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Abstract. This paper tests a multivariate statistical model to simulate rainfall dependent susceptibility scenarios of shallow 6 

landslides. To this end, extreme rainfall events spanning from 1977 to 2021 in the Orba basin (a study area of 5905 km2 located 7 

in Piedmont, northern Italy), have been considered. First of all, the role of conditioning and triggering factors on the spatial 8 

pattern of shallow landslides in areas with complex geological conditions is analysed by comparing their spatial distribution 9 

and their influence within logistic regression models, with results showing that rainfall and specific lithological and 10 

geomorphological conditions exert the strongest control on the spatial pattern of landslide.  11 

Different rainfall-based scenarios were then modelled using logistic regression models trained on different combinations of 12 

past events and evaluated using an ensemble of performance metrics. Models calibrated on multi-events outperform the ones 13 

based on a single event, since they are capable of compensating for local misleading effects that can arise from the use of a 14 

single rainfall event. The best performing developed model considers all the landslide triggering rainfall scenarios and two 15 

non-triggering intense rainfall events, with a score of 0.90 out of 1 on the multi-criteria TOPSIS-based performance index.  16 

Finally, a new approach based on misclassification costs is proposed to account for false negatives and false positives in the 17 

predicted susceptibility maps.  18 

Overall, this approach based on a multi-event calibration and on a misclassification costs analysis shows promise in producing 19 

rainfall dependent shallow landslide susceptibility scenarios that could be used for hazard analyses, early warning systems and 20 

to assist decision-makers in developing risk mitigation strategies.  21 

1 Introduction 22 

Shallow landslides are a widespread phenomenon that affects many regions of the world (Petley, 2012). In Italy, according to 23 

the last national report on landslides and floods, almost 8% of the country is affected by landslides, of which 15% are classified 24 

as rapid flow and 6% as shallow landslides (ISPRA, 2021). According to Cruden and Varnes (1996), these are shallow slides, 25 

mainly translational, with a thickness ranging between 0.5 and 2 m (Bandis et al., 1996; Mason and Rosenbaum, 2002). Shallow 26 

landslides are generally triggered by rainfall events, which cause an increase in pore water pressure, or a loss of apparent 27 

cohesion generated by suction  (Caine, 1980; Crosta and Frattini, 2003; Fredlund et al., 1978; Iverson, 2000; Lu and Godt, 28 
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2008). Despite their limited initial volume, these landslides may be characterized by a high density per unit area and can evolve 29 

in debris flows. The high velocity and the difficulty of prediction due to the almost complete lack of premonitory signs 30 

(Campbell, 1975; Frattini et al., 2009; Montrasio et al., 2016) make these phenomena seriously dangerous in terms of life and 31 

economic losses (Trigila and Iadanza, 2012).  32 

A common definition of landslide hazard is “the probability of occurrence within a specific period of time and within a given 33 

area of a potentially damaging phenomenaphenomenon” (Varnes, 1984), requiring the quantification of the magnitude, the 34 

spatial and the temporal probability for an instability event to occur. The variables that control landslide hazard are commonly 35 

distinguished into conditioning and triggering factors. Conditioning factors are generally assumed to have no temporal 36 

dependence and are responsible for "where" a landslide might occur, while triggering factors are event-related and control 37 

"when" a landslide might occur (Crosta and Frattini, 2003; Lombardo et al., 2020; Wu and Sidle, 1995), although their spatial 38 

properties (e.g. distribution of intensity or cumulative rainfall during a rain event) play a key role in determining the location 39 

of landslides. 40 

The spatial likelihood of shallow landslide occurrence is addressed through landslide susceptibility models, based on either 41 

physically based or machine-learning techniques. Physically based techniques for shallow landslides often combine the 42 

infinite-slope model with hydrogeological models, which require many different input data; for this reason, they are more 43 

frequently applied at the site-scale (Baum et al., 2008; Montgomery and Dietrich, 1994). 44 

Machine-learning methods search for functional relationships between the conditioning factors and the distribution of 45 

landslides, obtained from inventories of past events (Carrara, 1983; Goetz et al., 2015; Huang et al., 2020; Reichenbach et al., 46 

2018; van Westen et al., 2008). Susceptibility models are usually considered as time-independent, meaning that the likelihood 47 

of landslides occurrence does not vary in time (Jones et al., 2021; Lombardo et al., 2020). However, many authors demonstrated 48 

that this assumption is often violated both on a long (hundreds or thousands of years) and on a short timescale (tens of years), 49 

especially in view of climate changes (Hungr, 2016; Samia et al., 2018). The “when” problem has typically been addressed by 50 

using rainfall thresholds or physically based models. Rainfall thresholds describe the rainfall intensity, duration or cumulative 51 

event precipitation that may trigger landslides for a particular area (Caine, 1980; Crosta, 1998; Guzzetti et al., 2007). This 52 

approach has usually disregarded soil features and morphometric conditioning factors, such as the geotechnical features of the 53 

involved materials, until recent times, when hydrogeological effects started to be included into the analyses, for example 54 

through the consideration of the soil water content prior to the triggering event (Bogaard and Greco, 2018; Marino et al., 2020). 55 

Some authors started testing approaches to address both the “where” and the “when” questions in the context of early warning 56 

systems. For example, Kirschbaum and Stanley (2018), used a fuzzy overlay model to combine static explanatory variables 57 

into a susceptibility map. This information was then incorporated into a heuristic decision tree model together with dynamic 58 

variables such as antecedent precipitation, giving a model capable of indicating potential landslide activity in near real-time. 59 

Segoni et al. (2018b), combined rainfall thresholds and susceptibility maps into a hazard matrix, while Bordoni et al. (2021), 60 

integrated rainfall thresholds and antecedent soil humidity with a susceptibility model in order to forecast the spatial and 61 

temporal probability occurrence of shallow landslides. Camera et al. (2021) included intense rainfall and snowmelt in a 62 
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landslide susceptibility model trained over multiple landslide inventories and different meteorological conditions, making it 63 

potentially more robust to investigate the effects of climate changes. Knevels et al. (2020) and Maraun et al. (2022), included 64 

5 days cumulated rainfall and maximum 3 hours rainfall intensity to model landslides associated with an extreme rainfall event, 65 

and then applied their findings to an event storyline approach to analyse the future landslide occurrence probability under 66 

climate changes. Moreno et al. (2024) integrated static and time-dependent controlling factors into a generalized additive 67 

mixed model (GAMM) model to forecast shallow landslides in space and time, showing that both short-term (2 days) and 68 

medium-term (14 days) cumulative precipitation increases the model capabilities. 69 

Yet, the integration of static and time-varying factors into machine-learning models still remains challenging, but it could 70 

become a powerful instrument to better understand the connection between a variation in the time-dependent controlling factors 71 

and landslide triggering, thus helping at improving landslide prediction in a changing climate. 72 

An important issue for the application of susceptibility models is the evaluation of their performance. For models that predict 73 

binary stable and unstable slopes it is necessary to choose a cut-off value below which the predicted susceptibility values are 74 

treated as 0 and above which the values are treated as 1 (Beguería, 2006; Brenning, 2005; Frattini et al., 2010; Goetz et al., 75 

