

1 Shaping shallow landslide susceptibility as a function of 2 rainfall events

3 Micol Fumagalli¹, Alberto Previati¹, Paolo Frattini¹, Giovanni B. Crosta¹

4 Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy

5 *Correspondence to:* Micol Fumagalli (m.fumagalli86@campus.unimib.it)

6 **Abstract.** This paper tests a multivariate statistical model to simulate rainfall dependent susceptibility scenarios of shallow
7 landslides. To this end, extreme rainfall events spanning from 1977 to 2021 in the Orba basin (a study area of 5905 km² located
8 in Piedmont, northern Italy), have been considered. First of all, the role of conditioning and triggering factors on the spatial
9 pattern of shallow landslides in areas with complex geological conditions is analysed by comparing their spatial distribution
10 and their influence within logistic regression models, with results showing that rainfall and specific lithological and
11 geomorphological conditions exert the strongest control on the spatial pattern of landslide.

12 Different rainfall-based scenarios were then modelled using logistic regression models trained on different combinations of
13 past events and evaluated using an ensemble of performance metrics. Models calibrated on multi-events outperform the ones
14 based on a single event, since they are capable of compensating for local misleading effects that can arise from the use of a
15 single rainfall event. The best performing developed model considers all the landslide triggering rainfall scenarios and two
16 non-triggering intense rainfall events, with a score of 0.90 out of 1 on the multi-criteria TOPSIS-based performance index.
17 Finally, a new approach based on misclassification costs is proposed to account for false negatives and false positives in the
18 predicted susceptibility maps.

19 Overall, this approach based on a multi-event calibration and on a misclassification costs analysis shows promise in producing
20 rainfall dependent shallow landslide susceptibility scenarios that could be used for hazard analyses, early warning systems and
21 to assist decision-makers in developing risk mitigation strategies.

22 1 Introduction

23 Shallow landslides are a widespread phenomenon that affects many regions of the world (Petley, 2012). In Italy, according to
24 the last national report on landslides and floods, almost 8% of the country is affected by landslides, of which 15% are classified
25 as rapid flow and 6% as shallow landslides (ISPRA, 2021). According to Cruden and Varnes (1996), these are shallow slides,
26 mainly translational, with a thickness ranging between 0.5 and 2 m (Bandis et al., 1996; Mason and Rosenbaum, 2002). Shallow
27 landslides are generally triggered by rainfall events, which cause an increase in pore water pressure, or a loss of apparent
28 cohesion generated by suction (Caine, 1980; Crosta and Frattini, 2003; Fredlund et al., 1978; Iverson, 2000; Lu and Godt,

29 2008). Despite their limited initial volume, these landslides may be characterized by a high density per unit area and can evolve
30 in debris flows. The high velocity and the difficulty of prediction due to the almost complete lack of premonitory signs
31 (Campbell, 1975; Frattini et al., 2009; Montrasio et al., 2016) make these phenomena seriously dangerous in terms of life and
32 economic losses (Trigila and Iadanza, 2012).

33 A common definition of landslide hazard is “the probability of occurrence within a specific period of time and within a given
34 area of ~~a potentially damaging phenomenon~~ phenomenon” (Varnes, 1984), requiring the quantification of the magnitude, the
35 spatial and the temporal probability for an instability event to occur. The variables that control landslide hazard are commonly
36 distinguished into conditioning and triggering factors. Conditioning factors are generally assumed to have no temporal
37 dependence and are responsible for “where” a landslide might occur, while triggering factors are event-related and control
38 “when” a landslide might occur (Crosta and Frattini, 2003; Lombardo et al., 2020; Wu and Sidle, 1995), although their spatial
39 properties (e.g. distribution of intensity or cumulative rainfall during a rain event) play a key role in determining the location
40 of landslides.

41 The spatial likelihood of shallow landslide occurrence is addressed through landslide susceptibility models, based on either
42 physically based or machine-learning techniques. Physically based techniques for shallow landslides often combine the
43 infinite-slope model with hydrogeological models, which require many different input data; for this reason, they are more
44 frequently applied at the site-scale (Baum et al., 2008; Montgomery and Dietrich, 1994).

45 Machine-learning methods search for functional relationships between the conditioning factors and the distribution of
46 landslides, obtained from inventories of past events (Carrara, 1983; Goetz et al., 2015; Huang et al., 2020; Reichenbach et al.,
47 2018; van Westen et al., 2008). Susceptibility models are usually considered as time-independent, meaning that the likelihood
48 of landslides occurrence does not vary in time (Jones et al., 2021; Lombardo et al., 2020). However, many authors demonstrated
49 that this assumption is often violated both on a long (hundreds or thousands of years) and on a short timescale (tens of years),
50 especially in view of climate changes (Hungr, 2016; Samia et al., 2018). The “when” problem has typically been addressed by
51 using rainfall thresholds or physically based models. Rainfall thresholds describe the rainfall intensity, duration or cumulative
52 event precipitation that may trigger landslides for a particular area (Caine, 1980; Crosta, 1998; Guzzetti et al., 2007). This
53 approach has usually disregarded soil features and morphometric conditioning factors, such as the geotechnical features of the
54 involved materials, until recent times, when hydrogeological effects started to be included into the analyses, for example
55 through the consideration of the soil water content prior to the triggering event (Bogaard and Greco, 2018; Marino et al., 2020).
56 Some authors started testing approaches to address both the “where” and the “when” questions in the context of early warning
57 systems. For example, Kirschbaum and Stanley (2018), used a fuzzy overlay model to combine static explanatory variables
58 into a susceptibility map. This information was then incorporated into a heuristic decision tree model together with dynamic
59 variables such as antecedent precipitation, giving a model capable of indicating potential landslide activity in near real-time.
60 Segoni et al. (2018b), combined rainfall thresholds and susceptibility maps into a hazard matrix, while Bordoni et al. (2021),
61 integrated rainfall thresholds and antecedent soil humidity with a susceptibility model in order to forecast the spatial and
62 temporal probability occurrence of shallow landslides. Camera et al. (2021) included intense rainfall and snowmelt in a

63 landslide susceptibility model trained over multiple landslide inventories and different meteorological conditions, making it
64 potentially more robust to investigate the effects of climate changes. Knevels *et al.* (2020) and Maraun *et al.* (2022), included
65 5 days cumulated rainfall and maximum 3 hours rainfall intensity to model landslides associated with an extreme rainfall event,
66 and then applied their findings to an event storyline approach to analyse the future landslide occurrence probability under
67 climate changes. Moreno *et al.* (2024) integrated static and time-dependent controlling factors into a generalized additive
68 mixed model (GAMM) model to forecast shallow landslides in space and time, showing that both short-term (2 days) and
69 medium-term (14 days) cumulative precipitation increases the model capabilities.

70 Yet, the integration of static and time-varying factors into machine-learning models still remains challenging, but it could
71 become a powerful instrument to better understand the connection between a variation in the time-dependent controlling factors
72 and landslide triggering, thus helping at improving landslide prediction in a changing climate.

73 An important issue for the application of susceptibility models is the evaluation of their performance. For models that predict
74 binary stable and unstable slopes it is necessary to choose a cut-off value below which the predicted susceptibility values are
75 treated as 0 and above which the values are treated as 1 (Beguería, 2006; Brenning, 2005; Frattini *et al.*, 2010; Goetz *et al.*,
76 2015; Guzzetti *et al.*, 1999).

77 This results in a contingency matrix quantifying the total number of correctly and incorrectly classified units. From this matrix,
78 it is possible to assess the performance of the model by using several performance statistics, such as the Accuracy (i.e. the ratio
79 between the correctly classified samples and the total number of samples), the Precision (i.e., the ratio between the true positive
80 samples and all the positively classified samples, meaning the sum of the true Positives and the False Positives), the True
81 Positive Rate TPR (i.e., the ratio between the true positive and all the positives, meaning the sum of the True Positives and the
82 False Negatives), the False Positive Rate FPR (i.e., the ratio between the false positives and all the negatives), the Threat score
83 (Gilbert, 1884), the Pierce's skill score (True skill statistic; Peirce, 1884), the Heidke's skill score (Cohen's kappa; Heidke,
84 1926), and the odd ratio skill score (Yule's Q; Yule, 1900).

85 This results in a contingency matrix quantifying the total number of correctly and incorrectly classified units. Form this matrix,
86 it is possible to assess the performance by using several performance statistics, such as the Accuracy (i.e. the ratio between the
87 correctly classified samples and the total number of samples), the Precision (i.e., the ratio between the true positive samples
88 and all the positively classified samples), the True Positive Rate TPR (i.e., the ratio between the true positive and all the
89 positives), the False Positive Rate FPR (i.e., the ratio between the false positives and all the negatives), the Threat score
90 (Gilbert, 1884), the Pierce's skill score (True skill statistic; Peirce, 1884), the Heidke's skill score (Cohen's kappa; Heidke,
91 1926), and the odd ratio skill score (Yule's Q; Yule, 1900).

92 However, the choice of the cut-off value is a complex problem, and therefore the performance is frequently evaluated by using
93 cut-off-independent methods, such as the Receiver Operating Characteristic (ROC) curves (Frattini *et al.*, 2010; Hosmer and
94 Lemeshow, 2000; Provost and Fawcett, 2001) or the Precision-Recall (PR) curves (Davis and Goadrich, 2006; Raghavan *et*
95 *al.*, 1989; Saito and Rehmsmeier, 2015). The ROC curve represents the FPR and TPR obtained for different cutoffs. The Area
96 Under the Curve (AUROC) can be used to quantify the overall quality of the model (Hanley and McNeil, 1982). However,

97 ROC curves can overestimate the performance of a model when the distribution of the input classes is highly skewed. For this
98 reason, the Precision-Recall (PR) curves have also been used (Nam et al., 2024; Yordanov and Brovelli, 2020; Zhao et al.,
99 2022), which plots the precision (i.e., the proportion of true positives among the positive predictions) against the TPR.
100 However, unlike ROC curve, the value under the PR curve is not directly interpretable for model evaluation, especially because
101 of a non-universal baseline performance, which depends on the class distribution, and a non-linear interpolation of precision
102 values. Nevertheless, PR analysis can be adapted to be used similarly to the ROC analysis by using Precision-Recall-Gain
103 curves (PRG), which make use of the F-Gain score, a linearized version of the F_1 score, to properly take baselines into account
104 (Flach and Kull, 2015).

105 One important consequence of the choice of the cut-off value is the generation of false and missed alarms, meaning the
106 situations in which the model predicts a landslide in a specific area or time, but no landslide actually occurs, or the case in
107 which a landslide takes place, but the model fails to predict it. False and missed alarms come with associated costs. For
108 example, false alarms may lead to unnecessary evacuations or resources allocation, and can reduce trust in the model
109 capabilities, while missed alarms result in unpreparedness and potentially severe consequences, including property damage,
110 loss of life, or economic impacts. Therefore, the performance of the model can be evaluated by assessing the expected
111 misclassification costs through the cost curves (Drummond and Holte, 2006; Frattini et al., 2010), with an approach that allows
112 the choice of the cut-off value that minimizes the expected costs (Sala et al., 2021).

113 In landslides related problems, the quantification of the costs linked to the use of a model is also an important issue. Therefore,
114 the performance of the model can be done with an approach that minimize the expected misclassification costs, through the
115 cost curves (Drummond and Holte, 2006; Frattini et al., 2010). Moreover, the cost curve allows to identify the optimal cut-off
116 to be used for the performance evaluation.

117 A multivariate statistical analysis for the Piedmont area of the Orba basin (northern Italy) has been developed in this paper,
118 considering rainfall scenarios spanning from 1977 to 2021, to investigate the correlation between landslides distribution and
119 the spatial pattern of conditioning and triggering factors. Different logistic regression models were trained for different
120 landslides and rainfall scenarios, and their performance was evaluated through an ensemble of performance metrics, leading
121 to an optimal choice of the best model for scenario-based problems or early warning.

122 This work allows to address the following research questions:

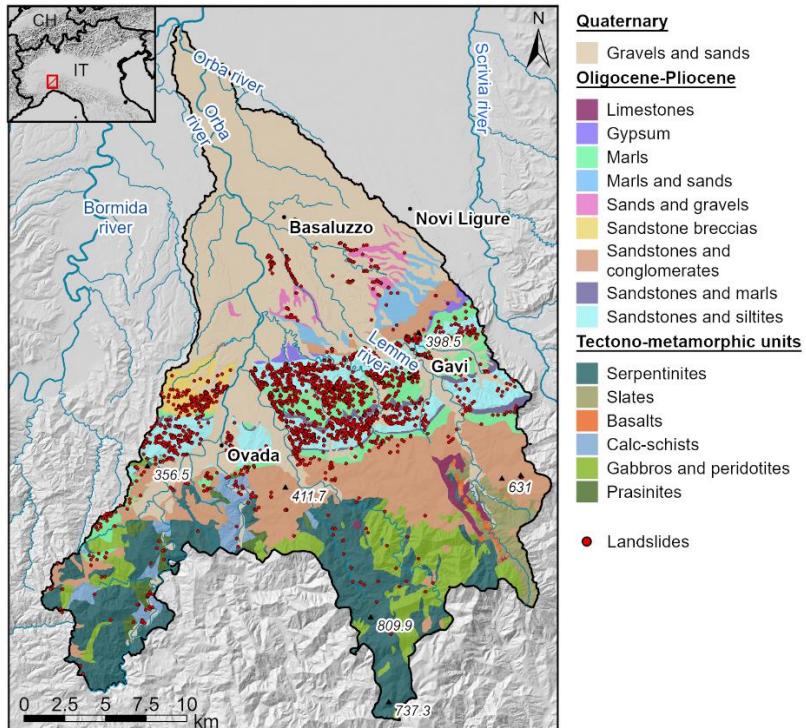
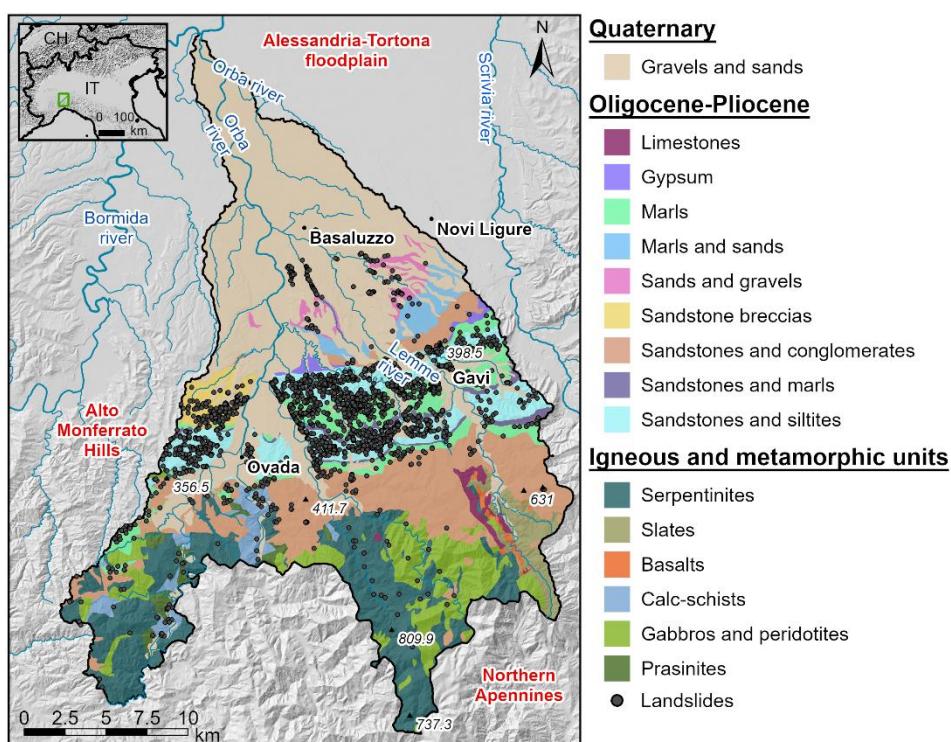
123

- To what extent the pattern of shallow landslides is controlled by the characteristics of the rainfall event in areas with
124 complex geological conditions?
- How can rainfall be used within a statistical model to produce instability scenarios for different rainfall events?
- Which is the best strategy to train a statistical model based on an ensemble of rainfall events?
- Which is the most significant classification scheme to produce a susceptibility map for early warning purposes?

