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Abstract. To better aid the quick and accurate assessment of economic loss after the occurrence of future damaging 

earthquakes, we develop a grid-level fixed asset model for China covering the period from 1951 to 2020. The modelling 

process can be divided into two stages: (1) the compilation of provincial-level fixed asset data series using the perpetual 15 

inventory method (PIM) and fixed assets-related statistics; (2) the disaggregation of provincial-level fixed assets into grid-

level (1 km × 1 km resolution) using different combinations of remote sensing ancillary data (i.e., nighttime light, built-up 

surface area, population) for different periods, considering their temporal availability. As of 2020, the total estimated value of 

fixed assets in China reaches 589.31 trillion Chinese yuan (in the 2020 price level). Consistency checks have been performed 

by comparing our modelled fixed assets with those from other studies and data sources at different administrative levels, and 20 

good consistency has been achieved. The modelled grid-level fixed asset maps from 1951 to 2020 will be publicly accessible 

and can be conveniently extended to more recent years as new statistics on fixed assets become available in the future. 

1 Introduction 

As a country frequently stricken by natural disasters, China has experienced more than 355 damaging earthquakes over the 

past seven decades, leading to over 345,000 fatalities (Li et al., 2021) and economic losses totalling 1,437.6 billion RMB 25 

(Chinese yuan) (calculated in the price level of 2020). Meanwhile, China is also undergoing unprecedented economic, social, 

and urban development, with its urban population increasing from 57.7 million people in 1949 to 848.4 million people in 2019 

(NBSC, 2020). This development process has also greatly increased the national average GDP per capita, which is around 190 

https://doi.org/10.5194/nhess-2024-138
Preprint. Discussion started: 26 August 2024
c© Author(s) 2024. CC BY 4.0 License.



 2 

times that of the early 1950s when calculated in constant prices of 2020, as shown in Figure 1. When associating socioeconomic 

development with natural hazards (such as earthquakes), it is evident that rapid urbanization and economic growth have 30 

significantly increased the exposure of people and fixed assets to earthquake threats (Hu et al., 2010; Yang and Kohler, 2008).  

 

Figure 1: The changing trend of China’s national average GDP per capita from 1951 to 2020 (calculated in constant prices of 2020).  

After the occurrence of a damaging earthquake, a rapid and accurate assessment of the severity and scale of seismic fatality 

and economic loss is vital to assist civil protection authorities in designing post-earthquake emergency actions and allocating 35 

the search and rescue teams to the areas most needed. Specifically for seismic loss estimation, which is to translate the physical 

damage of buildings and structures into total monetary loss using local estimates of repair and reconstruction costs (Erdik et 

al., 2011), three accuracy levels (Level 1, Level 2, and Level 3) are classified in HAZUS-MH (FEMA, 2019) as differentiated 

by the data sources and details of exposed buildings and infrastructures integrated into the exposure model. Level 1 is a 

relatively rough estimation since the input data mainly include demographic data and building-related statistics extracted from 40 

the national census. Level 2 refers to a more accurate estimation, in which more detailed information on demographic data, 

buildings, and infrastructure information at the local level will be involved. In contrast, Level 3 corresponds to the most 

accurate estimation since detailed engineering inputs and specific conditions of exposed elements will be investigated in detail 

and employed in the estimation process. For rapid assessment of post-earthquake loss, the estimation at Level 1 is more suitable, 

in which the exposure models are derived mainly from demographic data, building-related statistics, and remote sensing 45 

techniques (Erdik et al., 2010). Therefore, the fixed asset model to be developed in this paper is also based on the Level 1 data. 

 

Besides the exposure model, empirical seismic vulnerability functions (Jaiswal and Wald, 2013) that define the seismic loss 

ratio as a function of macro-seismic intensity are also needed for post-earthquake rapid loss assessment. The development of 

empirical seismic vulnerability functions depends on damage-related information from historical earthquakes, which includes 50 

(a) macro-seismic intensity maps, (2) recorded losses of damaging earthquakes, and (c) the value of fixed capital stock exposed 

to each damaging earthquake that occurred in different years. In our previous work, a composite catalog of damaging 
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earthquakes that occurred in mainland China since 1949 (hereafter referred to as MCCDE-CAT) has been compiled (Li et al., 

2021), in which the intensity maps and recorded losses have been collected for each of the damaging earthquakes. Therefore, 

to aid the post-earthquake rapid loss estimation work in China, in this paper, we will construct a grid-level fixed capital stock 55 

data series from 1951 to 2020 for China considering the availability and completeness of fixed capital stock-related statistics, 

from which the exposed stock value to damaging earthquakes in MCCDE-CAT can be extracted. Such information can be 

further used for the regression of empirical loss vulnerability curves following the practice in Jaiswal and Wald (2013) and 

Daniell (2014). The fixed capital stock value (or fixed asset value) considered in this paper includes buildings, infrastructure, 

and equipment, also known as the wealth capital stock (WKS). Different from the Gross Domestic Product (GDP) data, which 60 

is the standard economic indicator of the value added through the production of goods and services in a country during a 

specific period, the value of the fixed capital stock provides the benchmark of the maximum potential direct loss of the 

earthquake (Wu et al., 2014), since natural disaster could cause economic losses much larger than the annual GDP (Bilham, 

2010). It is noteworthy that the fixed capital stock value of the next year is not simply the sum of the last year’s stock value 

and GDP. 65 

 

A growing number of studies have been conducted in recent years to estimate the capital stock value for disaster risk analysis 

and management at regional (Sarica et al., 2020; Wu et al., 2019), national (Kleist et al., 2006; Ma et al., 2021; Seifert et al., 

2010; Thieken et al., 2006; Wu et al., 2018; Xin et al., 2021), or global scales (Daniell et al., 2011; De Bono and Chatenoux, 

2015; De Bono and Mora, 2014; Dell’Acqua et al., 2013; Eberenz et al., 2020; Gamba, 2014; Gamba et al., 2012; Gunasekera 70 

et al., 2015; Jaiswal et al., 2010). However, these studies only provide the stock value for one specific year (generally the year 

before the publication year of these works), which cannot meet the requirement for the development of the empirical 

vulnerability models since capital stock values exposed to earthquakes that occurred in different periods are needed. 

Unfortunately, there is also no officially recorded capital stock accumulation data in China. As an alternative, the perpetual 

inventory method (PIM) is considered, which was first proposed by Goldsmith (1951) and is the most frequently used method 75 

by economists to evaluate the spatial and temporal change of the macro economy of a country or region, as summarized in the 

review of Wu et al. (2014) for such studies conducted in China. To develop the fixed asset data series for each of the 31 

provincial administrative units in mainland China from 1951 to 2020, the perpetual inventory method (PIM) is used in this 

paper following the data compilation procedure elaborated in Zhang (2008). Notably, Hong Kong, Macao, and Taiwan are 

excluded from this study due to their difference in economic and political status from other Chinese provinces and the lack of 80 

necessary statistical data.  