2015; Guzzetti et al., 1999).  76 

This results in a contingency matrix quantifying the total number of correctly and incorrectly classified units. From this matrix, 77 

it is possible to assess the performance of the model by using several performance statistics, such as the Accuracy (i.e. the ratio 78 

between the correctly classified samples and the total number of samples), the Precision (i.e., the ratio between the true positive 79 

samples and all the positively classified samples, meaning the sum of the true Positives and the False Positives), the True 80 

Positive Rate TPR (i.e., the ratio between the true positive and all the positives, meaning the sum of the True Positives and the 81 

False Negatives), the False Positive Rate FPR (i.e., the ratio between the false positives and all the negatives), the Threat score 82 

(Gilbert, 1884), the Pierce's skill score (True skill statistic; Peirce, 1884), the Heidke's skill score (Cohen's kappa; Heidke, 83 

1926), and the odd ratio skill score (Yule's Q; Yule, 1900). 84 

This results in a contingency matrix quantifying the total number of correctly and incorrectly classified units. Form this matrix, 85 

it is possible to assess the performance by using several performance statistics, such as the Accuracy (i.e. the ratio between the 86 

correctly classified samples and the total number of samples), the Precision (i.e., the ratio between the true positive samples 87 

and all the positively classified samples), the True Positive Rate TPR (i.e., the ratio between the true positive and all the 88 

positives), the False Positive Rate FPR (i.e., the ratio between the false positives and all the negatives), the Threat score 89 

(Gilbert, 1884), the Pierce's skill score (True skill statistic; Peirce, 1884), the Heidke's skill score (Cohen's kappa; Heidke, 90 

1926), and the odd ratio skill score (Yule's Q; Yule, 1900). 91 

However, the choice of the cut-off value is a complex problem, and therefore the performance is frequently evaluated by using 92 

cut-off-independent methods, such as the Receiver Operating Characteristic (ROC) curves (Frattini et al., 2010; Hosmer and 93 

Lemeshow, 2000; Provost and Fawcett, 2001) or the Precision-Recall (PR) curves (Davis and Goadrich, 2006; Raghavan et 94 

al., 1989; Saito and Rehmsmeier, 2015). The ROC curve represents the FPR and TPR obtained for different cutoffs. The Area 95 

Under the Curve (AUROC) can be used to quantify the overall quality of the model (Hanley and McNeil, 1982). However, 96 
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ROC curves can overestimate the performance of a model when the distribution of the input classes is highly skewed. For this 97 

reason, the Precision-Recall (PR) curves have also been used (Nam et al., 2024; Yordanov and Brovelli, 2020; Zhao et al., 98 

2022), which plots the precision (i.e., the proportion of true positives among the positive predictions) against the TPR. 99 

However, unlike ROC curve, the value under the PR curve is not directly interpretable for model evaluation, especially because 100 

of a non-universal baseline performance, which depends on the class distribution, and a non-linear interpolation of precision 101 

values. Nevertheless, PR analysis can be adapted to be used similarly to the ROC analysis by using Precision-Recall-Gain 102 

curves (PRG), which make use of the F-Gain score, a linearized version of the F1 score, to properly take baselines into account 103 

(Flach and Kull, 2015).  104 

One important consequence of the choice of the cut-off value is the generation of false and missed alarms, meaning the 105 

situations in which the model predicts a landslide in a specific area or time, but no landslide actually occurs, or the case in 106 

which a landslide takes place, but the model fails to predict it. False and missed alarms come with associated costs. For 107 

example, false alarms may lead to unnecessary evacuations or resources allocation, and can reduce trust in the model 108 

capabilities, while missed alarms result in unpreparedness and potentially severe consequences, including property damage, 109 

loss of life, or economic impacts. Therefore, the performance of the model can be evaluated by assessing the expected 110 

misclassification costs through the cost curves (Drummond and Holte, 2006; Frattini et al., 2010), with an approach that allows 111 

the choice of the cut-off value that minimizes the expected costs (Sala et al., 2021). 112 

In landslides-related problems, the quantification of the costs linked to the use of a model is also an important issue. Therefore, 113 

the performance of the model can be done with an approach that minimize the expected misclassification costs, through the 114 

cost curves (Drummond and Holte, 2006; Frattini et al., 2010). Moreover, the cost curve allows to identify the optimal cut-off 115 

to be used for the performance evaluation. 116 

A multivariate statistical analysis for the Piedmont area of the Orba basin (northern Italy) has been developed in this paper, 117 

considering rainfall scenarios spanning from 1977 to 2021, to investigate the correlation between landslides distribution and 118 

the spatial pattern of conditioning and triggering factors. Different logistic regression models were trained for different 119 

landslides and rainfall scenarios, and their performance was evaluated through an ensemble of performance metrics, leading 120 

to an optimal choice of the best model for scenario-based problems or early warning.  121 

This work allows to address the following research questions: 122 

• To what extent the pattern of shallow landslides is controlled by the characteristics of the rainfall event in areas with 123 

complex geological conditions? 124 

• How can rainfall be used within a statistical model to produce instability scenarios for different rainfall events? 125 

• Which is the best strategy to train a statistical model based on an ensemble of rainfall events? 126 

• Which is the most significant classification scheme to produce a susceptibility map for early warning purposes? 127 

The novelty of this work lies in the definition of a critical selection strategy of the optimal ensemble of rainfall events to 128 

produce a susceptibility map that may be helpful for scenario-based problems and early warning purposes. Moreover, a new 129 

methodology is proposed for the classification of the regression results, used for the realization of the final resulting maps. 130 
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2 Materials and methods 131 

2.1 Study area  132 

The Orba basin is located between the Langhe and Alto Monferrato Hillsin the Langhe and Monferrato Hills of Piedmont 133 

Region, north-western Italy. This area has been affected by several high-magnitude floods and severe slope instabilities during 134 

the last century, caused by intense rainfall events (Mandarino et al., 2021). The study area has an extension of 5905 km2 and 135 

it is situated between 80 and 1170 m a.s.l. The main river of the basin, the Orba River, flows northward from the Ligurian 136 

Apennines to the confluence with the Bormida River, a right tributary of the Po River. The study area overlaps magmatic and 137 

metamorphic lithotypes in the southern part – mainly peridotites, serpentinites and serpentine-schists, meta-gabbros and meta-138 

sediments belonging to the Voltri Massif and the Sestri-Voltaggio Zone (Piana et al., 2017) – while in the central part of the 139 

area the sedimentary sequence of the Tertiary Piedmont Basin (TPB) outcrops. The TPB evolved from the Late Eocene to the 140 

Late Miocene over the inner part of the Alpine wedge (Coletti et al., 2015) and is mainly represented in the area by 141 

conglomerates, sandstones and marls. The northern sector of the basin presents quaternary fluvial deposits belonging to the 142 

Alessandria – Tortona floodplain. The morphology of the area is strongly controlled by the TPB sedimentary succession: where 143 

the strata are harder, the landscape presents hilly reliefs with an asymmetric profile resulting from the monoclinal bedding of 144 

marly-silty and sandy-arenaceous alternations (Luino, 1999), which are part of a monoclinal structure striking WNW-ESE that 145 

imposes a dipping of approximately 30° (Luino, 1999; Mason and Rosenbaum, 2002), while lowered areas modelled by fluvial 146 

erosion are present where the lithologies are more erodible.The morphology of the area is strongly controlled by the TPB 147 

sedimentary succession: where the strata are harder, the landscape presents hilly reliefs dipping in the same direction as the 148 

underlying layers, while lowered areas modelled by fluvial erosion are present where the lithologies are more erodible. When 149 

the dipping of the strata becomes gentler, the morphology becomes more uniform and characterized by a dense hydrographic 150 

network. The mean annual temperature is 13° and the average annual precipitation ranges from around 600 mm/year in the 151 

northern part to 1600 mm/year in the southern part, with autumn as the rainiest season (Fioravanti et al., 2022; Luino, 2005). 152 