125 The novelty of this work lies in the definition of a critical selection strategy of the optimal ensemble of rainfall events to
126 produce a susceptibility map that may be helpful for scenario-based problems and early warning purposes. Moreover, a new
127 methodology is proposed for the classification of the regression results, used for the realization of the final resulting maps.

131 **2 Materials and methods**132 **2.1 Study area**

133 The Orba basin is located between the Langhe and Alto Monferrato Hills in the Langhe and Monferrato Hills of Piedmont
134 Region, north-western Italy. This area has been affected by several high-magnitude floods and severe slope instabilities during
135 the last century, caused by intense rainfall events (Mandarino et al., 2021). The study area has an extension of 5905 km² and
136 it is situated between 80 and 1170 m a.s.l. The main river of the basin, the Orba River, flows northward from the Ligurian
137 Apennines to the confluence with the Bormida River, a right tributary of the Po River. The study area overlaps magmatic and
138 metamorphic lithotypes in the southern part – mainly peridotites, serpentinites and serpentine-schists, meta-gabbros and meta-
139 sediments belonging to the Voltri Massif and the Sestri-Voltaggio Zone (Piana et al., 2017) – while in the central part of the
140 area the sedimentary sequence of the Tertiary Piedmont Basin (TPB) outcrops. The TPB evolved from the Late Eocene to the
141 Late Miocene over the inner part of the Alpine wedge (Coletti et al., 2015) and is mainly represented in the area by
142 conglomerates, sandstones and marls. The northern sector of the basin presents quaternary fluvial deposits belonging to the
143 Alessandria – Tortona floodplain. The morphology of the area is strongly controlled by the TPB sedimentary succession: where
144 the strata are harder, the landscape presents hilly reliefs with an asymmetric profile resulting from the monoclinal bedding of
145 marly-silty and sandy-arenaceous alternations (Luino, 1999), which are part of a monoclinal structure striking WNW-ESE that
146 imposes a dipping of approximately 30° (Luino, 1999; Mason and Rosenbaum, 2002), while lowered areas modelled by fluvial
147 erosion are present where the lithologies are more erodible. The morphology of the area is strongly controlled by the TPB
148 sedimentary succession: where the strata are harder, the landscape presents hilly reliefs dipping in the same direction as the
149 underlying layers, while lowered areas modelled by fluvial erosion are present where the lithologies are more erodible. When
150 the dipping of the strata becomes gentler, the morphology becomes more uniform and characterized by a dense hydrographic
151 network. The mean annual temperature is 13° and the average annual precipitation ranges from around 600 mm/year in the
152 northern part to 1600 mm/year in the southern part, with autumn as the雨iest season (Fioravanti et al., 2022; Luino, 2005).
153 Land use is primarily forest (45%), with crops and meadows (24%) near the confluence with the Po River (LAND COVER
154 PIEMONTE, <https://geoportale.igr.piemonte.it/cms/progetti/land-cover-piemonte>, last access 21/10/2023).



157 **Figure 1.** Location of the Orba basin, with the spatial distribution of shallow landslide observed in three different events, and with
158 the main lithologies.

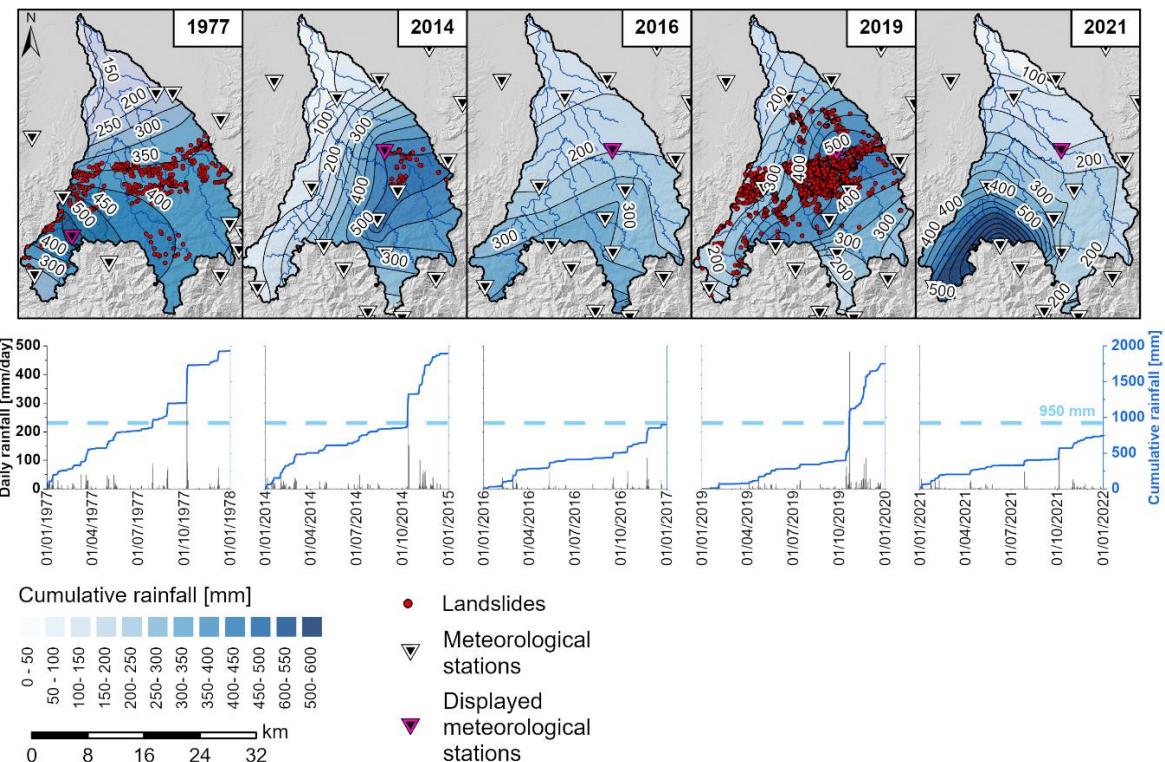
159 **2.2 Data**160 **2.2.1 Rainfall events and landslide inventories**

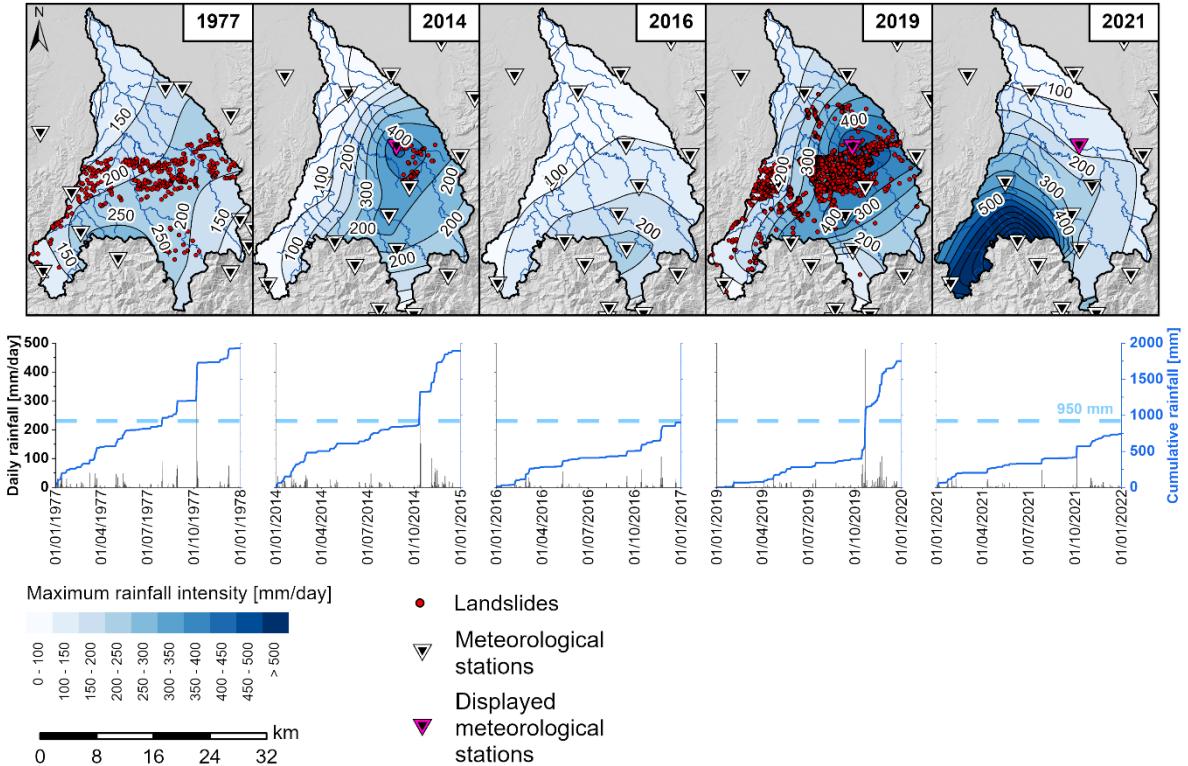
161 The inventories related to three different landslide events that occurred in 1977, 2014 and 2019 were used for the subsequent
162 analyses. Data relative to the events of 1977 and 2014 are available online (SIFRAP, Sistema Informativo sulle FRane in
163 Piemonte, handled by Regional Environmental Protection Agency of Piemonte – ARPA Piemonte) and were compiled through
164 the analysis of Google Earth images, national and regional orthophotos, published event maps, and field reconnaissance, while
165 the most recent event was directly provided for this project by ARPA Piemonte (personal communication). Three landslide
166 inventories were compiled for three recent extreme rainfall events (1977, 2014 and 2019) through the analysis of Google Earth
167 images, national and regional orthophotos, published event maps, and field reconnaissance (Fig. 1). Part of the inventories was
168 already available online (SIFRAP, Sistema Informativo sulle FRane in Piemonte), while the most recent event was provided
169 for this project by the Regional Environmental Protection Agency of Piedmont (ARPA Piemonte, personal communication).
170 The 2014 and 2019 inventories include polygons of each single shallow landslide, while the 1977 inventory represents clusters
171 of shallow landslides as polygons.

172 The 2014 and 2019 inventories include polygons of each single shallow landslide, while the 1977 inventory represents clusters
173 of shallow landslides as polygons. However, this difference is negligible when choosing slope units as mapping units for the
174 analyses (Seet. 2.3).

175 The first shallow landslide event was triggered by heavy rainfall at the beginning of October 1977. Between October 6th and
176 7th, more than 400 mm of rain fell in less than 24 hours, causing flooding, bank and riverbed erosion, debris flows and soil
177 slips (INTERREG IIC, 1998) (Fig. 2). The second shallow landslide event was triggered in October 2014 with more than 420
178 mm of rain in less than 12 hours, as recorded at the Gavi meteorological station on October 13th (Fig. 2), for which the mean
179 annual total rainfall is 1000 mm (calculated for the 1991 – 2020 time interval, ARPA Piemonte). The third shallow landslide
180 event occurred in late October 2019. In the afternoon and evening of October 21st more than 400 mm of rain (Gavi station) fell
181 in less than 12 hours, resulting in a very high-magnitude flood and widespread shallow landslides (ARPA Piemonte, 2019)
182 (Fig. 2).

183 In addition to these three landslide-triggering rainfall events, two intense precipitation events (2016 and 2021) that were not
184 associated to landslides were selected, in order to test the capabilities of the models to discriminate between triggering and
185 non-triggering rainfall characteristics. The 2016 event hit the Piedmont region with strong and persistent rainfalls between
186 November 21st and 25th, and triggered almost 1000 landslides, none of which in the Orba basin. Indeed, the peak of the
187 cumulative precipitation was localized more southward compared to the ones previously described, with up to 400 mm of rain
188 in the southern edge of the Orba basin (Fig. 2). The other event happened from October 3rd to 5th, 2021. The Ligurian-Piedmont
189 watershed was the most affected area, with a peak of 472 mm of rain in 12 hours recorded in the south-western part of the
190 area. The total precipitation in the Orba basin was up to 750 mm in the south-western edge of the basin (Fig. 2). The daily
191 maximum rainfall intensities and the yearly cumulative rainfall values for all the considered events are reported in Fig. 2.





