduction of redundancy: For each dimension, we prioritized key 



indicators that reflect distinct aspects while avoiding strong correlations or overlapping 

meanings among variables. For example, in the exposure dimension, flood-related damage is 

typically correlated with the concentration of people, economic activity, infrastructure, and 

other assets in affected areas. Therefore, we selected indicators such as land area, population 

density, GDP density, and building density to capture different perspectives on the degree of 

exposure of natural and social systems to flood hazards. 

(4) Modeling feasibility and efficiency: While ensuring comprehensive coverage of key factors, 

we also aimed to maintain interpretability and computational efficiency in the machine learning 

models. This avoids potential overfitting caused by excessive input variables. As a result, a 

representative and empirically grounded subset of indicators was finalized for use in this study. 

Importantly, we would like to note that these principles and the rationale for indicator selection 

were already addressed in the previous revision of Section 2.4 ("Establishment of a flood risk 

assessment indicator system"). In that section, we clearly outlined the indicator selection 

process for each of the four dimensions (hazard, exposure, vulnerability, and resilience), 

explaining their relevance, definitions, and interpretation within the flood risk assessment 

framework. This earlier addition reflects our attention to scientific transparency and 

methodological justification. 

12. Line 300 - How is the balance of Precision, Recall, and F1-score quantified? 

Response: Thank you for your valuable comment. We have revised the relevant paragraph in 

the manuscript to clarify how the balance between Precision and Recall was quantified during 

model selection. 

Specifically, the F1-score was used as the primary evaluation metric, as it provides a harmonic 

mean of Precision and Recall and is widely used to capture the trade-off between the two in 

binary classification tasks. For each set of hyperparameter combinations, k-fold cross-

validation was performed within the training set, and the model with the highest average F1-

score across all folds was selected as the optimal configuration. Precision and Recall were also 

reported independently to support interpretability, but F1-score served as the key criterion for 

quantifying the overall balance. 

This clarification has been added to the revised manuscript (Section 2.5.2). 

13. Line 419 - How was this 5-fold cross-validation performed, and how was it different than 

the k-fold used for hyperparameter tuning? 

Response: Thank you for this important comment. We appreciate the opportunity to clarify the 

two distinct uses of cross-validation in our study. 

In response to your suggestion, we have added a clarification at the end of Section 2.5.2 Model 



training and hyperparameter optimization, explaining that 5-fold cross-validation was applied 

at two distinct stages: 

(1) During hyperparameter optimization, 5-fold cross-validation was used within the training 

set only, to evaluate and select the best-performing hyperparameter combination. 

(2) Following final model selection, an independent 5-fold cross-validation was applied to the 

entire dataset to evaluate the generalization performance of the model and identify potential 

overfitting. 

The data splits used in these two stages were entirely separate, and no data leakage occurred. 

This clarification has been added to the revised manuscript to improve the transparency and 

reproducibility of the experimental procedure. 

14. Line 485 - Did the authors populate the judgement matrix? How were the values selected? 

Response: Thank you for your insightful question. We have revised Section 3.1.3 of the 

manuscript to clarify how the judgment matrices were constructed and how the values were 

determined. 

Specifically, the judgment matrices were populated by the authors using a hybrid approach. For 

the hazard indicators, the pairwise comparisons were informed by feature importance scores 

obtained through the AutoML model. For the exposure, vulnerability, and emergency resilience 

indicators, the relative weights were derived based on a combination of expert judgment, a 

review of relevant literature, and the socio-environmental characteristics of the YRDUA. The 

Saaty 1–9 scale was applied to express the relative importance of each pair of indicators. 

All judgment matrices underwent consistency checks, and the calculated consistency ratio (CR) 

was 0.0058, which is well below the 0.1 threshold, indicating that the matrices were logically 

consistent. These clarifications have been incorporated into the revised manuscript to enhance 

transparency and reproducibility. 

15. Section 3.1.2 - Were only the hazard second-level factors used as features for the AutoML 

method, or were all 19 factors used, as only the importance of hazard factors is presented? 

Response: Thank you for your important comment. We appreciate the opportunity to clarify the 

structure and feature input strategy of the AutoML model. 

In this study, only the six second-level indicators under the hazard dimension were used as input 

features for the AutoML model. This is because flood hazard — defined as the physical 

likelihood of flooding—is primarily determined by natural environmental factors such as 

precipitation, elevation, slope, and drainage density. The AutoML algorithm was used to build 

a binary classification model (flooded vs. non-flooded points), which is a task it performs 

particularly well due to its strengths in automatic feature selection, high computational 



efficiency, and predictive accuracy. 