Land use is primarily forest (45%), with crops and meadows (24%) near the confluence with the Po River (LAND COVER 153 

PIEMONTE, https://geoportale.igr.piemonte.it/cms/progetti/land-cover-piemonte, last access 21/10/2023). 154 
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 156 

Figure 1. Location of the Orba basin, with the spatial distribution of shallow landslide observed in three different events, and with 157 
the main lithologies. 158 
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2.2 Data  159 

2.2.1 Rainfall events and landslide inventories 160 

The inventories related to three different landslide events that occurred in 1977, 2014 and 2019 were used for the subsequent 161 

analyses. Data relative to the events of 1977 and 2014 are available online (SIFRAP, Sistema Informativo sulle FRane in 162 

Piemonte, handled by Regional Environmental Protection Agency of Piemonte – ARPA Piemonte) and were compiled through 163 

the analysis of Google Earth images, national and regional orthophotos, published event maps, and field reconnaissance, while 164 

the most recent event was directly provided for this project by ARPA Piemonte (personal communication). Three landslide 165 

inventories were compiled for three recent extreme rainfall events (1977, 2014 and 2019) through the analysis of Google Earth 166 

images, national and regional orthophotos, published event maps, and field reconnaissance (Fig. 1). Part of the inventories was 167 

already available online (SIFRAP, Sistema Informativo sulle FRane in Piemonte), while the most recent event was provided 168 

for this project by the Regional Environmental Protection Agency of Piedmont (ARPA Piemonte, personal communication).  169 

The 2014 and 2019 inventories include polygons of each single shallow landslide, while the 1977 inventory represents clusters 170 

of shallow landslides as polygons.  171 

The 2014 and 2019 inventories include polygons of each single shallow landslide, while the 1977 inventory represents clusters 172 

of shallow landslides as polygons. However, this difference is negligible when choosing slope units as mapping units for the 173 

analyses (Sect. 2.3). 174 

The first shallow landslide event was triggered by heavy rainfall at the beginning of October 1977. Between October 6 th and 175 

7th, more than 400 mm of rain fell in less than 24 hours, causing flooding, bank and riverbed erosion, debris flows and soil 176 

slips (INTERREG IIC, 1998)(Fig. 2). The second shallow landslide event was triggered in October 2014 with more than 420 177 

mm of rain in less than 12 hours, as recorded at the Gavi meteorological station on October 13 th(Fig. 2), for which the mean 178 

annual total rainfall is 1000 mm (calculated for the 1991 – 2020 time interval, ARPA Piemonte). The third shallow landslide 179 

event occurred in late October 2019. In the afternoon and evening of October 21st more than 400 mm of rain (Gavi station) fell 180 

in less than 12 hours, resulting in a very high-magnitude flood and widespread shallow landslides (ARPA Piemonte, 2019) 181 

(Fig. 2).  182 

In addition to these three landslide-triggering rainfall events, two intense precipitation events (2016 and 2021) that were not 183 

associated to landslides were selected, in order to test the capabilities of the models to discriminate between triggering and 184 

non-triggering rainfall characteristics. The 2016 event hit the Piedmont region with strong and persistent rainfalls between 185 

November 21st and 25th, and triggered almost 1000 landslides, none of which in the Orba basin. Indeed, the peak of the 186 

cumulative precipitation was localized more southward compared to the ones previously described, with up to 400 mm of rain 187 

in the southern edge of the Orba basin (Fig. 2). The other event happened from October 3rd to 5th, 2021. The Ligurian-Piedmont 188 

watershed was the most affected area, with a peak of 472 mm of rain in 12 hours recorded in the south-western part of the 189 

area. The total precipitation in the Orba basin was up to 750 mm in the south-western edge of the basin (Fig. 2).. The daily 190 

maximum rainfall intensities and the yearly cumulative rainfall values for all the considered events are reported in Fig. 2. 191 
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 194 

Figure 2. Maximum daily rainfall intensity Rainfall and landslides distribution during the considered events, reconstructed by 195 
interpolation of values measured by the meteorological stations on the ground, that led to landslide triggering in the Orba basin. 196 
Graphs report the daily and cumulative rainfall for the year in which the shallow landslides were triggered are shown. Dashed lines 197 
represent the mean annual rainfall for the basin of interest (ARPA Piemonte). 198 

For all the inventories, a non-cumulative logarithmic binned landslide size probability density distribution was developed as: 199 

𝑝(𝐴) =  
1

𝑁𝑡𝑜𝑡

𝜕𝑁

𝜕𝐴
            (1) 200 

where ∂N in the number of landslides with an area between A and A + ∂A and Ntot is the total number of landslides within a 201 

study area (Malamud et al., 2004). Following ,Frattini and Crosta (2013)(Frattini and Crosta, 2013), a Pareto distribution was 202 

fitted to the probability density above a minimum size cut-off with (Fig. 3): 203 

 𝑝(𝐴) = 𝛼𝑐𝛼𝐴−𝛼−1        𝑐 > 0,        𝛼 > 0,        𝐴 𝜖[𝑐, ∞)       (2) 204 

Using the maximum likelihood estimation, the distribution parameters were estimated, obtaining a good fitting for landslides 205 

larger than 500 m2, with the best fitting results for landslides greater than 1000 m2. The scaling exponents α vary between 1.5 206 

and 2.6, values that are higher than most of those reported in literature but still in the range (Van Den Eeckhaut et al., 2007). 207 

  208 
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Table 1. Statistical parameters describing the landslide events in the study area. 209 

Event Number Density % Total landslide area [km2] Mean landslide area [m2] 

6 – 7 October 1977 366 1.31 7.82 21373 

9 – 13 October 2014 66 0.004 0.023 353 

19 – 22 October 2019 2088 0.26 1.57 124 

 210 
Figure 3. Probability density – areas distribution of the shallow landslides for the three events within the study area. As stated in the 211 
main text, the 1977 landslide inventory shows a different distribution, shifted to the right, because of the different chosen mapping 212 
criteria. Power-law fitting with maximum likely estimator is reported (β = -α-1). 213 

2.2.2 Landslide conditioning and triggering factors 214 

The conditioning factors used in the following analyses include 7 morphometric parameters, lithology, soil grain size 215 

distribution, and land use (Fig. S1). The morphometric parameters were extracted using ArcGIS Pro 3.1.0 © from a 5m 216 

resolution DTM acquired using a uniform methodology (LiDAR) at Level 4 standard, with an elevation accuracy of ±0.30 m 217 

(±0.60 m in areas of lower precision, corresponding to wooded and densely urbanized areas), provided by Piedmont region. 218 

The morphometric parameters were extracted from a 5m resolution DEM provided by Piedmont region. The morphometric 219 

factors are slope angle, northerness, easterness, profile curvature, planar curvature, total curvature, and flow accumulation. 220 

Lithological information was obtained from the geological map of Piemonte Region, at scale 1:250,000 (Piana et al., 2017). 221 

