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Abstract. Recent studies have been reporting more extreme, compounding impacts from multi-hazards than from single 

hazard events owing to complex interrelationships of hazard, exposure and vulnerability in a multi-hazard setting. However, 

our current understanding of multi-hazard impacts is primarily based on case studies of individual events. To complement 

this, we examine the disaster records of the global emergency events database EM-DAT for the period 2000 – 2018 for 10 

evidence of multi-hazard risk dynamics. We develop an algorithm to identify multi-hazard events which uses the information 

on associated hazards as well as spatiotemporal relationships between disaster records in EM-DAT. We then perform a 

statistical analysis to assess potential risk dynamics in reported impacts of selected hazard pair types. We identified that 

twice as many hazards are part of multi-hazard events when considering a spatial overlap of at least 25% and a time lag of at 

most 1 year between disaster records in addition to the information of associated hazards. These multi-hazard events account 15 

for 78% of the total damages, 83% of the total people affected and 69% of the total deaths in the reported disasters. The 

statistical comparison indicates that there are different patterns of how impacts compound depending on the impact metric as 

well as the hazard type. However, as a general trend, hazard pairs seem to have at least as or more impact than two isolated 

single hazards. To capture the patterns and to integrate them into risk analysis and decision making, we propose the 

development of generic archetypes of multi-hazard risk dynamics. Despite the well-known limitations of EM-DAT related to 20 

completeness of the records as well as reliability of the impact data, which prevents detailed analyses of the data, we found 

the database useful for exploring high-level patterns at the global scale. Nonetheless, the uncertainties and limitations 

encountered highlight that future research should be directed at improving and supporting the multi-hazard and impact 

information in EM-DAT. 

1 Introduction 25 

Multiple studies have reported disproportionate impact amplifications during multi-hazard or compound events   (e.g., see 

Gill and Malamud 2016; Zscheischler et al. 2018; de Ruiter et al. 2020). These amplifications can arise from several 

different elements in the multi-hazard context that interrelate with each other, leading to changes in impact (De Angeli et al. 

2023). The interrelationships can be on the hazard, exposure as well as vulnerability level and it is widely recognized that 

disregarding them can lead to an over- or underestimation of risk (Leonard et al. 2014; Zscheischler and Seneviratne 2017; 30 
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Hillier et al. 2020; de Ruiter and van Loon 2022; De Angeli et al. 2022; Ward et al. 2022) as well as ineffective or even 

harmful risk reduction strategies (de Ruiter et al. 2021; Ward et al. 2020; Hurk et al. 2023).  

 

In this article, we follow the UNDRR definitions for risk, hazard, exposure and vulnerability (UNDRR 2017). Moreover, we 

use the term “multi-hazard impact” for impact generated from multiple hazards and accounting for all interrelationships on 35 

the hazard, exposure and vulnerability level following (Ward et al. 2022) and the term “multi-hazard risk dynamics” for 

changes in risks caused by those interrelationships. Table 1 provides an overview of the key risk definitions used in this 

article.  

 

So far, hazard-hazard interrelationships have been researched most of the different types of interrelationships and several 40 

classification systems have been proposed (Gill and Malamud 2014; Liu, Siu, and Mitchell 2016; van Westen and Greiving 

2017; Tilloy et al. 2019; Zscheischler et al. 2020; De Angeli et al. 2022). Though the terms differ across systems, they 

describe similar and overlapping concepts including statistical dependence between hazards, amplifications of hazard 

magnitude or triggering relationships. Methodological reviews and guidelines for quantifying the interrelationships have also 

been published (Tilloy et al. 2019; Bevacqua et al. 2021). Understanding and accounting for the hazard interactions is 45 

important, because they can lead to an impact that is different than the sum of the single-hazard effects  (Kappes et al. 2012; 

Terzi et al. 2019). 

 

Interactions on the exposure and vulnerability level have been less extensively researched, but examples of different types of 

changes in exposure and vulnerability been identified. For example, changes in exposure can arise, due to migration and 50 

evacuation (Tierolf et al. 2023) or due to losses and damages from a previous hazard that are not yet recovered (De Angeli et 

al. 2022). Furthermore, de Ruiter and van Loon (2022) discuss the complex interactions between hazards and vulnerability 

and identify key types of changes in vulnerability, such as the effects of an earlier hazard on the vulnerability at the time of a 

second hazard. It has also been identified that a combined load from multiple hazards can cause higher damage than the 

summed damages of the separate hazards (Zuccaro et al. 2008; Li et al. 2012).  55 

 

The above-mentioned efforts have focussed on analysis of or methods for hazard-hazard interactions, hazard-exposure 

interactions or hazard-vulnerability interactions. For the built environment, de Angeli et al. (2022) propose a comprehensive 

modelling framework that integrates all three types of interactions for an assessment of multi-hazard impact. In this way, 

such a framework can enable the detection of overall changes in impact and risk due to the multi-hazard context through 60 

modelling. Nonetheless, our current understanding of multi-hazard impact in past events still is limited, with most evidence, 

as described above, being from case studies.  
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Table 1 Definitions of terms used in this article 65 

Term Definition Source 

Risk A combination of hazard, exposure and impact vulnerability as illustrated by the conceptual 

equation: Hazard x Exposure x Vulnerability 

(UNDRR 2017) 

Hazard A process, phenomenon or human activity that may cause loss of life, injury or other health 

impacts, property damage, social and economic disruption, or environmental degradation. 

(UNDRR 2017) 

Exposure The situation of people, infrastructure, housing, production capacities and other tangible human 

assets located in hazard-prone areas. 

(UNDRR 2017) 

Vulnerability The conditions determined by physical, social, economic, and environmental factors or processes 

which increase the susceptibility of an individual, a community, assets, or systems to the impacts 

of hazards. 

(UNDRR 2017) 

Multi-hazard The selection of multiple major hazards that the country faces and the specific contexts where 

specific hazards may occur over time simultaneously, cascadingly or cumulatively over time, and 

taking into account interrelated effects.  

(UNDRR 2017) 

Multi-hazard  

impact /risk 

Impact / risk generated from multiple hazards and the interrelationships between these hazards and 

considering interrelationships on the vulnerability and exposure  level. 

