Dear Editor and Reviewers,

We sincerely appreciate the time and effort that the editor and both reviewers have
dedicated to evaluating our manuscript. We are grateful for the insightful
comments and constructive suggestions, which have significantly helped us
improve the quality and clarity of our work. We have carefully considered each
comment and have made the necessary revisions accordingly. Below, we provide
detailed responses to each of the reviewers' suggestions and explain the
corresponding modifications made in the manuscript.

Thank you again for your valuable feedback and support.

Reply on RC1

1. Thank you for your valuable feedback. In response to your comment that the datasets were not
sufficiently described, we have revised and improved Section 2.2.1 (Data Sources) to provide clearer
and more detailed descriptions of the datasets used in this study.

Specifically, we have modified the table format and content to:

(1) Clarify dataset details (e.g., data processing, resolution, and coverage).

(2) Ensure consistency in formatting and descriptions across all dataset categories.

(3) Improve readability by structuring the information in a more accessible way.

The updated Table 1 now provides a more comprehensive overview of the datasets used, including

spatial resolution, data preprocessing methods, and specific sources.

2. Thank you for your valuable feedback. In response to your comment regarding the level of detail
in the results, we have carefully revised the manuscript and incorporated detailed modifications
based on the specific comments you provided.

Each of your specific concerns has been addressed individually, with revisions made to enhance the
clarity, completeness, and validity of the results. These modifications ensure that the findings are
now presented with a greater level of detail, making them more transparent and easier to evaluate.
We appreciate your insightful suggestions, which have significantly contributed to improving the

manuscript.



3. The combination of machine learning and AHP methods for flood risk assessment is already quite
common. However, using only a single machine learning algorithm tends to result in poor
interpretability of flood risk, leading to uncertainty in the model’s flood risk results. Additionally,
further research is needed to efficiently and accurately select the optimal machine learning algorithm
for the region.

Automatic machine learning tries to automatize the steps of feature extraction, model and algorithm
selection, parameter optimization, and so on so that it needs no human assistance and avoids man-
made bias. This approach only requires the configuration of different run times, allowing the
algorithm to explore a wider array of model and parameter combinations within the allocated time,
ultimately leading to the identification of the best-performing model.

This paper selects the Auto-Sklearn framework to address the binary classification problem of
flooded point identification and to calculate flood risk. By utilizing the characteristics of automated
machine learning, the efficiency of machine learning is improved, and the importance ranking of
flood hazard factors is obtained. The next step is to use the AHP to calculate the relevant weights
by combining the flood risk results with exposure, vulnerability, and resilience indicators. AHP aims
to quantify the decision-making process by scoring weights according to their level of importance,

ultimately yielding the flood risk results.

4. Line 57 - Replace the sentence in line 57 with: " Through continuous improvement and
development of machine learning algorithms, ensemble methods have been addressed the

limitations of traditional machine learning models. "

5. Line 76 - The meaning expressed in line 76 is inaccurate; a more precise phrasing would be: “The
effectiveness of machine learning "automatically improves with experience," and a key challenge
in the research is how to integrate the data processing capabilities and feature selection strengths of

hybrid models with ensemble models.”

6. Line 178 - The reason for choosing uneducated individuals as one of the indicators is that they
are often part of socially vulnerable groups. People with lower levels of education may not fully

understand warning information, disaster prevention measures, or have access to sufficient disaster



preparedness resources, which increases their vulnerability during disasters. Additionally, those
with higher education levels typically have access to more information channels, while individuals
with lower education levels may be unfamiliar with new technologies or information channels (such
as mobile apps and internet alerts). At the same time, lower-educated groups may live in areas with
less developed infrastructure, making it difficult for them to receive timely social aid and support.
Uneducated individuals may also find it harder to regain economic independence after a disaster, as
they may lack access to technical training or knowledge updates, leading to slower recovery.
Although income level is an important factor in assessing vulnerability, average income distribution
can sometimes obscure individual differences. For example, a region may have a high average
income level, but low-income groups (such as uneducated individuals) can still be in a highly
vulnerable state. Additionally, income level may not directly reflect an individual's awareness of

disaster, knowledge reserves, or ability to take action.

