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Abstract. This paper tests a multivariate statistical model to simulate rainfall dependent susceptibility scenarios of shallow
landslides. To this end, extreme rainfall events spanning from 1977 to 2021 in the Orba basin (a study area of 5905 km? located
in Piedmont, northern Italy), have been considered. First of all, the role of conditioning and triggering factors on the spatial
pattern of shallow landslides in areas with complex geological conditions is analysed by comparing their spatial distribution
and their influence within logistic regression models, with results showing that rainfall and specific lithological and
geomorphological conditions exert the strongest control on the spatial pattern of landslide.

Different rainfall-based scenarios were then modelled using logistic regression models trained on different combinations of
past events and evaluated using an ensemble of performance metrics. Models calibrated on multi-events outperform the ones
based on a single event, since they are capable of compensating for local misleading effects that can arise from the use of a
single rainfall event. The best performing developed model considers all the landslide triggering rainfall scenarios and two
non-triggering intense rainfall events, with a score of 0.90 out of 1 on the multi-criteria TOPSIS-based performance index.
Finally, a new approach based on misclassification costs is proposed to account for false negatives and false positives in the
predicted susceptibility maps.

Overall, this approach based on a multi-event calibration and on a misclassification costs analysis shows promise in producing
rainfall dependent shallow landslide susceptibility scenarios that could be used for hazard analyses, early warning systems and

to assist decision-makers in developing risk mitigation strategies.

1 Introduction

Shallow landslides are a widespread phenomenon that affects many regions of the world (Petley, 2012). In Italy, according to
the last national report on landslides and floods, almost 8% of the country is affected by landslides, of which 15% are classified
as rapid flow and 6% as shallow landslides (ISPRA, 2021). According to Cruden and Varnes (1996), these are shallow slides,
mainly translational, with a thickness ranging between 0.5 and 2 m (Bandis et al., 1996; Mason and Rosenbaum, 2002). Shallow
landslides are generally triggered by rainfall events, which cause an increase in pore water pressure, or a loss of apparent
cohesion generated by suction (Caine, 1980; Crosta and Frattini, 2003; Fredlund et al., 1978; Iverson, 2000; Lu and Godt,
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2008). Despite their limited initial volume, these landslides may be characterized by a high density per unit area and can evolve
in debris flows. The high velocity and the difficulty of prediction due to the almost complete lack of premonitory signs
(Campbell, 1975; Frattini et al., 2009; Montrasio et al., 2016) make these phenomena seriously dangerous in terms of life and
economic losses (Trigila and ladanza, 2012).

A common definition of landslide hazard is “the probability of occurrence within a specific period of time and within a given
area of a potentially damaging phenemenaphenomenon” (Varnes, 1984), requiring the quantification of the magnitude, the
spatial and the temporal probability for an instability event to occur. The variables that control landslide hazard are commonly
distinguished into conditioning and triggering factors. Conditioning factors are generally assumed to have no temporal
dependence and are responsible for "where™" a landslide might occur, while triggering factors are event-related and control
"when" a landslide might occur (Crosta and Frattini, 2003; Lombardo et al., 2020; Wu and Sidle, 1995), although their spatial
properties (e.g. distribution of intensity or cumulative rainfall during a rain event) play a key role in determining the location
of landslides.

The spatial likelihood of shallow landslide occurrence is addressed through landslide susceptibility models, based on either
physically based or machine-learning techniques. Physically based techniques for shallow landslides often combine the
infinite-slope model with hydrogeological models, which require many different input data; for this reason, they are more
frequently applied at the site-scale (Baum et al., 2008; Montgomery and Dietrich, 1994).

Machine-learning methods search for functional relationships between the conditioning factors and the distribution of
landslides, obtained from inventories of past events (Carrara, 1983; Goetz et al., 2015; Huang et al., 2020; Reichenbach et al.,
2018; van Westen et al., 2008). Susceptibility models are usually considered as time-independent, meaning that the likelihood
of landslides occurrence does not vary in time (Jones et al., 2021; Lombardo et al., 2020). However, many authors demonstrated
that this assumption is often violated both on a long (hundreds or thousands of years) and on a short timescale (tens of years),
especially in view of climate changes (Hungr, 2016; Samia et al., 2018). The “when” problem has typically been addressed by
using rainfall thresholds or physically based models. Rainfall thresholds describe the rainfall intensity, duration or cumulative
event precipitation that may trigger landslides for a particular area (Caine, 1980; Crosta, 1998; Guzzetti et al., 2007). This
approach has usually disregarded soil features and morphometric conditioning factors, such as the geotechnical features of the
involved materials, until recent times, when hydrogeological effects started to be included into the analyses, for example
through the consideration of the soil water content prior to the triggering event (Bogaard and Greco, 2018; Marino et al., 2020).
Some authors started testing approaches to address both the “where” and the “when” questions in the context of early warning
systems. For example, Kirschbaum and Stanley (2018), used a fuzzy overlay model to combine static explanatory variables
into a susceptibility map. This information was then incorporated into a heuristic decision tree model together with dynamic
variables such as antecedent precipitation, giving a model capable of indicating potential landslide activity in near real-time.
Segoni et al. (2018b), combined rainfall thresholds and susceptibility maps into a hazard matrix, while Bordoni et al. (2021),
integrated rainfall thresholds and antecedent soil humidity with a susceptibility model in order to forecast the spatial and

temporal probability occurrence of shallow landslides. Camera et al. (2021) included intense rainfall and snowmelt in a
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landslide susceptibility model trained over multiple landslide inventories and different meteorological conditions, making it
potentially more robust to investigate the effects of climate changes. Knevels et al. (2020) and Maraun et al. (2022), included
5 days cumulated rainfall and maximum 3 hours rainfall intensity to model landslides associated with an extreme rainfall event,
and then applied their findings to an event storyline approach to analyse the future landslide occurrence probability under
climate changes. Moreno et al. (2024) integrated static and time-dependent controlling factors into a generalized additive
mixed model (GAMM) model to forecast shallow landslides in space and time, showing that both short-term (2 days) and
medium-term (14 days) cumulative precipitation increases the model capabilities.