 

Although the temporal data series of fixed capital stock data in China can be constructed following the PIM, their spatial 

resolution is limited to the provincial level, which still cannot meet the need for accurate seismic loss estimation since spatial 
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mismatches always exist between this level of exposure data and the extent of seismic ground shaking maps (Thieken et al., 85 

2006). Therefore, the provincial-level fixed capital stock data remains too coarse to support a reliable loss estimation for a 

damaging earthquake. For example, after the occurrence of the 2008 Ms 8.0 Wenchuan earthquake in Sichuan, China, most of 

the rescue resources (including but not limited to emergency personnel and equipment, food and medicine, tents, etc.) were 

sent to the less damaged city of Dujiangyan. At the same time, Qingchuan County, one of the most severely affected areas, did 

not receive an appropriate rescue response. The primary reason for this problem was that the exposure data (population, 90 

buildings) used to assess seismic loss were based on relatively rough administrative units (Xu et al., 2016). To avoid such 

problems and improve the spatial resolution of the exposure model in future seismic loss estimation, the provincial-level fixed 

asset data need to be further disaggregated into a higher resolution (e.g., 1 km × 1 km) by using appropriate ancillary 

information. 

 95 

To perform disaggregation analyses, previous studies have employed a series of ancillary datasets derived from remotely 

sensed images, such as land use and land type data (Aubrecht and León Torres, 2015; Eicher and Brewer, 2001; Elvidge et al., 

2007; Hurtt et al., 2011; Liu et al., 2003), population spatial distribution datasets (Balk and Yetman, 2004; Chen et al., 2020; 

Freire et al., 2016; Gaughan et al., 2013; Klein Goldewijk et al., 2010; Linard et al., 2012), nighttime light data (Aubrecht and 

León Torres, 2016; Chen and Nordhaus, 2011; Li et al., 2020; Ma et al., 2012; Zhao et al., 2017), and road network data (Koks 100 

et al., 2019; Zhang et al., 2015; Zhu et al., 2020), to name just a few. The selection of appropriate ancillary information is 

considered the most challenging part since such information should be geo-coded, readily available, and highly correlated with 

the exposure data to be disaggregated (Wu et al., 2018). In previous studies, socioeconomic data (e.g., GDP, capital stock asset, 

electric power consumption, fossil fuel CO2 emission, etc.) was spatially disaggregated to each pixel by assuming it is 

proportional to the digital number (DN) value of nighttime light images (Doll et al., 2006; Ghosh et al., 2010; Oda and 105 

Maksyutov, 2011; Zhao et al., 2011, 2012). The logic behind such practice is that a region with brighter lights at night is 

considered to have more commerce and industrial activities, producing greater GDP, consuming more electricity, and emitting 

more CO2. However, the correlation between nighttime light brightness and the amount of CO2 emission was found to be 

exponential rather than linear by Zhao et al. (2015). Therefore, it was inferred in Zhao et al. (2017) that the correlation between 

the brightness of nighttime lights and the accumulation of GDP should also be exponential rather than linear. Thus, using only 110 

nighttime light data to proportionally disaggregate GDP would inevitably lead to over-distribution in suburban areas and under-

distribution in urban areas since a certain number of saturated pixels exist in nighttime light products. To solve this problem, 

Zhao et al. (2017) multiplied nighttime light images with LandScan population data to produce the lit-population (hereafter 

referred to as “lit-pop”) images. They used the lit-pop value as the weight indicator to disaggregate China's administrative-

level GDP datasets. On the one hand, this is because the correlation between the DN value of nighttime light and population 115 

is also exponential. On the other hand, integrating population data into the disaggregation process can help overcome the 
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saturation problem of nighttime light data since the range of DN values is limited to 0 - 63. For suburban areas where the DN 

values are relatively small, the population density also increases slowly, and saturation is not a problem; however, with 

progressively higher DN values, the increase in population density will also grow rapidly and finally lead to a huge population 

density in urban core areas with a DN value of 63. The rapidly increased asset value in such areas can thus be better represented 120 

by lit-pop than by nighttime DN value or population alone (Zhao et al., 2017). 

 

As emphasized in Zhao et al. (2017), the lit-pop indicator they produced has no measurement unit. It represents neither people 

count nor nighttime light brightness in real life, but rather the economically weighted population. Compared with using 

nighttime light or population data alone, the use of lit-pop as the economic indicator can better reflect the spatial heterogeneity 125 

of the economy. This is because, when two regions have the same population but different DN values of nighttime light, the 

region with higher DN value has larger lit-pop and consequently has larger distributed GDP than the one with dimmer nighttime 

light. Based on the lit-pop approach in Zhao et al. (2017), Eberenz et al. (2020) generated a globally consistent gird-level asset 

exposure dataset for 224 countries, in which the unwanted artifacts (including blooming, saturation, and lack of detail) are 

mitigated by using a combination of nightlight and population data. The GDP comparison for 14 countries in Eberenz et al. 130 

(2020) also showed that the disaggregation effect using nighttime lights or population data alone is not as good as using their 

combination. Inspired by the work of Zhao et al. (2017) and Eberenz et al. (2020), in this study, the provincial-level fixed 

capital stock data will be further disaggregated into grid level based on the combined use of nighttime light, population, and 

other available supplementary data (e.g., built-up surface area data), to generate the final grid-level fixed capital stock data 

series for 31 provinces in mainland China during 1951-2020. 135 

 

The main structure of the following sections in this paper will be organized as follows. Section 2 will introduce in detail the 

data and methods used to compile the provincial-level fixed assets and explain how to disaggregate them into grid-level fixed 

assets. In Section 3, the modelled fixed assets at the provincial level will be presented and the grid-level fixed asset map for 

2020 will also be demonstrated. Furthermore, the temporal change and spatial distribution characteristics of grid-level fixed 140 

assets in China's three largest urban agglomerations will be demonstrated and compared. Section 4 will examine the 

consistency between disaggregation indexes used in different periods. The consistency of our modelled fixed asset data with 

those developed by other studies will also be evaluated at different administrative levels.  

2 Data and Methods 

The data and methods will be introduced separately for the two parts of contents involved in this paper: (1) the compilation of 145 

provincial-level fixed capital stock data for 31 provinces in China from 1951 to 2020, and (2) the disaggregation of the 
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provincial-level fixed capital stock data into 1 km × 1 km grids using different weighting indicators for different periods. The 

flow chart to be followed in the modelling process is shown in Figure 2. The datasets to be used are summarized in Table 1. A 

detailed introduction of the data inputs and the modelling steps will be given in the following sections. 

 150 

 

Figure 2: The flow chart followed to develop the grid-level fixed asset model in this paper. 

 

Table 1: A summary of datasets to be used in this paper. 