7. Line 179- Urbanization rate refers to the proportion of the urban population to the total permanent
population in a given region, and it reflects the level of urbanization in that area. This indicator has
an inverse relationship with flood vulnerability. Generally speaking, the higher the urbanization rate
of a region, the higher the level of social development and the capacity for protection, which can

reduce flood vulnerability to some extent.

8. Line 187- The flood inventory map in this paper was developed using inundation data from the
Global Flood Database and flood disaster data from the EM-DAT database, supplemented by
satellite and Google image interpretation and verified against existing historical flood records. The
actual flood-affected areas were delineated based on flood traces from the inundation datasets and
image interpretations. For this study, 278 flood inundation points were randomly selected within the
inundation data range during the study period, and the location of each point was used as the basis

for subsequent statistical analysis of flood events.

9. Line 188- Thank you for your valuable feedback. To enhance clarity and better address your
comment regarding Line 188, we have revised Section 2.2 in the manuscript.

The original Section 2.2 "Data Sources" has been renamed to "Section 2.2 Data Sources and



Processing" and is now divided into two subsections:

Section 2.2.1 Data Sources — Provides details on the datasets used in the study, including their
sources and resolutions.

Section 2.2.2 Data Standardization and Preprocessing — Specifically addresses the issue raised in
Line 188, explaining how features with different resolutions were mapped to meteorological stations
to construct the training dataset.

In Section 2.2.2, we have added a detailed explanation of the (1) Unification of Spatial Scale and
(2) Normalization of the Numerical Range:

(1) Unification of spatial scale means aligning data within the same coordinate range and resolution.
The research data is standardized through projection transformation, converting all datasets into the
same geographic and projected coordinate systems. The Kriging interpolation method is used to
spatially process all discrete data. Finally, if the spatial data has different resolutions, resampling is
performed to standardize all data to the same resolution, which in this study is unified to 30mx30m.
(2) Normalization of the numerical range can be achieved using a normalization process. Through
a linear transformation, the values of the data are mapped to the range [0, 1], thus eliminating the
influence of differing dimensions among the data indicators. In this study, the Min-Max

Normalization method is used for normalization, and the formula is as follows:

r x—min(x)

max(x)—min(x)

These modifications ensure that datasets from different sources and resolutions are properly

standardized for flood risk assessment.

10. Line 194 - Data balancing was necessary in this study because an imbalanced flood and non-
flood sample ratio led to biased model performance, where the classifier tended to favor the majority
class. Through experiments, we found that using a 1:1 ratio for flooded and non-flooded points in
the training dataset significantly improved the model's predictive performance, compared to 1:2 and
1:3 ratios, which resulted in decreased recall for the minority class. Therefore, we adopted a 1:1
sampling strategy to ensure a more balanced representation of flood and non-flood samples during

training.



11. Line 201- Each label consists of 278 points representing entire dataset.

12. Line 201- The overview map of the study area has been revised to display the spatial distribution

of flooded and non-flooded points.

13. Line 231- The text here contains a definition error, which has been corrected in the main body

of the paper. Thank you to the reviewer for pointing this out.

14. Line 290- The definition of consistency has been added to the paper: In a pairwise comparison
matrix, the decision-maker's judgments must exhibit logical coherence and transitivity. This means
that if option A is considered more important than option B, and option B is considered more
important than option C, consistency requires that option A must also be judged more important

than option C.

15. The A in Eq. 11 should be Amax as defined in Eq. 10, and this has been corrected in the paper.

16. Line 299 - This sentence has been revised: Where average Random Consistency Index (RI)
represents the average random consistency which depends only on the order of the judgment matrix.

The RI values for judgment matrices of order 1 to 10 are shown in Table 3.

17. Line 316 - Thank you for your valuable feedback. In response to your comment on Line 316,
we have removed accuracy as an evaluation metric. Instead, we have adjusted the relevant sections
throughout the manuscript to focus on Precision, Recall, F1-score, and the Kappa coefficient, which
provide a more reliable evaluation of model performance in an imbalanced dataset.

We have carefully revised all occurrences of accuracy in the text to ensure consistency and clarity

in our evaluation methodology. Please let us know if further modifications are needed.

18. Line 319 - The probability thresholds for accuracy, precision, recall, and F1-score range from

[0, 1], while the Kappa coefficient ranges from [-1, 1].