Yet, the integration of static and time-varying factors into machine-learning models still remains challenging, but it could
become a powerful instrument to better understand the connection between a variation in the time-dependent controlling factors
and landslide triggering, thus helping at improving landslide prediction in a changing climate.

An important issue for the application of susceptibility models is the evaluation of their performance. For models that predict
binary stable and unstable slopes it is necessary to choose a cut-off value below which the predicted susceptibility values are
treated as 0 and above which the values are treated as 1 (Begueria, 2006; Brenning, 2005; Frattini et al., 2010; Goetz et al.,
2015; Guzzetti et al., 1999).

This results in a contingency matrix quantifying the total number of correctly and incorrectly classified units. From this matrix,

it is possible to assess the performance of the model by using several performance statistics, such as the Accuracy (i.e. the ratio

between the correctly classified samples and the total number of samples), the Precision (i.e., the ratio between the true positive

samples and all the positively classified samples, meaning the sum of the true Positives and the False Positives), the True

Positive Rate TPR (i.e., the ratio between the true positive and all the positives, meaning the sum of the True Positives and the

False Negatives), the False Positive Rate FPR (i.e., the ratio between the false positives and all the negatives), the Threat score
(Gilbert, 1884), the Pierce's skill score (True skill statistic; Peirce, 1884), the Heidke's skill score (Cohen's kappa; Heidke,
1926), and the odd ratio skill score (Yule's Q; Yule, 1900).

However, the choice of the cut-off value is a complex problem, and therefore the performance is frequently evaluated by using

cut-off-independent methods, such as the Receiver Operating Characteristic (ROC) curves (Frattini et al., 2010; Hosmer and
Lemeshow, 2000; Provost and Fawcett, 2001) or the Precision-Recall (PR) curves (Davis and Goadrich, 2006; Raghavan et
al., 1989; Saito and Rehmsmeier, 2015). The ROC curve represents the FPR and TPR obtained for different cutoffs. The Area
Under the Curve (AUROC) can be used to quantify the overall quality of the model (Hanley and McNeil, 1982). However,
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ROC curves can overestimate the performance of a model when the distribution of the input classes is highly skewed. For this
reason, the Precision-Recall (PR) curves have also been used (Nam et al., 2024; Yordanov and Brovelli, 2020; Zhao et al.,
2022), which plots the precision (i.e., the proportion of true positives among the positive predictions) against the TPR.
However, unlike ROC curve, the value under the PR curve is not directly interpretable for model evaluation, especially because
of a non-universal baseline performance, which depends on the class distribution, and a non-linear interpolation of precision
values. Nevertheless, PR analysis can be adapted to be used similarly to the ROC analysis by using Precision-Recall-Gain
curves (PRG), which make use of the F-Gain score, a linearized version of the F1 score, to properly take baselines into account
(Flach and Kull, 2015).

One _important consequence of the choice of the cut-off value is the generation of false and missed alarms, meaning the

situations in which the model predicts a landslide in a specific area or time, but no landslide actually occurs, or the case in

which a landslide takes place, but the model fails to predict it. False and missed alarms come with associated costs. For

example, false alarms may lead to unnecessary evacuations or resources allocation, and can reduce trust in the model

capabilities, while missed alarms result in unpreparedness and potentially severe consequences, including property damage,

loss of life, or economic impacts. Therefore, the performance of the model can be evaluated by assessing the expected

misclassification costs through the cost curves (Drummond and Holte, 2006; Frattini et al., 2010), with an approach that allows

the choice of the cut-off value that minimizes the expected costs (Sala et al., 2021).

A multivariate statistical analysis for the Piedmont area of the Orba basin (northern Italy) has been developed in this paper,

considering rainfall scenarios spanning from 1977 to 2021, to investigate the correlation between landslides distribution and
the spatial pattern of conditioning and triggering factors. Different logistic regression models were trained for different
landslides and rainfall scenarios, and their performance was evaluated through an ensemble of performance metrics, leading
to an optimal choice of the best model for scenario-based problems or early warning.
This work allows to address the following research questions:

e To what extent the pattern of shallow landslides is controlled by the characteristics of the rainfall event in areas with

complex geological conditions?

e How can rainfall be used within a statistical model to produce instability scenarios for different rainfall events?

e Which is the best strategy to train a statistical model based on an ensemble of rainfall events?

e Which is the most significant classification scheme to produce a susceptibility map for early warning purposes?
The novelty of this work lies in the definition of a critical selection strategy of the optimal ensemble of rainfall events to
produce a susceptibility map that may be helpful for scenario-based problems and early warning purposes. Moreover, a new

methodology is proposed for the classification of the regression results, used for the realization of the final resulting maps.
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2 Materials and methods
2.1 Study area

The Orba basin is located between the Langhe and Alto Monferrato Hillsin-the-Langhe-and-MenferrateHills of Piedmont
Region, north-western Italy. This area has been affected by several high-magnitude floods and severe slope instabilities during

the last century, caused by intense rainfall events (Mandarino et al., 2021). The study area has an extension of 5995 km? and
it is situated between 80 and 1170 m a.s.l. The main river of the basin, the Orba River, flows northward from the Ligurian
Apennines to the confluence with the Bormida River, a right tributary of the Po River. The study area overlaps_magmatic and
metamorphic lithotypes in the southern part — mainly peridotites, serpentinites and serpentine-schists, meta-gabbros and meta-
sediments belonging to the Voltri Massif and the Sestri-Voltaggio Zone (Piana et al., 2017) — while in the central part of the
area the sedimentary sequence of the Tertiary Piedmont Basin (TPB) outcrops. The TPB evolved from the Late Eocene to the
Late Miocene over the inner part of the Alpine wedge (Coletti et al., 2015) and is mainly represented in the area by
conglomerates, sandstones and marls. The northern sector of the basin presents quaternary fluvial deposits belonging to the

Alessandria — Tortona floodplain. The morphology of the area is strongly controlled by the TPB sedimentary succession: where

the strata are harder, the landscape presents hilly reliefs with an asymmetric profile resulting from the monoclinal bedding of

marly-silty and sandy-arenaceous alternations (Luino, 1999), which are part of a monoclinal structure striking WNW-ESE that

imposes a dipping of approximately 30° (Luino, 1999; Mason and Rosenbaum, 2002), while lowered areas modelled by fluvial

erosion are present where the lithologies are more erodible.

the dipping of the strata becomes gentler, the morphology becomes more uniform and characterized by a dense hydrographic

network. The mean annual temperature is 13° and the average annual precipitation ranges from around 600 mm/year in the
northern part to 1600 mm/year in the southern part, with autumn as the rainiest season (Fioravanti et al., 2022; Luino, 2005).
Land use is primarily forest (45%), with crops and meadows (24%) near the confluence with the Po River (LAND COVER
PIEMONTE, https://geoportale.igr.piemonte.it/cms/progetti/land-cover-piemonte, last access 21/10/2023).