(Ward et al. 2022) 

Multi-hazard 

risk dynamics 

Changes in risk or impact caused by interrelationships on the hazard, vulnerability or exposure 

level as compared to a case of no interrelationships. 

This article 

 

The primary aim  of this study is to explore the role of multi-hazard risk dynamics in globally reported disaster impacts to 

add to the existing body of knowledge based on case studies. To this end, we use the disaster records the emergency events 

data base EM-DAT (Delforge et al. 2023), which is, to our knowledge, the only publicly data available source for disaster 

events including quantitative information on socio-economic impacts with global coverage. This database is widely-used in 70 

disaster risk science (Jones, Guha-Sapir, and Tubeuf 2022) and has been used before for multi-hazard analyses, in particular 

to classify historical disasters into different types of multi-hazard events by levering the information on main and associated 

hazards of each disaster record (Lee et al. 2024).  

 

However, there are several challenges related to the use of EM-DAT for multi-hazard analyses, which apply to other global 75 

impact databases as well. First of all, EM-DAT has well-known issues related to reporting biases (Gall, Borden, and Cutter 

2009) as well as the general reliability of the impact data (Guha-Sapir and Below 2002; Moriyama, Sasaki, and Ono 2018; 

Panwar and Sen 2020). In addition, the database records disasters from a single hazard perspective, though up to two 

associated hazards are included. An increasing trend in the reporting of associated hazards (Lee et al. 2024) as well as 

recently developed global multi-hazard data sets (Claassen et al. 2023) also suggest that multi-hazards have been, and may 80 

still be, underreported with impacts being assigned only to a single main hazard. Moreover, hazards occurring 

simultaneously or in close succession at the same location have been reported in separate disaster records in multiple 

instances. An example of this is the Guatemala volcanic eruption and tropical cyclone that was described as detailed case 
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study in Gill and Malamud (2014). In light of these challenges and the fact that EM-DAT is widely used, a secondary aim of 

this study is to examine the opportunities and limitations of this database for multi-hazard analysis.  85 

 

To achieve these two aims, we set out to identify multi-hazard events in EM-DAT using not only the information on 

associated hazards, but also accounting for spatiotemporal relationships between disaster records following the common 

argumentation that hazards occurring close in time and space can cause significant risk dynamics (Kappes et al. 2012; de 

Ruiter et al. 2020; De Angeli et al. 2022). As a consequence the identified events can consist of multiple disaster records. We 90 

then identify those impacts in the data set that have been caused by hazard pairs and those that have been caused by single 

hazards, and perform a statistical analysis to assess differences in impacts.  

 

Statistical methods have previously shown to be useful for detecting differences in impacts. For example, Budimir, Atkinson, 

and Lewis (2014) employed them to show that earthquake-landslide pairs result in more fatalities than earthquake single 95 

hazards. In this study, we compare both hazard pair impacts to single hazard impacts as well as hazard pair impacts to the 

combined impacts of two single hazards of the same type. The underlying idea is that the impacts of a hazard pair should 

equal the sum of impacts of two single hazards, if there are no multi-hazard risk dynamics. Conversely, a difference will 

point to multi-hazard risk dynamics. 

2 Data 100 

This study uses the international disaster database EM-DAT (Delforge et al. 2023) which contains information on natural 

hazards and their impacts together with the global data set of geocoded disaster locations GDIS (Rosvold and Buhaug 2021), 

which contains geospatial footprints of the impact areas. 

2.1 EM-DAT 

EM-DAT records events with substantial impact that are related to natural as well as technological hazards on country level 105 

from 1900 – present. Substantial impact is defined as an event which resulted in either at least ten deaths, at least 100 people 

affected, or a call for international assistance of an emergency declaration. Each entry corresponds to a disaster event on a 

country level. Events that span multiple countries are reported separately for each country.  

 

Each disaster record in EM-DAT contains mandatory and optional fields. The mandatory fields relevant to this study are the 110 

unique event identifier, the country, the continent, the start year as well as the disaster type. We also use the optional fields, 

although data are frequently missing. Relevant optional fields are the disaster subtype, a first and second associated disaster, 

which represent subsequent or co-occurring hazards that may have contributed to the disaster impact, the start date and end 

date, as well as a number of human and economic impact variables.  

 115 
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EM-DAT uses a hierarchical classification system with types and subtypes for the main hazards, but not for the associated 

hazards. The types and subtypes are not clearly defined and the system for classifying the associated hazards is not 

documented. We use nine different hazard type terms throughout this article. Table 2 shows how we relate main hazards, 

based on the type and sub type, and associated hazards to these terms. EM-DAT records that contain other hazard types, 

either as main hazard or as associated hazard, are excluded for this analysis.  120 

 

Table 2 Hazard types used in this article versus terms used in EM-DAT 

Terms used in this article Terms used in EM-DAT 

Hazard types  Disaster type  Disaster subtype Associated disaster  

Earthquake (eq) Earthquake 

 

Ground movement Earthquake 

Tsunami  (ts) Tsunami Tsunami/tidal wave,  

Volcanic eruption (vo) Volcanic activity Ashfall, lahar, pyroclastic flow, lava flow Volcanic activity 

Landslide (ls) Landslide Landslide, rockfall, mudslide, avalanche 

(snow, debris, mudflow, rock) 

Slide (land, mud, snow, rock), 

avalanche (snow, debris)   

Coldwave (cw) Extreme 

temperature 

Cold wave Cold wave 

Heatwave (hw) Heat wave Heat wave 

Extreme wind (ew) Storm Convective storm, tropical cyclone, extra-

tropical storm 

Storm 

Flood (fl) Flood Coastal flood, riverine flood, flash flood Flood 

Drought (dr) Drought All (Drought) Drought 

 

 

In terms of impact, we consider the number of people affected, deaths, and damages. Throughout the following sections we 125 

will use the term “impact” to refer to these three quantities. Their definitions are: 

• Number of People Affected: No. Injured, No. Affected and No. Homeless. No. Affected are the people needing 

immediate assistance due to the disaster. If only the number of families affected or houses damaged are 

reported, the figure is multiplied by the average family size for the affected area. 

• Number of Deaths: confirmed fatalities directly imputed to the disaster plus missing people whose whereabouts 130 

since the disaster are unknown and so they are presumed dead based on official figures. 

• Damages: refers to total economic damage in US $ adjusted for inflation.   