19. Line 327 - We used 5-fold cross-validation to assess overfitting by comparing the performance
of the training and testing sets. The experimental results indicate that the performance of the training

set and testing set is relatively close, suggesting that the model does not exhibit overfitting.

20. Line 368 - Thank you for your valuable suggestion. We have adopted your recommendation and
have cited Lundberg and Lee (2017) instead of Wang et al. (2023a) for the description of SHAP.
Additionally, we have revised the sentence for improved clarity as follows:

"SHAP is an explanation method based on game theory and belongs to post-hoc model interpretation

methods (Lundberg and Lee, 2017)."

21. Figure 8 - Thank you for your question regarding Figure 8. The figures were generated based
on a flood risk assessment model that combines CatBoost under the AutoML framework and AHP
to calculate flood hazard, exposure, vulnerability, and resilience in the YRDUA.

The flood hazard level (a), flood exposure level (b), flood vulnerability level (c), flood resilience
level (d), and flood risk spatial distribution (e) were derived through natural breaks classification in
ArcGIS software, using weights determined by the model. The final result is a flood risk zoning

map for the YRDUA.

22. Line 450 - Thank you for your comment. We have revised the original text and incorporated the
following content to clarify the causes of differences in flood risk over the past decades:

"The differences in flood risk among cities in the YRDUA over the past few decades are primarily
due to a complex interplay of various factors, including geographic and climatic conditions,
urbanization processes, socio-economic factors, ecological changes, and historical flood events. The
topography and precipitation patterns of different cities affect their capacity for rainwater drainage
and accumulation, while urbanization leads to an increase in impervious surfaces and variations in
infrastructure development, impacting flood management capabilities. Additionally, differences in
population density, economic development levels, and flood management policies can exacerbate
flood risk. Furthermore, the increasing frequency of extreme weather events due to climate change

further elevates flood risk. These factors determine the varying levels of flood risk among cities



within the YRDUA."

Reply on RC2

1. Line 13 - Thank you for your careful review. We appreciate your attention to detail. We have
adopted your suggestion and revised "remains" to "remain" in Line 13 to ensure grammatical
accuracy.

We appreciate your insightful comments and your help in improving the clarity and correctness of

our manuscript.

2. Line 19 - Thank you for your suggestion. We have introduced CatBoost properly in the revised
manuscript and have modified the sentence as follows:

"Results indicate that, among different assessment models, the Categorical Boosting (CatBoost)
model achieves the highest accuracy, precision, F1-score, and kappa coefficient for flooded point
identification."

This ensures that CatBoost is properly introduced before being referenced.

3. Thank you for your careful review. We have corrected all missing spaces before citations as
mentioned and have thoroughly checked the entire manuscript to ensure consistency in citation
formatting.

We appreciate your attention to detail and your valuable feedback in improving the clarity and

presentation of our manuscript.

4. Line 78 - The point has been removed. Thank you for your correction.

5. Line 111-114 Thank you for your valuable suggestion. We have carefully revised Lines 108—114
to remove detailed results from the introduction and instead provide an overview of the manuscript
structure. The revised section now reads:

"The comparative analysis of superimposed flooded points data shows a strong alignment between

the distribution of flooded points in the study area and the high to medium-high risk areas,



highlighting the reliability and applicability of the proposed model. The remainder of this paper is
structured as follows: Section 2 describes the study area, data sources, and methodology; Section 3

presents the results and analysis; Section 4 discusses the findings and their implications; and Section

5 concludes the study with key insights and recommendations."

6. Figure 2 - Thank you for your constructive feedback on Figure 2. I have updated the color palette
to avoid any confusion with rivers and lakes, and have also inserted an inset map to illustrate the
position of the YRDUA relative to the entire China. The Digital Elevation Model (DEM) units of
measure, which are indeed meters above sea level (m asl), have been clearly stated. The revised

figure is attached in the submission documents for your review. I appreciate your detailed

suggestions and hope these revisions meet your expectations.
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Figure 1: The schematic map of the YRDUA.




7. Table 1- Thank you for your valuable suggestions regarding Table 1. We have carefully considered

your feedback and made the following improvements:

(1) Enhanced Dataset Descriptions — We have provided more detailed explanations for basic
geographic information data to ensure clarity and completeness.