Quaternary
Gravels and sands
Oligocene-Pliocene
B Limestones
[ Gypsum
Marls
Marls and sands
[ Sands and gravels
Sandstone breccias
Sandstones and
conglomerates
[ sandstones and marls
Sandstones and siltites
Tectono-metamorphic units

B serpentinites

[ Slates

[ Basalts

[ Calc-schists

[ Gabbros and peridotites
B Prasinites

@ Landslides

155

Quaternary

Gravels and sands
Oligocene-Pliocene
. Limestones

. Gypsum
Marls

Alessandria-Tortona
floodplain

1,BIALIOS,

19N

Marls and sands
[ sands and gravels
Sandstone breccias
| Sandstones and conglomerates
. Sandstones and marls
Sandstones and siltites
; Igneous and metamorphic units
B serpentinites

[T Siates
[ Basalts

[ calc-schists

. Gabbros and peridotites
. Prasinites

@ Landslides

156

157 Figure 1. Location of the Orba basin, with the spatial distribution of shallow landslide observed in three different events, and with
158 the main lithologies.
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2.2 Data
2.2.1 Rainfall events and landslide inventories

The inventories related to three different landslide events that occurred in 1977, 2014 and 2019 were used for the subsequent

analyses. Data relative to the events of 1977 and 2014 are available online (SIFRAP, Sistema Informativo sulle FRane in

Piemonte, handled by Regional Environmental Protection Agency of Piemonte — ARPA Piemonte) and were compiled through

the analysis of Google Earth images, national and regional orthophotos, published event maps, and field reconnaissance, while

the most recent event was directly provided for this project by ARPA Piemonte (personal communication). Fhree-landslide

The 2014 and 2019 inventories include polygons of each single shallow landslide, while the 1977 inventory represents clusters

of shallow landslides as polygons.

The first shallow landslide event was triggered by heavy rainfall at the beginning of October 1977. Between October 6™ and

7" more than 400 mm of rain fell in less than 24 hours, causing flooding, bank and riverbed erosion, debris flows and soil
slips (INTERREG 1IC, 1998){Fig—2}. The second shallow landslide event was triggered in October 2014 with more than 420
mm of rain in less than 12 hours, as recorded at the Gavi meteorological station on October 13™"(Fig—2), for which the mean
annual total rainfall is 1000 mm (calculated for the 1991 — 2020 time interval, ARPA Piemonte). The third shallow landslide
event occurred in late October 2019. In the afternoon and evening of October 215 more than 400 mm of rain (Gavi station) fell
in less than 12 hours, resulting in a very high-magnitude flood and widespread shallow landslides (ARPA Piemonte, 2019)
In addition to these three landslide-triggering rainfall events, two intense precipitation events (2016 and 2021) that were not
associated to landslides were selected, in order to test the capabilities of the models to discriminate between triggering and
non-triggering rainfall characteristics. The 2016 event hit the Piedmont region with strong and persistent rainfalls between
November 21% and 25", and triggered almost 1000 landslides, none of which in the Orba basin. Indeed, the peak of the
cumulative precipitation was localized more southward compared to the ones previously described, with up to 400 mm of rain
in the southern edge of the Orba basin-{Fig—2). The other event happened from October 3" to 5", 2021. The Ligurian-Piedmont
watershed was the most affected area, with a peak of 472 mm of rain in 12 hours recorded in the south-western part of the
area. The total precipitation in the Orba basin was up to 750 mm in the south-western edge of the basin-{Fig—2).. The daily

maximum rainfall intensities and the yearly cumulative rainfall values for all the considered events are reported in Fig. 2.
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Figure 2. Maximum daily rainfall intensity Rainfal-and landslides distribution during the considered events, reconstructed by
interpolation of values measured by the meteorological stations on the ground, that led to landslide triggering in the Orba basin.
Graphs report the daily and cumulative rainfall for the year in which the shallow landslides were triggered are shown. Dashed lines
represent the mean annual rainfall for the basin of interest (ARPA Piemonte).

For all the inventories, a non-cumulative logarithmic binned landslide size probability density distribution was developed as:

1 0N

p(4) = —1 (1)

where ON in the number of landslides with an area between A and A + 0A and Ny is the total number of landslides within a
study area (Malamud et al., 2004). Following ,Frattini and Crosta (2013){Frattini-and-Crosta-—2013); a Pareto distribution was
fitted to the probability density above a minimum size cut-off with (Fig. 3):

p(4) = ac®A=** c>0, a>0, Ae€[c,0) @)

Using the maximum likelihood estimation, the distribution parameters were estimated, obtaining a good fitting for landslides
larger than 500 m?, with the best fitting results for landslides greater than 1000 m2. The scaling exponents o, vary between 1.5

and 2.6, values that are higher than most of those reported in literature but still in the range (VVan Den Eeckhaut et al., 2007).



209 Table 1. Statistical parameters describing the landslide events in the study area.

210
211

212
213

214

215
216
217
218
219
220
221
222

|223
224

|225

Event Number  Density % Total landslide area [km?] Mean landslide area [m?]
6 — 7 October 1977 366 1.31 7.82 21373
9 — 13 October 2014 66 0.004 0.023 353
19 — 22 October 2019 2088 0.26 1.57 124
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Figure 3. Probability density — areas distribution of the shallow landslides for the three events within the study area. As stated in the
main text, the 1977 landslide inventory shows a different distribution, shifted to the right, because of the different chosen mapping
criteria. Power-law fitting with maximum likely estimator is reported (f = -a-1).