194

195 **Figure 2. Maximum daily rainfall intensity Rainfall** and landslides distribution during the considered events, reconstructed by
 196 interpolation of values measured by the meteorological stations on the ground, that led to landslide triggering in the Orba basin.
 197 Graphs report the daily and cumulative rainfall for the year in which the shallow landslides were triggered are shown. Dashed lines
 198 represent the mean annual rainfall for the basin of interest (ARPA Piemonte).

199 For all the inventories, a non-cumulative logarithmic binned landslide size probability density distribution was developed as:

$$200 \quad p(A) = \frac{1}{N_{tot}} \frac{\partial N}{\partial A} \quad (1)$$

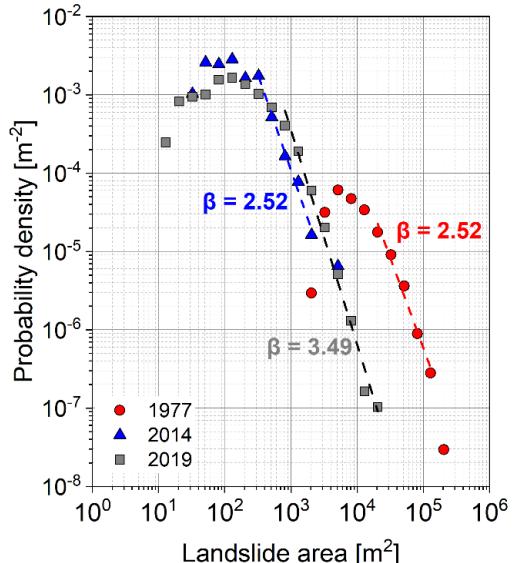
201 where ∂N is the number of landslides with an area between A and $A + \partial A$ and N_{tot} is the total number of landslides within a
 202 study area (Malamud et al., 2004). Following [Frattini and Crosta \(2013\)](#)[\(Frattini and Crosta, 2013\)](#), a Pareto distribution was
 203 fitted to the probability density above a minimum size cut-off with (Fig. 3):

$$204 \quad p(A) = \alpha c^\alpha A^{-\alpha-1} \quad c > 0, \quad \alpha > 0, \quad A \in [c, \infty) \quad (2)$$

205 Using the maximum likelihood estimation, the distribution parameters were estimated, obtaining a good fitting for landslides
 206 larger than 500 m^2 , with the best fitting results for landslides greater than 1000 m^2 . The scaling exponents α vary between 1.5
 207 and 2.6, values that are higher than most of those reported in literature but still in the range (Van Den Eeckhaut et al., 2007).
 208

209 **Table 1. Statistical parameters describing the landslide events in the study area.**

Event	Number	Density %	Total landslide area [km ²]	Mean landslide area [m ²]
6 – 7 October 1977	366	1.31	7.82	21373
9 – 13 October 2014	66	0.004	0.023	353
19 – 22 October 2019	2088	0.26	1.57	124



210
211 **Figure 3. Probability density – areas distribution of the shallow landslides for the three events within the study area. As stated in the**
212 **main text, the 1977 landslide inventory shows a different distribution, shifted to the right, because of the different chosen mapping**
213 **criteria. Power-law fitting with maximum likely estimator is reported ($\beta = -a-1$).**

214 **2.2.2 Landslide conditioning and triggering factors**

215 The conditioning factors used in the following analyses include 7 morphometric parameters, lithology, soil grain size
216 distribution, and land use (Fig. S1). The morphometric parameters were extracted using ArcGIS Pro 3.1.0 © from a 5m
217 resolution DTM acquired using a uniform methodology (LiDAR) at Level 4 standard, with an elevation accuracy of ± 0.30 m
218 (± 0.60 m in areas of lower precision, corresponding to wooded and densely urbanized areas), provided by Piedmont region.
219 The morphometric parameters were extracted from a 5m resolution DEM provided by Piedmont region. The morphometric
220 factors are slope angle, northerness, easterness, profile curvature, planar curvature, total curvature, and flow accumulation.
221 Lithological information was obtained from the geological map of Piemonte Region, at scale 1:250,000 (Piana et al., 2017).
222 The units have been reclassified by aggregating geo-stratigraphic units with comparable lithological and litho-technical
223 characteristics (Table S1), resulting in 16 lithological classes (Fig.1: gravels and sands, limestones, gypsum, marls, marls and
224 sands, sands and gravels, sandstone breccias, sandstones and conglomerates, sandstones and marls, sandstones and siltites,
225 serpentinites, slates, basalts, calcschists, -gabbros and peridotites, and prasinites).

226 Information relative to the soils grain size distribution was retrieved from the SoilGrids maps (Poggio et al., 2021), reporting
227 soil properties for the entire globe with a resolution of 250 m. SoilGrids models were obtained through the application of
228 machine learning to soil data collected worldwide.

229 The land use was obtained from the 10 m resolution LAND COVER PIEMONTE map, which integrates information collected
230 between 2018 and 2022 (<https://geoportale.igr.piemonte.it/cms/progetti/land-cover-piemonte>, last access 21/10/2023). 12
231 different land use classes were used, namely arable land, areas with sparse/absent vegetation, artificial non-agricultural green
232 areas, heterogeneous agricultural areas, inland waters, mining areas, permanent crops, permanent lawns, road network,
233 shrubby/herbaceous areas, urbanized and productive areas, and woods.

234 Besides the predisposing factors, several rainfall parameters potentially responsible for the shallow landslides triggering were
235 also included into the analysis. These parameters were obtained by interpolating daily rainfall data collected at 39 and 51
236 gauging stations for the 1977 and 2014/2019 rainfall events, respectively, with a natural neighbour technique, at a spatial
237 resolution of 5 m. These parameters were obtained by interpolating daily rainfall data collected at 39 and 51 gauging stations
238 for the 1977 and 2014/2019 rainfall events, respectively. In particular, the maximum daily rainfall intensity (mm/day, Fig. 2),
239 the total rainfall of the events (Table 1), and the antecedent cumulative rainfall (mm, Fig. S2) over 10, 30, 60 and 90 days
240 (Smith et al., 2023) as a proxy of soil water content prior to the event (Guzzetti et al., 2007), which can increase the likelihood
241 of failure (Bogaard and Greco, 2018; Thomas et al., 2018), were extracted for each event. Maximum daily rainfall intensities
242 were normalized by the daily rainfall with a return period of 10 years, provided by ARPA Piemonte with a grid resolution of
243 250 m, while the total and antecedent rainfall values were normalized by the mean annual precipitation (1991 – 2020) within
244 the study areas (Fig. S3). Data normalization was performed because previous studies (Marc et al., 2019; Smith et al., 2023)
245 found that the spatial pattern of shallow landslides is more correlated with rainfall anomalies rather than with rainfall absolute
246 values.

247 A correlation analysis between these rainfall variables revealed a strong linear correlation between the maximum rainfall
248 intensity and the total rainfall of the event – probably due to the coarse temporal aggregation used to estimate the maximum
249 intensities. A strong correlation was also found between the antecedent cumulative values over different aggregation time
250 windows. For the subsequent regression analyses, an a priori selection was made to extract the two most influencing rainfall
251 variables: the maximum daily rainfall intensity as an intra-event descriptor, and the 90-day cumulative rainfall for the
252 antecedent condition. The latter was selected by testing the correlation between the cumulative rainfall values and the soil
253 humidity obtained from the ERA5-Land dataset (ERA5-Land hourly data from 1950 to present.; Hersbach et al., 2020; Muñoz-
254 Sabater et al., 2021), from which the highest correlation was found when using a time window of 90 days (Fig. S42).

255 2.3 Slope unit delineation

256 The application of statistical models to landslide susceptibility zoning requires the partition of the study area in terrain units,
257 such as unique condition units, slope units, grid-cells, or others (Carrara et al., 1991, 2008). Among these, slope units were
258 chosen for area partitioning within this study. A slope unit is defined as a morphological terrain unit delimited by drainage and

259 divide lines (Carrara et al., 1991; Guzzetti et al., 1999), corresponding to what could be defined as a single slope, a combination
260 of adjacent slopes, or a small catchment from a geomorphological and a hydrological point of view (Alvioli et al., 2016). Slope
261 units were selected since they provide several advantages, such as: (i) the reproducibility of the spatial partitioning; (ii) the
262 possibility to use continuous values for the categorical variables, where the continuous values are calculated as the areal
263 percentage of the slope units that is covered by a particular categorical class, and thus can vary between 0% and 100% (Carrara
264 et al., 1991), (iii) an efficient handling of mapping uncertainties, thanks to the generalization of the predisposing factors falling
265 within them (Jacobs et al., 2020; Steger et al., 2016). Their delineation is based on the identification of drainage and divide
266 lines, and was done automatically by using the r.slopeunits algorithm (Alvioli et al., 2016). This iterative algorithm requires
267 as input data the minimum circular variance for each unit, representing the allowed variability of orientation for each grid cell
268 belonging to the same unit, and the minimum area for each slope unit.

269 The application of statistical models to landslide susceptibility zoning requires the partition of the study area in terrain units,
270 such as unique condition units, slope units, grid cells, or others (Carrara et al., 1991, 2008). Among these, slope units were
271 chosen since they provide several advantages, such as: (i) the high geomorphological meaning of the terrain unit; (ii) the
272 possibility to use continuous values (i.e., percentage within the unit) for the categorical variables, rather than binary values
273 (Carrara et al., 1991), (iii) an efficient handling of possible mapping uncertainties, thanks to the generalization of the
274 predisposing factors falling within them (Jacobs et al., 2020; Steger et al., 2016). Their delineation is based on the identification
275 of drainage and divide lines, and was done automatically by using the r.slopeunits algorithm (Alvioli et al., 2016). This iterative
276 algorithm requires as input data the minimum circular variance for each unit, representing the allowed variability of orientation
277 for each grid cell belonging to the same unit, and the minimum area for each slope unit.

278 2.4 Preliminary exploratory statistical analysis

279 To understand which variables exert the strongest control on the landslide distribution, and if this control remains constant
280 through time, the distributions of the mean values of each covariate for the slope units affected by shallow landslides were
281 compared with the same distributions for the whole study area, and for the other inventories. The similarity among the
282 inventories for each covariate (i.e., the null hypothesis) is rejected if the p-value of the Dunn's test is smaller than 0.05.

283 To further investigate the role of antecedent and triggering precipitation, the relationship between landslide density (i.e., total
284 landslide area over the total slope units area) and precipitation classes (i.e., normalized maximum rainfall intensity, normalized
285 cumulative rainfall, and normalized antecedent cumulative rainfall) was analysed through the Spearman's rank order
286 correlation coefficient. Given the strong lithological control, the analysis was conducted for the entire study area and separately
287 for the most unstable lithological units (marls – around 30% of the total landslides number of each event, sandstones and
288 siltites – almost 50% of landslide in each event, sandstone breccias – 7% of landslides in 1977 and 2019, 0% in 2014, and
289 sandstones and marls – 4% in 1977 and 2019, 14% in 2014).

290 **2.5 Rainfall-based susceptibility analysis**

291 Binary logistic regression was chosen for the susceptibility analysis because of its widespread and validated use and because
292 it provides the importance of each conditioning variable in terms of standardized regression coefficients in a straightforward
293 manner (Carrara, 1983; Micheletti et al., 2015; Reichenbach et al., 2018).

294 Logistic regression describes the relationship between a binary outcome (stable or unstable unit) and a set of independent
295 variables (Hosmer and Lemeshow, 2000). The probability p of a sample to belong to a certain group is given by:

296
$$\ln \frac{p}{1-p} = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3 + \dots + B_m X_m \quad (3)$$

297 where B_i are the logistic coefficients, estimated from the data, that quantify the contribution of each variable X_i to the final
298 outcome. Logistic regression assumes that a linear relationship exists between the logit transformation of the binary outcome
299 and each variable selected by the model through a forward stepwise method, with a variable being included into the model if
300 the probability of its score statistics is smaller than an entry value of 0.05, and being removed if the probability is greater than
301 a removal value of 0.10. Before running the models, variables showing a strongly skewed distribution were normalized using
302 a log-transformation (Carrara et al., 2008), and all the static variables were then standardized using a z-score normalization
303 (mean equal to 0 and standard deviation equal to 1), in order to make their estimated regression coefficients comparable
304 (Lombardo and Mai, 2018).

305 Five susceptibility models were developed. Models m77, m14 and m19 were trained on a single landslide event (i.e., 1977,
306 2014, and 2019, respectively). The model m771419 was trained by merging all the landslide events, and finally the model
307 m7714161921 was trained by merging different rainfall events with or without landslides. Each dataset was divided into
308 training (3/4) and validation (1/4) subsets, the former being used to build the models and the latter to evaluate their predictive
309 performance. Each model was evaluated against itself and against all the other landslide events by using cross-validation.
310 Model evaluation was performed with the following strategy. First of all, two common cut-off independent methods were
311 applied (ROC and Precision Recall Gained (PRG) curves) to obtain their Area Under Curves. Then, the optimal cut-off
312 obtained by the ROC analysis was used to derive the optimal contingency matrix, from which the accuracy, precision, TPR
313 and FPR were calculated.

314 Finally, the two values under the ROC and PRG curves and the four performance metrics calculated from the contingency
315 matrix were summed up with a multiple attribute decision making procedure, performed with the technique for order preference
316 by similarity to ideal solution (TOPSIS, Hwang and Yoon, 2012), to individuate the best model. For each model, 50 logistic
317 regression analyses were run with different training and validation datasets, randomly extracted from the original database.
318 This procedure lead to the calculation of 50 different values of the coefficient associated with each controlling variable, and
319 to the generation of 50 different susceptibility maps, thus allowing to statistically analyse the distribution of the susceptibility
320 values, the regression coefficients, and the performance metrics.

321 Finally, these indices were summed up with a multiple attribute decision making procedure, performed with the technique for
322 order preference by similarity to ideal solution (TOPSIS, Hwang and Yoon, 2012), to individuate the best model. For each
323 model, 50 logistic regression analyses were run, in order to statistically analyse the distribution of the susceptibility values, the
324 regression coefficients, and the performance metrics.

325 To avoid an over-abundance of obviously stable units (e.g., flat areas), which would give a biased estimate of the performance,
326 only nontrivial units with slopes more compatible with shallow landslides triggering ($>20^\circ$ and $< 40^\circ$) were selected.