Usage Data type Year range 
Spatial 

resolution 
Description 

For provincial-level fixed asset 

modelling in China 

Fixed capital stock in the base year 1951 

Provincial-

level 

Section 

2.1.1 

Annual investment in fixed capital stock 1952-2020 
Section 

2.1.2 

Implicit deflator 1952-2020 
Section 

2.1.3 

Depreciation rate (fixed as 5%) 1951-2020 
Section 

2.1.4 

For grid-level fixed asset modelling in 

China 

Harmonized nighttime light data from 

DMSP/OLS and VIIRS 
1992-2020 

1km×1km 

Section 

2.2.1 

Built-up surface data 
1975-2020 (in 5-year 

intervals) 

Section 

2.2.2 

Population dentsity data 
1975-2020 (in 5-year 

intervals) 

Section 

2.2.2 

Population growth rate data 1951-2020 
Provincial-

level 

Section 

2.2.3 

 155 

2.1 Construction of the provincial-level fixed capital stock data by using the perpetual inventory method (PIM) 

To construct China’s provincial-level fixed capital stock data during 1951-2020 using the PIM, four types of information need 

to be determined, namely (1) the value of the accumulated capital stock in the base year, (2) the annual fixed capital stock 

investment in each province, (3) the implicit deflator of fixed capital stock, and (4) the depreciation rate or service life of the 

fixed capital stock. Assuming the efficiency of the fixed capital stock follows a geometric diminishing model (Wu et al., 2014; 160 

Zhang, 2008), for each province, the accumulated fixed capital stock value at year t (namely 𝐾!) is defined as follows: 
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𝐾! = 𝐾!"#(1 − 𝛿!) + 𝐼! , 𝑡 ∈ [1952	2020]  (1) 

Where 𝛿! is the depreciation rate of fixed capital stock, and 𝐼! is the total investment in fixed assets (TIFA) at year 𝑡.  

2.1.1 Determination of the accumulated fixed capital stock value of the base year 1951 

Since the foundation of the People’s Republic of China in 1949, the currency was then uniformly switched to the Chinese yuan 165 

(CNY) and 1949 could be set as the base year. However, due to the lack of large-scale surveys or census on TIFA in 1949 and 

1950 for many of the 31 provinces, 1951 is selected as the base year. As adopted by previous studies, one method to estimate 

the accumulated fixed capital stock value in the base year is by referring to the capital-output ratio method (e.g., Zhang, 1991; 

Chow, 1993; Perkins, 1988; He et al., 2003), in which the value of the accumulated capital stock is set to be around three times 

of the GDP in the base year. Another way to roughly approximate the accumulated capital stock value is by dividing the fixed 170 

capital formation (FCF) of the base year by the sum of the long-run growth rate of investment (e.g., the constant-price FCF) 

and the depreciation rate (Hall and Jones, 1999; Wu et al., 2014; Zhang, 2008). In this paper, following the practice in several 

previous studies (e.g., Zhang, 1991; Chow, 1993; He et al., 2003), each province's accumulated capital stock value in 1951 is 

determined by multiplying their TIFA in 1951 by 50 times. The estimated overall value of accumulated capital stock of the 

base year in China is around 94.9 billion Chinese yuan (in the price level of 1951), which corresponds to 2343.5 billion Chinese 175 

yuan when adjusted to the 2020 price level. We are fully aware that the determination process of the initially accumulated 

capital stock value for the base year is involved with inevitable uncertainty. Luckily, previous studies (Shan, 2008; Wu et al., 

2014; Zhang et al., 2004) have demonstrated that the effect of initially determined capital stock value for the base year on the 

stock estimation of the following years will decline given sufficiently long time series. For example, the sensitivity test 

performed in Wu et al. (2014) indicated that a doubling of the initial capital stock in 1978 only resulted in less than 0.6% 180 

change for the stock estimation in 2012. 

2.1.2 Collection of annual investment data in fixed capital stock 

To get a complete data series of the annual total investment in fixed assets (TIFA) for each province during 1951-2020 (namely 

𝐼! in Eq. (1)), we first refer to the book China Compendium of Statistics 1949-2008 compiled by Department of Comprehensive 

Statistics of National Bureau of Statistics (DCSNBS, 2009), in which the annual investment data in fixed capital stock at both 185 

national level and provincial level were given in the price level of each year up to 2008. It is worth notifying that the TIFA 

data in 1951 for Hainan and Tibet are not available in the reference mentioned above. Instead, we assign it to be 0.01 and 

0.0002 billion RMB (in 1951 price level), around 50% of the TIFA in 1952 for Hainan and Tibet, respectively. To complement 

this data series for years after 2008, we further refer to the use of the TIFA data records in the yearly statistical books of China 

from 2009 to 2020. 190 
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2.1.3 Compilation of the implicit deflator of fixed capital investment 

To calibrate the deflation of TIFA with time, we convert the TIFA values given in the price level of each year to the constant 

price of the reference year by using the “price index of fixed asset investment”, which is also called the implicit deflator of the 

fixed asset. Theoretically, the calculation of this implicit deflator should be based on the weighted average of the price indexes 

for each of the three components of fixed assets investment (namely investment on construction and installation, purchases of 195 

equipment and instruments, and others), with their weight determined by the percentage of each component for each province 

during 1951-2020. However, due to the lack of related statistics, we refer to using the provincial-level investment data to derive 

the price index of each province directly. According to Wu et al. (2014) and Zhang (2008), the formula to derive the implicit 

deflator (namely 𝐼𝑑𝑒!) can be expressed as follows: 

𝐼𝑑𝑒! =
$%$!

$%$!"#×$%$_()*+,!
, 𝑡 ∈ [1952	2004]  (2) 200 

The detailed derivation process of this formula was given in Zhang (2008). Ideally, 𝐹𝐶𝐹!, 𝐹𝐶𝐹!"# should be the fixed capital 

formation (FCF) in year 𝑡 and 𝑡 − 1, respectively. However, at the provincial level, the FCF data before 1978 are not publicly 

accessible. Therefore, we use TIFA to replace FCF when calculating 𝐼𝑑𝑒!. On the one hand, TIFA is more often used and 

investigated in China; on the other hand, FCF and TIFA have similar dynamic changing trends (Qin et al., 2006). 𝐹𝐶𝐹_𝑖𝑛𝑑𝑒𝑥! 

refers to the gross fixed capital formation growth rate calculated in constant price (previous year = 1). The 𝐹𝐶𝐹_𝑖𝑛𝑑𝑒𝑥!  data 205 

for the years 1952-2004 can be found in the book Data of Gross Domestic Product of China 1952-2004 compiled by the 

Department of National Accounts of National Bureau of Statistics of China (DNANBSC, 2007). For years after 2004, the 

implicit deflator can be replaced by the price index of the fixed capital stock comprehensively compiled from the book China 

Compendium of Statistics 1949-2008 (DCSNBS, 2009) for years 2005-2008, from the official website of the National Bureau 

of Statistics (https://data.stats.gov.cn) for years 2009-2019, and from Tables 5-7 of China Statistics Yearbook 2021 for the year 210 