 

EM-DAT is known to exhibit several biases due to having entire records missing rather than fields missing within records 

(Gall, Borden, and Cutter 2009). These include time bias, hazard-related bias, threshold bias, accounting bias, geographic 135 

bias as well as systemic bias. We exclude data from before the year 2000 to minimize time bias as recommended by the 

maintainers of EM-DAT (Delforge et al. 2023). However, other the other bias types remain, posing a limitation to this study. 

For example, heatwaves are known to be underreported in EM-DAT (Harrington and Otto 2020; Brimicombe et al. 2021). 
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Such biases only become apparent when comparing different disaster or hazard databases (Koç and Thieken 2018; 

Moriyama, Sasaki, and Ono 2018; Panwar and Sen 2020). 140 

 

However, guidelines how to handle biases and missingness in disaster risk science are still lacking. Approaches for 

missingness differ across studies. Deletion, augmentation and imputation, or a combination of these, are most common for 

studies using EM-DAT as a primary or secondary data source (Jones, Kharb, and Tubeuf 2023). Deletion is simpler, but 

deemed inferior to augmentation and imputation because it poses a higher risk of introducing bias especially when data are 145 

not MAR (Nakagawa and Freckleton 2008). However, bias can be introduced by augmentation and imputation as well, if the 

data set used to develop those methods is already biased due to the missing cases.  

 

We use two approaches for dealing with missing data. First, we use a deletion approach for distributions or statistics of 

hazard impacts. The approach, called ‘available case analysis’, utilizes only the observed data points for each variable. 150 

Because variables with few observations are less likely to be representative of the various possible underlying conditions in 

terms of hazard intensity, vulnerability and exposure than variables with many observations, we only conduct in-depth 

analyses for variables with at least 50 observations. Second, we use an imputation approach for total aggregate results that 

involve sums. Here, we assume missing values to be zeros. This is currently the standard approach in the literature though it 

inevitably leads to an underestimation of total impacts (Jones, Kharb, and Tubeuf 2023; Lee et al. 2024). 155 

2.2 GDIS  

GDIS is an open-source extension to EM-DAT and provides geographical approximations for main geophysical, 

meteorological, hydrological and climatological disaster types from 1960 – 2018 period (Rosvold and Buhaug, 2021). It 

includes spatial geometries for floods, storms, earthquakes, volcanic activity, extreme temperatures, landslides, and droughts, 

however not for wildfires. Overall, GDIS provides impact zones for almost 90% of these types of records.  160 

 

 

The spatial geometries in GDIS correspond to administrative areas, as contained in the Global Administrative Areas database 

(GADM, n.d.). The geometries are derived from EM-DAT’s country field or optional ”Location”, which lists the name(s) of 

the affected administrative area(s), or “Latitude” and “Longitude” fields, which provide coordinates for the location. Most 165 

locations can be described on the spatial resolution of administrative level 1 (typical state/province/region). The highest 

resolution corresponds to level 3 (district/commune/village) and the lowest resolution corresponds to level 0 (country). 

However, as hazards are unlikely to affect the entire area of an administrative region, the spatial geometries have to be 

regarded as crude approximates of the impact zones.   
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3 Method 170 

Our method has two main parts and is outlined in Figure 1: firstly, developing multi-hazard data sets based on EM-DAT and 

GDIS; and secondly performing the statistical analyses of the impacts of single and multi-hazard. 

 

The first part (developing multi-hazard data sets) has three steps. First, we create a georeferenced data set of disaster records 

by joining EM-DAT and GDIS. Second, we develop a data set of spatiotemporally overlapping disaster record pairs by 175 

assessing whether disaster records in EM-DAT have spatiotemporal overlaps. Third, we develop disaster record chains, 

hazard chains, and (multi-)hazards events, by using the spatiotemporally overlapping pairs together with information from 

the associated disaster fields in EM-DAT. Each of these steps is described in more detail in Sections 3.1.1 - 3.1.3.   

 

The second part (statistical analysis of impacts) has two steps. First, we identify impacts of single hazards and of hazard 180 

pairs from the events for further analysis. Second, we compare the impacts of single hazards with impacts of hazard pairs. 

For simplicity, we restrict ourselves to hazard pairs as multi-hazards.  Third, we compare the combined impacts of two 

individual single hazards with the impacts of hazard pairs. Each of these steps is described in more detail in Sections 3.2.1 - 

3.2.3. 

 185 

Figure 1 The two main parts and sub-steps of the methodology 

3.1 Developing Multi-Hazard Data Sets 

In this section, we describe the three steps to identify multi-hazard events in EM-DAT. The python code of the algorithm can 

be found on GitHub (link to be added upon publication). 

3.1.1 Georeferenced disaster records 190 

In the first step, we create a data set of georeferenced disaster records. The GDIS geometries can be linked to the EM-DAT 

data set via the unique disaster event identifier that is present in both data sets. Given the properties of, and guidelines for, 
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EM-DAT and GDIS, we include disaster records that fall within the period 2000 – 2018 and belong to one of the seven 

disaster types listed in the second column of Table 2. The associated disasters do not follow the main classification system of 

EM-DAT but appear to correspond to either the disaster type or the disaster subtype. For consistency we map them to a 195 

disaster type. If the associated disasters cannot be mapped to one of the seven disaster types we focus on in this study, we 

exclude the record from the analysis. In the rest of the paper we use the term hazard types instead of disaster type to be in 

line with terminology of the disaster risk field (PreventionWeb 2023). We use nine different hazard types that capture 

different combinations of disaster type and subtype as well as the associated disasters. We use the same terms for the hazard 

types as in a previous paper (Claassen et al. 2023); they are given in the first column of Table 2. 200 

3.1.2 Spatiotemporally overlapping disaster record pairs 

In the second step, we use the spatial geometries and dates associated with each disaster record to identify spatiotemporal 

overlaps. We explain the algorithm with the illustration in Figure 2. This example has five disaster records A – E. Figure 2a 

shows the relevant information for the algorithm as stored in EM-DAT. Each disaster record has a start date as well as a 

main hazard type and optionally one or two associated hazard types.  The algorithm works as follows: 205 

1. We create a list of all possible pairwise combinations of disaster records per country. Suppose disaster records A – 

E are in one country, then all possible combinations would be “A, B”, “A, C”, “A, D”, “A, E”, “B, C”, “B, D”, “B, 

E” and “D, E”.  