The units have been reclassified by aggregating geo-stratigraphic units with comparable lithological and litho-technical 222 

characteristics (Table S1), resulting in 16 lithological classes (Fig.1: gravels and sands, limestones, gypsum, marls, marls and 223 

sands, sands and gravels, sandstone breccias, sandstones and conglomerates, sandstones and marls, sandstones and siltites, 224 

serpentinites, slates, basalts, calcschists,  gabbros and peridotites, and prasinites).  225 
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Information relative to the soils grain size distribution was retrieved from the SoilGrids maps (Poggio et al., 2021), reporting 226 

soil properties for the entire globe with a resolution of 250 m. SoilGrids models were obtained through the application of 227 

machine learning to soil data collected worldwide.  228 

The land use was obtained from the 10 m resolution LAND COVER PIEMONTE map, which integrates information collected 229 

between 2018 and 2022 (https://geoportale.igr.piemonte.it/cms/progetti/land-cover-piemonte, last access 21/10/2023). 12 230 

different land use classes were used, namely arable land, areas with sparse/absent vegetation, artificial non-agricultural green 231 

areas, heterogeneous agricultural areas, inland waters, mining areas, permanent crops, permanent lawns, road network, 232 

shrubby/herbaceous areas, urbanized and productive areas, and woods. 233 

Besides the predisposing factors, several rainfall parameters potentially responsible for the shallow landslides triggering were 234 

also included into the analysis. These parameters were obtained by interpolating daily rainfall data collected at 39 and 51 235 

gauging stations for the 1977 and 2014/2019 rainfall events, respectively, with a natural neighbour technique, at a spatial 236 

resolution of 5 m. These parameters were obtained by interpolating daily rainfall data collected at 39 and 51 gauging stations 237 

for the 1977 and 2014/2019 rainfall events, respectively. In particular, the maximum daily rainfall intensity (mm/day, Fig. 2), 238 

the total rainfall of the events (Table 1), and the antecedent cumulative rainfall (mm, Fig. S2) over 10, 30, 60 and 90 days 239 

(Smith et al., 2023) as a proxy of soil water content prior to the event (Guzzetti et al., 2007), which can increase the likelihood 240 

of failure (Bogaard and Greco, 2018; Thomas et al., 2018), were extracted for each event. Maximum daily rainfall intensities 241 

were normalized by the daily rainfall with a return period of 10 years, provided by ARPA Piemonte with a grid resolution of 242 

250 m, while the total and antecedent rainfall values were normalized by the mean annual precipitation (1991 – 2020) within 243 

the study areas (Fig. S3). Data normalization was performed because previous studies (Marc et al., 2019; Smith et al., 2023) 244 

found that the spatial pattern of shallow landslides is more correlated with rainfall anomalies rather than with rainfall absolute 245 

values.  246 

A correlation analysis between these rainfall variables revealed a strong linear correlation between the maximum rainfall 247 

intensity and the total rainfall of the event – probably due to the coarse temporal aggregation used to estimate the maximum 248 

intensities. A strong correlation was also found between the antecedent cumulative values over different aggregation time 249 

windows. For the subsequent regression analyses, an a priori selection was made to extract the two most influencing rainfall 250 

variables: the maximum daily rainfall intensity as an intra-event descriptor, and the 90-day cumulative rainfall for the 251 

antecedent condition. The latter was selected by testing the correlation between the cumulative rainfall values and the soil 252 

humidity obtained from the ERA5-Land dataset  (ERA5-Land hourly data from 1950 to present.; Hersbach et al., 2020; Muñoz-253 

Sabater et al., 2021), from which the highest correlation was found when using a time window of 90 days (Fig. S42).  254 

2.3 Slope unit delineation 255 

The application of statistical models to landslide susceptibility zoning requires the partition of the study area in terrain units, 256 

such as unique condition units, slope units, grid-cells, or others (Carrara et al., 1991, 2008). Among these, slope units were 257 

chosen for area partitioning within this study. A slope unit is defined as a morphological terrain unit delimited by drainage and 258 
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divide lines (Carrara et al., 1991; Guzzetti et al., 1999), corresponding to what could be defined as a single slope, a combination 259 

of adjacent slopes, or a small catchment from a geomorphological and a hydrological point of view (Alvioli et al., 2016). Slope 260 

units were selected since they provide several advantages, such as: (i) the reproducibility of the spatial partitioning; (ii) the 261 

possibility to use continuous values for the categorical variables, where the continuous values are calculated as the areal 262 

percentage of the slope units that is covered by a particular categorical class, and thus can vary between 0% and 100% (Carrara 263 

et al., 1991), (iii) an efficient handling of mapping uncertainties, thanks to the generalization of the predisposing factors falling 264 

within them (Jacobs et al., 2020; Steger et al., 2016). Their delineation is based on the identification of drainage and divide 265 

lines, and was done automatically by using the r.slopeunits algorithm (Alvioli et al., 2016). This iterative algorithm requires 266 

as input data the minimum circular variance for each unit, representing the allowed variability of orientation for each grid cell 267 

belonging to the same unit, and the minimum area for each slope unit.  268 

The application of statistical models to landslide susceptibility zoning requires the partition of the study area in terrain units, 269 

such as unique condition units, slope units, grid-cells, or others (Carrara et al., 1991, 2008). Among these, slope units were 270 

chosen since they provide several advantages, such as: (i) the high geomorphological meaning of the terrain unit; (ii) the 271 

possibility to use continuous values (i.e, percentage within the unit) for the categorical variables, rather than binary values 272 

(Carrara et al., 1991), (iii) an efficient handling of possible mapping uncertainties, thanks to the generalization of the 273 

predisposing factors falling within them (Jacobs et al., 2020; Steger et al., 2016). Their delineation is based on the identification 274 

of drainage and divide lines, and was done automatically by using the r.slopeunits algorithm (Alvioli et al., 2016). This iterative 275 

algorithm requires as input data the minimum circular variance for each unit, representing the allowed variability of orientation 276 

for each grid cell belonging to the same unit, and the minimum area for each slope unit.  277 

2.4 Preliminary exploratory statistical analysis 278 

To understand which variables exert the strongest control on the landslide distribution, and if this control remains constant 279 

through time, the distributions of the mean values of each covariate for the slope units affected by shallow landslides were 280 

compared with the same distributions for the whole study area, and for the other inventories. The similarity among the 281 

inventories for each covariate (i.e., the null hypothesis) is rejected if the p-value of the Dunn’s test is smaller than 0.05.  282 

To further investigate the role of antecedent and triggering precipitation, the relationship between landslide density (i.e., total 283 

landslide area over the total slope units area) and precipitation classes (i.e., normalized maximum rainfall intensity, normalized 284 

cumulative rainfall, and normalized antecedent cumulative rainfall) was analysed through the Spearman’s rank order 285 

correlation coefficient. Given the strong lithological control, the analysis was conducted for the entire study area and separately 286 

for the most unstable lithological units (marls – around 30% of the total landslides number of each event, sandstones and 287 

siltites – almost 50% of landslide in each event, sandstone breccias – 7% of landslides in 1977 and 2019, 0% in 2014, and 288 

sandstones and marls – 4% in 1977 and 2019, 14% in 2014).. 289 
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2.5 Rainfall-based susceptibility analysis 290 