2020. Notably, in some provinces the 𝐹𝐶𝐹_𝑖𝑛𝑑𝑒𝑥!  data are incomplete. In this case, 𝐹𝐶𝐹_𝑖𝑛𝑑𝑒𝑥!  data from neighboring 

provinces are used to compensate for the missing information. For example, the FCF growth rate data of Chongqing for the 

years 1952-1997 are taken from the data of Sichuan province since Chongqing belonged to Sichuan before 1997 and was set 

as a municipality directly under the reign of the central government of China afterward. The missing growth rates of FCF 

during 1952-1977 of Guangdong province are taken from the data of Guangxi province since they are geographically close. 215 

For the same reason, the missing data of Tibet from 1952 to 1992 are supplemented by the average of the FCF growth rate data 

of Qinghai and Xinjiang provinces. Since Hainan was not a province until 1997, the 𝐹𝐶𝐹_𝑖𝑛𝑑𝑒𝑥! data during 1952-1996 of 

Hainan are taken from its neighboring Guangdong province. 
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2.1.4 Determination of the depreciation rate of fixed capital stock 

The consideration of depreciation of fixed capital stock is necessary when estimating the asset value of accumulated capital 220 

stock in previous years, which will diminish over time. In earlier studies, the depreciation rate was usually set as a fixed value 

within the range of 5%~10% (e.g., Perkins, 1988; Hall and Jones, 1999; Wang and Yao, 1999). In Zhang (2008), the 

depreciation rate of fixed capital stock was determined by considering the service life (𝑇) of different capital stock types 

(including construction and installation, equipment and instrument, and others) and their residual value (𝑑-) when the capital 

goods are retired. The calculation formula of the depreciation rate (𝛿) is defined as follows: 225 

𝑑- = (1 − 𝛿)- (3)  

In Zhang (2008), the service life (𝑇) of construction and installation, equipment and instruments, and other types of fixed stock 

in China was set as 45 years, 20 years, and 25 years, respectively. Their residual value (𝑑-)  was uniformly set as 4%. The 

depreciation rates of these three capital stock types were calculated to be 6.9%, 14.9%, and 12.1%, respectively. Ideally, the 

relative weights of each of the three capital stock types should also be considered to determine a comprehensive depreciation 230 

rate of the fixed capital stock. However, due to a lack of such data at the provincial level, the weight at the national level was 

used in Zhang (2008), which is 63% for completion of construction and formation, 29% for purchases of equipment and 

instruments, and 8% for other investments. Finally, under the assumption of geometric diminishing of the relative efficiency, 

the comprehensive deprecation rate of the fixed capital stock was determined to be 9.6% for the whole nation. Following the 

method in Zhang (2008), Wu et al. (2014) calculated the depreciation rate range for each of the 31 provinces in mainland China 235 

based on newly released composition data of TIFA for each province and by setting the residual value of the capital stock to 

be 3%~5% of their original value. Their provincial-level depreciation rate of fixed capital stock is within the range of 

7.95%~10.05%. The comparison analysis of Li (2011) indicates that the change of 1% in depreciation rate will lead to a 10% 

change in accumulated capital stock 25 years later. Li (2011) also suggested that the depreciation rate should be within the 

range of 5%~10%. In this paper, since the development of provincial-level fixed capital stock data is to be used for the 240 

development of empirical loss models for rapid emergency response after the occurrence of damaging earthquakes in China, 

the replacement values of different types of fixed capital stock in earthquake-affected areas are generally higher than their 

residual values even they have lasted for a much longer time than their service lives; therefore, a conservative depreciation 

rate of 5% is chosen for all provinces to get the final accumulated fixed asset data series from 1951 to 2020. As of now, all the 

data inputs required for estimation of accumulated fixed stock values are ready. The provincial-level fixed capital stock data 245 

from 1951 to 2020 can be constructed following Eq. (1). And this dataset will be demonstrated and evaluated in the Results 

and Discussion section. Next, we will introduce the disaggregation method used in this paper to distribute the provincial-level 

fixed assets into the grid level. 
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2.2 Disaggregation of provincial-level fixed capital stock into 1km×1km grids 

Given the exponential relation between population/nighttime light and socioeconomic data (as explained in detail in 250 

Introduction section), to disaggregate the provincial-level fixed assets into 1 km × 1 km grids, nighttime light (available since 

1992) and population density data (available since 1975) will be combined to generate the lit-pop index. For years before 1990, 

the lack of nighttime light data will be compensated by built-up surface area data (available since 1975) to create the area-pop 

index. For years before 1975, the spatial distribution of population density data will be derived from the population density 

map in 1975 and the annual growth rate data for each province dating back to 1951. Then, the population density alone will be 255 

used to create the pop-pop index. More information on these datasets and the creation process of the disaggregation indexes 

will be introduced in the following sections. 

2.2.1 The nighttime light data 

The nighttime light data from 1992 to 2000 with a spatial resolution of 30 arc-seconds  (around 1000m at the Equator) and DN 

values ranging from 0 to 63 are compiled by Li et al. (2020). In Li et al. (2020), an integrated and consistent nighttime light 260 

dataset at the global scale was compiled by harmonizing the intercalibrated nighttime light observations acquired by the US 

Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) (hereafter referred to as the 

DMSP/OLS data) during 1992-2013 and the simulated DMSP/OLS-like nighttime light observations from the Visible Infrared 

Imaging Radiometer Suite instrument ( hereafter referred as the VIIRS data) during 2014-2020. The original DMSP/OLS data 

were recorded by six different satellites during 1992-2013 with a spatial resolution of 30 arc-seconds and a near-global 265 

coverage of 180°W to 180°E in longitude and 65°S to 75°N in latitude (Zhao et al., 2019). Inconsistency exists between these 

original DMSP/OLS data due to the lack of onboard calibration, satellite shift, varied atmospheric conditions, sensor 

degradation, etc. Therefore, a stepwise calibration approach was performed in Li et al. (2020) before harmonizing the 

DMSP/OLS data with VIIRS data. Unlike the annual DMSP/OLS data, the VIIRS data have been available since 2013. They 

are recorded monthly with an improved radiometric resolution and a spatial resolution of 15 arc-seconds across the latitudinal 270 

zone of 65°S-75°N (Miller et al., 2012). In the monthly recorded VIIRS data, errors due to bio-geophysical processes (e.g., 

seasonal dynamics of vegetation and snow) were corrected, and observations affected by stray light were excluded. These 

monthly records were further preprocessed and combined into annual time series data using the weighting average approach 

and finally converted into DMSP/OLS-like nighttime light observations using a sigmoid function initially proposed by Zhao 

et al. (2020) in Southeast Asia. The DMSP/OLS-like nighttime light converted from the original VIIRS data has been available 275 

and updated since 2014 by Li et al. (2020). 
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2.2.2 The population density and built-up surface data 

The population datasets used in this paper are provided by the Global Human Settlement Layer (GHSL) project of the Joint 