2.2.2 Landslide conditioning and triggering factors

The conditioning factors used in the following analyses include 7 morphometric parameters, lithology, soil grain size

distribution, and land use (Fig. S1). The morphometric parameters were extracted using ArcGIS Pro 3.1.0 © from a 5m

resolution DTM acquired using a uniform methodology (LiDAR) at Level 4 standard, with an elevation accuracy of £0.30 m

(£0.60 m in areas of lower precision, corresponding to wooded and densely urbanized areas), provided by Piedmont region.

oA The morphometric

factors are slope angle, northerness, easterness, profile curvature, planar curvature, total curvature, and flow accumulation.
Lithological information was obtained from the geological map of Piemonte Region, at scale 1:250,000 (Piana et al., 2017).
The units have been reclassified by aggregating geo-stratigraphic units with comparable lithological and litho-technical
characteristics (Table S1), resulting in 16 lithological classes (Fig.1: gravels and sands, limestones, gypsum, marls, marls and
sands, sands and gravels, sandstone breccias, sandstones and conglomerates, sandstones and marls, sandstones and siltites,

serpentinites, slates, basalts, calcschists, -gabbros and peridotites, and prasinites).
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Information relative to the soils grain size distribution was retrieved from the SoilGrids maps (Poggio et al., 2021), reporting
soil properties for the entire globe with a resolution of 250 m. SoilGrids models were obtained through the application of
machine learning to soil data collected worldwide.

The land use was obtained from the 10 m resolution LAND COVER PIEMONTE map, which integrates information collected
between 2018 and 2022 (https://geoportale.igr.piemonte.it/cms/progetti/land-cover-piemonte, last access 21/10/2023). 12
different land use classes were used, namely arable land, areas with sparse/absent vegetation, artificial non-agricultural green
areas, heterogeneous agricultural areas, inland waters, mining areas, permanent crops, permanent lawns, road network,
shrubby/herbaceous areas, urbanized and productive areas, and woods.

Besides the predisposing factors, several rainfall parameters potentially responsible for the shallow landslides triggering were

also included into the analysis. These parameters were obtained by interpolating daily rainfall data collected at 39 and 51

gauging stations for the 1977 and 2014/2019 rainfall events, respectively, with a natural neighbour technique, at a spatial

resolution of 5 m. These parameters-were-obtained-by-interpolating-daily rainfall-data-collected-at 39-and-51-gauging-station

forthe 1977-and-2014/2010 rainfal-eventsrespectively—In particular, the maximum daily rainfall intensity (mm/day, Fig. 2);
the-totalrainfall-of-the-events(Fable-1)-and the antecedent cumulative rainfall (mm, Fig. S2) over 10, 30, 60 and 90 days
(Smith et al., 2023) as a proxy of soil water content prior to the event (Guzzetti et al., 2007), which can increase the likelihood

of failure (Bogaard and Greco, 2018; Thomas et al., 2018), were extracted_for each event. Maximum daily rainfall intensities
were normalized by the daily rainfall with a return period of 10 years, provided by ARPA Piemonte with a grid resolution of
250 m, while the total and antecedent rainfall values were normalized by the mean annual precipitation (1991 — 2020) within
the study areas_(Fig. S3). Data normalization was performed because previous studies (Marc et al., 2019; Smith et al., 2023)
found that the spatial pattern of shallow landslides is more correlated with rainfall anomalies rather than with rainfall absolute
values.

A correlation analysis between these rainfall variables revealed a strong linear correlation between the maximum rainfall
intensity and the total rainfall of the event — probably due to the coarse temporal aggregation used to estimate the maximum
intensities. A strong correlation was also found between the antecedent cumulative values over different aggregation time
windows. For the subsequent regression analyses, an a priori selection was made to extract the two most influencing rainfall
variables: the maximum daily rainfall intensity as an intra-event descriptor, and the 90-day cumulative rainfall for the
antecedent condition. The latter was selected by testing the correlation between the cumulative rainfall values and the soil
humidity obtained from the ERA5-Land dataset (ERA5-Land hourly data from 1950 to present.; Hersbach et al., 2020; Mufioz-

Sabater et al., 2021), from which the highest correlation was found when using a time window of 90 days (Fig. S42).

2.3 Slope unit delineation

The application of statistical models to landslide susceptibility zoning requires the partition of the study area in terrain units,

such as unigue condition units, slope units, grid-cells, or others (Carrara et al., 1991, 2008). Among these, slope units were

chosen for area partitioning within this study. A slope unit is defined as a morphological terrain unit delimited by drainage and
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divide lines (Carrara et al., 1991; Guzzetti et al., 1999), corresponding to what could be defined as a single slope, a combination

of adjacent slopes, or a small catchment from a geomorphological and a hydrological point of view (Alvioli et al., 2016). Slope

units were selected since they provide several advantages, such as: (i) the reproducibility of the spatial partitioning; (ii) the

possibility to use continuous values for the categorical variables, where the continuous values are calculated as the areal

percentage of the slope units that is covered by a particular categorical class, and thus can vary between 0% and 100% (Carrara

etal., 1991), (iii) an efficient handling of mapping uncertainties, thanks to the generalization of the predisposing factors falling

within them (Jacobs et al., 2020; Steger et al., 2016). Their delineation is based on the identification of drainage and divide

lines, and was done automatically by using the r.slopeunits algorithm (Alvioli et al., 2016). This iterative algorithm requires

as input data the minimum circular variance for each unit, representing the allowed variability of orientation for each grid cell

belonging to the same unit, and the minimum area for each slope unit.

2.4 Preliminary exploratory statistical analysis

To understand which variables exert the strongest control on the landslide distribution, and if this control remains constant
through time, the distributions of the mean values of each covariate for the slope units affected by shallow landslides were
compared with the same distributions for the whole study area, and for the other inventories. The similarity among the
inventories for each covariate (i.e., the null hypothesis) is rejected if the p-value of the Dunn’s test is smaller than 0.05.