Binary logistic regression was chosen for the susceptibility analysis because of its widespread and validated use and because 291 

it provides the importance of each conditioning variable in terms of standardized regression coefficients in a straightforward 292 

manner (Carrara, 1983; Micheletti et al., 2015; Reichenbach et al., 2018). 293 

Logistic regression describes the relationship between a binary outcome (stable or unstable unit) and a set of independent 294 

variables (Hosmer and Lemeshow, 2000). The probability p of a sample to belong to a certain group is given by: 295 

𝑙𝑛
𝑝

1−𝑝
=  𝐵0 + 𝐵1𝑋1 + 𝐵2𝑋2 + 𝐵3𝑋3 + ⋯ + 𝐵𝑚𝑋𝑚        (3) 296 

where Bi are the logistic coefficients, estimated from the data, that quantify the contribution of each variable Xi to the final 297 

outcome. Logistic regression assumes that a linear relationship exists between the logit transformation of the binary outcome 298 

and each variable selected by the model through a forward stepwise method, with a variable being included into the model if 299 

the probability of its score statistics is smaller than an entry value of 0.05, and being removed if the probability is greater than 300 

a removal value of 0.10. Before running the models, variables showing a strongly skewed distribution were normalized using 301 

a log-transformation (Carrara et al., 2008), and all the static variables were then standardized using a z-score normalization 302 

(mean equal to 0 and standard deviation equal to 1), in order to make their estimated regression coefficients comparable 303 

(Lombardo and Mai, 2018).  304 

Five susceptibility models were developed. Models m77, m14 and m19 were trained on a single landslide event (i.e., 1977, 305 

2014, and 2019, respectively). The model m771419 was trained by merging all the landslide events, and finally the model 306 

m7714161921 was trained by merging different rainfall events with or without landslides. Each dataset was divided into 307 

training (3/4) and validation (1/4) subsets, the former being used to build the models and the latter to evaluate their predictive 308 

performance. Each model was evaluated against itself and against all the other landslide events by using cross-validation. 309 

Model evaluation was performed with the following strategy. First of all, two common cut-off independent methods were 310 

applied (ROC and Precision Recall Gained (PRG) curves) to obtain their Area Under Curves. Then, the optimal cut-off 311 

obtained by the ROC analysis was used to derive the optimal contingency matrix, from which the accuracy, precision, TPR 312 

and FPR were calculated.  313 

Finally, the two values under the ROC and PRG curves and the four performance metrics calculated from the contingency 314 

matrix were summed up with a multiple attribute decision making procedure, performed with the technique for order preference 315 

by similarity to ideal solution (TOPSIS, Hwang and Yoon, 2012), to individuate the best model. For each model, 50 logistic 316 

regression analyses were run with different training and validation datasets, randomly extracted from the original database. 317 

This procedure lead to the calculation of 50 different values of the coefficient associated with each controlling variable, and 318 

to the generation of 50 different susceptibility maps, thus allowing to statistically analyse the distribution of the susceptibility 319 

values, the regression coefficients, and the performance metrics. 320 
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Finally, these indices were summed up with a multiple attribute decision making procedure, performed with the technique for 321 

order preference by similarity to ideal solution (TOPSIS, Hwang and Yoon, 2012), to individuate the best model. For each 322 

model, 50 logistic regression analyses were run, in order to statistically analyse the distribution of the susceptibility values, the 323 

regression coefficients, and the performance metrics. 324 

To avoid an over-abundance of obviously stable units (e.g., flat areas), which would give a biased estimate of the performance, 325 

only nontrivial units with slopes more compatible with shallow landslides triggering (>20° and < than 40°) were selected. 326 

The economic consequences are one of the main issues in early warning; these economic costs can be significantly different 327 

in case of false or missing alarms. This problem is usually not considered in susceptibility studies, where the classification of 328 

susceptibility into classes (e.g. very low, low, medium, high and very high) is based on some arbitrary choice of the modeler 329 

(Cantarino et al., 2019).  330 

For this reason, a new practical approach to classify the susceptibility values was defined, based on the cost-curves approach. 331 

Similarly to other methods, such as Natural Breaks (Jenks, 1967), this procedure takes into account the underlying data, instead 332 

of using standard classes, with the advantage that it can be calibrated on a specific cost analysis. 333 

Specifically, the cut-off corresponding to the minimum normalized expected cost was used as the centre of the third class 334 

(medium susceptibility), and defined in this work as half-susceptibility threshold (HST). The classes limits are defined based 335 

on a geometric progression from 0 to 1, centred on HST. 336 

Since the misclassification costs can vary significantly within the study area, and their quantification require extremely detailed 337 

analyses, in the current work the a priori probabilities of having and not having landslides were kept equal, while three 338 

scenarios of relative costs (Scenario 1: 𝑐(−|+): 𝑐(+|−) = 0.5 ∶ 0.5, Scenario 2: 𝑐(−|+): 𝑐(+|−) = 0.8 ∶ 0.2, Scenario 3: 339 

𝑐(−|+): 𝑐(+|−) = 0.2 ∶ 0.8, where 𝑐(−|+) is the cost of false negatives and 𝑐(+|−) is the cost of false positives) were 340 

considered.  341 

3 Results 342 

3.1 Slope units delineation 343 

By using a minimum area of 20,000 m2 and a maximum circular variance of 0.1, the study area was partitioned in 10’528 slope 344 

units (Fig. 4), with an average area of 56’555 m2 and a maximum area of 1’868’299 m2. Slope units were classified as unstable 345 

if occupied by at least one landslide. This resulted in 627 (5.95%), 50 (0.47%), and 869 (8.25%) unstable slope units for the 346 

1977, 2014, and 2019 events, respectively. 347 
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 348 

Figure 4. Example of slope unit delineation within the area of Gavi, overlaid on an aspect map. 349 

3.2 Preliminary exploratory statistical analysis 350 

Figure 5 represents the percentage of variables within the different groups of controlling factors for which the similarity 351 

hypothesis between the variable distributions in the unstable slope units for the different inventories can be rejected (see Fig. 352 

S53 for all the distributions). Lithological variables show the lowest dissimilarity between the different inventories, followed 353 

by land use. On the other side, the rainfall variables are always dissimilar among the inventories. This suggests that landslides 354 

may be triggered by different rainfall patterns, but within certain specific lithological and land use classes.  355 

 356 

Figure 5. Percentage of statistically dissimilar variables within each group of controlling factors, according to the Dunn’s test with 357 
a significance level of 0.05. Numbers below the name of the groups refer to the total number of variables considered within that 358 
group.  359 

To further investigate the control exerted by rainfall on the triggering of shallow landslides, the correlation between landslide 360 

distribution and values of maximum rainfall intensity and 90-days antecedent cumulative rainfall was analysed. This 361 

investigation was carried out by defining intervals of rainfall values and calculating the spatial density of landslides within 362 

each rainfall interval area. The three landslide events show significant differences, confirming the previous results.  363 
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Considering the whole study area, landslide density is clearly positively correlated with maximum rainfall intensity. For the 364 

same maximum rainfall intensity values (Fig. 6a), the landslide density is offset for the three inventories, suggesting a different 365 

sensitivity of landslides to rainfall (for example, landslide density for 400 mm is 4.36e-4 for the 2014 event, and 4.65e-3 for 366 

2019). This could be explained by the different levels of antecedent rainfall (Fig. 6b): the higher the antecedent cumulative 367 

rainfall, the higher the sensitivity. This relationship is recognizable also by visual comparison of the event rainfall intensity 368 

maps with respect to the antecedent cumulative rainfall maps (Fig. 2 and S2).  369 