(2) Improved Table Readability — To enhance readability, we have inserted a horizontal dividing
line after each data category, making it easier to distinguish between different dataset categories.

(3) Revised Table Caption — The table title has been updated to "Table 1: Description of the Datasets
Used for Flood Risk Assessment, Their Characteristics, and Data Sources", better reflecting its
comprehensive content beyond just a list of data sources.

These modifications ensure that dataset details are clearer, formatting is more structured, and the

table is easier to interpret. We appreciate your detailed review and insightful recommendations,

which have significantly improved the clarity and presentation of the dataset information.

Table 1: Description of the Datasets Used for Flood Risk Assessment, Their Characteristics,

and Data Sources.

Category Details Resolution Data Source
Administrative boundaries and river -Resources and
network density data. Environmental Science
Digital Elevation Model (DEM) based and Data Center, CAS
on SRTM1 (30m), mosaicked and (https://www.resdc.cn/).
clipped to the study area (27 core -USGS

Basic cities). (https://earthexplorer.usg
Geographic Land use data from CLCD (30m), 30m s.gov/).
Information includes 7 types: farmland, forest, -Wuhan University
Data shrubland, grassland, water, bare land, CLCD dataset
and impervious surfaces. (https://zenodo.org/recor
ds/8176941).
NDVI data (2000-2020) calculated - National Ecosystem
using the GEE platform. Science Data  Center
(nesdc.org.cn).
Hourly precipitation data from 120 National Meteorological
Meteorological ~ meteorological stations. Data . Information Center,
Data preprocessed for outlier removal and Station data China  Meteorological
missing value handling. Administration
Population, unemployment, GDP, and Provincial and municipal
Social Statistics  healthcare statistics at the prefecture Prelf:j:llre- statistical yearbooks and

level. bulletins



http://www.nesdc.org.cn/

Urbanization rate calculated using
urban population proportion.

GDP density and per capita GDP
derived from total GDP and land

area/population.

Flood inundation data from the
MODIS-based Global Flood Database
(2000-2018), processed to focus on
Historical the YRDUA region. To ensure 250m Global Flood Database
Disaster Data comprehensive selection of (https://www.emdat.be/).
inundation points, the inundated areas
within the time frame were overlaid to

produce a historical flood map.

8. Lines 168-183 Thank you for your insightful comment regarding the definition of heavy rainfall
in Line 172. Considering its importance as a key indicator in our analysis, we have revised Lines
168-183 to provide a clearer and more precise definition.

The revised section now explicitly states:

(1) Aheavy rainstorm event is defined according to the Meteorological Bureau's criteria as rainfall
of 50mm or more within 24 hours.

(2) Annual Cumulative Heavy Rainfall Duration (DURA) is defined as the total number of days in
a year when heavy rainstorm events occur at meteorological stations within the study area.

(3) The explanation now clarifies the relationship between prolonged heavy rainfall duration and
flood risk, reinforcing why DURA is a more crucial factor than total annual precipitation in
flood hazard assessment.

The revisions are as follows:

The hazard indicators consisted of six indices: Average annual precipitation (PREC), Annual

Cumulative Heavy Rainfall Duration (DURA), Digital Elevation Model (DEM), SLOPE, Drainage

Density (DD), and Normalized Difference Vegetation Index (NDVI). Rainfall is the primary factor

leading to flooding, particularly extreme rainstorms caused by climate change. According to the

Meteorological Bureau's definition, a heavy rainstorm event is characterized by rainfall of 50mm or

more within 24 hours. DURA is defined as the total number of days with heavy rainstorm events

occurring at all meteorological stations within the study area each year. The more days heavy

rainstorms accumulate and the longer their duration, the greater the likelihood of flooding and other



disaster events. DEM and SLOPE are important topographical indicators. Areas with low DEM and
SLOPE values are generally more susceptible to flood threats. DD refers to the area of rivers or
lakes per unit of land surface area and is a crucial indicator of a watershed's structural characteristics.
It determines the watershed's capacity to withstand flooding. The higher the DD, the greater the
likelihood of flooding and the higher the potential flood risk. Vegetation plays a role in water storage,
retention, and infiltration. The lower the vegetation coverage, the weaker the buffering capacity,
making it more likely for surface water to accumulate. The NDVI index measures the relative
abundance of green vegetation, with values ranging from -1 to 1. The higher the value, the greater
the vegetation coverage, and the lower the risk of flooding.