327 The economic consequences are one of the main issues in early warning; these economic costs can be significantly different
328 in case of false or missing alarms. This problem is usually not considered in susceptibility studies, where the classification of
329 susceptibility into classes (e.g. very low, low, medium, high and very high) is based on some arbitrary choice of the modeler
330 (Cantarino et al., 2019).

331 For this reason, a new practical approach to classify the susceptibility values was defined, based on the cost-curves approach.
332 Similarly to other methods, such as Natural Breaks (Jenks, 1967), this procedure takes into account the underlying data, instead
333 of using standard classes, with the advantage that it can be calibrated on a specific cost analysis.

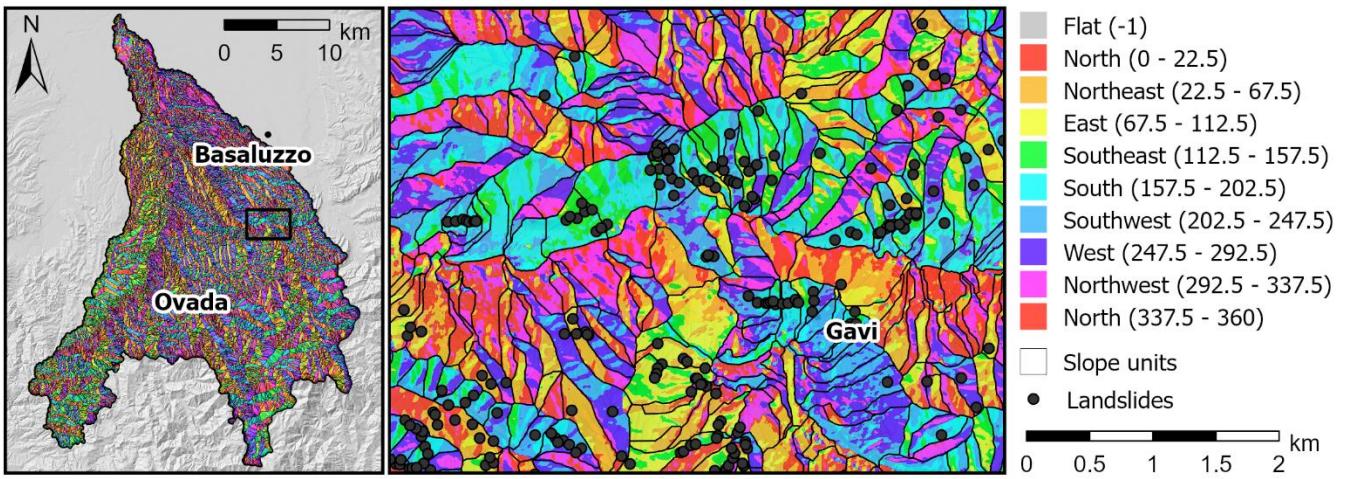
334 Specifically, the cut-off corresponding to the minimum normalized expected cost was used as the centre of the third class
335 (medium susceptibility), and defined in this work as *half-susceptibility threshold (HST)*. The classes limits are defined based
336 on a geometric progression from 0 to 1, centred on HST.

337 Since the misclassification costs can vary significantly within the study area, and their quantification require extremely detailed
338 analyses, in the current work the a priori probabilities of having and not having landslides were kept equal, while three
339 scenarios of relative costs (Scenario 1: $c(-|+):c(+|-) = 0.5 : 0.5$, Scenario 2: $c(-|+):c(+|-) = 0.8 : 0.2$, Scenario 3:
340 $c(-|+):c(+|-) = 0.2 : 0.8$, where $c(-|+)$ is the cost of false negatives and $c(+|-)$ is the cost of false positives) were
341 considered.

342 3 Results

343 3.1 Slope units delineation

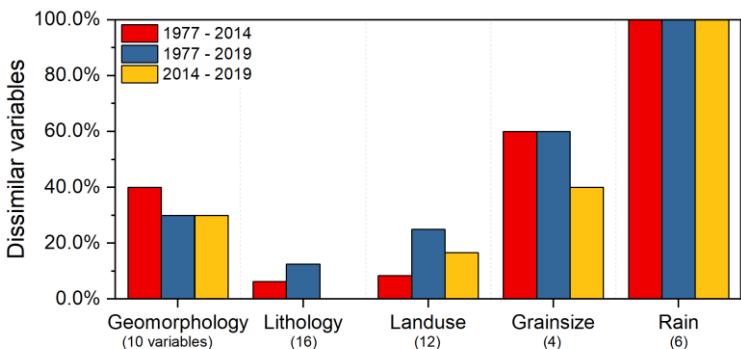
344 By using a minimum area of 20,000 m² and a maximum circular variance of 0.1, the study area was partitioned in 10'528 slope
345 units (Fig. 4), with an average area of 56'555 m² and a maximum area of 1'868'299 m². Slope units were classified as unstable
346 if occupied by at least one landslide. This resulted in 627 (5.95%), 50 (0.47%), and 869 (8.25%) unstable slope units for the
347 1977, 2014, and 2019 events, respectively.



348 **Figure 4. Example of slope unit delineation within the area of Gavi, overlaid on an aspect map.**

349 **3.2 Preliminary exploratory statistical analysis**

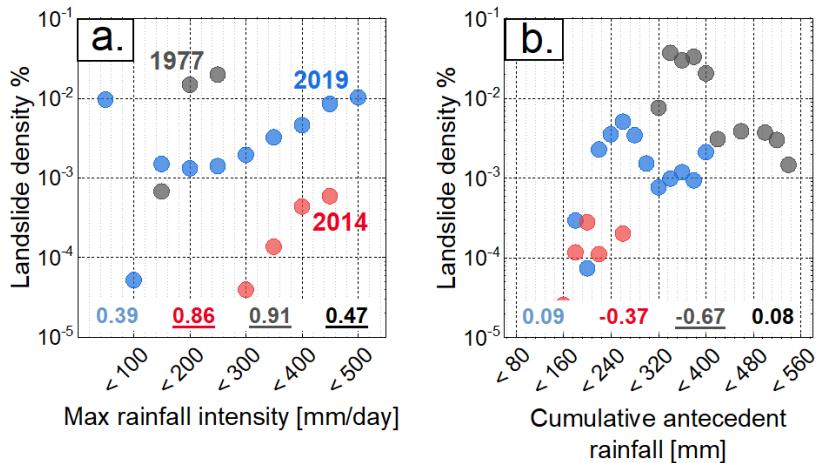
350 Figure 5 represents the percentage of variables within the different groups of controlling factors for which the similarity
 351 hypothesis between the variable distributions in the unstable slope units for the different inventories can be rejected (see Fig.
 352 S53 for all the distributions). Lithological variables show the lowest dissimilarity between the different inventories, followed
 353 by land use. On the other side, the rainfall variables are always dissimilar among the inventories. This suggests that landslides
 354 may be triggered by different rainfall patterns, but within certain specific lithological and land use classes.
 355



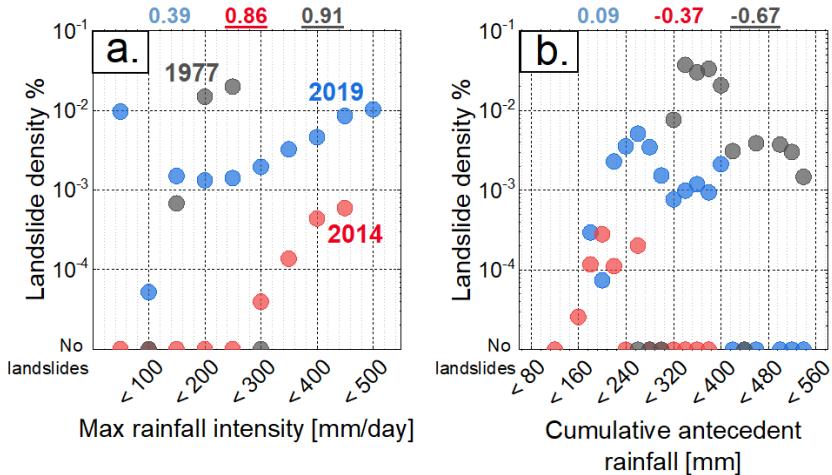
356
 357 **Figure 5. Percentage of statistically dissimilar variables within each group of controlling factors, according to the Dunn's test with**
 358 **a significance level of 0.05. Numbers below the name of the groups refer to the total number of variables considered within that**
 359 **group.**

360 **To further investigate the control exerted by rainfall on the triggering of shallow landslides, the correlation between landslide**
 361 **distribution and values of maximum rainfall intensity and 90-days antecedent cumulative rainfall was analysed. This**
 362 **investigation was carried out by defining intervals of rainfall values and calculating the spatial density of landslides within**
 363 **each rainfall interval area. The three landslide events show significant differences, confirming the previous results.**

364 Considering the whole study area, landslide density is clearly positively correlated with maximum rainfall intensity. For the
365 same maximum rainfall intensity values (Fig. 6a), the landslide density is offset for the three inventories, suggesting a different
366 sensitivity of landslides to rainfall (for example, landslide density for 400 mm is $4.36e^{-4}$ for the 2014 event, and $4.65e^{-3}$ for
367 2019). This could be explained by the different levels of antecedent rainfall (Fig. 6b): the higher the antecedent cumulative
368 rainfall, the higher the sensitivity. This relationship is recognizable also by visual comparison of the event rainfall intensity
369 maps with respect to the antecedent cumulative rainfall maps (Fig. 2 and S2).
370 The same analysis was conducted for the most unstable lithological units, namely marls (around 30% of the total landslides
371 number for each event), sandstones and siltstones (almost 50% of landslide in each event), sandstone breccias (7% of landslides
372 in 1977 and 2019, 0% in 2014), and sandstones and marls (4% in 1977 and 2019, 14% in 2014). The results did not show clear
373 trends, probably due to the small number of landslides in each rainfall class (Fig. S6). This is more evident for sandstone
374 breccias, as this lithology is restricted to a relatively small sector in the western part of the study area.
375 To further investigate the control of rainfall on landslide triggering, landslide density was plotted against classes of maximum
376 rainfall intensity, cumulative rainfall during the event and 90 days antecedent cumulative rainfall (Fig. 5).
377 Firstly, the three landslide events show significant differences, confirming the previous results. Considering the whole study
378 area, landslide density is clearly positively correlated with maximum rainfall intensity during the event. Interestingly, for the
379 same maximum rainfall intensity (Fig. 5a), the landslide density is offset for the three inventories, indicating a different
380 sensitivity of landslides to rainfall. This could be explained by the different levels of antecedent rainfall (Fig. 5b): the higher
381 the antecedent cumulative rainfall, the higher the sensitivity.
382 The same analysis for individual lithologies did not show clear evidences, probably due to the smaller sample of landslides in
383 each class (Fig. S4). This is more evident for sandstones and breccias, as this lithology is restricted to a relatively small sector
384 in the western part of the study area.



385



386

387 **Figure 6.** Scatterplots representing landslide density in each rainfall class for the entire study area. Spearman's rank order
 388 correlation coefficients between landslide density and rainfall classes are reported in each plot. Underlined values are statistically
 389 correlated at the 0.05 level.

390 For the 1977 event, Fig. 6a shows that landslides started to occur for maximum rainfall intensities greater than 100 mm in 24
 391 h. This result agrees with the Intensity-Duration (ID) threshold curves proposed for the area (Tiranti et al., 2019). A few
 392 landslides in 2019 were triggered at even lower rainfall values, very close to the catchment divide where local topography
 393 could have exerted a major control. The high density is also related to the small catchment area pertaining to the low rainfall
 394 interval. On the other hand, during the 2014 event, a rainfall intensity of 250 mm in 24 hours was necessary to cause
 395 instabilities. This may be explained by a relatively low cumulative antecedent rainfall (below 300 mm) with respect to the
 396 other events, inducing low initial soil moisture conditions.

397 For the 1977 and 2019 events, Fig. 5a shows that landslides started to occur for maximum rainfall intensities greater than 100
398 mm in 24 h, which agrees with the ID curves proposed for the area (Tiranti et al., 2019). On the other hand, during the 2014
399 event, a rainfall intensity of 250 mm in 24 hours was necessary to cause instabilities. This may be explained by looking at the
400 cumulative antecedent rainfall in 90 days, which is below 300 mm in 2014, and much higher for the other events, giving
401 different initial soil moisture conditions.

402 Also, all the three inventories show a positive correlation between the landslide density and the normalized maximum rainfall
403 intensity over 24 hours. On the contrary, the values of antecedent and intra-event cumulative rainfall are significantly different
404 between the three events (Fig. 4), as confirmed by Fig. 5. Moreover, the different average levels of antecedent conditions,
405 whose pattern is not spatially correlated with the distribution of maximum intensity, also play a role in offsetting the
406 relationship between landslide density and the maximum rainfall intensity. Figure 5 shows that landslide density increases
407 more rapidly with rainfall as a function of the initial conditions (for example, landslide density for 400 mm is $4.36e^{-4}$ for the
408 2014 event, and $4.65e^{-3}$ for 2019).

409 3.3 Rainfall based susceptibility maps

410 Figure 7 shows the mean coefficient and the inclusion rate of the 50 runs of the logistic regression models, for each single
411 variable. Slope gradient is the most important parameter for all models (except m14), with always positive coefficients and a
412 high inclusion rate. For the other morphometric parameters, northerness and flow accumulation show a high inclusion rate and
413 relatively high coefficients (except for m14). The negative sign of the northerness coefficient indicates the south-facing slope
414 units as more unstable. Among the lithological descriptors, “gravels and sands”, “sandstones and siltites”, and “marls” show
415 the highest inclusion rates and coefficient values. On the other end, basalts, limestones, and slates are never included in the
416 models. Land use does not exert an important control. Among the descriptors of soil granulometry, the contents in coarse
417 fragments and sand are selected with a high inclusion rate and a negative median coefficient, with the exception of m14, while
418 clay content is chosen with a high inclusion rate and a positive median coefficient.

419 Eventually, rainfall variables play an important but complex role on susceptibility. Maximum daily intensity is very important
420 for m14, m771419, and m7714161921, with positive coefficients and a high inclusion rate. Surprisingly, maximum rainfall
421 intensity is not included in m19, and takes negative values in m77. The antecedent cumulative rainfall is important for slope
422 instability in models m77, m14, m771419 and m7714161921, while model m19 shows the lowest mean coefficient for this
423 variable.