Research Centre, European Commission (Freire et al., 2016; Schiavina et al., 2022b), which have been available in 5-year 

intervals since 1975 (hereafter referred to as GHS-POP). The number of people per grid (with resolutions ranging from 2m to 280 

1km) is given in each GHS-POP raster file, which was disaggregated from the raw global census data harmonized for the 

Gridded Population of the World (GPW) by CIESIN (Freire et al., 2015) and the proxy used in this disaggregation process was 

the built-up density mapped in the GHSL global layers per corresponding epoch (Maffenini et al., 2023). Compared with its 

previous version, major improvements of the datasets are the following: use of built-up volume maps (abbreviated as GHS-

BUILT-V R2022A); use of more recent and detailed population estimates derived from GPWv4.11 integrating both UN World 285 

Population Prospects 2022 country population data (Gaigbe-Togbe et al., 2022) and World Urbanisation Prospects 2018 data 

(UNDESA, 2018) on cities; revision of GPWv4.11 population growth rates by convergence to upper administrative level 

growth rates; systematic improvement of census coastlines; systematic revision of census units declared as unpopulated; 

integration of non-residential built-up volume information (abbreviated as GHS-BUILT-V_NRES R2023A); spatial resolution 

of 100m Mollweide and 3 arcseconds in WGS84 projection system; projections to 2030.  290 

 

The built-up surface data used to allocate the GHSL population information are also provided in 5-year intervals between 1975 

and 2030 (hereafter referred to as GHS-BUILT-S). They are generated by spatial-temporal interpolation of five observed 

collections of multiple-sensor, multiple-platform satellite imageries, namely the Landsat (MSS, TM, ETM sensor) supporting 

1975, 1990, 2000, and 2014 epochs, and the Sentinel-2 (S2) composite (GHS-composite-S2 R2020A) supporting the 2018 295 

epoch (Pesaresi and Politis, 2022; Schiavina et al., 2022a). In addition, the research findings of the world settlement footprint 

suite launched by the German Aerospace Centre (DLR) in collaboration with the European Space Agency (ESA) and the 

Google Earth Engine team (Marconcini et al., 2021) are also integrated into the development process of the GHS-BUIT-S 

dataset. 

2.2.3 The lit-pop, area-pop, and pop-pop index series 300 

Following the practice in Eberenz et al. (2020), the lit-pop index is created from the combination of nighttime light and 

population data, with its definition given in the following Eq. (4): 

𝐿𝑖𝑡)𝑃𝑜𝑝./(*0 = (𝑁𝐿./(* + 𝛿)) ∙ 𝑃𝑜𝑝./(*0  (4) 

In each grid, the value of the disaggregation index (𝐿𝑖𝑡)𝑃𝑜𝑝./(*0 ) is the product between the DN value of the nighttime light 

image (𝑁𝐿./(*) ranging from 0 to 63 and the number of population (𝑃𝑜𝑝./(*). When 𝑃𝑜𝑝./(* > 0, the value of 𝛿 is set as 1 to 305 

ensure that the lit-pop value of non-illuminated but populated grids will not get zero (Eberenz et al., 2020). In cases when 
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𝑃𝑜𝑝./(* = 0 , 𝛿  is set as 0, and nighttime light data alone are used to represent the fixed asset share. To evaluate the 

performance of this disaggregation methodology, Eberenz et al. (2020) conducted the performance evaluation tests by applying 

10 different combinations of 𝑚 and 𝑛. Their test showed that the disaggregation performance would be the best when 𝑚 and 

𝑛 were set as 1. Therefore, in this paper the values of 𝑚 and 𝑛 in Eq. (4) are also both set as 1. 310 

 

The nighttime light data are only available from 1992. Assuming the nighttime light will not change too much between 1991 

and 1992, while for years before 1991, new ancillary information needs to be employed to create the quasi-lit-pop index. The 

built-up surface data developed by the GHSL project of the Joint Research Centre, European Commission (hereafter referred 

to as the GHS-BUILT-S data) are chosen for this purpose. The GHS-BUILT-S data are combined with the GHS-POP data to 315 

generate the area-pop index, which is defined in the following Eq. (5): 

𝐴𝑟𝑒𝑎)𝑃𝑜𝑝./(*0 = (𝐴𝑟𝑒𝑎./(* + 𝛿)) ∙ 𝑃𝑜𝑝./(*0   (5) 

Where 𝐴𝑟𝑒𝑎./(* represents the built-up area in each grid, and the definitions of 𝑃𝑜𝑝./(*, 𝛿, 𝑚, and 𝑛 are same as those in 

Eq. (4).  

 320 

Unluckily, the GHS-BUILT-S and GHS-POP data are available only after 1975 in 5-year intervals. It is further assumed that 

the built-up surface area in China have remained unchanged from 1971 to 1975 since economic activities almost ceased during 

this period in China due to the Cultural Revolution. For years before 1971, the GHS-POP data in 1975 and the provincial-level 

population growth rates compiled from statistical yearbooks are used to derive the grid-level population dataset from 1951 to 

1970. Then, the derived grid-level population data alone are used to generate the pop-pop index, with its definition being given 325 

in the following Eq. (6): 

𝑃𝑜𝑝)𝑃𝑜𝑝./(*0 = (𝑃𝑜𝑝./(* + 𝛿)) ∙ 𝑃𝑜𝑝./(*0   (6) 

Where the definitions of 𝑃𝑜𝑝./(*, 𝛿, 𝑚, 𝑎𝑛𝑑	𝑛	𝑎𝑟𝑒	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒	𝑎𝑠	𝑡ℎ𝑜𝑠𝑒 in Eq. (4).  

 

It is worth noting that since the grid-level population datasets provided by GHSL from 1975 are also given in 5-year intervals, 330 

the population density maps for the intervening years are derived from the compiled growth rate data and the reference year 

population density map. For example, the 1 km × 1 km population maps for 1971-1974 are derived from the GHSL-issued 

population density map in 1975 and our compiled provincial-level population growth rate data for 1971-1974. 
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3 Results 335 

In the Data and Methods section, the data inputs and the methods used to construct the provincial-level fixed asset data during 

1951-2020 and the disaggregation process of the provincial-level fixed asset data into grid level have been described in detail 

using different ancillary information with varying temporal availability. To summarize, the nighttime light data and GHS-POP 

data are used to generate the lit-pop disaggregation indexes from 1991 to 2020, the GHS-BUILT-S data and GHS-POP data 

are used to construct area-pop disaggregation indexes from 1971 to 1990, and the population density data (generated from the 340 

GHS-POP density map in 1975 and provincial-level population growth rates) are used to derive the pop-pop disaggregation 

indexes from 1951 to 1970. In this section, we will first demonstrate the modelled fixed asset data for 31 provinces from 1951 

to 2020. Then, the spatial-temporal characteristics of the grid-level fixed asset model in 2020 and for China’s three largest 

urban agglomerations will be demonstrated and analyzed.  