To further investigate the role of antecedent and triggering precipitation, the relationship between landslide density (i.e., total
landslide area over the total slope units area) and precipitation classes (i.e., normalized maximum rainfall intensity, normalized
cumulative rainfall, and normalized antecedent cumulative rainfall) was analysed through the Spearman’s rank order
correlation coefficient. Given the strong lithological control, the analysis was conducted for the entire study area and separately

for the most unstable lithological units
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2.5 Rainfall-based susceptibility analysis

Binary logistic regression was chosen for the susceptibility analysis because of its widespread and validated use and because
it provides the importance of each conditioning variable in terms of standardized regression coefficients in a straightforward
manner (Carrara, 1983; Micheletti et al., 2015; Reichenbach et al., 2018).

Logistic regression describes the relationship between a binary outcome (stable or unstable unit) and a set of independent

variables (Hosmer and Lemeshow, 2000). The probability p of a sample to belong to a certain group is given by:
lnl%p = By + BiX; + BoX, + B3 X3 + - + B Xy, (3)

where Bi are the logistic coefficients, estimated from the data, that quantify the contribution of each variable Xi to the final
outcome. Logistic regression assumes that a linear relationship exists between the logit transformation of the binary outcome
and each variable selected by the model through a forward stepwise method, with a variable being included into the model if
the probability of its score statistics is smaller than an entry value of 0.05, and being removed if the probability is greater than
a removal value of 0.10. Before running the models, variables showing a strongly skewed distribution were normalized using
a log-transformation (Carrara et al., 2008), and all the static variables were then standardized using a z-score normalization
(mean equal to 0 and standard deviation equal to 1), in order to make their estimated regression coefficients comparable
(Lombardo and Mai, 2018).

Five susceptibility models were developed. Models m77, m14 and m19 were trained on a single landslide event (i.e., 1977,
2014, and 2019, respectively). The model m771419 was trained by merging all the landslide events, and finally the model
m7714161921 was trained by merging different rainfall events with or without landslides. Each dataset was divided into
training (3/4) and validation (1/4) subsets, the former being used to build the models and the latter to evaluate their predictive
performance. Each model was evaluated against itself and against all the other landslide events by using cross-validation.
Model evaluation was performed with the following strategy. First of all, two common cut-off independent methods were
applied (ROC and Precision Recall Gained (PRG) curves) to obtain their Area Under Curves. Then, the optimal cut-off
obtained by the ROC analysis was used to derive the optimal contingency matrix, from which the accuracy, precision, TPR
and FPR were calculated.

Finally, the two values under the ROC and PRG curves and the four performance metrics calculated from the contingency

matrix were summed up with a multiple attribute decision making procedure, performed with the technique for order preference

by similarity to ideal solution (TOPSIS, Hwang and Yoon, 2012), to individuate the best model. For each model, 50 logistic

regression analyses were run with different training and validation datasets, randomly extracted from the original database.

This procedure lead to the calculation of 50 different values of the coefficient associated with each controlling variable, and

to the generation of 50 different susceptibility maps, thus allowing to statistically analyse the distribution of the susceptibility

values, the regression coefficients, and the performance metrics.
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To avoid an over-abundance of obviously stable units (e.g., flat areas), which would give a biased estimate of the performance,

only nontrivial units with slopes more compatible with shallow landslides triggering (>20° and < than 40°) were selected.
The economic consequences are one of the main issues in early warning; these economic costs can be significantly different
in case of false or missing alarms. This problem is usually not considered in susceptibility studies, where the classification of
susceptibility into classes (e.g. very low, low, medium, high and very high) is based on some arbitrary choice of the modeler
(Cantarino et al., 2019).

For this reason, a new practical approach to classify the susceptibility values was defined, based on the cost-curves approach.
Similarly to other methods, such as Natural Breaks (Jenks, 1967), this procedure takes into account the underlying data, instead
of using standard classes, with the advantage that it can be calibrated on a specific cost analysis.

Specifically, the cut-off corresponding to the minimum normalized expected cost was used as the centre of the third class
(medium susceptibility), and defined in this work as half-susceptibility threshold (HST). The classes limits are defined based
on a geometric progression from 0 to 1, centred on HST.

Since the misclassification costs can vary significantly within the study area, and their quantification require extremely detailed
analyses, in the current work the a priori probabilities of having and not having landslides were kept equal, while three
scenarios of relative costs (Scenario 1: c(—|+):c(+]|—) = 0.5 : 0.5, Scenario 2: c(—|+):c(+|—) = 0.8 : 0.2, Scenario 3:
c(—|+):c(+]-) = 0.2 : 0.8, where c(—|+) is the cost of false negatives and c(+|—) is the cost of false positives) were

considered.

3 Results
3.1 Slope units delineation

By using a minimum area of 20,000 m? and a maximum circular variance of 0.1, the study area was partitioned in 10’528 slope
units_(Fig. 4), with an average area of 56’555 m? and a maximum area of 1°868°299 m?. Slope units were classified as unstable
if occupied by at least one landslide. This resulted in 627 (5.95%), 50 (0.47%), and 869 (8.25%) unstable slope units for the
1977, 2014, and 2019 events, respectively.
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Figure 4. Example of slope unit delineation within the area of Gavi, overlaid on an aspect map.

3.2 Preliminary exploratory statistical analysis

Figure 5 represents the percentage of variables within the different groups of controlling factors for which the similarity
hypothesis between the variable distributions in the unstable slope units for the different inventories can be rejected (see Fig.
S53 for all the distributions). Lithological variables show the lowest dissimilarity between the different inventories, followed
by land use. On the other side, the rainfall variables are always dissimilar among the inventories. This suggests that landslides

may be triggered by different rainfall patterns, but within certain specific lithological and land use classes.

0, p—
100.0% I 1977 - 2014
1 1977 - 2019
80.0% —[_]2014-2019
60.0% -
40.0%
2000/0 _m
0.0% - ‘ J

Geomorphology Lithology Landuse Grainsize Rain
(10 variables) (16) (12) (4) (6)

Dissimilar variables

Figure 5. Percentage of statistically dissimilar variables within each group of controlling factors, according to the Dunn’s test with
a significance level of 0.05. Numbers below the name of the groups refer to the total number of variables considered within that

group.