424 The intra-event maximum rainfall intensity is also a relevant variable, but with a more complex influence. This variable is very
425 important for model m14, with a strong destabilizing effect, but it is not included into model m19, and assumes a negative
426 coefficient in m77.

		Coefficients					Frequencies					
G		Curvature	0.14	0.58	--	0.089	0.081	10	1	--	8	13
		Easterness	-0.15	0.62	-0.11	-0.073	--	48	50	30	3	--
		Max flow accumulation	0.3	--	0.25	0.25	0.25	50	--	50	50	50
		Mean flow accumulation	0.51	0.7	0.32	0.4	0.41	50	47	50	50	50
		Northerness	-0.49	-0.42	-0.32	-0.36	-0.35	50	1	50	50	50
		Planar curvature	--	--	0.1	--	--	--	--	1	--	--
		Profile curvature	--	--	--	-0.072	-0.084	--	--	--	3	7
		Slope	2.4	2.1	3.2	2.3	2.3	50	11	50	50	50
L		Basalts	--	--	--	--	--	--	--	--	--	--
		Calceschists	--	--	0.14	0.1	0.089	--	--	37	4	1
		Gabbros and peridotites	--	--	-0.4	--	--	--	--	9	--	--
		Gravels and sands	2	1.7	1.5	1.6	1.7	50	27	50	50	50
		Gypsum	--	--	0.11	0.088	0.11	--	--	5	1	15
		Limestones	--	--	--	--	--	--	--	--	--	--
		Marls	0.93	0.75	0.6	0.66	0.73	50	44	50	50	50
		Marls and sands	--	--	--	--	--	--	--	--	--	--
		Prasinites	--	--	0.12	--	0.088	--	--	22	--	1
		Sands and gravels	--	--	0.27	0.24	0.28	--	--	50	50	50
		Sandstone breccias	0.57	--	0.27	0.47	0.55	50	--	50	50	50
		Sandstones and conglomerates	--	--	0.32	0.16	0.21	--	--	41	42	50
		Sandstones and marls	0.29	0.44	0.17	0.21	0.24	50	39	45	50	50
		Sandstones and siltites	1.3	1.3	0.8	0.92	1	50	47	50	50	50
		Serpentinites	0.24	--	-0.36	--	--	1	--	6	--	--
		Slates	--	--	--	--	--	--	--	--	--	--
S		Clay content	0.62	0.85	0.5	0.53	0.51	50	3	49	50	50
		Coarse fragments	--	-1.2	-0.86	-0.24	-0.25	--	8	50	42	41
		Sand content	-0.85	--	-0.51	-0.55	-0.55	50	--	49	50	50
		Silt content	--	-0.6	0.37	--	0.22	--	1	50	--	1
U		Arable land	-0.25	-0.8	-0.18	-0.15	-0.21	29	3	1	6	1
		Areas with sparse/absent vegetation	-0.31	--	--	-0.16	-0.15	5	--	--	21	25
		Artificial non-agricultural green areas	--	--	--	--	--	--	--	--	--	--
		Heterogeneous agricultural areas	--	--	0.089	0.091	0.096	--	--	32	49	49
		Inland waters	-0.43	--	0.14	0.14	--	14	--	6	1	--
		Mining areas	--	--	--	--	--	--	--	--	--	--
		Permanent crops	-0.29	0.47	-0.11	-0.11	-0.099	49	1	29	37	38
		Permanent lawns	0.16	--	-0.16	--	--	10	--	30	--	--
		Road network	--	0.57	0.3	0.28	0.27	--	11	50	50	50
		Shrubby/herbaceous areas	0.21	0.7	--	0.21	0.21	50	50	--	50	50
R		Urbanized and productive areas	--	0.52	--	0.13	0.12	--	33	--	3	1
		Woods	0.27	0.63	--	0.17	0.17	13	1	--	38	46
		Antecedent cum rainfall (90 days)	0.93	1.8	0.21	1	1.7	50	43	37	50	50
		Intra event max rainfall intensity	-0.21	3.8	--	0.69	1.1	20	50	--	50	50

m77 m14 m19 m771419 m7714161921 m77 m14 m19 m771419 m7714161921

427

428 Figure 7. Variation of the median coefficient (left panel) and inclusion rate (frequency – right panel) of variable selection according
429 to the different training model, based on 50 iterations. Variables are aggregated in 5 groups (G = geomorphological parameters, L
430 = lithological parameters, S = soil grain size, U = land use and land cover parameters, R = rainfall parameters). Grey boxes indicate
431 that the variable was never chosen by the model.

432 Model m14 shows a good performance when evaluated over its validation dataset, with a mean AUROC value of 0.97 (highest
433 mean AUROC value among all the tested models), but it fails in predicting or hindcasting other landslide events, as indicated
434 by an interquartile range of AUROC values between 0.62 and 0.74 (Fig. S⁷⁵), a low accuracy and a high FPR. Model m77
435 shows a high mean AUROC, but a low AUPRG, especially when trying to predict 2014 landslides, meaning that the model
436 output becomes less precise when ignoring the true negatives. On average, model m19 shows good prediction capabilities,
437 especially in terms of AUPRG. Models trained over multiple events show the best performance, and an associated reduction
438 in the variability of the final results. The mean AUROC value increases, as does the mean AUPRG. The inclusion of intense
439 rainfall events that did not lead to the triggering of slope instabilities results in small improvements in the general performance,
440 especially for the mean accuracy and FPR.

441 According to the TOPSIS classifier (Fig. 87), m7714161921 is the model with the highest relative closeness degree to the ideal
442 solution ([score of 0.9](#)), obtained giving the same weight for the evaluation of all the scores (0.16 for all the metrics).

	m77_p77	m77_p14	m77_p19	Mean	m14_p77	m14_p14	m14_p19	Mean	m19_p77	m19_p14	m19_p19	Mean	m771419_p77	m771419_p14	m771419_p19	Mean	m7714161921_p77	m7714161921_p14	m7714161921_p19	Mean
AUROC	0.86	0.95	0.75	0.85	0.67	0.97	0.74	0.79	0.74	0.91	0.88	0.84	0.82	0.95	0.83	0.87	0.81	0.96	0.82	0.87
AUPRG	0.96	0.03	0.92	0.64	0.81	0.56	0.82	0.73	0.96	0.59	0.95	0.83	0.95	0.52	0.94	0.8	0.95	0.52	0.93	0.8
Accuracy	0.85	0.83	0.8	0.83	0.78	0.92	0.78	0.83	0.82	0.8	0.79	0.81	0.85	0.83	0.8	0.83	0.84	0.86	0.79	0.83
Precision	0.27	0.02	0.26	0.19	0.18	0.06	0.21	0.15	0.24	0.02	0.27	0.18	0.27	0.03	0.28	0.19	0.26	0.03	0.27	0.19
TPR	0.88	0.86	0.77	0.84	0.75	0.98	0.6	0.78	0.86	0.92	0.88	0.89	0.87	0.98	0.84	0.89	0.87	0.98	0.84	0.9
FPR	0.16	0.17	0.2	0.17	0.22	0.08	0.2	0.17	0.18	0.2	0.21	0.2	0.15	0.17	0.2	0.17	0.16	0.14	0.21	0.17
TOPSIS				0.5				0.4				0.64				0.89				0.9

	m77_p77	m77_p14	m77_p19	Mean	m14_p77	m14_p14	m14_p19	Mean	m19_p77	m19_p14	m19_p19	Mean	m771419_p77	m771419_p14	m771419_p19	Mean	m7714161921_p77	m7714161921_p14	m7714161921_p19	Mean	
AUROC	0.86	0.95	0.75	0.85	0.67	0.97	0.74	0.79	0.74	0.91	0.88	0.84	0.82	0.95	0.83	0.87	0.81	0.96	0.82	0.87	
AUPRG	0.96	0.03	0.92	0.64	0.81	0.56	0.82	0.73	0.96	0.59	0.95	0.83	0.95	0.52	0.94	0.8	0.95	0.52	0.93	0.8	
Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$	0.85	0.83	0.8	0.83	0.78	0.92	0.78	0.83	0.82	0.8	0.79	0.81	0.85	0.83	0.8	0.83	0.84	0.86	0.79	0.83
Precision	$\frac{TP}{TP + FP}$	0.27	0.02	0.26	0.19	0.18	0.06	0.21	0.15	0.24	0.02	0.27	0.18	0.27	0.03	0.28	0.19	0.26	0.03	0.27	0.19
TPR	$\frac{TP}{TP + FN}$	0.88	0.86	0.77	0.84	0.75	0.98	0.6	0.78	0.86	0.92	0.88	0.89	0.87	0.98	0.84	0.89	0.87	0.98	0.84	0.9
FPR	$\frac{FP}{FP + TN}$	0.16	0.17	0.2	0.17	0.22	0.08	0.2	0.17	0.18	0.2	0.21	0.2	0.15	0.17	0.2	0.17	0.16	0.14	0.21	0.17
TOPSIS				0.5				0.4			0.64				0.89				0.9		

Figure 8. AUROC, accuracy, precision, true positive rate TPR and false positive rate FPR obtained using the threshold that minimizes the expected costs, calculated for each model assuming equal costs. For each model, the scores of the evaluation obtained with the TOPSIS classifier are also reported. For each model, the relative closeness degree of alternatives to the ideal solution (C_i) and ranks of the evaluated models are also reported.