3.1 Modelled provincial-level fixed assets from 1951 to 2020 345 

Based on the estimation of the accumulated value of fixed capital stock in the base year of 1951, the compilation of the annual 

total investment in fixed assets (TIFA) data, the depreciation rate, and the derivation of implicit deflator data series in section 

2.1, the accumulated fixed asset model can be obtained for all 31 provincial-level administrative units in China from 1951 to 

2020 (Figure 3). By 2020, the total estimated value of fixed assets in China reaches 589.31 trillion Chinese yuan (in the 2020 

price level). Shandong and Jiangsu have the highest accumulation of fixed assets, amounting to 50.12 and 49.36 trillion Chinese 350 

yuan, respectively. Tibet and Ningxia have the lowest amount of accumulated fixed assets, with 1.51 and 3.01 trillion Chinese 

yuan, respectively. In comparison, the provincial GDP ranking in 2020 issued by the Chinese government shows that 

Guangdong and Jiangsu have the highest GDP of 11.12 and 10.28 trillion Chinese yuan, respectively. The GDPs of Tibet and 

Qinghai are the lowest, at 0.19 and 0.30 trillion Chinese yuan, respectively. When further calculating the ratios between the 

accumulated fixed assets and GDP, as illustrated in Figure 4, it shows that their ratios differ among provinces and change 355 

across temporal periods. Therefore, it may introduce large uncertainties in seismic loss estimation if the accumulated fixed 

assets are derived by multiplying the GDP by a stationary exposure correction factor, as done in some previous studies (Chen 

et al., 1997; Jaiswal and Wald, 2013; Sarica and Pan, 2022; Wang et al., 2009), although this method is quite convenient.  

 

It is also noteworthy that in Figure 4, there are two abnormally high fixed asset/GDP ratios in the 1960s, which are 26 for 360 

Anhui province in 1962 and 120 for Ningxia province in 1963. For Anhui province, this is related to its exceptionally high 

fixed assets in 1962, as indicated from Figure 3. For Ningxia province, this is related to its abnormally low GDP in 1963, 

which is only 0.01 billion Chinese yuan (in the price level of 1963) and around 1/40 of its neighbouring years, as recorded in 

Table 31-4 of DCSNBS (2009). For some provinces (Tibet, Guizhou, etc.) in Figure 4, fixed asset/GDP ratios are lower than 

https://doi.org/10.5194/nhess-2024-138
Preprint. Discussion started: 26 August 2024
c© Author(s) 2024. CC BY 4.0 License.



 14 

1 before the 1980s. This can be explained by the rough estimation made in the determination process of the initially 365 

accumulated fixed assets as well as the lack of an official and standard method in compilation of economic indicators in the 

early periods after 1949, which also leads to the irregularly intertwined asset-changing trends modelled for different provinces 

in Figure 3. 

 

Figure 3：The accumulated fixed asset data modelled for 31 provincial administrative units in China during 1951-2020. It is worth 370 
noting that the asset value is calculated in the constant price level of 2020. 

 

 
Figure 4：The ratio between accumulated fixed assets and GDP for each province and China as a whole from 1952 to 2020. 

 375 
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By using different ancillary datasets to generate the disaggregation indexes, the provincial-level fixed asset data shown in 

Figure 3 can be further downscaled into 1 km × 1 km asset maps. The spatial distribution map of the grid-level fixed assets in 

2020 is shown in Figure 5. The locations of the capital cities of China’s 31 provincial administrative units considered in this 

paper are also shown. In Figure 5, it is not surprising to observe that all 31 capital cities are in clusters of highly accumulated 

fixed assets, which indicates their attractiveness to personnel and capital from their neighboring regions. As divided by the 380 

“Hu Huanyong” line (Hu, 1935), China is divided into East China and West China according to their differences in population, 

geography, social development, and ecological environment. As expected, the fixed assets are highly agglomerated in East 

China, accounting for 86% of the total asset value, which further indicates significant disparity and spatial heterogeneity in 

economic development within China. Compared with exposure models given by administrative units, the grid-level fixed asset 

model can better help improve the accuracy of seismic loss assessment when further combined with hazard maps at varying 385 

resolutions, thus better serving the allocation needs of emergency response and risk mitigation resources. 

 
Figure 5: The spatial distribution of our modelled grid-level fixed asset map for China in 2020. The unit of the asset value is Chinese 

yuan. The locations of capital cities of 31 provincial administrative units are also shown. The “Hu Huanyong” line divides China 

into East China and West China.  390 

3.2 Spatial-temporal characteristics of fixed assets in China’s three largest urban agglomerations 

As shown in Figure 5, most fixed assets are clustered in East China, especially within the three largest national urban 

agglomerations of China (with their locations outlined in Figure 6), namely the Beijing-Tianjin-Hebei Urban Agglomeration 

(BTH-UA), the Yangtze River Delta Urban Agglomeration (YRD-UA), and the Pearl River Delta Urban Agglomeration (PRD-

UA). The BTH-UA is composed of 13 cities, including Beijing, Tianjin, and 11 cities in Hebei province (Baoding, Cangzhou, 395 

Chengde, Handan, Hengshui, Langfang, Qinhuangdao, Shijiazhuang, Tangshan, Xingtai, and Zhangjiakou). The YRD-UA is 

composed of 27 cities, including Shanghai, 8 cities in Anhui province (Anqing, Chizhou, Chuzhou, Hefei, Ma'anshan, Tongling, 

Wuhu, and Xuancheng), 9 cities in Jiangsu province (Changzhou, Nanjing, Nantong, Suzhou, Taizhou, Wuxi, Yancheng, 

Yangzhou, and Zhenjiang), and 9 cities in Zhejiang province (Hangzhou, Huzhou, Jiaxing, Jinhua, Ningbo, Shaoxing, Taizhou, 
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Wenzhou, and Zhoushan). In contrast, the PRD-UA comprises only 9 cities in Guangdong province, including Guangzhou, 400 

Shenzhen, Dongguan, Foshan, Huizhou, Jiangmen, Zhaoqing, Zhongshan, and Zhuhai. In terms of land area, the BTH-UA, 

the YRD-UA, and the PRD-UA are 218.0, 211.7, and 42.2 thousand square kilometers, accounting for 2.27%, 2.21%, and 0.44% 

of the total land area of China, respectively.  

 

 405 
Figure 6: The spatial locations of China’s three largest urban agglomerations. 

 

As summarized in Table 2, the accumulated fixed assets in each agglomeration have increased over the years, but their changing 

trends of fixed asset share relative to the whole country is quite different. The fixed asset share of the BTH-UA has remained 

almost unchanged over the past seven decades, ranging from 9.05% in 1951 to 8.7% in 2020. Meanwhile, the fixed asset share 410 

of the YRD-UA has increased from 7.64% in 1951 to 15.33% in 2020. The increase in the fixed asset share of the PRD-UA is 

the largest, rising from 0.98% in 1951 to 4.01% in 2020, reflecting this region's strong economic vitality.  