To further investigate the control exerted by rainfall on the triggering of shallow landslides, the correlation between landslide

distribution and values of maximum rainfall intensity and 90-days antecedent cumulative rainfall was analysed. This

investigation was carried out by defining intervals of rainfall values and calculating the spatial density of landslides within

each rainfall interval area. The three landslide events show significant differences, confirming the previous results.
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Considering the whole study area, landslide density is clearly positively correlated with maximum rainfall intensity. For the

same maximum rainfall intensity values (Fig. 6a), the landslide density is offset for the three inventories, suggesting a different

sensitivity of landslides to rainfall (for example, landslide density for 400 mm is 4.36e™ for the 2014 event, and 4.65e- for

2019). This could be explained by the different levels of antecedent rainfall (Fig. 6b): the higher the antecedent cumulative

rainfall, the higher the sensitivity. This relationship is recognizable also by visual comparison of the event rainfall intensity

maps with respect to the antecedent cumulative rainfall maps (Fig. 2 and S2).

The same analysis was conducted for the most unstable lithological units, namely marls (around 30% of the total landslides

number for each event), sandstones and siltstones (almost 50% of landslide in each event), sandstone breccias (7% of landslides
in 1977 and 2019, 0% in 2014), and sandstones and marls (4% in 1977 and 2019, 14% in 2014). The results did not show clear

trends, probably due to the small number of landslides in each rainfall class (Fig. S6). This is more evident for sandstone

breccias, as this lithology is restricted to a relatively small sector in the western part of the study area.
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Figure 6. Scatterplots representing landslide density in each rainfall class for the entire study area. Spearman’s rank order
correlation coefficients between landslide density and rainfall classes are reported in each plot. Underlined values are statistically
correlated at the 0.05 level.

For the 1977 event, Fig. 6a shows that landslides started to occur for maximum rainfall intensities greater than 100 mm in 24

h. This result agrees with the Intensity-Duration (ID) threshold curves proposed for the area (Tiranti et al., 2019). A few

landslides in 2019 were triggered at even lower rainfall values, very close to the catchment divide where local topography

could have exerted a major control. The high density is also related to the small catchment area pertaining to the low rainfall

interval. On the other hand, during the 2014 event, a rainfall intensity of 250 mm in 24 hours was necessary to cause

instabilities. This may be explained by a relatively low cumulative antecedent rainfall (below 300 mm) with respect to the

other events, inducing low initial soil moisture conditions.
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3.3 Rainfall based susceptibility maps

Figure 7 shows the mean coefficient and the inclusion rate of the 50 runs of the logistic regression models, for each single
variable. Slope gradient is the most important parameter for all models (except m14), with always positive coefficients and a
high inclusion rate. For the other morphometric parameters, northerness and flow accumulation show a high inclusion rate and
relatively high coefficients (except for m14). The negative sign of the northerness coefficient indicates the south-facing slope
units as more unstable. Among the lithological descriptors, “gravels and sands”, “sandstones and siltites”, and “marls” show
the highest inclusion rates and coefficient values. On the other end, basalts, limestones, and slates are never included in the
models. Land use does not exert an important control. Among the descriptors of soil granulometry, the contents in coarse
fragments and sand are selected with a high inclusion rate and a negative median coefficient, with the exception of m14, while
clay content is chosen with a high inclusion rate and a positive median coefficient.

Eventually, rainfall variables play an important but complex role on susceptibility. Maximum daily intensity is very important
for m14, m771419, and m7714161921, with positive coefficients and a high inclusion rate. Surprisingly, maximum rainfall
intensity is not included in m19, and takes negative values in m77. The antecedent cumulative rainfall is important for slope
instability in models m77, m14, m771419 and m7714161921, while model m19 shows the lowest mean coefficient for this
variable.

The intra event maximum rainfall intensity is also a relevant variable, but with a more complex influence. This variable is very
important for model m14, with a strong destabilizing effect, but it is not included into model m19, and assumes a negative

coefficient in m77.
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428  Figure 7. Variation of the median coefficient (left panel) and inclusion rate (frequency — right panel) of variable selection according
429  to the different training model, based on 50 iterations. Variables are aggregated in 5 groups (G = geomorphological parameters, L
430 = lithological parameters, S = soil grain size, U = land use and land cover parameters, R = rainfall parameters). Grey boxes indicate
431 that the variable was never chosen by the model.

19



432
433
434
435
436
437
438
439
440
441
442

Model m14 shows a good performance when evaluated over its validation dataset, with a mean AUROC value of 0.97 (highest
mean AUROC value among all the tested models), but it fails in predicting or hindcasting other landslide events, as indicated
by an interquartile range of AUROC values between 0.62 and 0.74 (Fig. S75), a low accuracy and a high FPR. Model m77
shows a high mean AUROC, but a low AUPRG, especially when trying to predict 2014 landslides, meaning that the model
output becomes less precise when ignoring the true negatives. On average, model m19 shows good prediction capabilities,
especially in terms of AUPRG. Models trained over multiple events show the best performance, and an associated reduction
in the variability of the final results. The mean AUROC value increases, as does the mean AUPRG. The inclusion of intense
rainfall events that did not lead to the triggering of slope instabilities results in small improvements in the general performance,
especially for the mean accuracy and FPR.

According to the TOPSIS classifier (Fig. 87), m7714161921 is the model with the highest relative closeness degree to the ideal
solution_(score of 0.9), obtained giving the same weight for the evaluation of all the scores (0.16 for all the metrics).
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452  predicted or hindcasted events.
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For each model, five rainfall events were used to produce the rainfall-based susceptibility maps (Fig. 98), obtaining different
maps for each model as a function of the event-specific rainfall values. From a simple visual inspection, comparing
susceptibility classes and landslide distribution, it is clear that models m14 and m19 are not able to correctly model landslide
susceptibility. As already seen in Fig. 76, the high coefficient of rainfall intensity in m14 makes susceptibility excessively
dependent on this variable, so that the resulting unstable units simply reflect its distribution. On the contrary, the exclusion of
rainfall intensity and the low coefficients of antecedent rainfall in m19 make the susceptibility maps almost constant for
different events. In addition, the model tends to overestimate unstable areas. Model m77 shows a better performance, but still
suffers from the low coefficient of maximum rainfall intensity, making also this model quite constant between different events,
thus predicting unstable areas also for the 2016 and 2021 events. Models m771419 and m7714161921 significantly outperform
the others, as they are able to classify the central part of the study area as unstable only for heavy rainfall events. However,
they tend to underestimate the percentage of unstable or very unstable slope units during the 1977, 2014 and 2019 events, with
less than 4% of the slope units classified as moderately, highly or very highly unstable. On the other hand, they correctly
classify all the slope units as stable when considering rainfall events that were not associated with landslides (p16 and p21).
Model m7714161921 also shows a slightly better ability to handle false positives when simulating non-triggering rainfall
events, as it can be seen in the last row of Fig. 76 for the prediction of m14, m16 and m21, especially in the western part of
the study area.