444

445

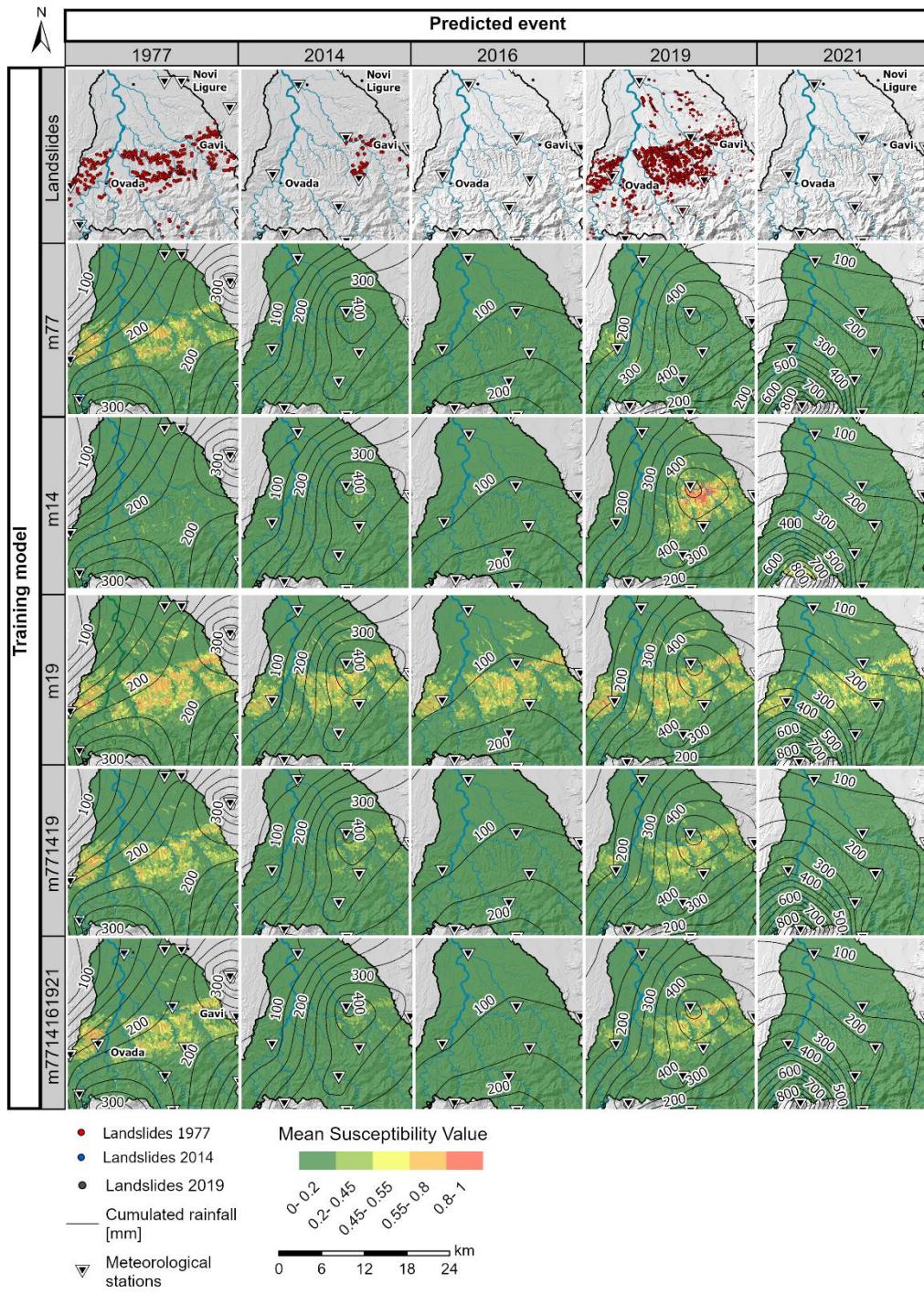
446

447

448

449

3.4 Model representation



450

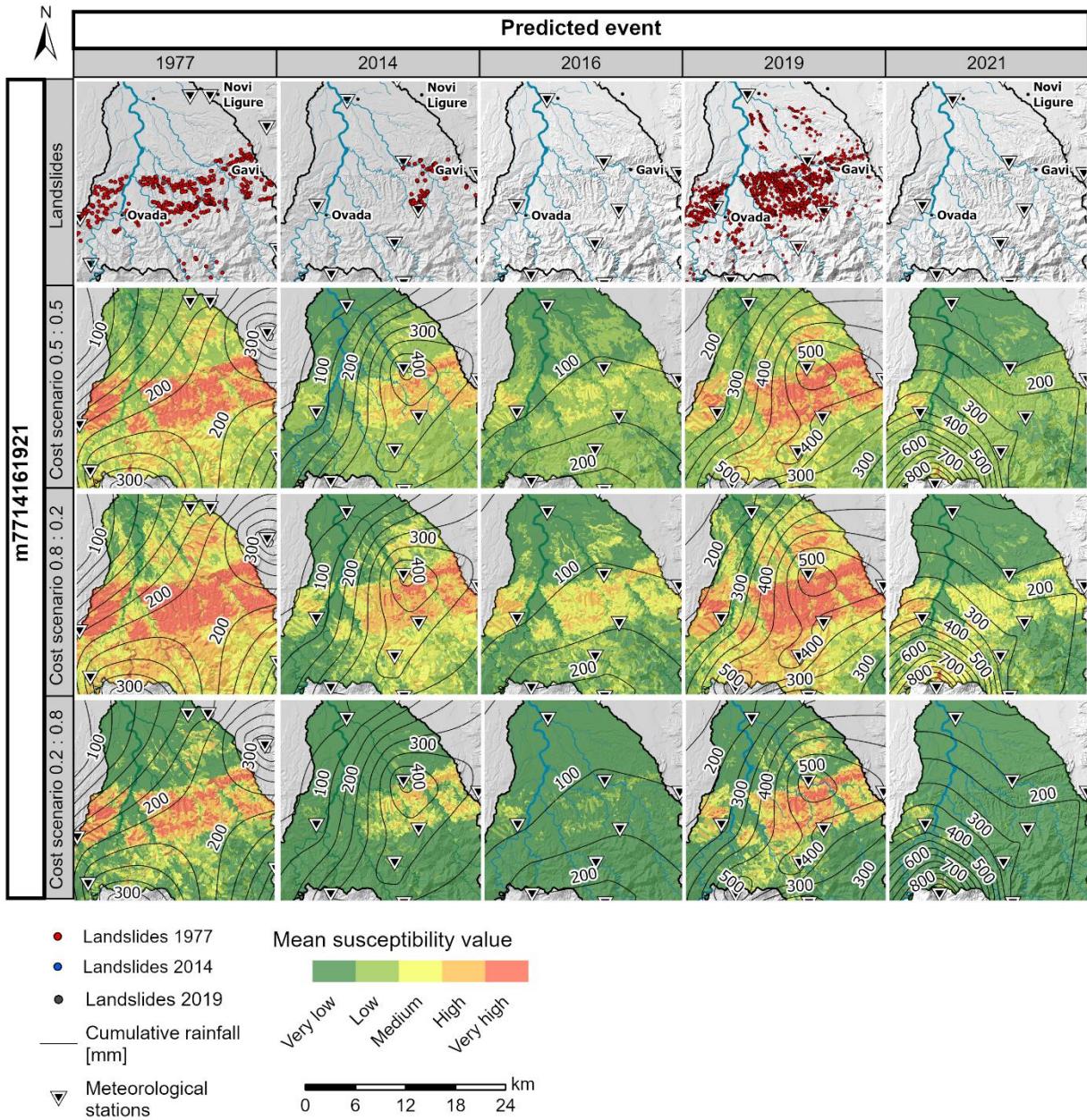
451 **Figure 9. Landslide susceptibility maps for the Orba basin. Columns refer to different training models, while rows refer to different**
 452 **predicted or hindcasted events.**

453 For each model, five rainfall events were used to produce the rainfall-based susceptibility maps (Fig. 98), obtaining different
 454 maps for each model as a function of the event-specific rainfall values. From a simple visual inspection, comparing
 455 susceptibility classes and landslide distribution, it is clear that models m14 and m19 are not able to correctly model landslide
 456 susceptibility. As already seen in Fig. 76, the high coefficient of rainfall intensity in m14 makes susceptibility excessively
 457 dependent on this variable, so that the resulting unstable units simply reflect its distribution. On the contrary, the exclusion of
 458 rainfall intensity and the low coefficients of antecedent rainfall in m19 make the susceptibility maps almost constant for
 459 different events. In addition, the model tends to overestimate unstable areas. Model m77 shows a better performance, but still
 460 suffers from the low coefficient of maximum rainfall intensity, making also this model quite constant between different events,
 461 thus predicting unstable areas also for the 2016 and 2021 events. Models m771419 and m7714161921 significantly outperform
 462 the others, as they are able to classify the central part of the study area as unstable only for heavy rainfall events. However,
 463 they tend to underestimate the percentage of unstable or very unstable slope units during the 1977, 2014 and 2019 events, with
 464 less than 4% of the slope units classified as moderately, highly or very highly unstable. On the other hand, they correctly
 465 classify all the slope units as stable when considering rainfall events that were not associated with landslides (p16 and p21).
 466 Model m7714161921 also shows a slightly better ability to handle false positives when simulating non-triggering rainfall
 467 events, as it can be seen in the last row of Fig. 76 for the prediction of m14, m16 and m21, especially in the western part of
 468 the study area.

469 In general, the maps in Fig. 98 classified by using a rather standard partitioning of the susceptibility values into five classes (0
 470 – 0.2, 0.2 – 0.45, 0.45 – 0.55, 0.55 – 0.8, 0.8 – 1) show an uneven distribution of slope units in the different classes, giving the
 471 impression of either overestimation or underestimation. This problem was addressed with the new classification method based
 472 on misclassification costs, which was applied to m7714161921 (ranked as the best performing model). For each of the three
 473 considered scenarios the optimal cut-off threshold and the relative geometric progression were derived, considering different
 474 misclassification cost ratios (Table 2). The class boundaries derived from the geometric progression were then used to
 475 reclassify the susceptibility values, to produce optimised maps (Fig. 109). The optimal cut-off threshold decreases as the
 476 relative cost of false negatives decreases, thus reducing the number of slope units classified as unstable.

477 **Table 2. Threshold values for m7714161921, for each of the proposed scenarios of relative costs. HST is the half-susceptibility**
 478 **threshold corresponding to the value that minimizes the normalized expected cost for each cost scenario. The considered classes**
 479 **correspond to very Low (VL), Low (L), Medium (M), High (H), and very High (VH).**

Cost Scenarios	HST	VL	L	M	H	VH
$c(- +): c(+ -) = 0.5 : 0.5$	0.034	0.005	0.018	0.068	0.261	1.000
$c(- +): c(+ -) = 0.8 : 0.2$	0.010	0.018	0.068	0.261	1.000	0.005
$c(- +): c(+ -) = 0.2 : 0.8$	0.104	0.066	0.164	0.405	1.000	0.027



480

481 **Figure 10.** Instability maps relative to the best performing model (m7714161921). Each row refers to a different relative cost scenario,
482 where the proportions refer to the ratio between costs associated to false negatives and false positives. Classes limits are defined
483 based on the optimal cut-off threshold and the relative geometric progression.

485 **4.1 Landslide distribution analysis and prediction**

486 This paper investigated the relationship between several spatially distributed variables (i.e., possible triggering factors) and
487 the occurrence of shallow landslides through a logistic regression-based susceptibility analysis.

488 At a first visual inspection, the spatial distribution of the shallow landslides is fairly constant in all the available inventories,
489 suggesting that shallow landslides in this area are modulated by rainfall, but controlled by other static parameters. In particular,
490 landslides tend to occur in slope units with similar geomorphology and lithology (Fig. 54).

491 More specifically, beside the slope gradient, lithology appears to be the most important variable that controls landslide
492 susceptibility (Fig. 76). Among all, the most prone lithologies in all the inventories are marls, sandstones and siltites, similarly
493 to the results of Luino and Padano (1999) and Licata *et al.* (2023). The high importance given to gravels and sands, a lithology
494 commonly found in alluvial flat areas, can be explained with the instability of fluvial terraces (Šilhán, 2022). Moreover, the
495 lithology controls the grain size of the soil cover and, thus, the hydrological processes in the unsaturated zone. The sedimentary
496 sequence in the central part of the area, overlaid by soils with a high clay content, is another important destabilizing factor in
497 the model because of the poor draining capacity of clays. More interestingly, the southern metamorphic basement is commonly
498 covered by soils rich in sand and coarse fragments, which have a strong stabilizing effect, probably correlated with a higher
499 drainage capacity and friction angle.

500 Surprisingly, the role of land use does not appear to be relevant. In addition, the role of lithology may be strong enough to
501 mask the land-use effect.

502 Looking at the variables related to rainfall dynamics, the cumulative antecedent rainfall is the most relevant in all regression
503 models. In fact, it has been considered a proxy for the soil water content before the event, which for various authors it is pivotal
504 for modelling shallow landslides (Bogaard and Greco, 2018; Marino *et al.*, 2020b). The intra event maximum rainfall intensity
505 is also a relevant variable, but with a more complex influence. Being calculated with a 24 h aggregation time, this variable can
506 be intended as a general descriptor of the entire rainfall event, representative of both the rainfall intensity and the daily
507 cumulative value. Using a smaller aggregation time could help to differentiate the effects of these two descriptors, which was
508 impossible for the event of 1977, as outlined in Sect. 4.2.

509 These parameters are also important to explain the spatial distribution of the landslide density. In particular, the analysis of the
510 relationships between landslide density, the normalized maximum rainfall intensity over 24 hours and the normalized values
511 of the antecedent cumulative rainfall suggest that landslide density appears to be controlled by the maximum rainfall intensity.
512 This agrees with the mechanical explanation of shallow landslides triggering, controlled by soil saturation, leading to an
513 increase in pore pressure and a loss of soil suction (Fredlund *et al.*, 1978). In addition, the antecedent condition shows a double
514 role of setting a threshold required for landslide initiation (e.g. Crozier, 1999; Glade *et al.*, 2000; Godt *et al.*, 2006; Marino *et
515 al.*, 2020b), and offsetting the relationship between landslide density and rainfall intensity.

516 Several basin-scale studies suggest that to quantify the shallow landslide susceptibility, the use of multitemporal inventories
517 lead to better results (Reichenbach et al., 2018), while others affirm that this is not always associated with a model performance
518 improvement (Ozturk et al., 2021; Smith et al., 2021). Results show that, for the Orba basin, models trained over a single
519 landslide event are not capable of catching the real processes underlying the instability phenomena, despite the high landslide
520 density and the good performance when using the test-validation dataset. Thus, they are unable to predict landslide events
521 associated with different rainfall characteristics. In particular, m14, being the smaller landslide inventory and more limited in
522 the extend of the affected area, shows the best performance when tested against itself (Fig. 87 and Fig. S75), and the worst
523 performance when used to model other events, producing maps with an exaggerated landslide susceptibility in areas with high
524 precipitation. The inclusion of multiple events helps in stabilising the effect exerted by the different controlling variables, thus
525 providing more reliable prediction/hindcast susceptibility maps.

526 The evaluation of the performance of regression models is always challenging, especially when using an input dataset with a
527 skewed distribution (e.g. Provost *et al.*, 1998; Davis and Goadrich, 2006; Drummond and Holte, 2006). AUROC, which is the
528 most used evaluation method in the literature (Reichenbach et al., 2018) suffers from an overly optimistic evaluation while
529 misclassifying the samples that belongs to the underrepresented class. This is the case of model m77 when predicting 2014
530 event. On the other side, AUPRG shows high values when model m77 predicts 2019 event, even if large parts of the area
531 affected by landslides is predicted as stable. The other indices are cut-off dependent, and they do not show any capabilities to
532 discriminate among the different models. For these reasons, the multi-criteria TOPSIS model was used to consider the
533 contribution of all the indices. Interestingly, the TOPSIS classification shows significant variations across the models where
534 single appear to show no significance. Based on the TOPSIS evaluation, the multitemporal models outperform the single event
535 models, confirming what discussed above. In particular, the model with the highest prediction capabilities is m7714161921,
536 suggesting that the inclusion of non-triggering rainfall events helps in defining the rainfall threshold to trigger instabilities in
537 different parts of the study area.

538 For the representation of the results, the classification scheme typically adopted in the literature does not account for
539 misclassification costs (Cantarino et al., 2019), meaning that the costs associated with false and missed alarms are implicitly
540 assumed equal, which are implicitly assumed equal. However, since the misclassifications costs are often not equal, the total
541 misclassification cost can be reduced by playing on the degree of conservativeness of the models in order to reduce the false
542 negatives or false positives rates, thus increasing or decreasing what is classified as unstable. This required a new classification
543 scheme to adjust the thresholds used for susceptibility classification according to the selected proportion of misclassification
544 costs.

545 Scenario 2, where the costs of false negatives are higher, is the most conservative because the classification is forced towards
546 instability to keep the false negatives rate low. On the contrary, scenario 3, where the costs of false positives are higher, shows
547 the highest percentage of stable slope units. Scenario 1 considers equal costs for false positives and false negatives, and
548 produces intermediate results. The strong differences between these scenarios suggest that the use of cost curves for the
549 landslide susceptibility model could be a valuable tool in the final stages of a susceptibility analysis, when slope units need to

550 be classified. This approach allows for different classification thresholds based on cost combinations, enabling the evaluation
551 of their consequences. Costs may include direct costs like damage to infrastructure and loss of life, and indirect costs like
552 traffic disruptions and lost productivity (Sala et al., 2021). While this work uses different cost ratio scenarios to demonstrate
553 the approach's potential, more detailed analyses could provide precise cost quantifications, considering that costs may vary
554 across different parts of the study area.

555 **4.2 Challenges, uncertainties, and limitations**

556 It is necessary to underline possible uncertainties and assumptions regarding the input datasets and the modelling strategies,
557 so that the limitations of our findings are made clear. Two main limitations can potentially affect the results of these analyses:
558 the consideration of land use and land cover as a static variable and the use of an old landslide inventory.

559 First, land use and land cover can vary greatly over time. Considering this variable as static is mainly due to a lack of
560 information, since the only other dataset provided by ARPA Piemonte dates to 2010, and the analysis of satellite images,
561 besides being beyond the purpose of this study, was not possible for the 1977 event. An analysis of the land use change between
562 two available datasets (2010 and 2021) within the Orba basin revealed that permanent crops decreased by 6% and meadows
563 by almost 2%, while the areas characterised by shrub and herbaceous vegetation increased by 4% and the woods by almost
564 4%. However, these changes can be considered negligible in the analyses, given the very low influence of the land use variables
565 in the logistic regression. This is in contrast with the conclusions of many other studies (for example Bernardie *et al.*, 2017;
566 Persichillo *et al.*, 2017; Hürlimann *et al.*, 2022), suggesting that this relationship could be further analysed in future studies.