 

Table 2: The fixed assets in China's three largest urban agglomerations. BTH-UA, YRD-UA, and PRD-UA are the abbreviations of 

the Beijing-Tianjin-Hebei Urban Agglomeration, the Yangtze River Delta Urban Agglomeration, and the Pearl River Delta Urban 415 
Agglomeration, respectively. Note that the fixed asset is calculated in the price level of each corresponding year. 

Year 
Fixed assets (in Chinese yuan) Fixed asset ratio relative to the whole country 

BTH-UA YRD-UA PRD-UA the whole China BTH-UA YRD-UA PRD-UA 

2020 5.13E+13 9.03E+13 2.37E+13 5.89E+14 8.70% 15.33% 4.01% 

2010 1.31E+13 2.41E+13 6.43E+12 1.33E+14 9.87% 18.18% 4.84% 

2000 2.51E+12 4.28E+12 1.42E+12 2.18E+13 11.51% 19.63% 6.52% 

1990 3.27E+11 4.98E+11 1.03E+11 3.59E+12 9.11% 13.86% 2.88% 

1980 7.60E+10 8.55E+10 1.39E+10 7.73E+11 9.84% 11.07% 1.80% 

1970 2.75E+10 2.65E+10 3.27E+09 3.10E+11 8.89% 8.55% 1.06% 

1960 3.44E+10 3.96E+10 5.56E+09 3.46E+11 9.96% 11.46% 1.61% 

1951 8.55E+09 7.22E+09 9.27E+08 9.44E+10 9.05% 7.64% 0.98% 
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To better visualize the spatial changes in fixed assets, the grid-level fixed asset maps for the years 1951, 1960, 1970, 1980, 

1990, 2000, 2010, and 2020 are shown in Figure 7, Figure 8, and Figure 9 for BTH-UA, YRD-UA, and PRD-UA, respectively. 

It is noteworthy that the fixed assets shown in Figure 7 - Figure 9 have been adjusted to the 2020 constant price level using the 420 

implicit deflator series at the national level compiled in Section 2.1.3, thus avoiding the effect of price changes on the evolution 

of the spatial distribution characteristics of fixed assets. To better reveal the increase of fixed assets in space over time, the 

legends within each panel of Figure 7 - Figure 9 are the same, as separately determined by the value range of accumulated 

fixed assets in 1980 for these three agglomerations.  

 425 

The spatial distribution characteristics of fixed assets over the past seven decades can be divided into two periods: before the 

1980s and after the 1980s. Before the 1980s, the fixed assets were mainly clustered in the big cities of each agglomeration, 

namely Beijing and Tianjin in the BTH-UA (Figure 7), Shanghai in the YRD-UA (Figure 8), and Guangzhou in the PRD-UA 

(Figure 9). The increase in clustered fixed assets before the 1980s can also be observed in other cities, but it is sparse in space 

and slow in speed. In contrast, fixed assets experienced a rapid and extensive increase after the 1980s, closely related to the 430 

national policy “Reform and Opening up” issued in 1978, after which the focus of the Communist Party and the state shifted 

to economic development. When calculated in the 2020 constant price level, the values of accumulated fixed assets in 2020 

are 76, 119, and 192 times the 1980 fixed asset values in BTH-UA, YRD-UA, and PRD-UA, respectively. When compared 

with the situation in 1951, the values of fixed assets in 2020 are 243, 506, 1035 times the 1951 fixed asset values in BTH-UA, 

YRD-UA, and PRD-UA, respectively. This not only indicates the overall rapid accumulation speed of fixed assets in these 435 

three agglomerations after the 1980s, but also reflects the even faster growth rate in the PRB-UA compared to the BTH-UA 

and the YRD-UA. This comparison further reveals the extraordinarily high economic dynamism in the PRD-UA. 
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Figure 7: The spatial distribution maps of grid-level fixed assets (adjusted to 2020 constant price level) modelled for the Beijing-440 
Tianjin-Hebei Urban Agglomeration (BTH-UA) in 1951, 1960, 1970, 1980, 1990, 2000, 2010, and 2020. The legend is generated based 

on the value range of fixed assets in 1980 and is uniformly applied to the maps of other years for better visualization effects. 
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Figure 8: The spatial distribution maps of grid-level fixed assets (adjusted to 2020 constant price level) modelled for the Yangtze 445 
River Delta Urban Agglomeration (YRD-UA) in 1951, 1960, 1970, 1980, 1990, 2000, 2010, and 2020. The legend is generated based 

on the value range of fixed assets in 1980 and is uniformly applied to the maps of other years for better visualization effects. 
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Figure 9: The spatial distribution maps of grid-level fixed assets (adjusted to 2020 constant price level) for the Pearl River Delta 450 
Urban Agglomeration (PRD-UA) in 1951, 1960, 1970, 1980, 1990, 2000, 2010, and 2020. The legend is generated based on the value 

range of fixed assets in 1980 and is uniformly applied to the maps of other years for better visualization effects. 

4 Discussion 

4.1 The consistency check of disaggregation indexes 

As introduced in Section 2.2, different combinations of nighttime light, population, and built-up surface area data are employed 455 

to generate corresponding disaggregation indexes (lit-pop, area-pop, and pop-pop), considering the difference in temporal 

availability of these ancillary data. To evaluate the consistency of disaggregated grid-level fixed assets for three periods 

(namely 1991-2020, 1971-1990, and 1951-1970) by using different disaggregation indexes, it is necessary to test the correlation 

between these disaggregation index pairs. Therefore, by taking 2010 as the test year, three types of disaggregation index images 

are generated, and the correlation analyses for every two indexes of lit-pop, area-pop, and pop-pop are performed for 344 460 

prefectures in China, as plotted in Figure 10. In this figure, the ratio between the prefectural sum and the provincial sum of 
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each disaggregation index is calculated for each prefecture. The high correlation between area-pop and lit-pop (with R2 = 0.98, 

as shown in panel (a) of Figure 10) indicates that it is reasonable to use the combination of built-up surface area and population 

data to disaggregate the province-level fixed assets for years before 1990 when nighttime light data are not available. The 

correlation between area-pop and pop-pop is the same as that between lit-pop and pop-pop (with R2=0.92 for both), indicating 465 

the acceptability of using the squared population to disaggregate the province-level fixed assets for years before 1970 when 

both nighttime light and built-up surface data are unavailable.  

 

Figure 10: The correlation between (a) area-pop and lit-pop ratios, (b) area-pop and pop-pop, and (c) lit-pop and pop-pop for 344 

prefectures in China. Note that for prefectures within each provincial-level administrative unit, the index (lit-pop or area-pop) ratio 470 
is derived by dividing the sum of the index value of each prefecture by the sum of the index value of the corresponding province. 