Land area (AREA), Population Density (DPOP), GDP Density (DGDP), and Building Density
(DBUI) were selected as exposure indicators to assess the degree of vulnerability of both the natural
environment and social systems to flooding. The land area for each administrative unit at the
prefecture-level city is calculated individually. A larger land area corresponds to a greater extent
exposed to flooding. DPOP and DGDP represent the concentration of population and assets,
respectively. Areas with higher DPOP and DGDP are more susceptible to potential threats from
pluvial flooding. DBUI, the ratio of total building area to total land area in a region, indicates the
building density. A higher DBUI reflects greater exposure to flooding.

Vulnerability indicators focus more on the social aspects of flood disasters. This study selects four
vulnerability indicators: Proportion of Child Population (PPOP_CHI), Proportion of Elderly
Population (PPOP_ELD), Proportion of Uneducated Population (PPOP_UEDU), and Urbanization
Rate (UR). Age is a key feature of social vulnerability, and both the population aged 0-14 and those
over 65 are considered vulnerable groups, as these age groups are more susceptible to flood damage.
The uneducated population generally has a weaker awareness of disaster risks and lower self-
protection capacity, which makes this group more vulnerable to flooding. The urbanization rate
refers to the proportion of the urban population in the total resident population of a region. This
indicator is inversely related to flood vulnerability. In general, a higher urbanization rate indicates
greater social development and stronger protective capacities, which can reduce vulnerability to
flooding to some extent.

The resilience indicators selected in this study include Gross Domestic Product (GDP) per capita,

Unemployment Rate (UEMP), Number of Doctors (DOCS), Number of Medical Institutions



(INSTS), and Number of Hospital Beds (BEDS). GDP per capita is the ratio of a region's GDP to
its total resident population over a specified period, reflecting the region's economic condition. A
higher GDP per capita indicates a more developed economy, which is associated with a greater
capacity to recover quickly after a flooding event. The Unemployment Rate (UEMP) measures the
proportion of the idle labor force, indirectly reflecting the stability of urban development. A high
unemployment rate signals economic instability, which weakens the capacity to cope with floods
and extends the time required for post-disaster recovery, thus impeding disaster response efforts.
The indicators of DOCS, INSTS, and BEDS provide insights into a region’s healthcare and medical
support capabilities. Areas with stronger healthcare systems are better positioned to manage flood

risks and recover more effectively from such disasters.

9. Thank you for your insightful question regarding the inclusion of three indicators related to the
sanitary sector. These indicators—doctors, medical institutions, and hospital beds—were selected
to comprehensively capture the region’s healthcare capacity, which plays a crucial role in resilience

during and after disasters.

While all three indicators pertain to healthcare, each represents a distinct aspect of flood resilience:

(1) Doctors reflect the availability of medical personnel to provide immediate care.

(2) Medical institutions indicate the infrastructure of healthcare facilities, which is essential for
disaster response.

(3) Hospital beds measure the capacity to accommodate affected individuals, particularly in large-
scale flood events.

Together, these indicators provide a balanced and multidimensional assessment of how the

healthcare sector contributes to flood resilience.

Regarding the suggested inclusion of civil protection forces, law enforcement, and firefighters, we

acknowledge their importance in disaster response. However, data availability constraints prevent

us from including these indicators in our analysis. The relevant data for civil protection and

emergency response forces are only available after 2012, whereas our study covers the years 1990,

2000, 2010, and 2020. Due to this limitation, we prioritized indicators with consistent data

availability across all study periods.



Furthermore, previous research has demonstrated the importance of healthcare-related indicators in
flood risk assessments. Ekmekcioglu et al., (2021) proposed a hierarchical procedure that
incorporates multiple flood vulnerability and hazard criteria, including healthcare capacity, to
generate district-based flood risk maps. The study highlights that integrating healthcare
infrastructure in flood risk assessments improves the ability to quantify social vulnerability and
disaster mitigation capacity.

