
Response to reviewer 1 
 

REVIEW of « The ability of a stochastic regional weather generator to reproduce heavy 

precipitation events across scales », by X Guan et al. 

This paper presents the application of two statistical methods to evaluate how a recently 

updated « non stationary Regional Weather Generator » (nsRWG) produces heavy rain 

events over Germany. The manuscript well explains the main features of the nsRWG and 

describes exhaustively the statistical methods used for the evaluation. I recommend 

publication in NHESS once the minor comments below have been solved. 

 

GENERAL COMMENT  

It would be highly beneficial for non-expert readers to give more references useful for the 

physical interpretation of values of WEI and xWEI, i.e., examples of how the values of WEI 

and xWEI link to extreme event extension and duration. This can be added/extended in the 

Methods and Results and Discussion Section (although in section 4.2 an example is already 

mentioned). 

Reply: Thank you for the valuable suggestion. In the revised manuscript, we expanded the 

interpretation of Figure 2 to provide more clarity on the relationship between WEI, xWEI, and 

extreme event characteristics. Specifically, we explain how the extent and duration relate to 

the extremity pattern of the HPE event illustrated in Figure 2: 

“For the exemplary HPE event, the analysis highlights that the daily extremity (in terms of 1-

day rainfall intensity) occurred on the 4th day, with the highest EtA curve among the 7 days 

(Figure 2d). Comparing extremity across durations, the HPE was most extreme for a 1-day 

duration, affecting an area of over 10,000 km² (WEI-area). For longer durations (≥3 days), 

the HPE consistently influenced approximately the same area, showing a stabilization in 

spatial extent for these durations.” 



We believe this explanation offers a clearer physical interpretation of WEI and xWEI values 

and how they link to the extension and duration of extreme events.  

TECHNICAL COMMENTS 

Lines 53-55: Merge or connect sentences – it is not evident that they are discussing the 

same issue. 

Reply: we follow reviewer’s suggestion. 

 

Lines 119-120: Specify that « SANDRA » is used to classify / cluster the circulation patterns. 

Reply: thanks, “circulation pattern classification” is explicitly specified in SANDRA method 

description.  

 

Lines 129-130: Specify that WEI is computed for each HPE 

Reply: The sentence is rephrased as “The computation of WEI for individual HPE is 

illustrated in Figure 2.” 

 

Lines 133-134: Clarify that E_tA is computed once for every value of A. Moreover, the 

dependency of A on n should be expressed in Equation 1. 

Reply: Thank you for pointing this out. The dependency of EtA  on A has been explicitly 

clarified in the description of the EtA  computation. Additionally, the equation in Line 156 has 

been revised to specify 𝐴𝐴 = grid size × 𝑛𝑛, ensuring clarity regarding the dependency of A on 

n.  

 

Lines 165-170: In my opinion this paragraph, explaining why sub-daily precipitation is not 

considered, can be easily compressed as a note of a couple of lines, since it is a limitation, 

and not relevant for the discussion of your results. 

Reply: Thank you for your comment. We have revised the paragraph to streamline the 

explanation and focus on the rationale for selecting durations from 1 to 7 days. The updated 



version emphasizes that these durations are sufficient to capture the events responsible for 

disastrous flood damage in Germany and briefly mentions the limitations of sub-daily 

precipitation observations. This modification addresses your suggestion by making the 

paragraph more concise while retaining the necessary context for understanding the 

analysis.  

 

Lines 185-187: The last two sentences are not coherent with each other. Please adjust. 

Reply: The two sentences have been merged to improve coherence as requested. 

 

Lines 197-198: observed WEI is underestimated also for duration > 4 days and return 

periods between 10 and 20 years. 

Reply: we merged the two sentences “For return periods between 2 and about 10 years and 

short durations, nsRWG slightly underestimates the observed WEI” is modified to “For short 

durations and return periods between 2 and about 10 years, as well as for durations longer 

than 4 days with return periods between 10 and 20 years, the nsRWG slightly 

underestimates the observed WEI.” 

 

Line 200: Is it worth mentioning here that the return period increases with duration, when 

considering fixed WEI values? 

Reply: It is generally correct that for HPEs with the same WEI value, the return period 

increases with duration. This indicates that the occurrence probability of an HPE with the 

same extremity (in terms of WEI magnitude) becomes less frequent as the duration 

increases. This relationship reflects the rarity of longer-duration extreme events with 

comparable intensity. 