2. We then assess the spatial overlap for each of these pairs. To this end, we calculate the intersecting area between the 

disaster records from the spatial geometries, as well as the fractions that the intersecting area constitutes to the total 210 

area of each of the individual events. We refer to the higher value of the two as the intersection percentage and use a 

minimum value as criterion to define spatially overlapping disaster records. Because disasters are unlikely to affect 

the entire area of an administrative region, the spatial geometries of the disaster records are relatively crude 

approximations of the impact zones. We reason that the smaller the intersecting area of two footprints, the less 

likely that the actual disaster impact zones overlap. The idea behind the threshold is to keep only those 215 

combinations that have a reasonable likelihood of actually having overlapping disaster zones. We use a threshold of 

50% and perform a sensitivity analysis (0%, 25%, 50%, 75%, 100%)1  on this choice. Given the spatial geometries 

in Figure 2b, the spatially overlapping pairs would be “A, B”, “A, C” and “B, D”.  

3. We also assess temporal overlap for each overlapping pair from step 1. Because end dates are often missing in the 

disaster records, we calculate the time difference between the start dates of the pair. We use a maximum time lag as 220 

a criterion to define temporally overlapping disaster records. We use a time lag of 3 months and perform a 

sensitivity analysis on this choice (0 months, 1 month, 3 months, 6 months, 12 months)2. Figure 2c depicts the time 

lags. Suppose all the times between events (Δt21, Δt32, Δt43, Δt54) are 1 month, the temporally overlapping pairs 

using a 3 month time-lag would be “A, B”, “A, C”, “A, D”, “B, C”, “B, D”, “B, E” and “D, E”. 

 
1 The criterion is ≥ for all spatial overlap values, except for the 0% value. In this case the criterion is >.   
2 The criterion is ≤ for all time lag values. 
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4. We identify all spatiotemporally overlapping disaster record pairs based on the previous assessments of spatial and 225 

temporal overlap. In the example, these are “A, B”, “A, C” and “B, D”. 

3.1.3 Disaster record chains, hazard chains and (multi-)hazard events 

In the third step, we build a data set of disaster record chains and dissolve them into hazard chains. We start by building a 

disaster record and a hazard chain for each disaster record in EM-DAT. The chains contain all disaster records and hazards 

that have potentially contributed to the reported impact through direct or indirect spatiotemporal overlaps. To develop the 230 

disaster record chains, we use an iterative algorithm that utilizes the previously identified overlapping disaster record pairs. 

We explain the algorithm using the previously introduced example from Figure 2a-c:   

• For each disaster record (from EM-DAT), we find all pairs of spatiotemporally overlapping disaster records 

that include this disaster record. In each of those pairs, if the other disaster record is preceding the record of 

interest in time, it is considered to be a contributing disaster record. For example, consider D to be the disaster 235 

record of interest. Then, B is a contributing disaster record, as the latter occurs earlier in time.  

• If the contributing disaster record has in turn another contributing disaster record, we add that one as well, thus 

considering indirect contributions. Here, A is contributing disaster record to B. Hence, we add A as 

contributing disaster record to D as well. Adding indirectly contributing disaster records is a recursive process. 

For this example the recursive process stops here, because A has no further contributing disaster records. 240 

• The entire disaster record chain then consists of the disaster record of interest and all contributing disaster 

records ordered in time (A, B, D).  

• We obtain the hazard chain by replacing each disaster record by the hazard or set of hazards that it contains 

(A1, B1, D1, D2). 

Figure 2d presents the data set of disaster record chains and hazards chains we obtain from the algorithm for this example.  245 
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Figure 2 Illustration of five disaster records  A, B, C, D and E. a) Illustration of relevant fields in EM-DAT; b) Spatial geometries 
of disaster records; c) Times between disaster records; d) Data set of contributing disaster records, disaster record chains and 
hazard chains; e) Data set of multi-hazard events; f) Illustration of how individual hazards, disaster records and (multi-)hazard 250 
events relate to each other. 

 

In the last step, we build a data set of (multi-)hazard events. These are those hazard chains, that are not included in another 

hazard chain. For example, “A1, B1” is fully included in “A1, B1, D1, D2”. Therefore, we do not consider “A1, B1” to be an 

event by itself, but part of the event “A1, B1, D1, D2”. Figure 2e shows the resulting events for the example and Figure 2f 255 

illustrates how the terms hazard, disaster record and event relate to each other.  

3.2 Statistical Analysis of Impacts 

In this section, we describe the three steps of the statistical analysis.  

3.2.1 Impacts of single hazards and hazard pairs 

To start with, we create a data set of the human and socioeconomic impacts of single hazards and of hazard pairs. We focus 260 

on damages, number of people affected, and number of deaths. For simplicity, we use the term impact to refer to them 
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collectively. We create the data set by selecting all hazard chains consisting of one or two hazards. These would be “A1”, 

“A1, B1” and “E1, E2” in the example of Figure 2d. If the chain consists of one hazard, we record a single hazard impact. If 

a chain consists of two hazards, we record a hazard pair impact. Note that a chain of hazards can belong to one disaster 

record or two disaster records. If they belong to two disaster records, we sum the impacts to obtain the overall impact of both 265 

hazards.  

3.2.2 Comparison of single hazard impacts and hazard pair impacts 

In the second step, we use boxplots to examine the distributions of impacts of single hazards and the impacts of hazard pairs 

for different hazard types. Then, to assess whether impacts are different for single hazards and for hazard pairs, we compare 

the confidence intervals (CIs) of their means. We construct the CIs with a percentile bootstrap (N=10,000). If the CIs 270 

overlap, we conclude that the difference in impacts is not statistically significant. If there is no overlap, the difference is 

statistically significant.  

3.2.3 Comparison of the combined impacts of two single hazards and of hazard pairs 

In the third step, we do not examine data distributions with boxplots, because we do not have a direct data set of combined 

impacts of two single hazards. However, we use the same CI approach as above to compare whether differences in impacts 275 

are statistically significant or not. Here, the mean combined impacts of two single hazard types is given by the sum of the 

mean impacts of two single hazard types.  