The same analysis was conducted for the most unstable lithological units, namely marls (around 30% of the total landslides 370 

number for each event), sandstones and siltstones (almost 50% of landslide in each event), sandstone breccias (7% of landslides 371 

in 1977 and 2019, 0% in 2014), and sandstones and marls (4% in 1977 and 2019, 14% in 2014). The results did not show clear 372 

trends, probably due to the small number of landslides in each rainfall class (Fig. S6). This is more evident for sandstone 373 

breccias, as this lithology is restricted to a relatively small sector in the western part of the study area.  374 

To further investigate the control of rainfall on landslide triggering, landslide density was plotted against classes of maximum 375 

rainfall intensity, cumulative rainfall during the event and 90 days antecedent cumulative rainfall (Fig. 5).  376 

Firstly, the three landslide events show significant differences, confirming the previous results.  Considering the whole study 377 

area, landslide density is clearly positively correlated with maximum rainfall intensity during the event. Interestingly, for the 378 

same maximum rainfall intensity (Fig. 5a), the landslide density is offset for the three inventories, indicating a different 379 

sensitivity of landslides to rainfall. This could be explained by the different levels of antecedent rainfall (Fig. 5b): the higher 380 

the antecedent cumulative rainfall, the higher the sensitivity.  381 

The same analysis for individual lithologies did not show clear evidences, probably due to the smaller sample of landslides in 382 

each class (Fig. S4). This is more evident for sandstones and breccias, as this lithology is restricted to a relatively small sector 383 

in the western part of the study area.  384 
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385 

 386 

Figure 6. Scatterplots representing landslide density in each rainfall class for the entire study area. Spearman’s rank order 387 
correlation coefficients between landslide density and rainfall classes are reported in each plot. Underlined values are statistically 388 
correlated at the 0.05 level.  389 

For the 1977 event, Fig. 6a shows that landslides started to occur for maximum rainfall intensities greater than 100 mm in 24 390 

h. This result agrees with the Intensity-Duration (ID) threshold curves proposed for the area (Tiranti et al., 2019). A few 391 

landslides in 2019 were triggered at even lower rainfall values, very close to the catchment divide where local topography 392 

could have exerted a major control. The high density is also related to the small catchment area pertaining to the low rainfall 393 

interval. On the other hand, during the 2014 event, a rainfall intensity of 250 mm in 24 hours was necessary to cause 394 

instabilities. This may be explained by a relatively low cumulative antecedent rainfall (below 300 mm) with respect to the 395 

other events, inducing low initial soil moisture conditions. 396 
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For the 1977 and 2019 events, Fig. 5a shows that landslides started to occur for maximum rainfall intensities greater than 100 397 

mm in 24 h, which agrees with the ID curves proposed for the area (Tiranti et al., 2019). On the other hand, during the 2014 398 

event, a rainfall intensity of 250 mm in 24 hours was necessary to cause instabilities. This may be explained by looking at the 399 

cumulative antecedent rainfall in 90 days, which is below 300 mm in 2014, and much higher for the other events, giving 400 

different initial soil moisture conditions. 401 

Also, all the three inventories show a positive correlation between the landslide density and the normalized maximum rainfall 402 

intensity over 24 hours. On the contrary, the values of antecedent and intra-event cumulative rainfall are significantly different 403 

between the three events (Fig. 4), as confirmed by Fig. 5. Moreover, the different average levels of antecedent conditions, 404 

whose pattern is not spatially correlated with the distribution of maximum intensity, also play a role in offsetting the 405 

relationship between landslide density and the maximum rainfall intensity. Figure 5 shows that landslide density increases 406 

more rapidly with rainfall as a function of the initial conditions (for example, landslide density for 400 mm is 4.36e -4 for the 407 

2014 event, and 4.65e-3 for 2019). 408 

3.3 Rainfall based susceptibility maps 409 

Figure 7 shows the mean coefficient and the inclusion rate of the 50 runs of the logistic regression models, for each single 410 

variable. Slope gradient is the most important parameter for all models (except m14), with always positive coefficients and a 411 

high inclusion rate. For the other morphometric parameters, northerness and flow accumulation show a high inclusion rate and 412 

relatively high coefficients (except for m14). The negative sign of the northerness coefficient indicates the south-facing slope 413 

units as more unstable. Among the lithological descriptors, “gravels and sands”, “sandstones and siltites”, and “marls” show 414 

the highest inclusion rates and coefficient values. On the other end, basalts, limestones, and slates are never included in the 415 

models. Land use does not exert an important control. Among the descriptors of soil granulometry, the contents in coarse 416 

fragments and sand are selected with a high inclusion rate and a negative median coefficient, with the exception of m14, while 417 

clay content is chosen with a high inclusion rate and a positive median coefficient. 418 

Eventually, rainfall variables play an important but complex role on susceptibility. Maximum daily intensity is very important 419 

for m14, m771419, and m7714161921, with positive coefficients and a high inclusion rate. Surprisingly, maximum rainfall 420 

intensity is not included in m19, and takes negative values in m77. The antecedent cumulative rainfall is important for slope 421 

instability in models m77, m14, m771419 and m7714161921, while model m19 shows the lowest mean coefficient for this 422 

variable.  423 

The intra event maximum rainfall intensity is also a relevant variable, but with a more complex influence. This variable is very 424 

important for model m14, with a strong destabilizing effect, but it is not included into model m19, and assumes a negative 425 

coefficient in m77. 426 
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 427 

Figure 7. Variation of the median coefficient (left panel) and inclusion rate (frequency – right panel) of variable selection according 428 
to the different training model, based on 50 iterations. Variables are aggregated in 5 groups (G = geomorphological parameters, L 429 
= lithological parameters, S = soil grain size, U = land use and land cover parameters, R = rainfall parameters). Grey boxes indicate 430 
that the variable was never chosen by the model.  431 
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Model m14 shows a good performance when evaluated over its validation dataset, with a mean AUROC value of 0.97 (highest 432 

mean AUROC value among all the tested models), but it fails in predicting or hindcasting other landslide events, as indicated 433 

by an interquartile range of AUROC values between 0.62 and 0.74 (Fig. S75), a low accuracy and a high FPR. Model m77 434 

shows a high mean AUROC, but a low AUPRG, especially when trying to predict 2014 landslides, meaning that the model 435 

output becomes less precise when ignoring the true negatives. On average, model m19 shows good prediction capabilities, 436 

especially in terms of AUPRG. Models trained over multiple events show the best performance, and an associated reduction 437 

in the variability of the final results. The mean AUROC value increases, as does the mean AUPRG. The inclusion of intense 438 

rainfall events that did not lead to the triggering of slope instabilities results in small improvements in the general performance, 439 

especially for the mean accuracy and FPR.  440 

According to the TOPSIS classifier (Fig. 87), m7714161921 is the model with the highest relative closeness degree to the ideal 441 

solution (score of 0.9), obtained giving the same weight for the evaluation of all the scores (0.16 for all the metrics). 442 
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 444 

Figure 8. AUROC, accuracy, precision, true positive rate TPR and false positive rate FPR obtained using the threshold that 445 
minimizes the expected costs, calculated for each model assuming equal costs. For each model, the scores of the evaluation obtained 446 
with the TOPSIS classifier are also reported. For each model, the relative closeness degree of alternatives to the ideal solution (Ci) 447 
and ranks of the evaluated models are also reported. 448 