 

Lines 219-222: How are the synthetic events in the comparison selected? Is there a way of 

selecting these based on the highest similarity in the WEI surface profile (i.e., sampling 

similar events in terms of extent and duration)? 



Reply: The selection of synthetic events with similar xWEI values to the 2021 event was 

conducted as follows: we first extracted HPEs with annual maximum xWEI from the 100 

precipitation realizations generated by nsRWG. These synthetic events were then compared 

to the 2021 event based on their xWEI values. We acknowledge that only a few synthetic 

HPEs exhibited extremities close to the 2021 event. The three selected synthetic HPEs were 

chosen based on their xWEI surface characteristics and extremity across various durations. 

While quantifiable indicators, such as mean squared error (MSE), could provide an explicit 

measure of similarity in xWEI surface profiles, we decided not to include this detail in the 

manuscript as it does not significantly impact the core analysis.  

Line 248: Doesn’t it underestimate the frequency, since the return periods for the same WEI 

value are higher in the synthetic data? 

Reply: Thank you for your comment. We believe there may be a misunderstanding. The 

statement in the conclusion "However, it tends to overestimate the frequency of events with 

short durations and relatively small spatial extents," refers to results shown in Figure 4, 

which depicts the distribution of WEI-area across areas and durations. Specifically, the 

nsRWG underestimates the frequency of events with short durations (1 day) and small 

spatial extents (<10,000 km²). In contrast, the statement about return periods for the same 

WEI value being higher in synthetic data reflects an inference from Figure 5. These address 

different aspects, and we therefore propose to keep the sentence unchanged. 

 

Line 257: Explain briefly what spatial counterfactuals are. 

Reply: Thank you for your comment. In the updated manuscript, we have included a general 

explanation of counterfactuals in the context of climate extremes: “Counterfactuals are 

scenarios that describe alternative ways an event could have unfolded (Woo, 2019; 

Montanari et al., 2024). These scenarios may involve altering or removing specific factors, 

such as anthropogenic climate change, natural climate variability, or other boundary 

conditions (Gauch et al., 2020).” Additionally, the manuscript already includes a description 



of spatial counterfactuals: “Using spatial counterfactual scenarios, we can investigate the 

impact of HPEs in the hypothetical case that they had happened elsewhere.” This provides 

the necessary context for understanding both counterfactuals and their spatial applications.  
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Response to reviewer 2 
This study presents a novel evaluation approach for WGs to examine their ability to capture 

cross-scale HPEs. The core method encompasses the WEI and xWEI, where the former 

focuses on the extremity of events at a single spatiotemporal scale, while the latter 

emphasizes the overall extreme performance of events across multiple scales. Their results 

indicate that nsRWG is capable of reproducing most HPEs in terms of duration (1 to 7 days), 

especially those that historically triggered disasters. However, nsRWG slightly overestimates 

the frequency of short-term (1-2 days) HPEs with smaller WEI areas. The manuscript was 

good in general, but I have some questions and comments to further improve the quality.  

1. The introduction only briefly mentions Stochastic weather generators (WGs), and then 

directly jumps to Section 3.1, which discusses the version of the stochastic multi-site non-

stationary regional weather generator (nsRWG) used in this study. It would be better to 

explain the similarities and differences between the two systems for the general readers. 

Reply: Thank you for your suggestion. In the revised manuscript, we have added a definition, 

some typical characteristics, and the potential applications of stochastic weather generators 

(WGs) to the introduction section.  

“WGs are stochastic models that are capable to generate synthetic spatio-temporal fields of weather 

variables such as precipitation, temperature, humidity etc., retaining statistical properties of 

observed or climate model data on which WG is conditioned, such as autocorrelation, spatial 

covariance and multi-variable dependence. A large number of WG models have been introduced so 

far, based on various statistical methods among others reshuffling and perturbing analogue weather 

fields or applying multi-variate auto-regressive models (for a review, see Maraun et al., 2010, 

Haberlandt et al., 2011, Serinaldi and Kilsby, 2014, Benoit and Mariethoz, 2017, Nguyen et al., 2021). 