4. Results  

First we show the main results related to the prevalence of multi-hazards and their share of impacts when considering both 

the information of associated hazards in EM-DAT as well as spatiotemporal overlaps between the disaster records. These are 280 

the results of method step 3.2.3. For more details on intermediate results of method steps 3.1.2 and 3.1.2, we refer to sections 

A.1 and A.2 of the appendix. Thereafter, we show the results of the statistical analysis of impacts which were described in 

method steps 3.2.1 - 3.2.3. 

4.1 Prevalence of Multi-Hazards and their Share of Impacts  

The subset of EM-DAT that we are analysing contains 5868 disaster records, of which 74% have one hazard, 22% have two 285 

hazards, and 4% have three hazards. This corresponds to 74% single hazards and 26% multi-hazards when following the 

approach of Lee at al. (2024) to reclassifying EM-DAT records. Here, we describe how these numbers differ when 

considering spatiotemporal overlaps between disaster records and allowing multi-hazard events to consist of multiple 

disaster records. 

 290 
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A challenge arises when accounting for spatiotemporal overlaps between records: individual hazards can often no longer be 

uniquely assigned to one event but are part of multiple events. This is different to the case when each disaster record 

constitutes an event and individual hazards are confined to this event. Therefore, we shift the perspective from the level of 

disaster record to level of individual hazard. We exemplify this with numbers. The data subset contains a total number of 

7605 hazards (Using the values from the first paragraph: 74% * 5868 disaster records * 1 hazard + 22% * 5868 disaster 295 

records * 2 hazards + 4% * 5868 disaster records * 3 hazards = 7605 hazards). 57% of the 7605 hazards are single-hazards 

and 43% are part of multi-hazards according to Lee’s classification approach. These multi-hazards caused 57% of the total 

damages, 40% of the total people affected and 49% of the total deaths globally, which is comparable to Lee et al.’s results 

who assessed all natural hazards in EM-DAT from 1900 - 2023. 

 300 

We find that within our data set the proportion of hazards that are part of multi-hazards is likely higher than the 43% 

detected using Lee et al. (2024) due to spatiotemporal overlaps of the disaster records in EM-DAT. However, there is 

uncertainty related to the choice of overlap criteria Figure 3a shows the proportion of hazards that are part of multi-hazards 

for different assumptions for spatiotemporal overlap. The lower the criterion for minimum spatial overlap and the higher the 

criterion for maximum time lag, the higher the proportion of hazards that are part of multi-hazards. For example, the 305 

proportion of hazards that are part of multi-hazards increases to 61% when assuming a spatial overlap of at least 50% and a 

time lag of at most 90 days. Together they cause 78% of the total damages, 83% of the total people affected and 69% of the 

total deaths globally. When increasing the time lag to 1 year, the proportion increases to 76% and together they cause 91% of 

the total damages, 91% of the total people affected and 95% of the total deaths globally.  

 310 

Similarly, the number of events that we identify depends on the choice of spatiotemporal overlap criteria. The data sets of 

identified (multi-)hazard events for different criteria can be found at Zenodo (link to be added upon publication). Here, we 

present the results for a spatial overlap of at least 50% and a time lag of at most 90 days as Figure 3 gives an indication of 

sensitivity. In this case, we identify 2291 (multi-)hazard events of which 65% are single-hazard events and 35% are multi-

hazard events. It may seem contradictory that the number of multi-hazard events is lower than the number of EM-DAT 315 

disaster records, whereas the number of individual hazards that are part of multi-hazards is higher. This is because a disaster 

record contains at most three hazards, whereas the multi-hazard events that we derive can have more hazards. Overall, we 

find 218 event types with different hazard combinations, which consist of up to 32 individual hazards from 5 different hazard 

types.  
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 320 

Figure 3 Share of (a) hazards that are part of multi-hazards when accounting for spatiotemporal overlaps between the disaster 
records in EM-DAT for different values of minimum spatial overlap and maximum time lag as well as their (b) total damages, (c) 
total people affected and (d) total deaths. 

4.2 Comparison of Single Hazard and Hazard Pair Impacts 

Now we present the statistical analysis of impacts. Again, we present the results for a spatial overlap of at least 50% and a 325 

time lag of at most 90 days. Figure 4 shows the boxplot distributions of impacts of single hazards and hazard pairs for 

different hazard types as well as the mean values with 95% confidence interval (CI). We only show impact types and hazard 

types with sample sizes N ≥ 50 in an attempt to capture the broad range of underlying hazard intensity, exposure and 

vulnerability conditions in which the impacts arise. There are eight combinations of impact type and hazard pair type that 

fulfil this criterion. For extreme winds and floods, sufficient data are available for total damages, total deaths and total 330 

number of people affected (first column of Figure 4).  For floods and landslides as well as consecutive floods, sufficient data 

are available for total deaths and total number of people affected (second and third column of Figure 4). For earthquake and 

landslides, sufficient data are available for total deaths (fourth column of Figure 4). Sample sizes are reported in Table C1 

and Table C2 in the Appendix.  

 335 
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For all variables (impacts of single hazards and of hazard pairs), the mean value is higher than the 75%-quantile; for 9 of the 

16 variables the mean value is even higher than the 95%-quantile. Thus, the majority of impacts are clustered towards the 

lower end of the impact range while a few very high data points pull the mean upwards. Not surprisingly then, the 

uncertainties about the mean are large compared to the spread of the distributions: For 10 of the 16 variables, the uncertainty 

about the mean is larger than the 75% inter-quantile range. 340 

 

Table 3 lists the results of the comparison of the reported average impacts of hazard pairs with those of the corresponding 

single hazards. In three cases, the impacts of the hazard pair are significantly higher than those of both single hazards 

(damages for extreme winds and floods, number of deaths for consecutive floods, and number of people affected for 

consecutive floods). Also, in three cases, the impacts of the hazard pair are significantly higher than those of one of the 345 

single hazards, but not of the other (number of deaths for floods and landslides, number of people affected for floods and 

landslides, and number of people affected for earthquakes and landslides). Finally, in two cases, the average impacts of the 

hazard pair are not significantly different than those of either of the single hazards (number of deaths for extreme winds and 

floods and number of people affected for extreme winds and floods). In no case is the average impact of a hazard pair 

significantly lower than those of either or both single hazards.  350 

 

Table 4 lists the results of the comparison of the reported average impacts of hazard pairs with the combined reported 

average impacts of the two corresponding single hazards. In two cases, the impacts of the hazard pair are significantly higher 

than the combined impacts of the two single hazards (number of deaths of consecutive floods and number of people affected 

of consecutive floods). In all other cases, no statistical difference is detected. In no case is the average impact of a hazard 355 

pair significantly lower than those of the combined impacts of the two single hazards. 