567 The second limitation is posed by the inclusion of an older event (1977) with higher uncertainty of both rainfall pattern and
568 landslide distribution. Data from the ARPA Piemonte and ARPA Liguria weather stations were used to analyse the rainfall
569 pattern. However, only 36 stations were active in 1977, 26% less than in 2014 and 2019, and most of them are located outside
570 the region of interest (Fig. 2). This uncertainty in the rainfall pattern could affect the modelling, especially in the central part
571 of the basin. In addition, data for 1977 were only available with a daily time step, making it impossible to use multiple different
572 aggregation times. The landslide inventory of the 1977 event represents landslides as areas affected by diffuse shallow
573 landslides rather than individual polygons. This affects the landslide distribution and density analysis. However, the choice to
574 use slope units for analysis mitigated this difference in the inventories. Finally, as mentioned above, the use of this landslide
575 event precluded the use of satellite products; therefore, some factors that could improve susceptibility analyses, such as
576 satellite-based antecedent soil moisture, could not be incorporated into the model.

577 **5 Conclusions**

578 This study demonstrates the feasibility of using logistic regression to model the effects of extreme rainfall events on the stability
579 of a complex study area, such as the Orba basin in the Piedmont region of Italy. In this area, the spatial distribution of shallow

580 landslides reflects the distribution of lithology and geomorphology, thus showing a similar pattern for different rainfall
581 scenarios.

582 In such conditions, the development of a rainfall dependent model capable of simulating different susceptibility scenarios is
583 more challenging, and requires a careful calibration of the model with representative and significant rainfall events over a
584 multi-temporal dataset. In fact, the use of single events may be problematic. For example, a rainfall event that is spatially
585 concentrated in a small area with specific geological characteristics (such as in 2019 for the study area) could overestimate the
586 role of such characteristics despite the rainfall, producing biased scenarios. On the contrary, a model trained on an extreme
587 localised event spanning different geological conditions (such as the 2014 event) may overestimate the role of rainfall at the
588 expense of geology. Finally, a rainfall event evenly distributed over the area (such as in 1977) would produce a model that
589 underestimates the role of rainfall in controlling the landslide pattern.

590 To avoid such effects, an ensemble of rainfall events is preferable to better unravel the effects of the triggering variables, and
591 also to compensate for local misleading effects that may arise from the use of a single rainfall event. The use of rainfall events
592 that did not trigger landslides may also be helpful for such compensation. The proposed strategy for selecting the best ensemble
593 of rainfall events was based on the maximization of the AUROC, AUPRG, accuracy and precision, and the minimization of
594 the expected misclassification costs.

595 Eventually, misclassification costs were adopted as a criterion to define the susceptibility classes for the practical use of the
596 resulting maps; this highlights the need to give importance to the classification process, which should be tailored to the needs
597 of the end users and on the purpose of the final products.

598 **Data availability**

599 Data for Regione Piemonte are publicly accessible at <https://geoportale.igr.piemonte.it/cms/> (Geoportale Regione Piemonte)
600 and at <https://www.arpa.piemonte.it/> (ARPA Piemonte).

601 **Supplement link**

602 The supplement related to this article is available online.

603 **Author contribution**

604 MF: conceptualization, data preparation, analysis/coding, writing – original draft. AP: conceptualization, visualization, writing
605 – review and editing. PF: conceptualization, validation, writing – original draft. GC: conceptualization, writing – review and
606 editing.

607 **Competing interests**

608 The authors declare that they have no conflict of interest.

609 **Disclaimer**

610 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and
611 institutional affiliations.

612 **Acknowledgements**

613 The authors would like to thank Luca Lanteri and the Operative Group "Landslides monitoring and geological studies" of the
614 Regional Environmental Protection Agency of Piedmont for the sharing of landslide mapping data related to the 2019 landslide
615 event.

616 **References**

617 Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., and Guzzetti, F.: Automatic delineation of
618 geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling, *Geosci.
619 Model Dev.*, 9, 3975–3991, <https://doi.org/10.5194/gmd-9-3975-2016>, 2016.

620 ARPA Piemonte: Eventi idrometeorologici dal 19 al 24 Ottobre 2019 - Parte I, 2019.

621 Bandis, S. C., Delmonaco, G., and Dutto, F.: Landslide phenomena during the extreme meteorological event of 4-6- November
622 1994 in Piemonte Region in N. Italy, *Int. Symp. Landslide*, 1996.

623 Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS — A Fortran Program for Transient Rainfall Infiltration and Grid-
624 Based Regional Slope-Stability Analysis, Version 2.0, U.S. Geol. Surv. Open-File Rep., 75, 2008.

625 Beguería, S.: Validation and Evaluation of Predictive Models in Hazard Assessment and Risk Management, *Nat. Hazards*, 37,
626 315–329, <https://doi.org/10.1007/s11069-005-5182-6>, 2006.

627 Bernardie, S., Vandromme, R., Mariotti, A., Houet, T., Grémont, M., Grandjean, G., Bouroullc, I., and Thiery, Y.: Estimation
628 of Landslides Activities Evolution Due to Land-Use and Climate Change in a Pyrenean Valley, in: *Advancing Culture of
629 Living with Landslides*, Springer International Publishing, Cham, 859–867, https://doi.org/10.1007/978-3-319-53498-5_98,
630 2017.

631 Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for
632 landslide initiation: Proposing hydro-meteorological thresholds, *Nat. Hazards Earth Syst. Sci.*, 18, 31–39,
633 <https://doi.org/10.5194/nhess-18-31-2018>, 2018.

634 Bordoni, M., Vivaldi, V., Lucchelli, L., Ciabatta, L., Brocca, L., Galve, J. P., and Meisina, C.: Development of a data-driven
635 model for spatial and temporal shallow landslide probability of occurrence at catchment scale, *Landslides*, 18, 1209–1229,
636 <https://doi.org/10.1007/s10346-020-01592-3>, 2021.

637 Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation, *Nat. Hazards Earth Syst.
638 Sci.*, 5, 853–862, <https://doi.org/10.5194/nhess-5-853-2005>, 2005.

639 Caine, N.: The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows, *Geogr. Ann. Ser. A, Phys. Geogr.*,
640 62, 23–27, 1980.

641 Camera, C. A. S., Bajni, G., Corno, I., Raffa, M., Stevenazzi, S., and Apuani, T.: Introducing intense rainfall and snowmelt
642 variables to implement a process-related non-stationary shallow landslide susceptibility analysis, *Sci. Total Environ.*, 786,
643 147360, <https://doi.org/10.1016/j.scitotenv.2021.147360>, 2021.

644 Campbell, R. H.: Soil Slips, Debris Flows, and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California,
645 U.S. Geol. Surv. Prof. Pap. 851, 51 pages, 1975.

646 Cantarino, I., Carrion, M. A., Goerlich, F., and Martinez Ibañez, V.: A ROC analysis-based classification method for landslide
647 susceptibility maps, *Landslides*, 16, 265–282, <https://doi.org/10.1007/s10346-018-1063-4>, 2019.

648 Carrara, A.: Multivariate models for landslide hazard evaluation, *J. Int. Assoc. Math. Geol.*, 15, 403–426,

649 <https://doi.org/10.1007/BF01031290>, 1983.

650 Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P.: GIS techniques and statistical models in
651 evaluating landslide hazard, *Earth Surf. Process. Landforms*, 16, 427–445, <https://doi.org/10.1002/esp.3290160505>, 1991.

652 Carrara, A., Crosta, G., and Frattini, P.: Comparing models of debris-flow susceptibility in the alpine environment,
653 *Geomorphology*, 94, 353–378, <https://doi.org/10.1016/j.geomorph.2006.10.033>, 2008.

654 Coletti, G., Basso, D., Frixia, A., and Corselli, C.: Transported Rhodoliths Witness the lost carbonate factory: A case history
655 from the miocene pietra da cantoni limestone (Nw Italy), *Riv. Ital. di Paleontol. e Stratigr.*, 121, 345–368,
656 <https://doi.org/10.13130/2039-4942/6522>, 2015.

657 [Copernicus Climate Change Service: ERA5-Land hourly data from 1950 to present](https://doi.org/10.24381/cds.e2161bac), <https://doi.org/10.24381/cds.e2161bac>,
658 2022.

659 [ERA5 Land hourly data from 1950 to present](#):

660 Crosta, G.: Regionalization of rainfall thresholds: An aid to landslide hazard evaluation, *Environ. Geol.*, 35, 131–145,
661 <https://doi.org/10.1007/s002540050300>, 1998.

662 Crosta, G. B. and Frattini, P.: Distributed modelling of shallow landslides triggered by intense rainfall, *Nat. Hazards Earth
663 Syst. Sci.*, 3, 81–93, <https://doi.org/10.5194/nhess-3-81-2003>, 2003.

664 Crozier, M. J.: Prediction of rainfall-triggered landslides: A test of the antecedent water status model, *Earth Surf. Process.
665 Landforms*, 24, 825–833, 1999.

666 Cruden, D. M. and Varnes, D. J.: Chapter 3 Landslide Types and Processes, *Landslides Investig. Mitigation, Transp. Res.
667 Board Spec. Rep. 247*, Washingt. D.C., 36–75, 1996.

668 Davis, J. and Goadrich, M.: The Relationship Between Precision-Recall and ROC Curves, *Proc. 23rd Int. Conf. Mach. Learn.
669 Pittsburgh, PA*, <https://doi.org/10.1109/ICACCCN51052.2020.9362793>, 2006.

670 Drummond, C. and Holte, R. C.: Cost curves: An improved method for visualizing classifier performance, *Mach. Learn.*, 65,
671 95–130, <https://doi.org/10.1007/s10994-006-8199-5>, 2006.

672 Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G., and Demoulin, A.: Characteristics of the size distribution of
673 recent and historical landslides in a populated hilly region, *Earth Planet. Sci. Lett.*, 256, 588–603,
674 <https://doi.org/10.1016/j.epsl.2007.01.040>, 2007.

675 Fioravanti, G., Fraschetti, P., Lena, F., Perconti, W., and Emanuela, P. (ISPRA): I normali climatici 1991-2020 di temperatura
676 e precipitazione in Italia, *Stato dell'ambiente*, 9, 2022.

677 Flach, P. A. and Kull, M.: Precision-Recall-Gain curves: PR analysis done right, *Adv. Neural Inf. Process. Syst.*, 2015-Janua,
678 838–846, 2015.

679 Frattini, P. and Crosta, G. B.: The role of material properties and landscape morphology on landslide size distributions, *Earth
680 Planet. Sci. Lett.*, 361, 310–319, <https://doi.org/10.1016/j.epsl.2012.10.029>, 2013.

681 Frattini, P., Crosta, G., and Sosio, R.: Approaches for defining thresholds and return periods for rainfall-triggered shallow
682 landslides, *Hydrol. Process.*, 23, 1444–1460, <https://doi.org/10.1002/hyp.7269>, 2009.

683 Frattini, P., Crosta, G., and Carrara, A.: Techniques for evaluating the performance of landslide susceptibility models, Eng.
684 Geol., 111, 62–72, <https://doi.org/10.1016/j.enggeo.2009.12.004>, 2010.

685 Fredlund, D. G., Morgenstern, N. R., and Widger, R. A.: Shear Strength of Unsaturated Soils, Can. Geotech. J., 15, 313–321,
686 <https://doi.org/10.1139/t78-029>, 1978.

687 Gilbert, G. K.: Finley's Tornado Predictions, Am. Meteorol. J., 1, 166–172, 1884.

688 Glade, T., Crozier, M., and Smith, P.: Applying probability determination to refine landslide-triggering rainfall thresholds
689 using an empirical “Antecedent Daily Rainfall Model,” Pure Appl. Geophys., 157, 1059–1079,
690 <https://doi.org/10.1007/s000240050017>, 2000.

691 Godt, J. W., Baum, R. L., and Chleborad, A. F.: Rainfall characteristics for shallow landsliding in Seattle, Washington, USA,
692 Earth Surf. Process. Landforms, 31, 97–110, <https://doi.org/10.1002/esp.1237>, 2006.

693 Goetz, J. N., Brenning, A., Petschko, H., and Leopold, P.: Evaluating machine learning and statistical prediction techniques
694 for landslide susceptibility modeling, Comput. Geosci., 81, 1–11, <https://doi.org/10.1016/j.cageo.2015.04.007>, 2015.

695 Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: a review of current techniques and
696 their application in a multi-scale study, Central Italy, Geomorphology, 13, 1995, 1999.

697 Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds for the initiation of landslides in central and
698 southern Europe, Meteorol. Atmos. Phys., 98, 239–267, <https://doi.org/10.1007/s00703-007-0262-7>, 2007.

699 Hanley, J. A. and McNeil, B. J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve,
700 Radiology, 143, 29–36, <https://doi.org/10.1148/radiology.143.1.7063747>, 1982.

701 Heidke, P.: Berechnung Des Erfolges Und Der Güte Der Windstärkevorhersagen Im Sturmwarnungsdienst, Geogr. Ann., 8,
702 301–349, <https://doi.org/10.1080/20014422.1926.11881138>, 1926.

703 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
704 D., Simmons, A., Soci, C., Abdalla, S., Abellán, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
705 G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
706 Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
707 Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–
708 2049, <https://doi.org/10.1002/qj.3803>, 2020.

709 Hosmer, D. W. and Lemeshow, S.: Applied Logistic Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA,
710 <https://doi.org/10.1002/0471722146>, 2000.

711 Huang, F., Cao, Z., Guo, J., Jiang, S. H., Li, S., and Guo, Z.: Comparisons of heuristic, general statistical and machine learning
712 models for landslide susceptibility prediction and mapping, Catena, 191, 104580,
713 <https://doi.org/10.1016/j.catena.2020.104580>, 2020.

714 Hungr, O.: A review of landslide hazard and risk assessment methodology, Landslides Eng. Slopes. Exp. Theory Pract., 1, 3–
715 27, <https://doi.org/10.1201/b21520-3>, 2016.

716 Hürlimann, M., Guo, Z., Puig-Polo, C., and Medina, V.: Impacts of future climate and land cover changes on landslide

717 susceptibility: regional scale modelling in the Val d'Aran region (Pyrenees, Spain), *Landslides*, 19, 99–118,
718 <https://doi.org/10.1007/s10346-021-01775-6>, 2022.

719 Hwang, C.-L. and Yoon, K.: *Multiple Attribute Decision Making: methods and applications a state-of-the-art survey*, Springer
720 Sci. Bus. Media, 186, 2012.