Additionally, research by Ahmed et al., (2022) in Geocarto International emphasized that mitigation
capacity is a critical component in spatial flood risk mapping. The study found that regions with
better healthcare infrastructure exhibit enhanced resilience and faster recovery from flood disasters.
The inclusion of doctors, medical institutions, and hospital beds aligns with these findings, as they
directly contribute to flood preparedness, emergency response efficiency, and post-disaster recovery.
Based on these studies, we believe that healthcare-related indicators are essential for evaluating
community resilience in flood risk assessments. While we recognize the role of emergency response
units, our choice of indicators ensures consistency across different time periods and provides a

comprehensive understanding of flood resilience.

10. Thank you for your insightful question regarding the division of the training and testing datasets.
Based on your feedback, we have revised the manuscript to provide a clearer explanation of this process.
(1) Clarified Historical Disaster Data in Section 2.2
In Section 2.2, we have provided a more detailed explanation of the historical disaster data, specifically
the flood inundation data from the MODIS-based Global Flood Database (2000-2018). This dataset was
processed and cropped to focus on the Yangtze River Delta Urban Agglomeration (YRDUA).
(2) New Subsection 2.3: "Extraction of Historical Flood Inundation Points"
To explicitly address the division of the training and validation datasets, we have added a new subsection
(2.3) titled "Extraction of Historical Flood Inundation Points", positioned before the original "2.3
Establishment of a Flood Risk Assessment Indicator System".This section explains how the historical
flood map for the study area was generated and the criteria used to extract and separate the flooded and

non-flooded points.To further illustrate this process, we have included Figure 3:
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Figure 3: (a) Flood inundation map of the study area. (b) Spatial Distribution of Flooded and Non-
Flooded Points in the YRDUA.

(3) Revised Section Numbering for Better Flow
The original Section 2.3 has been renumbered as Section 2.4 ("Establishment of a Flood Risk Assessment
Indicator System"), and the order of the subsequent sections has been adjusted accordingly to maintain

logical coherence in the manuscript.

11. Thank you for your insightful comments regarding the model names used in the manuscript.
Based on your feedback, we have revised the model names to ensure clarity and accuracy.

(1) "Linear" has been updated to "Linear Regression" to explicitly specify that this refers to the
linear regression model.

(2) "Neural Network" has been updated to "Multi-layer Perceptron (MLP) Neural Network" to

clarify the specific type of neural network used in the study.

12. Section 2.4: Thank you for your insightful comments regarding data processing and spatial
resolution. To enhance clarity and better address your concerns, we have made the following
revisions in Section 2.2 of the manuscript.

(1) Renaming and Restructuring Section 2.2

(a) The original "Section 2.2 Data Sources" has been renamed "Section 2.2 Data Sources and

Processing" to better reflect both the datasets and the processing steps.



(b)This section is now divided into two subsections:

Section 2.2.1 Data Sources — Provides details on the datasets used in the study, including their
sources and resolutions.

Section 2.2.2 Data Standardization and Preprocessing — Addresses how features with different
resolutions were mapped and standardized for analysis.

(2) Clarification on Raster Data and Resolution Standardization

(a) The analysis was performed using raster data, and we ensured that all datasets were standardized
to a uniform resolution of 30m x 30m before model training.

(b) The preprocessing workflow involved projection transformation, spatial interpolation, and
resampling to align all datasets within the same coordinate reference system and spatial scale.

(3) Detailed Explanation in Section 2.2.2

In Section 2.2.2, we have explicitly explained the two key preprocessing steps:

(a) Unification of Spatial Scale:

Data were standardized through projection transformation to ensure that all datasets were aligned
within the same geographic and projected coordinate system. To process discrete spatial data, the
Kriging interpolation method was applied, ensuring a smooth and continuous representation.
Additionally, for datasets with different resolutions, resampling was performed to standardize them
to a uniform 30m X% 30m resolution for consistency in analysis

(b) Normalization of the Numerical range

A Min-Max Normalization process was applied to scale all values to [0,1], ensuring that different
feature dimensions do not introduce bias into the model. The formula is as follows:

x — min(x)

I —

~ max(x) — min(x)

13. Line 231-232 The text here contains a definition error, which has been corrected in the main

body of the paper. Thank you to the reviewer for pointing this out.

14. Thank you for your suggestion regarding Equation 5. Based on your feedback, we have modified
the notation to subscript "score" as recommended. We appreciate your careful review and

constructive input, which have helped improve the clarity and consistency of the manuscript.