 

 

 

 360 
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Figure 4 Boxplots of impact data for single hazards as well as hazard pairs (,) for different impact types and hazard types as well 
as mean values and their bootstrap 95% CI for single hazards, hazard pairs (,) and the combined impact of two single hazards (+). 365 
The rows show different impact metrics. The columns show different hazard types (ew – extreme wind, fl – flood, ls – landslide, eq 
– earthquake). Only combinations of impact and hazard type with N > 50 are shown. 
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Table 3 Statistically significant differences in average impacts of hazard pairs compared to average impacts of underlying single 370 
hazards (ew – extreme wind, fl – flood, ls – landslide, eq – earthquake). A ‘+’ denotes that the value of the hazard pair is higher 
than the value of the single hazard and a ‘=’ denotes no difference. 

 Ew, Fl Fl, Fl Fl, Ls Eq, Ls 

 Ew Fl Fl Fl Ls Eq Ls 

Damages + +      

Number of Deaths = = + + =   

Number of People Affected = = + = + = + 

 

Table 4 Statistically significant differences in average impacts of hazard pairs compared to combined average impacts of the two 
underlying single hazards (ew – extreme wind, fl – flood, ls – landslide, eq – earthquake). A ‘+’ denotes that the value of the hazard 375 
pair is higher than the combined value of the two underlying single hazards and a ‘=’ denotes that no difference. 

 Ew, Fl Fl, Fl Fl, Ls Eq, Ls 

 Ew + Fl Fl + Fl Fl + Ls Eq + Ls 

Damages =    

Number of Deaths = + =  

Number of People Affected = + = = 

5 Discussion 

The aim of this study was two-fold. On one hand, we aimed to increase our understanding of the prevalence of multi-hazards 

in global disasters and their impacts. On the other hand, we aimed to shed light on the potential and limitations of using EM-

DAT for multi-hazard analyses, as it is one of the most commonly used impact data bases in disaster risk science. EM-DAT 380 

has some multi-hazard information as it reports up to three different hazards per disaster record. However, many well-known 

multi-hazards are not captured as such but reported as independent events, such as the Guatemala 2010 volcanic eruption and 

tropical cyclone (Gill and Malamud 2014). In this study, we developed an algorithm to identify multi-hazards, which takes 

into account the existing multi-hazard information in EM-DAT as well as spatiotemporal overlaps between the disaster 

records. We obtained a new data set of multi-hazards and their impacts. Furthermore, we analysed and compared impacts of 385 

single hazards and hazard pairs using descriptive statistics. Here, we discuss our main findings.  

 

To start with, when we account for spatiotemporal overlaps our analysis suggests that there are up to twice as many hazards 

that are part of multi-hazards than reported by EM-DAT (Section 4.1). This is the case for a time lag of 1 year and spatial 

overlap 25%. In addition, multi-hazard events may span multiple disaster records and include up to 32 different hazards, 390 

while EM-DAT reports only up to 3 different hazards for each disaster record. However, there is substantial uncertainty 

related to the identification of multi-hazards. To begin with, the spatial footprints are coarse. Hazards may be affecting the 
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same administrative area, but not actually be overlapping. In some cases, GDIS resolves hazard footprints at high spatial 

level, in some cases only at country level. This means we do not know if hazards actually overlapped (see Appendix A.2 for 

examples and a discussion). In addition, all individual hazards within a disaster record are associated with the same footprint, 395 

even though their footprints may have very different extents. Similarly, the temporal information in EM-DAT is crude and 

limited. As end dates are partially missing, we used start dates, which is a crude approximation of the actual time lag 

between hazards. Again, temporal information is provided on disaster record level, but not on the level of individual hazards. 

Finally, we still lack understanding on how much time lag and overlap should be considered. de Ruiter et al. (2020) suggest 

that hazards should be analysed together if direct impacts of a subsequent hazard spatially overlap before recovery from a 400 

previous hazard is considered to be completed, but information on recovery times is limited. Despite these uncertainties in 

the method, multi-hazards are likely underreported in EM-DAT.  

 

Furthermore, the reported multi-hazards contribute a disproportionately high share of total impacts globally compared to 

single hazards (Lee et al. (2024) and Section 4.1). The question is whether this difference is statistically significant and there 405 

are indeed risk dynamics causing disproportionate impact amplifications in multi-hazard events. To answer this, we 

performed a statistical analysis comparing impacts of hazard pairs with impacts of single hazards as well as combined 

impacts of two single hazards of the same hazard types. The results differ per combination of impact type and hazard types. 

However, they are difficult to interpret because of the large uncertainties encountered as well as questionable data quality 

owing to known biases and limitations of EM-DAT. In cases where there is no significant difference found between two 410 

impact variables, this could either mean that there is indeed no difference between those variables or that there is a 

difference, but not sufficient evidence in the data set to detect that, for example due to the large uncertainties and right 

skewed distributions. On the other hand, in cases where there is a significant difference, this could indeed point to an actual 

difference in impacts, but it is also possibly caused by biases such as systematic double counting of consecutive disasters or 

geographical biases. Nonetheless, there are commonalities across all cases: In all cases, the average impact of a hazard pair is 415 

as high or higher than the average impact of a single hazard, while the opposite was not found in any cases. Also in all cases, 

the average impact of a hazard pair is as high as or higher than the combined average impacts of the two underlying single 

hazards, while the opposite was not found in any cases. This suggests that multi-hazard interactions leading to increased 

impact tend to outweigh multi-hazard interactions leading to decreased impact. 