3.4 Model representation 449 
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 450 

Figure 9. Landslide susceptibility maps for the Orba basin. Columns refer to different training models, while rows refer to different 451 
predicted or hindcasted events.   452 



24 

 

For each model, five rainfall events were used to produce the rainfall-based susceptibility maps (Fig. 98), obtaining different 453 

maps for each model as a function of the event-specific rainfall values. From a simple visual inspection, comparing 454 

susceptibility classes and landslide distribution, it is clear that models m14 and m19 are not able to correctly model landslide 455 

susceptibility. As already seen in Fig. 76, the high coefficient of rainfall intensity in m14 makes susceptibility excessively 456 

dependent on this variable, so that the resulting unstable units simply reflect its distribution. On the contrary, the exclusion of 457 

rainfall intensity and the low coefficients of antecedent rainfall in m19 make the susceptibility maps almost constant for 458 

different events. In addition, the model tends to overestimate unstable areas. Model m77 shows a better performance, but still 459 

suffers from the low coefficient of maximum rainfall intensity, making also this model quite constant between different events, 460 

thus predicting unstable areas also for the 2016 and 2021 events. Models m771419 and m7714161921 significantly outperform 461 

the others, as they are able to classify the central part of the study area as unstable only for heavy rainfall events. However, 462 

they tend to underestimate the percentage of unstable or very unstable slope units during the 1977, 2014 and 2019 events, with 463 

less than 4% of the slope units classified as moderately, highly or very highly unstable. On the other hand, they correctly 464 

classify all the slope units as stable when considering rainfall events that were not associated with landslides (p16 and p21). 465 

Model m7714161921 also shows a slightly better ability to handle false positives when simulating non-triggering rainfall 466 

events, as it can be seen in the last row of Fig. 76 for the prediction of m14, m16 and m21, especially in the western part of 467 

the study area.  468 

In general, the maps in Fig. 98 classified by using a rather standard partitioning of the susceptibility values into five classes (0 469 

– 0.2, 0.2 – 0.45, 0.45 – 0.55, 0.55 – 0.8, 0.8 – 1) show an uneven distribution of slope units in the different classes, giving the 470 

impression of either overestimation or underestimation. This problem was addressed with the new classification method based 471 

on misclassification costs, which was applied to m7714161921 (ranked as the best performing model). For each of the three 472 

considered scenarios the optimal cut-off threshold and the relative geometric progression were derived, considering different 473 

misclassification cost ratios (Table 2). The class boundaries derived from the geometric progression were then used to 474 

reclassify the susceptibility values, to produce optimised maps (Fig. 109). The optimal cut-off threshold decreases as the 475 

relative cost of false negatives decreases, thus reducing the number of slope units classified as unstable. 476 

Table 2. Threshold values for m7714161921, for each of the proposed scenarios of relative costs. HST is the half-susceptibility 477 
threshold corresponding to the value that minimizes the normalized expected cost for each cost scenario. The considered classes 478 
correspond to very Low (VL), Low (L), Medium (M), High (H), and very High (VH). 479 

Cost Scenarios HST VL L M H VH 

𝒄(−|+): 𝒄(+|−) = 𝟎. 𝟓 ∶ 𝟎. 𝟓 0.034 0.005 0.018 0.068 0.261 1.000 

𝒄(−|+): 𝒄(+|−) = 𝟎. 𝟖 ∶ 𝟎. 𝟐 0.010 0.018 0.068 0.261 1.000 0.005 

𝒄(−|+): 𝒄(+|−) = 𝟎. 𝟐 ∶ 𝟎. 𝟖 0.104 0.066 0.164 0.405 1.000 0.027 
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 480 

Figure 10. Instability maps relative to the best performing model (m7714161921). Each row refers to a different relative cost scenario, 481 
where the proportions refer to the ratio between costs associated to false negatives and false positives. Classes limits are defined 482 
based on the optimal cut-off threshold and the relative geometric progression.  483 
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4 Discussion 484 

4.1 Landslide distribution analysis and prediction 485 

This paper investigated the relationship between several spatially distributed variables (i.e., possible triggering factors) and 486 

the occurrence of shallow landslides though a logistic regression-based susceptibility analysis. 487 

At a first visual inspection, the spatial distribution of the shallow landslides is fairly constant in all the available inventories, 488 

suggesting that shallow landslides in this area are modulated by rainfall, but controlled by other static parameters. In particular, 489 

landslides tend to occur in slope units with similar geomorphology and lithology (Fig. 54).  490 

More specifically, beside the slope gradient, lithology appears to be the most important variable that controls landslide 491 

susceptibility (Fig. 76). Among all, the most prone lithologies in all the inventories are marls, sandstones and siltites, similarly 492 

to the results of Luino and Padano (1999) and Licata et al. (2023). The high importance given to gravels and sands, a lithology 493 

commonly found in alluvial flat areas, can be explained with the instability of fluvial terraces (Šilhán, 2022). Moreover, the 494 

lithology controls the grain size of the soil cover and, thus, the hydrological processes in the unsaturated zone. The sedimentary 495 

sequence in the central part of the area, overlaid by soils with a high clay content, is another important destabilizing factor in 496 

the model because of the poor draining capacity of clays. More interestingly, the southern metamorphic basement is commonly 497 

covered by soils rich in sand and coarse fragments, which have a strong stabilizing effect, probably correlated with a higher 498 

drainage capacity and friction angle.  499 

Surprisingly, the role of land use does not appear to be relevant. In addition, the role of lithology may be strong enough to 500 

mask the land-use effect.  501 

Looking at the variables related to rainfall dynamics, the cumulative antecedent rainfall is the most relevant in all regression 502 

models. In fact, it has been considered a proxy for the soil water content before the event, which for various authors it is pivotal 503 

for modelling shallow landslides (Bogaard and Greco, 2018; Marino et al., 2020b). The intra event maximum rainfall intensity 504 

is also a relevant variable, but with a more complex influence. Being calculated with a 24 h aggregation time, this variable can 505 

be intended as a general descriptor of the entire rainfall event, representative of both the rainfall intensity and the daily 506 

cumulative value. Using a smaller aggregation time could help to differentiate the effects of these two descriptors, which was 507 

impossible for the event of 1977, as outlined in Sect. 4.2.  508 

These parameters are also important to explain the spatial distribution of the landslide density. In particular, the analysis of the 509 

relationships between landslide density, the normalized maximum rainfall intensity over 24 hours and the normalized values 510 

of the antecedent cumulative rainfall suggest that landslide density appears to be controlled by the maximum rainfall intensity. 511 