15. Thank you for your attention to detail in reviewing the manuscript. I have updated "judgements"

to "judgments" in Table 2 as you suggested. I appreciate your guidance on this matter.

16.Line 299: This sentence has been revised: Where average Random Consistency Index (RI)
represents the average random consistency which depends only on the order of the judgment matrix.

The RI values for judgment matrices of order 1 to 10 are shown in Table 3.

17. Section 3.1.1: Thank you for your comment. We have added the training phase results in Section
3.1.1 and updated Table 4 to include both training and test set performances. The results show that
most models performed well on the training set but experienced a decline on the test set, indicating
variations in generalization ability. CatBoost demonstrated strong robustness, while models like
Decision Tree and Nearest Neighbors showed a more significant drop, suggesting higher sensitivity

to overfitting.

18. Thank you for your comment. We have made the requested changes and added an explanation
of the micro- and macro-average ROC curves in the text to clarify their meaning and relevance in

our analysis.

19. Thank you for your valuable feedback. Based on your suggestion, we have made revisions to
Section 3.1.2 to improve clarity and coherence. The two subsections—"Ranking of Importance" and
"SHAP Interpretability Analysis"—have now been integrated into a single, more cohesive section
titled "Importance and Interpretability Analysis of Hazard Factors".

In this revised section, we first present the importance ranking of the key flood hazard indicators
using the CatBoost model and then follow with an in-depth explanation of the SHAP analysis. We
also clarified the use of SHAP interaction values to capture the interaction effects between key
features, specifically DEM and SLOPE, which was highlighted through the SHAP dependency plot.
These revisions aim to ensure that the content flows more logically and provides a more integrated
discussion of the analysis. We hope this addresses your concern and improves the overall clarity of

the manuscript.



20. Thank you for your suggestion regarding the sentence in lines 354-355. I have rewritten the

sentence for clarity and conciseness in the manuscript.

21. Figure 7 (b): Thank you for your helpful comment. The unit is now included in the figure.
(a) (b)
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Figure 2: (a) Scatter Plot of Hazard Indicators from SHAP Analysis. (b) SHAP Dual Dependence Analysis of

Elevation and Slope Factors

22. L404 and Table 5: Thank you for your valuable feedback. To clarify the meaning of the
"Attribute," we have made the following revisions:

The specific indicator weights and their corresponding impacts on flood risk are shown in Table 5.
The "Attribute" column represents the impact of each indicator on flood risk, with "+" indicating a

positive impact on flood risk and "-" indicating a negative impact on flood risk.

23. Thank you for your valuable feedback. In response to your suggestion, we have added a new
section 2.7 "Determination of Flood Risk Levels" in the methodology, where we provide a detailed

explanation of the natural breakpoint classification method.

24. Thank you for your inquiry regarding the resolution of the rasters used in Figures 8 and 9. The
raster data for these figures were obtained at a resolution of 30m x 30m.
Additionally, to clarify the data preprocessing steps, we have added an explanation in Section 2.2.2,

"Data Standardization and Preprocessing."

25. The following content has been added to Section 3.2: In this analysis, variables such as PREC



and DURA exhibit clear temporal variability, as they change year by year due to weather patterns.
However, other factors like DEM, SLOPE, NDVI, and urbanization indicators such as DPOP and
GDP are spatial variables that do not exhibit direct temporal changes, but their effects on flood risk

are influenced by changing socio-economic and ecological conditions.

26. Line 483 - Thank you for your suggestion. We have revised the percentage change values to

retain two decimal to improve readability and clarity.

27. Thank you for your valuable suggestion. We have revised Table 6 to explicitly indicate that the
change rates are expressed as percentages. Additionally, we have updated the table caption and

added percentage signs (%) to all values for clarity.

28. Thank you for your valuable suggestion. To address your comment, we have added point (5) in
the conclusion section, highlighting the practical implications of our findings for flood risk
management and policy-making. This addition discusses how the flood risk maps generated in this
study can serve as a scientific basis for urban planning, infrastructure development, emergency
response, and disaster prevention. It also emphasizes the potential of integrating these assessments
into decision-making processes to enhance flood prevention measures and regional resilience.
Furthermore, the AutoML framework used in this study can be applied to other regions and
incorporated with future climate change scenarios for long-term forecasting and proactive disaster

mitigation planning.
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