 420 

The results of the statistical analysis suggest that there are different patterns of impact-generating mechanisms in multi-

hazard events for different types of impact and hazard types. We observed four different patterns which we call archetypes, 

inspired by the field of system dynamics which uses the term to describe certain common dynamics that seem to recur in 

many different settings (Senge 1990). We provide short descriptions of each archetype and hypothesize possible 

explanations, while noting that there is large uncertainty on whether each case falls into a particular archetype. 425 
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Archetype 1 - “The whole equals the sum of its parts”: The impact of the pair is significantly higher than the impact of both 

individual hazards, but not significantly different than the combined impact of the two single hazards. Such a pattern would 

emerge when both hazards in the pair contribute significantly to the impact, but do not significantly affect each other’s 

impact, that is, there is no disproportionately heightened impact by the combined action of the two hazards. This could, for 430 

example, be the case for damages of extreme wind and flood pairs which have different damage causing mechanisms to the 

built environment. Floods tend to affect the interior of buildings and the lower floors, whereas extreme winds tend to damage 

the exterior of buildings and, in particular, the roof (Amini and Memari 2020).  

 

Archetype 2 - “The whole is greater than the sum of its parts”: The impact of the pair is significantly higher than the impact 435 

of both individual hazards and also significantly higher than the combined impact of the two single hazards. Such a pattern 

could arise when both hazards in the pair contribute significantly to the impact and even exacerbate each other’s impacts 

when co-occurring simultaneously or consecutively. This could, for example, be the case when a previous flood increases 

vulnerability leading to more impacts in a second flood (de Ruiter et al. 2020) or when a previous flood intensifies a second 

flood due to already saturated soils and thus leading to higher impacts (Berghuijs et al. 2019). 440 

 

Archetype 3 - “Total loss and damage is already reached by one hazard”: The impact of the pair is not significantly different 

from the impact of either of the single hazards and not significantly different from the combined impacts of two single 

hazards. Such a pattern could emerge when a hazard causes an ultimate impact to an exposed element, such as total loss for a 

building or death for a person, or when the impact metric only reports that an element has been affected but not to what 445 

degree. In both cases, a second hazard acting on the same elements cannot increase the value of the impact metric anymore. 

This could potentially be the case for the total number of people affected by extreme wind and flood pairs when the same 

area is hit by both hazards.  

 

Archetype 4 - “One of the hazards dominates the impact”: The impact of the pair is significantly higher than the impact of 450 

one hazard but not the other, and not significantly different from the combined impacts of two single hazards.  Such a pattern 

could arise when one hazard is so impactful that, in comparison, the contribution of other hazard is negligible, possibly 

combined with a “total loss and damage is already reached”-effect. This could, for example, be the case for the number of 

people affected by flood – landslide pairs and earthquake – landslide pairs. Floods and earthquakes usually occur on larger 

spatial scales than landslides and trigger landslides within the already affected area so that the landslide will not add to the 455 

number of affected people. 

 

There are many limitations preventing a more detailed analysis of multi-hazard impacts. To begin with, we encountered a 

number of reporting errors or inconsistencies in EM-DAT. In several cases, associated hazards are not reported. For 

example, the 7.2-magnitude earthquake in Haiti in August 2021 (reported under disaster number 2021-0511-HTI) is 460 

followed by a tropical cyclone (Daniels 2021), which is not reported in EM-DAT. Also, in several cases, two consecutive 
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disaster records report the exact same number of impacts suggesting potential double counting when adding them up. For 

example, two consecutive earthquakes in Iceland have reported the exact same number of total damages (reported under 

disaster numbers 00-0076-ISL and 2000-0335-ISL). The fact that we came across these inconsistencies by chance, suggests 

that there are many more.  465 

 

Moreover, the uncertainties in impacts are large, especially related to the mean impact per hazard (pair) type, making it 

challenging to arrive at general conclusions. In part this is due to a handful of extremely high impact data points pulling the 

mean value up from the bulk of data points clustered at the lower end of the distribution and introducing uncertainty. In 

addition, the sample sizes of impact data are small per event type, that is, per unique combination of number and types of 470 

hazards. On one hand, this is due to the many different event types found. On the other hand, impact data are frequently 

missing in EM-DAT. While we considered 9 hazard types, we could only analyse impacts for four hazard types and four 

hazard pair types when requiring a sample size of at least N=50. Especially, impacts for extreme temperatures and droughts 

are missing. For these types, the complexity and difficulty to assess impacts is well known (Wilhite, Svoboda, and Hayes 

2007). Finally, the hazards occurred under diverse conditions in terms of hazard intensity, exposure and vulnerability, which 475 

can cause a wide range of impacts. Ideally, these factors would be controlled for in the analysis, as done for example by 

Budimir, Atkinson, and Lewis (2014) in a comparison of fatalities of earthquake-and-landslide hazards as opposed to 

earthquake single hazards. However, EM-DAT includes insufficient information to do so.  

6 Conclusion and Recommendations 

For this study, we asked “What can we learn about multi-hazards and their risk dynamics from global disaster records?”. To 480 

answer the question, we developed an algorithm that identifies multi-hazard events using the existing multi-hazard 

information in EM-DAT as well as spatiotemporal overlaps between the disaster records based on the spatial geometries 

provided in GDIS. We also conducted a statistical analysis to compare the impacts of hazard pairs with the impacts of 

(combinations of) single hazards for different impact metrics and hazard types. Despite the well-known limitations of EM-

DAT related to completeness of the records as well as reliability of the impact data, which prevents detailed analyses of the 485 

data, we found the database to be useful for exploring high-level patterns at the global scale.  

 

Our approach for identifying multi-hazard events indicated that up to twice as many individual hazards have not occurred as 

isolated single-hazards, but have been part of multi-hazard events, than it appears from EM-DAT alone. The exact number 

remains uncertain, because the information on the spatial and temporal extent of the hazards is coarse and additional hazards 490 

may have occurred but not have been reported, either due to reporting biases or because they did not cause a disaster 

according to the EM-DAT inclusion criteria. Future research should be directed at improving the completeness of EM-DAT 

as well as at developing high resolution spatial and temporal footprints of the corresponding individual hazards to enable the 

assessment of spatiotemporal overlaps. While there is uncertainty on whether we correctly identified each hazard as either 
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being a part of or as not being part of a multi-hazard event, the resulting event sets provide promising case studies for 495 

investigating impact-relevant spatiotemporal distances between hazards and their role in compounding impacts in complex 

multi-hazard events. The statistical analysis indicates that there are different types of multi-risk dynamics which depend on 

the impact metric as well as the hazard type. In some cases, the average reported impacts of a hazard pair were comparable 

to those of a single hazard or even two single hazards combined. In other cases, the average reported impacts of a hazard pair 

were larger than those of a single hazard or two single hazards combined.  500 

 