This agrees with the mechanical explanation of shallow landslides triggering, controlled by soil saturation, leading to an 512 

increase in pore pressure and a loss of soil suction (Fredlund et al., 1978). In addition, the antecedent condition shows a double 513 

role of setting a threshold required for landslide initiation (e.g. Crozier, 1999; Glade et al., 2000; Godt et al., 2006; Marino et 514 

al., 2020b), and offsetting the relationship between landslide density and rainfall intensity.  515 
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Several basin-scale studies suggest that to quantify the shallow landslide susceptibility, the use of multitemporal inventories 516 

lead to better results (Reichenbach et al., 2018), while others affirm that this is not always associated with a model performance 517 

improvement (Ozturk et al., 2021; Smith et al., 2021). Results show that, for the Orba basin, models trained over a single 518 

landslide event are not capable of catching the real processes underlying the instability phenomena, despite the high landslide 519 

density and the good performance when using the test validation dataset. Thus, they are unable to predict landslide events 520 

associated with different rainfall characteristics. In particular, m14, being the smaller landslide inventory and more limited in 521 

the extend of the affected area, shows the best performance when tested against itself (Fig. 87 and Fig. S75), and the worst 522 

performance when used to model other events, producing maps with an exaggerated landslide susceptibility in areas with high 523 

precipitation. The inclusion of multiple events helps in stabilising the effect exerted by the different controlling variables, thus 524 

providing more reliable prediction/hindcast susceptibility maps.  525 

The evaluation of the performance of regression models is always challenging, especially when using an input dataset with a 526 

skewed distribution (e.g. Provost et al., 1998; Davis and Goadrich, 2006; Drummond and Holte, 2006). AUROC, which is the 527 

most used evaluation method in the literature (Reichenbach et al., 2018) suffers from an overly optimistic evaluation while 528 

misclassifying the samples that belongs to the underrepresented class. This is the case of model m77 when predicting 2014 529 

event. On the other side, AUPRG shows high values when model m77 predicts 2019 event, even if large parts of the area 530 

affected by landslides is predicted as stable. The other indices are cut-off dependent, and they do not show any capabilities to 531 

discriminate among the different models. For these reasons, the multi-criteria TOPSIS model was used to consider the 532 

contribution of all the indices. Interestingly, the TOPSIS classification shows significant variations across the models where 533 

single appear to show no significance. Based on the TOPSIS evaluation, the multitemporal models outperform the single event 534 

models, confirming what discussed above. In particular, the model with the highest prediction capabilities is m7714161921, 535 

suggesting that the inclusion of non-triggering rainfall events helps in defining the rainfall threshold to trigger instabilities in 536 

different parts of the study area.  537 

For the representation of the results, the classification scheme typically adopted in the literature does not account for 538 

misclassification costs (Cantarino et al., 2019), meaning that the costs associated with false and missed alarms are implicitly 539 

assumed equal. which are implicitly assumed equal. However, since the misclassifications costs are often not equal, the total 540 

misclassification cost can be reduced by playing on the degree of conservativeness of the models in order to reduce the false 541 

negatives or false positives rates, thus increasing or decreasing what is classified as unstable. This required a new classification 542 

scheme to adjust the thresholds used for susceptibility classification according to the selected proportion of misclassification 543 

costs.   544 

Scenario 2, where the costs of false negatives are higher, is the most conservative because the classification is forced towards 545 

instability to keep the false negatives rate low. On the contrary, scenario 3, where the costs of false positives are higher, shows 546 

the highest percentage of stable slope units. Scenario 1 considers equal costs for false positives and false negatives, and 547 

produces intermediate results. The strong differences between these scenarios suggest that the use of cost curves for the 548 

landslide susceptibility model could be a valuable tool in the final stages of a susceptibility analysis, when slope units need to 549 
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be classified. This approach allows for different classification thresholds based on cost combinations, enabling the evaluation 550 

of their consequences. Costs may include direct costs like damage to infrastructure and loss of life, and indirect costs like 551 

traffic disruptions and lost productivity (Sala et al., 2021). While this work uses different cost ratio scenarios to demonstrate 552 

the approach's potential, more detailed analyses could provide precise cost quantifications, considering that costs may vary 553 

across different parts of the study area. 554 

4.2 Challenges, uncertainties, and limitations 555 

It is necessary to underline possible uncertainties and assumptions regarding the input datasets and the modelling strategies, 556 

so that the limitations of our findings are made clear. Two main limitations can potentially affect the results of these analyses: 557 

the consideration of land use and land cover as a static variable and the use of an old landslide inventory.  558 

First, land use and land cover can vary greatly over time. Considering this variable as static is mainly due to a lack of 559 

information, since the only other dataset provided by ARPA Piemonte dates to 2010, and the analysis of satellite images, 560 

besides being beyond the purpose of this study, was not possible for the 1977 event. An analysis of the land use change between 561 

two available datasets (2010 and 2021) within the Orba basin revealed that permanent crops decreased by 6% and meadows 562 

by almost 2%, while the areas characterised by shrub and herbaceous vegetation increased by 4% and the woods by almost 563 

4%. However, these changes can be considered negligible in the analyses, given the very low influence of the land use variables 564 

in the logistic regression. This is in contrast with the conclusions of many other studies (for example Bernardie et al., 2017; 565 

Persichillo et al., 2017; Hürlimann et al., 2022), suggesting that this relationship could be further analysed in future studies.  566 

The second limitation is posed by the inclusion of an older event (1977) with higher uncertainty of both rainfall pattern and 567 

landslide distribution. Data from the ARPA Piemonte and ARPA Liguria weather stations were used to analyse the rainfall 568 

pattern. However, only 36 stations were active in 1977, 26% less than in 2014 and 2019, and most of them are located outside 569 

the region of interest (Fig. 2). This uncertainty in the rainfall pattern could affect the modelling, especially in the central part 570 

of the basin. In addition, data for 1977 were only available with a daily time step, making it impossible to use multiple different 571 

aggregation times. The landslide inventory of the 1977 event represents landslides as areas affected by diffuse shallow 572 

landslides rather than individual polygons. This affects the landslide distribution and density analysis. However, the choice to 573 

use slope units for analysis mitigated this difference in the inventories. Finally, as mentioned above, the use of this landslide 574 

event precluded the use of satellite products; therefore, some factors that could improve susceptibility analyses, such as 575 

satellite-based antecedent soil moisture, could not be incorporated into the model.  576 

5 Conclusions 577 

This study demonstrates the feasibility of using logistic regression to model the effects of extreme rainfall events on the stability 578 

of a complex study area, such as the Orba basin in the Piedmont region of Italy. In this area, the spatial distribution of shallow 579 
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landslides reflects the distribution of lithology and geomorphology, thus showing a similar pattern for different rainfall 580 

scenarios.  581 

In such conditions, the development of a rainfall dependent model capable of simulating different susceptibility scenarios is 582 

more challenging, and requires a careful calibration of the model with representative and significant rainfall events over a 583 

multi-temporal dataset. In fact, the use of single events may be problematic. For example, a rainfall event that is spatially 584 

concentrated in a small area with specific geological characteristics (such as in 2019 for the study area) could overestimate the 585 

role of such characteristics despite the rainfall, producing biased scenarios. On the contrary, a model trained on an extreme 586 

localised event spanning different geological conditions (such as the 2014 event) may overestimate the role of rainfall at the 587 

expense of geology. Finally, a rainfall event evenly distributed over the area (such as in 1977) would produce a model that 588 

underestimates the role of rainfall in controlling the landslide pattern.  589 

To avoid such effects, an ensemble of rainfall events is preferable to better unravel the effects of the triggering variables, and 590 

also to compensate for local misleading effects that may arise from the use of a single rainfall event. The use of rainfall events 591 

that did not trigger landslides may also be helpful for such compensation. The proposed strategy for selecting the best ensemble 592 

of rainfall events was based on the maximization of the AUROC, AUPRG, accuracy and precision, and the minimization of 593 

the expected misclassification costs.  594 

Eventually, misclassification costs were adopted as a criterion to define the susceptibility classes for the practical use of the 595 

resulting maps; this highlights the need to give importance to the classification process, which should be tailored to the needs 596 

of the end users and on the purpose of the final products. 597 
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