In general, the maps in Fig. 98 classified by using a rather standard partitioning of the susceptibility values into five classes (0
—-0.2,0.2-0.45, 0.45-0.55, 0.55 - 0.8, 0.8 — 1) show an uneven distribution of slope units in the different classes, giving the
impression of either overestimation or underestimation. This problem was addressed with the new classification method based
on misclassification costs, which was applied to m7714161921 (ranked as the best performing model). For each of the three
considered scenarios the optimal cut-off threshold and the relative geometric progression were derived, considering different
misclassification cost ratios (Table 2). The class boundaries derived from the geometric progression were then used to
reclassify the susceptibility values, to produce optimised maps (Fig. 109). The optimal cut-off threshold decreases as the
relative cost of false negatives decreases, thus reducing the number of slope units classified as unstable.

Table 2. Threshold values for m7714161921, for each of the proposed scenarios of relative costs. HST is the half-susceptibility
threshold corresponding to the value that minimizes the normalized expected cost for each cost scenario._The considered classes
correspond to very Low (VL), Low (L), Medium (M), High (H), and very High (VH).

Cost Scenarios HST VL L M H VH
c(—|+H):c(+]-)=0.5:0.5 0.034 0.005 0.018 0.068 0.261 1.000
c(—|+):c(+]-)=0.8:0.2 | 0.010 0.018 0.068 0.261 1.000 0.005
c(—|+H):c(+]-)=0.2:0.8 | 0.104 0.066 0.164 0.405 1.000 0.027
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481  Figure 10. Instability maps relative to the best performing model (m7714161921). Each row refers to a different relative cost scenario,
482 where the proportions refer to the ratio between costs associated to false negatives and false positives. Classes limits are defined
483 based on the optimal cut-off threshold and the relative geometric progression.
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4 Discussion
4.1 Landslide distribution analysis and prediction

This paper investigated the relationship between several spatially distributed variables (i.e., possible triggering factors) and
the occurrence of shallow landslides though a logistic regression-based susceptibility analysis.

At a first visual inspection, the spatial distribution of the shallow landslides is fairly constant in all the available inventories,
suggesting that shallow landslides in this area are modulated by rainfall, but controlled by other static parameters. In particular,
landslides tend to occur in slope units with similar geomorphology and lithology (Fig. 54).

More specifically, beside the slope gradient, lithology appears to be the most important variable that controls landslide
susceptibility (Fig. 76). Among all, the most prone lithologies in all the inventories are marls, sandstones and siltites, similarly
to the results of Luino and Padano (1999) and Licata et al. (2023). The high importance given to gravels and sands, a lithology
commonly found in alluvial flat areas, can be explained with the instability of fluvial terraces (Silhan, 2022). Moreover, the
lithology controls the grain size of the soil cover and, thus, the hydrological processes in the unsaturated zone. The sedimentary
sequence in the central part of the area, overlaid by soils with a high clay content, is another important destabilizing factor in
the model because of the poor draining capacity of clays. More interestingly, the southern metamorphic basement is commonly
covered by soils rich in sand and coarse fragments, which have a strong stabilizing effect, probably correlated with a higher
drainage capacity and friction angle.

Surprisingly, the role of land use does not appear to be relevant. In addition, the role of lithology may be strong enough to
mask the land-use effect.

Looking at the variables related to rainfall dynamics, the cumulative antecedent rainfall is the most relevant in all regression
models. In fact, it has been considered a proxy for the soil water content before the event, which for various authors it is pivotal
for modelling shallow landslides (Bogaard and Greco, 2018; Marino et al., 2020b). The intra event maximum rainfall intensity
is also a relevant variable, but with a more complex influence. Being calculated with a 24 h aggregation time, this variable can
be intended as a general descriptor of the entire rainfall event, representative of both the rainfall intensity and the daily
cumulative value. Using a smaller aggregation time could help to differentiate the effects of these two descriptors, which was
impossible for the event of 1977, as outlined in Sect. 4.2.

These parameters are also important to explain the spatial distribution of the landslide density. In particular, the analysis of the
relationships between landslide density, the normalized maximum rainfall intensity over 24 hours and the normalized values
of the antecedent cumulative rainfall suggest that landslide density appears to be controlled by the maximum rainfall intensity.
This agrees with the mechanical explanation of shallow landslides triggering, controlled by soil saturation, leading to an
increase in pore pressure and a loss of soil suction (Fredlund et al., 1978). In addition, the antecedent condition shows a double
role of setting a threshold required for landslide initiation (e.g. Crozier, 1999; Glade et al., 2000; Godt et al., 2006; Marino et
al., 2020b), and offsetting the relationship between landslide density and rainfall intensity.
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Several basin-scale studies suggest that to quantify the shallow landslide susceptibility, the use of multitemporal inventories
lead to better results (Reichenbach et al., 2018), while others affirm that this is not always associated with a model performance
improvement (Ozturk et al., 2021; Smith et al., 2021). Results show that, for the Orba basin, models trained over a single
landslide event are not capable of catching the real processes underlying the instability phenomena, despite the high landslide
density and the good performance when using the test-validation dataset. Thus, they are unable to predict landslide events
associated with different rainfall characteristics. In particular, m14, being the smaller landslide inventory and more limited in
the extend of the affected area, shows the best performance when tested against itself (Fig. 87 and Fig. S75), and the worst
performance when used to model other events, producing maps with an exaggerated landslide susceptibility in areas with high
precipitation. The inclusion of multiple events helps in stabilising the effect exerted by the different controlling variables, thus
providing more reliable prediction/hindcast susceptibility maps.