721 INTERREG IIC: Descrizione dei principali eventi alluvionali che hanno interessato la regione Piemonte, Liguria e nella
722 Spagna Nord Orientale, 90–94 pp., 1998.

723 ISPRA: *Dissesto idrogeologico in Italia: pericolosità e indicatori di rischio*, 183 pp., 2021.

724 Iverson, R. M.: Landslide triggering by rain infiltration, *Water Resour. Res.*, 36, 1897–1910,
725 <https://doi.org/10.1029/2000WR900090>, 2000.

726 Jacobs, L., Kervyn, M., Reichenbach, P., Rossi, M., Marchesini, I., Alvioli, M., and Dewitte, O.: Regional susceptibility
727 assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach, *Geomorphology*, 356, 107084,
728 <https://doi.org/10.1016/j.geomorph.2020.107084>, 2020.

729 Jenks, G. F.: The data model concept in statistical mapping., *Int. Yearb. Cartogr.*, 7, 186–190, 1967.

730 Jones, J. N., Boulton, S. J., Bennett, G. L., Stokes, M., and Whitworth, M. R. Z.: Temporal Variations in Landslide
731 Distributions Following Extreme Events: Implications for Landslide Susceptibility Modeling, *J. Geophys. Res. Earth Surf.*,
732 126, 1–26, <https://doi.org/10.1029/2021JF006067>, 2021.

733 Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational
734 Awareness, *Earth's Futur.*, 6, 505–523, <https://doi.org/10.1002/2017EF000715>, 2018.

735 Knevels, R., Petschko, H., Proske, H., Leopold, P., Maraun, D., and Brenning, A.: Event-based landslide modeling in the
736 styrian basin, Austria: Accounting for time-varying rainfall and land cover, *Geosci.*, 10, 1–27,
737 <https://doi.org/10.3390/geosciences10060217>, 2020.

738 Licata, M., Buleo Tebar, V., Seitone, F., and Fubelli, G.: The Open Landslide Project (OLP), a New Inventory of Shallow
739 Landslides for Susceptibility Models: The Autumn 2019 Extreme Rainfall Event in the Langhe-Monferrato Region
740 (Northwestern Italy), *Geosci.*, 13, <https://doi.org/10.3390/geosciences13100289>, 2023.

741 Lombardo, L. and Mai, P. M.: Presenting logistic regression-based landslide susceptibility results, *Eng. Geol.*, 244, 14–24,
742 <https://doi.org/10.1016/j.enggeo.2018.07.019>, 2018.

743 Lombardo, L., Opitz, T., Ardizzone, F., Guzzetti, F., and Huser, R.: Space-time landslide predictive modelling, *Earth-Science
744 Rev.*, 209, 103318, <https://doi.org/10.1016/j.earscirev.2020.103318>, 2020.

745 Lu, N. and Godt, J.: Infinite slope stability under steady unsaturated seepage conditions, *Water Resour. Res.*, 44, 1–13,
746 <https://doi.org/10.1029/2008WR006976>, 2008.

747 Luino, F.: ~~Sequence of instability processes triggered by heavy rainfall in the Northern Italy~~, *Geomorphology*, 66, 13–39,
748 <https://doi.org/10.1016/j.geomorph.2004.09.010>, 2005.

749 ~~Luino, F. and Padano, B.:~~ The Flood and Landslide Event of November 4-6 1994 in Piedmont Region (Northwestern Italy):
750 Causes and Related Effects in Tanaro, 24, 123–129, 1999.

751 [Luino, F.: Sequence of instability processes triggered by heavy rainfall in the Northern Italy, Geomorphology, 66, 13–39,](#)
752 [https://doi.org/10.1016/j.geomorph.2004.09.010, 2005.](https://doi.org/10.1016/j.geomorph.2004.09.010)

753 Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth
754 Surf. Process. Landforms, 29, 687–711, <https://doi.org/10.1002/esp.1064>, 2004.

755 Mandarino, A., Luino, F., and Faccini, F.: Flood-induced ground effects and flood-water dynamics for hydro-geomorphic
756 hazard assessment: the 21–22 October 2019 extreme flood along the lower Orba River (Alessandria, NW Italy), J. Maps, 17,
757 136–151, <https://doi.org/10.1080/17445647.2020.1866702>, 2021.

758 Maraun, D., Knevels, R., Mishra, A. N., Truhetz, H., Bevacqua, E., Proske, H., Zappa, G., Brenning, A., Petschko, H., Schaffer,
759 A., Leopold, P., and Puxley, B. L.: A severe landslide event in the Alpine foreland under possible future climate and land-use
760 changes, Commun. Earth Environ., 3, 1–11, <https://doi.org/10.1038/s43247-022-00408-7>, 2022.

761 Marc, O., Gosset, M., Saito, H., Uchida, T., and Malet, J. P.: Spatial Patterns of Storm-Induced Landslides and Their Relation
762 to Rainfall Anomaly Maps, Geophys. Res. Lett., 46, 11167–11177, <https://doi.org/10.1029/2019GL083173>, 2019.

763 ~~763 [Marino, P., Peres, D. J., Cancelliere, A., Greco, R., and Bogaard, T. A.: Soil moisture information can improve shallow](#)~~
764 ~~764 [landslide forecasting using the hydrometeorological threshold approach, Landslides, 17, 2041–2054,](#)~~
765 ~~765 [https://doi.org/10.1007/s10346-020-01420-8, 2020a.](https://doi.org/10.1007/s10346-020-01420-8)~~

766 Marino, P., Peres, D. J., Cancelliere, A., Greco, R., and Bogaard, T. A.: Soil moisture information can improve shallow
767 landslide forecasting using the hydrometeorological threshold approach, Landslides, 17, 2041–2054,
768 <https://doi.org/10.1007/s10346-020-01420-8, 2020b>.

769 Mason, P. J. and Rosenbaum, M. S.: Geohazard mapping for predicting landslides: An example from the Langhe Hills in
770 Piemonte, NW Italy, Q. J. Eng. Geol. Hydrogeol., 35, 317–326, <https://doi.org/10.1144/1470-9236/00047>, 2002.

771 Montgomery, D. R. and Dietrich, W. E.: A physically based model for the topographic control on shallow landsliding, Water
772 Resour. Res., 30, 1153–1171, <https://doi.org/10.1029/93WR02979>, 1994.

773 Montrasio, L., Schilirò, L., and Terrone, A.: Physical and numerical modelling of shallow landslides, Landslides, 13, 873–
774 883, <https://doi.org/10.1007/s10346-015-0642-x>, 2016.

775 Moreno, M., Lombardo, L., Crespi, A., Zellner, P. J., Mair, V., Pittore, M., van Westen, C., and Steger, S.: Space-time data-
776 driven modeling of precipitation-induced shallow landslides in South Tyrol, Italy, Sci. Total Environ., 912, 169166,
777 <https://doi.org/10.1016/j.scitotenv.2023.169166>, 2024.

778 Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M.,
779 Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C.,
780 and Thépaut, J. N.: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13,
781 4349–4383, <https://doi.org/10.5194/essd-13-4349-2021>, 2021.

782 Nam, K., Kim, J., and Chae, B.: Exploring class imbalance with under-sampling, over-sampling, and hybrid sampling based
783 on Mahalanobis distance for landslide susceptibility assessment: a case study of the 2018 Iburi earthquake induced landslides
784 in Hokkaido, Japan, Geosci. J., 28, 71–94, <https://doi.org/10.1007/s12303-023-0033-6>, 2024.

785 Ozturk, U., Pittore, M., Behling, R., Roessner, S., Andreani, L., and Korup, O.: How robust are landslide susceptibility
786 estimates?, *Landslides*, 18, 681–695, <https://doi.org/10.1007/s10346-020-01485-5>, 2021.

787 Peirce, C. S.: The numerical measure of the success of predictions, *Science*, 453–454, 1884.

788 Persichillo, M. G., Bordoni, M., and Meisina, C.: The role of land use changes in the distribution of shallow landslides, *Sci.
789 Total Environ.*, 574, 924–937, <https://doi.org/10.1016/j.scitotenv.2016.09.125>, 2017.

790 Petley, D.: Global patterns of loss of life from landslides, *Geology*, 40, 927–930, <https://doi.org/10.1130/G33217.1>, 2012.

791 Piana, F., Fioraso, G., Irace, A., Mosca, P., D’Atri, A., Barale, L., Falletti, P., Monegato, G., Morelli, M., Tallone, S., and
792 Vigna, G. B.: Geology of Piemonte region (NW Italy, Alps–Apennines interference zone), *J. Maps*, 13, 395–405,
793 <https://doi.org/10.1080/17445647.2017.1316218>, 2017.

794 Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0:
795 Producing soil information for the globe with quantified spatial uncertainty, *Soil*, 7, 217–240, [https://doi.org/10.5194/soil-7-217-2021](https://doi.org/10.5194/soil-7-
796 217-2021), 2021.

797 Provost, F. and Fawcett, T.: Robust classification for imprecise environments, *Mach. Learn.*, 42, 203–231,
798 <https://doi.org/10.1023/A:1007601015854>, 2001.

799 Provost, F., Fawcett, T., and Kohavi, R.: The case against accuracy estimation for comparing induction algorithms, *Int. Conf.
800 Mach. Learn.*, 445, 1998.

801 Raghavan, V., Bollmann, P., and Jung, G. S.: A Critical Investigation of Recall and Precision as Measures of Retrieval System
802 Performance, *ACM Trans. Inf. Syst.*, 7, 205–229, <https://doi.org/10.1145/65943.65945>, 1989.

803 Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide
804 susceptibility models, *Earth-Science Rev.*, 180, 60–91, <https://doi.org/10.1016/j.earscirev.2018.03.001>, 2018.

805 Saito, T. and Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary
806 classifiers on imbalanced datasets, *PLoS One*, 10, 1–21, <https://doi.org/10.1371/journal.pone.0118432>, 2015.

807 Sala, G., Lanfranconi, C., Frattini, P., Rusconi, G., and Crosta, G. B.: Cost-sensitive rainfall thresholds for shallow landslides,
808 *Landslides*, 18, 2979–2992, <https://doi.org/10.1007/s10346-021-01707-4>, 2021.

809 Samia, J., Temme, A., Bregt, A. K., Wallinga, J., Stuiver, J., Guzzetti, F., Ardizzone, F., and Rossi, M.: Implementing landslide
810 path dependency in landslide susceptibility modelling, *Landslides*, 15, 2129–2144, [https://doi.org/10.1007/s10346-018-1024-y](https://doi.org/10.1007/s10346-018-1024-
811 y), 2018.

812 Segoni, S., Tofani, V., Rosi, A., Catani, F., and Casagli, N.: Combination of rainfall thresholds and susceptibility maps for
813 dynamic landslide hazard assessment at regional scale, *Front. Earth Sci.*, 6, <https://doi.org/10.3389/feart.2018.00085>, 2018.

814 Šilhán, K.: Dendrogeomorphological analysis of landslides on the undercut river terrace bank (a case study in Czech Republic),
815 *Landslides*, 19, 621–635, <https://doi.org/10.1007/s10346-021-01833-z>, 2022.

816 Smith, H. G., Spiekermann, R., Betts, H., and Neverman, A. J.: Comparing methods of landslide data acquisition and
817 susceptibility modelling: Examples from New Zealand, *Geomorphology*, 381, 107660,
818 <https://doi.org/10.1016/j.geomorph.2021.107660>, 2021.

819 Smith, H. G., Neverman, A. J., Betts, H., and Spiekermann, R.: The influence of spatial patterns in rainfall on shallow
820 landslides, *Geomorphology*, 437, 108795, <https://doi.org/10.1016/j.geomorph.2023.108795>, 2023.

821 Steger, S., Brenning, A., Bell, R., and Glade, T.: The propagation of inventory-based positional errors into statistical landslide
822 susceptibility models, *Nat. Hazards Earth Syst. Sci.*, 16, 2729–2745, <https://doi.org/10.5194/nhess-16-2729-2016>, 2016.

823 Thomas, M. A., Mirus, B. B., and Collins, B. D.: Identifying Physics-Based Thresholds for Rainfall-Induced Landsliding,
824 *Geophys. Res. Lett.*, 45, 9651–9661, <https://doi.org/10.1029/2018GL079662>, 2018.

825 Tiranti, D., Nicolò, G., and Gaeta, A. R.: Shallow landslides predisposing and triggering factors in developing a regional early
826 warning system, *Landslides*, 16, 235–251, <https://doi.org/10.1007/s10346-018-1096-8>, 2019.

827 Trigila, A. and Iadanza, C.: The national landslide inventory, landslide events, impacts and mitigation measures in Italy,
828 *Landslides Eng. Slopes Prot. Soc. through Improv. Underst. - Proc. 11th Int. 2nd North Am. Symp. Landslides Eng. Slopes*,
829 2012, 273–278, 2012.

830 Varnes, D. J.: *Landslide Hazard Zonation—A Review of Principles and Practice.*, IAEG Comm. Landslides, Paris, 63 pp.,
831 1984.

832 van Westen, C. J., Castellanos, E., and Kuriakose, S. L.: Spatial data for landslide susceptibility, hazard, and vulnerability
833 assessment: An overview, *Eng. Geol.*, 102, 112–131, <https://doi.org/10.1016/j.enggeo.2008.03.010>, 2008.

834 Wu, W. and Sidle, R. C.: A distributed slope stability model for steep forested basins, *Water Resour.*, 31, 2097–2110, 1995.

835 Yordanov, V. and Brovelli, M. A.: Comparing model performance metrics for landslide susceptibility mapping, *Int. Arch.
836 Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch.*, 43, 1277–1284, [https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1277-2020](https://doi.org/10.5194/isprs-archives-XLIII-B3-
837 2020-1277-2020), 2020.

838 Yule, G. U.: On the association of attributes in statistics, *Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. a Math. or Phys.
839 Character*, 194, 257–319, <https://doi.org/10.1098/rsta.1900.0019>, 1900.

840 Zhao, Z., He, Y., Yao, S., Yang, W., Wang, W., Zhang, L., and Sun, Q.: A comparative study of different neural network
841 models for landslide susceptibility mapping, *Adv. Sp. Res.*, 70, 383–401, <https://doi.org/10.1016/j.asr.2022.04.055>, 2022.