4.2 Performance evaluation of modelled fixed assets at different scales 

Due to the lack of officially issued statistics on annually accumulated fixed assets, it is important to compare our modelled 

fixed asset data with that of other studies. Wu et al. (2014) conducted a benchmark estimation of wealth capital stock in 344 

prefectures of China from 1978 to 2012 using the PIM, providing both prefecture-level and provincial-level fixed asset values 475 

for 2012. Therefore, we first compare our modelled asset values with those provided in Wu et al. (2014) for 2012 at the 

provincial level, as listed in Table 3. The ratio between our modelled fixed assets and those in Wu et al. (2014) is within the 

range of 0.95 to 1.93, with the largest deviation occurring in the estimation for Anhui province. According to the comparison 
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analysis in Li (2011), a 1% change in the depreciation rate will lead to a 10% change in accumulated capital stock 25 years 

later. Therefore, the deviation in estimated fixed asset for Anhui province might be due to the difference in the depreciation 480 

rate used, which is 5% in this paper and 9.75% in Wu et al. (2014). Additionally, differences in the compiled implicit deflator 

series used to calibrate the deflation of TIFA over time may also contribute to the deviation. We also compare our modelled 

fixed assets for 344 prefectures in China with those by Wu et al. (2014) for 2012. As shown in Figure 11, the correlation 

coefficient of these two datasets at the prefecture level is quite high (with R2 = 0.95), indicating their good consistency. Similar 

to the reason explained for the discrepancy in Table 3, the consistently high fixed assets at the prefecture level estimated in 485 

this paper are probably due to the relatively low depreciation ratio used, which is uniformly set at 5%, while in Wu et al. (2014), 

the depreciation ratio ranges from 7.95% to 10.05% for different provinces (as summarized in their Table 2). 

 

In our previous work, a grid-level residential building stock model for mainland China was developed based on urbanity-level 

(urban, township, and rural) population and building-related statistics extracted from the records in the tabulation of the 2010 490 

population census of China (Xin et al., 2021). Therefore, we also conduct a correlation analysis between the modelled 

residential building replacement values in Xin et al. (2021) (without considering depreciation) and the fixed assets modelled 

in this paper (including residential and non-residential buildings, infrastructures, instruments, etc., with depreciation over time 

considered) for all 344 prefectures. Figure 12 shows that their correlation is also relatively high (with R2 = 0.91). The two 

obvious deviation points in Figure 12 correspond to Shanghai and Beijing. The reasons for such deviations are complex and 495 

related a combination of factors, including whether depreciation is considered and discrepancies in the unit construction prices 

chosen for different residential buildings in Xin et al. (2021) compared with the price levels used for fixed assets in this paper, 

as they are determined through quite different price compilation channels.  

 

Table 3: Comparison of the estimated values of accumulated fixed assets (in Chinese yuan) in 2012 for 31 provinces of China in this 500 
paper and in Wu et al. (2014). 

Province This study Wu et al. (2014)  Ratio 
Beijing 4.64923E+12 3.84916E+12 1.21 
Tianjin 3.94697E+12 3.88361E+12 1.02 
Hebei 1.00927E+13 6.82205E+12 1.48 
Shanxi 4.38054E+12 3.26985E+12 1.34 

Inner Mongolia 5.87168E+12 5.38749E+12 1.09 
Liaoning 1.06339E+13 6.82013E+12 1.56 

Jilin 4.84146E+12 4.51633E+12 1.07 
Heilongjiang 4.77697E+12 3.19481E+12 1.50 

Shanghai 5.12419E+12 4.5682E+12 1.12 
Jiangsu 1.69624E+13 1.27288E+13 1.33 

Zhejiang 1.09022E+13 7.79798E+12 1.40 
Anhui 7.43609E+12 3.85629E+12 1.93 
Fujian 5.81326E+12 4.73033E+12 1.23 
Jiangxi 5.44477E+12 2.93179E+12 1.86 

Shandong 1.77244E+13 1.31747E+13 1.35 
Henan 1.09541E+13 9.30242E+12 1.18 
Hubei 7.48244E+12 5.44021E+12 1.38 
Hunan 6.97173E+12 5.22156E+12 1.34 
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Guangdong 1.22727E+13 1.06558E+13 1.15 
Guangxi 4.47982E+12 4.73849E+12 0.95 
Hainan 9.98949E+11 7.85937E+11 1.27 

Chongqing 4.54695E+12 2.98125E+12 1.53 
Sichuan 8.85482E+12 5.76749E+12 1.54 
Guizhou 2.47502E+12 2.07873E+12 1.19 
Yunnan 3.96358E+12 3.27257E+12 1.21 
Xizang 3.83768E+11 3.37042E+11 1.14 
Shaanxi 5.56317E+12 4.25329E+12 1.31 
Gansu 2.26829E+12 1.56018E+12 1.45 

Qinghai 8.49857E+11 6.26119E+11 1.36 
Ningxia 1.02843E+12 8.5345E+11 1.21 
Xinjiang 2.9556E+12 2.18956E+12 1.35 

SUM 1.64749E+14 1.47596E+14 1.12 

 

 

Figure 11: The correlation analysis between the estimated fixed assets for 344 prefectures of China in this paper and those given in 

Wu et al. (2014) for 2012. 505 

 

 
Figure 12: The correlation analysis between the estimated fixed assets for 344 prefectures of China in this paper and the estimated 

residential building replacement values in Xin et al. (2021) for 2015. 
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5 Code and data availability 510 

The modelled provincial-level fixed asset dataset for 31 provincial administrative units in China from 1951 to 2020 has been 

uploaded to Zenodo (https://doi.org/10.5281/zenodo.12706096) (Xin et al., 2024). The grid-level fixed asset data will be shar

ed later when the review process is finished due to the ongoing preparation of another closely related research based on this d

ataset. The nighttime light data from 1992 to 2000 with a spatial resolution of 30 arc-seconds compiled by Li et al. (2020) are

 available from Figshare (https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_f515 

rom_1992-2018_at_the_global_scale/9828827). The population and built-up surface datasets used in this paper are provided 

by the Global Human Settlement Layer (GHSL) project of the Joint Research Centre, European Commission (https://human-

settlement.emergency.copernicus.eu/datasets.php).  

6 Conclusions 

This paper develops grid-level fixed asset data for China from 1951 to 2020 based on the perpetual inventory method (PIM) 520 

and disaggregation techniques, aiming to improve the accuracy of seismic loss estimation for damaging earthquakes in China. 

Consistency checks have demonstrated the model’s reasonableness and reliability. However, the fixed assets are primarily 

derived from investment data recorded in statistical yearbooks, and detailed information on building structures and 

infrastructures is not included in the modelling process. Therefore, the datasets are primarily intended to facilitate rapid 

estimation of empirical seismic losses, serving as a crucial reference for the government in formulating emergency response 525 

plans following damaging earthquakes. The grid-level fixed asset model developed in this paper can also be used to analyze 

the spatial and temporal changes of exposed assets in different seismic active zones and reveal the relationship between their 

changes and the changes in regional economic development, which will further aid the government to optimize seismic risk 

mitigation policies. The modelled fixed asset data from 1951 to 2020 will be openly accessible and can be extended to more 

recent years conveniently as new fixed asset-related statistics become available.  530 
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