However, AutoML, as a black-box model, lacks the interpretability required for evaluating 

social or systemic dimensions such as exposure, vulnerability, and resilience. It cannot provide 

structured weights across multiple dimensions of flood risk. To address this, we incorporated 

the Analytic Hierarchy Process (AHP), a widely used multi-criteria decision-making method in 

flood risk assessment, to assign weights to these additional dimensions based on expert 

judgment and literature review. 

The judgment matrix for the hazard indicators was constructed based on the feature importance 

scores output by the AutoML model. In contrast, the matrices for the exposure, vulnerability, 

and resilience dimensions were constructed using the 1–9 Saaty scale, informed by domain 

experts and relevant literature. 

To ensure transparency, we have explicitly clarified this distinction in the revised manuscript 

in two places: 

(a) In the final paragraph of the Introduction, we further clarified the overall model structure: 

“This study develops a flood risk assessment model for the YRDUA by analyzing the factors 

influencing flood risk and integrating AutoML and AHP methods. In this model, AutoML is 

employed to construct the flood hazard sub-model, using indicators that represent natural 

environmental drivers as input features. The hazard is modeled as a binary classification 

problem (i.e., whether flooding occurs), and the resulting feature importance rankings provide 

an objective basis for subsequent indicator weighting. Nevertheless, as a data-driven approach, 

AutoML alone cannot structurally interpret the relative influence of social and systemic factors 

within a multi-dimensional flood risk assessment framework. Therefore, this study incorporates 

the AHP to calculate the weights of flood exposure, vulnerability, and resilience in the YRDUA, 

based on expert knowledge and existing literature. A regional flood risk zoning map is then 

generated. A comparative analysis with observed inundation points data shows a strong spatial 

alignment between the distribution of flooded points and the high to medium-high risk zones, 

highlighting the reliability and applicability of the proposed model. The remainder of this paper 

is structured as follows: Section 2 describes the study area, data sources, and methodology; 

Section 3 presents the results and analysis; Section 4 discusses the findings and their 

implications; and Section 5 concludes the study with key insights and recommendations.” 

(b) At the beginning of Section 3.1.2, we added the following explanation: 

“In this study, the AutoML model was used specifically to assess flood hazard, which represents 

the physical likelihood of flood occurrence and is directly driven by environmental factors such 

as rainfall, topography, and drainage characteristics. Therefore, only the six second-level 

indicators under the hazard dimension were used as input features in the AutoML model. This 



approach allowed us to focus the model on identifying the key natural drivers of flooding, while 

the other dimensions—exposure, vulnerability, and resilience—were later incorporated via the 

AHP method for comprehensive flood risk evaluation.” 

We hope this explanation and revision adequately address your concern. 

16. Section 3.2 - Some of the factors like population and building density are expected to 

consistently increase and have likely done so between 1990 to 2010. What were the ranges of 

these factors during model training vs when using the model for calculating spatio-temporal 

variation? A table showing typical values both during training and later implementation will be 

helpful, and e.g., could be included in Table 1. 

Response: Thank you for this thoughtful question. We believe this comment raises an important 

point regarding the temporal evolution of socio-economic indicators such as population density 

(DPOP) and building density (DBUI), and their implications for model training and application. 

We appreciate the opportunity to clarify how these variables were used in our study. 

We would like to clarify that in this study, only the six second-level indicators under the flood 

hazard dimension—namely Average Annual Precipitation (PREC), Annual Cumulative Heavy 

Rainfall Duration (DURA), Digital Elevation Model (DEM), Slope (SLOPE), Drainage 

Density (DD), and NDVI—were used as input features for AutoML model training. These 

indicators are driven by natural environmental conditions and were used to train a binary 

classification model to predict flood occurrence (flooded vs. non-flooded points). 

In contrast, other indicators such as population density, GDP density, and building density, 

which are known to evolve over time, were not included in the AutoML training process. 

Instead, they were integrated into the comprehensive flood risk assessment using the Analytic 

Hierarchy Process (AHP). This method enabled us to incorporate both expert judgment and 

literature references to assign weights to all second-level indicators across the three dimensions: 

exposure, vulnerability, and resilience. 

This design reflects our overall methodological strategy of combining data-driven modeling 

(AutoML) with expert-informed decision analysis (AHP), enabling both predictive accuracy 

and model interpretability. Importantly, the AutoML component, which could be affected by 

variable shifts over time, was isolated from these time-sensitive socio-economic features, 

ensuring the model’s temporal consistency and preventing leakage or extrapolation issues. 

To further clarify this distinction, we have added an explanatory paragraph at the beginning of 

Section 3.1.2 of the revised manuscript.  

We hope this explanation adequately addresses your concern. 
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