WGs can be instrumental in generating synthetic HPEs, thereby supporting flood risk management 

and climate adaptation (Breinl et al., 2013; Chen and Brissette, 2014; Harris et al., 2014, Sairam et 

al., 2021).  WGs are widely used for estimation of hydrological design values (Winter et al., 2019), 



downscaling climate model output (Fatichi et al., 2011, Kiem et al., 2021), climate impact 

assessments on water resources (Harris et al., 2014, Najibi et al., 2024), and flood risk assessment 

(Sairam et al., 2021) providing long-term datasets for scenarios where observational data may be 

limited and downscaled future climate projections are needed. WGs are particularly effective when 

integrated with other models to better understand and prepare for HPEs and their consequences 

(Mehrotra and Sharma, 2010; Zhou et al., 2020).” 

This addition provides a clearer context for readers unfamiliar with WGs. Furthermore, in 

Section 3.1, we have simplified the expressions by directly introducing the structure of the 

nsRWG used in this study, omitting introductions of previous versions to maintain focus and 

avoid unnecessary details.  

 

2. In Section 3.2, the explanation regarding how the return periods (P_(t,i)) used in the 

calculation process are obtained is somewhat unclear. Please provide further clarification.  

Reply: Thank you for this comment. In the revised manuscript, we have clarified the 

procedures for return period estimation. Specifically, the duration-dependent GEV 

distribution is employed to derive the intensity-duration-frequency (IDF) relationship for 

precipitation at each grid cell. This IDF relationship is then used to estimate the return period 

of rainfall intensity at each grid cell, which subsequently informs the EtA computation.  

 

3. This study only uses the cross-scale weather extremity index (xWEI) as an assessment 

standard to compare and discuss the outputs of E-OBS (observational data) and nsRWG 

(simulated data). Both xWEI and the nsRWG methods were referred to other studies (this 

study only combined two systems). Given the amount of content for publication, it might be 

not enough. Please find a way to extend the current analysis or results based on the 

research objectives. For example: (1) Incorporate other models as a control group to 

evaluate the advantages of nsRWG compared to other technologies; (2) Use traditional 



validation scores or provide additional reference to illustrate the differences in Figure 7 for 

various cases; (3) Further explain the relevant statistics constructed in this paper and their 

practical applications in the prevention and control of Heavy Precipitation Events (HPEs). 

Reply: Thank you for your insightful suggestions. Regarding the evaluation of the nsRWG 

model, we would like to highlight that it has been thoroughly validated in previous studies 

using a traditional evaluation framework. Specifically, Nguyen et al. (2024) rigorously 

assessed the performance of the nsRWG model across multiple statistical metrics, including 

precipitation intermittency, wet/dry transition probabilities, intensities of high percentiles, 

spatial correlation of rainfall across grid cells, and catchment areal precipitation averages. 

These evaluations confirm the model's robustness and reliability in simulating key rainfall 

characteristics in Germany. 

Given this comprehensive prior validation, we focused our study on the event-scale 

characteristics of heavy precipitation events (HPEs), specifically the spatio-temporal 

integrated extremity represented by WEI and xWEI. This approach aligns with our research 

objectives to analyze HPE extremity patterns rather than statistical properties of bulk 

precipitation or selected high percentile precipitation intensities. Thus, we did not include 

comparisons based on traditional metrics in this manuscript. We believe this focus provides 

novel insights into understanding HPEs at the event scale, complementing the evaluation 

study of the nsRWG model by Nguyen et al. (2024). 

Thank you for pointing out the importance of linking the statistics in our study to practical 

applications. We have elaborated on the practical relevance of our findings in the revised 

manuscript. Specifically, our study highlights how integrated event-scale metrics like WEI 

and xWEI provide insights into the spatial and temporal extremity patterns of HPEs. These 

metrics are directly relevant for evaluating the potential impacts of extreme precipitation 

events and informing risk management strategies. In the discussion and conclusion, we 

connect our findings to their potential applications for studies using "spatial counterfactuals." 



This approach can help explore hypothetical scenarios where HPEs unfold differently, such 

as occurring in neighboring catchments or under perturbed boundary conditions. 

Counterfactual scenarios provide valuable insights for disaster prevention and preparedness 

by illustrating alternative outcomes of extreme weather events. Weather generators, like the 

one used in our study, offer a way to simulate these scenarios, enabling an assessment of 

their plausibility and potential impacts. 
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