The evaluation of the performance of regression models is always challenging, especially when using an input dataset with a
skewed distribution (e.g. Provost et al., 1998; Davis and Goadrich, 2006; Drummond and Holte, 2006). AUROC, which is the
most used evaluation method in the literature (Reichenbach et al., 2018) suffers from an overly optimistic evaluation while
misclassifying the samples that belongs to the underrepresented class. This is the case of model m77 when predicting 2014
event. On the other side, AUPRG shows high values when model m77 predicts 2019 event, even if large parts of the area
affected by landslides is predicted as stable. The other indices are cut-off dependent, and they do not show any capabilities to
discriminate among the different models. For these reasons, the multi-criteria TOPSIS model was used to consider the
contribution of all the indices. Interestingly, the TOPSIS classification shows significant variations across the models where
single appear to show no significance. Based on the TOPSIS evaluation, the multitemporal models outperform the single event
models, confirming what discussed above. In particular, the model with the highest prediction capabilities is m7714161921,
suggesting that the inclusion of non-triggering rainfall events helps in defining the rainfall threshold to trigger instabilities in
different parts of the study area.

For the representation of the results, the classification scheme typically adopted in the literature does not account for
misclassification costs (Cantarino et al., 2019), meaning that the costs associated with false and missed alarms are implicitly

assumed equal. which-are-implicithrassumed-equal-However, since the misclassifications costs are often not equal, the total
misclassification cost can be reduced by playing on the degree of conservativeness of the models in order to reduce the false

negatives or false positives rates, thus increasing or decreasing what is classified as unstable. This required a new classification
scheme to adjust the thresholds used for susceptibility classification according to the selected proportion of misclassification
costs.

Scenario 2, where the costs of false negatives are higher, is the most conservative because the classification is forced towards
instability to keep the false negatives rate low. On the contrary, scenario 3, where the costs of false positives are higher, shows
the highest percentage of stable slope units. Scenario 1 considers equal costs for false positives and false negatives, and
produces intermediate results. The strong differences between these scenarios suggest that the use of cost curves for the

landslide susceptibility model could be a valuable tool in the final stages of a susceptibility analysis, when slope units need to
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be classified. This approach allows for different classification thresholds based on cost combinations, enabling the evaluation
of their consequences. Costs may include direct costs like damage to infrastructure and loss of life, and indirect costs like
traffic disruptions and lost productivity (Sala et al., 2021). While this work uses different cost ratio scenarios to demonstrate
the approach's potential, more detailed analyses could provide precise cost quantifications, considering that costs may vary

across different parts of the study area.

4.2 Challenges, uncertainties, and limitations

It is necessary to underline possible uncertainties and assumptions regarding the input datasets and the modelling strategies,
so that the limitations of our findings are made clear. Two main limitations can potentially affect the results of these analyses:
the consideration of land use and land cover as a static variable and the use of an old landslide inventory.

First, land use and land cover can vary greatly over time. Considering this variable as static is mainly due to a lack of
information, since the only other dataset provided by ARPA Piemonte dates to 2010, and the analysis of satellite images,
besides being beyond the purpose of this study, was not possible for the 1977 event. An analysis of the land use change between
two available datasets (2010 and 2021) within the Orba basin revealed that permanent crops decreased by 6% and meadows
by almost 2%, while the areas characterised by shrub and herbaceous vegetation increased by 4% and the woods by almost
4%. However, these changes can be considered negligible in the analyses, given the very low influence of the land use variables
in the logistic regression. This is in contrast with the conclusions of many other studies (for example Bernardie et al., 2017;
Persichillo et al., 2017; Hirlimann et al., 2022), suggesting that this relationship could be further analysed in future studies.
The second limitation is posed by the inclusion of an older event (1977) with higher uncertainty of both rainfall pattern and
landslide distribution. Data from the ARPA Piemonte and ARPA Liguria weather stations were used to analyse the rainfall
pattern. However, only 36 stations were active in 1977, 26% less than in 2014 and 2019, and most of them are located outside
the region of interest (Fig. 2). This uncertainty in the rainfall pattern could affect the modelling, especially in the central part
of the basin. In addition, data for 1977 were only available with a daily time step, making it impossible to use multiple different
aggregation times. The landslide inventory of the 1977 event represents landslides as areas affected by diffuse shallow
landslides rather than individual polygons. This affects the landslide distribution and density analysis. However, the choice to
use slope units for analysis mitigated this difference in the inventories. Finally, as mentioned above, the use of this landslide
event precluded the use of satellite products; therefore, some factors that could improve susceptibility analyses, such as
satellite-based antecedent soil moisture, could not be incorporated into the model.

5 Conclusions

This study demonstrates the feasibility of using logistic regression to model the effects of extreme rainfall events on the stability

of a complex study area, such as the Orba basin in the Piedmont region of Italy. In this area, the spatial distribution of shallow
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landslides reflects the distribution of lithology and geomorphology, thus showing a similar pattern for different rainfall
scenarios.

In such conditions, the development of a rainfall dependent model capable of simulating different susceptibility scenarios is
more challenging, and requires a careful calibration of the model with representative and significant rainfall events over a
multi-temporal dataset. In fact, the use of single events may be problematic. For example, a rainfall event that is spatially
concentrated in a small area with specific geological characteristics (such as in 2019 for the study area) could overestimate the
role of such characteristics despite the rainfall, producing biased scenarios. On the contrary, a model trained on an extreme
localised event spanning different geological conditions (such as the 2014 event) may overestimate the role of rainfall at the
expense of geology. Finally, a rainfall event evenly distributed over the area (such as in 1977) would produce a model that
underestimates the role of rainfall in controlling the landslide pattern.

To avoid such effects, an ensemble of rainfall events is preferable to better unravel the effects of the triggering variables, and
also to compensate for local misleading effects that may arise from the use of a single rainfall event. The use of rainfall events
that did not trigger landslides may also be helpful for such compensation. The proposed strategy for selecting the best ensemble
of rainfall events was based on the maximization of the AUROC, AUPRG, accuracy and precision, and the minimization of
the expected misclassification costs.

Eventually, misclassification costs were adopted as a criterion to define the susceptibility classes for the practical use of the
resulting maps; this highlights the need to give importance to the classification process, which should be tailored to the needs

of the end users and on the purpose of the final products.
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