We propose the development of archetypes to capture the different patterns and make initial suggestions for the hazard types 

analysed in this study. Such archetypes could help decide on the level of complexity to take into account in risk assessments 

and risk management for a region of interest if relevant hazard types and impact metrics are known. For some types of 

hazard and impact, modelling the impact of one dominant hazard may yield a reasonable approximation of multi-hazard 505 

impact, while in other cases modelling single-hazards impacts separately and adding them up may yield a reasonable 

approximation, while yet in other cases, it may be important to take into account interaction effects leading to either 

increased or decreased impacts compared to a simple sum of individual impacts. However, future research using more 

reliable data sources is needed to confirm these archetypes, validate them for use in forward-looking risk assessments, 

explore potentially additional forms of compounding impacts and expand them for additional hazard types and impact 510 

metrics. 

 

Finally, future research should be directed at improving and supporting the information in EM-DAT. To start with, a quality 

control of the impact data that solely focuses on the most disastrous records could already improve overall reliability because 

these records dominate any statistical data analysis that is based on mean values or total values. Another key area to improve 515 

the usability of EM-DAT would be to develop data sets of (multi-)hazard intensities as well as exposure and vulnerability 

that can readily be linked to the disaster records. This could enable a deeper analysis of multi-hazard risk dynamics as factors 

determining the context in which the hazards occur can be controlled for. Also, impact data sets that are becoming available 

with novel methods could be readily linkable to EM-DAT. They could be used to enable cross-validation of impacts of 

different data sets, and increase the sample size of impacts, which could enable an analysis of impacts for (multi-)hazard 520 

types that had to be excluded from the statistical analysis in this study.  

Appendices 

Appendix A An Exploratory Data Analysis of the Joint EM-DAT and GDIS Data Set 

This section relates to method step 3.1.1. The data set of geo-referenced disaster events covers the period 2000 – 2018 and 

the nine hazard types listed in Table 2. It contains 5,868 disaster records. Table A1 shows the availability of data in the 525 

optional fields in these records. In case of associated disasters, we assume that empty fields means that no other hazards have 

taken place. In all other cases, we assume that data are missing. The temporal information is most complete. All events have 
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a start year and start month as well as an end year. All events other than droughts also have an end month. The exact day is 

missing more frequently.  

Table A1 Count of events and the data availability of key variables in the geo-refenced data set 530 

 
Event Count Start Date End Date Total Damages Total Number 

of Deaths 

Total Number of 

People Affected 

Geospatial 

Footprint 

fl 2782 100% 92% 30% 72% 88% 91% 

ew 1629 100% 97% 52% 74% 73% 77% 

cw 198 100% 47% 8% 83% 29% 85% 

dr 188 96% 4% 40% 4% 60% 80% 

hw 118 100% 48% 13% 84% 31% 79% 

ls 353 100% 98% 12% 96% 64% 91% 

eq 480 100% 100% 42% 64% 97% 96% 

vo 93 100% 90% 15% 13% 89% 82% 

ts 27 100% 100% 70% 100% 85% 93% 

 

The availability of impact data depends on the hazard type as well as impact type and ranges from 4% for Total Deaths due 

to droughts to 100% for Total Deaths due to tsunamis (Table A1). Human impact is available more than total damages. 

Availability also fluctuates across the years and continents. For total deaths it ranges from 64% in 2004 to 78% in 2007 and 

from 40% in Oceania to 79% in Asia. For total affected it ranges from 73% in 2010 and 2018 to 87% in 2017 and from 55% 535 

in Europe to 90% in Africa. For damage is ranges from 22% in 2006 to 48% in 2013, and from 14% in Africa to 44% in 

Oceania.  

 

The availability of spatial footprints also differs per hazard type, year and continent, but less so than the impact variables. It 

ranges from 77% for extreme wind to 96% of earthquakes, from 71% in 2018 to 93% in 2006 and from 77% in Europe to 540 

89% in the Americas. Overall, we could associate 87% (5090/5668) of all events with a spatial footprint which is in line with 

the 89% reported by the developers of GDIS (Rosvold and Buhaug 2021).  

 

These results suggests that data for impact and geospatial footprint are not missing at random (MAR) in our extracted data 

set which poses a risk of bias in the subsequent analysis. This is in line with the findings of Jones et al. (2022) who identified 545 

the year the disaster occurred, income-classification of the affected country and hazard types as significant predictors of 

missingness for human and economic impact variables in a formal statistical analysis of the entire EM-DAT data set.  

Appendix B Pairs of Spatiotemporally Overlapping Disaster Records 

This section relates to method step 3.1.2. Out of the 5,868 disaster records, 5,090 events have spatial footprints. These can be 

grouped into 12,951,505 unique combinations of two events. 107,406 pairs have spatial overlap.  550 
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Figure B1 shows a histogram of the intersection percentage. Notable is the high number of event pairs with 0% overlap and 

with 100% when rounded to 2 decimals. The high number of events 0% overlap is likely caused by rounding errors for 

events that impacted adjacent administrative areas and these event pairs are considered to not be overlapping. Figure B2a 

shows an example. The high number of events with 100% overlap is also likely due to the fact that the resolution is on 555 

administrative boundary level: As soon as events are within the same administrative district they fully overlap, whereas only 

large scale impact events that affected multiple administrative districts can partially overlap. Figure B2b-c show examples 

with different overlap percentages. 

 

 560 

Figure B1 Histogram of the intersection percentage of the 107406 EM-DAT events with spatial overlap 

 

There is uncertainty on whether or not the actual impact zones overlap for all pairs of intersecting events, because the spatial 

footprints are an approximation on the level of administrative regions and the events are unlikely to have affected the entire 

region (Rosvold and Buhaug 2021). This uncertainty could potentially reduce by considering the combination of the scale of 565 

the natural hazards (e.g., landslides are local events while heat waves and cold waves are regional or national level events), 

the extent of the damage (e.g., higher damages and fatalities are likely to stem from larger impact zones), and the 

administrative level of the footprint (e.g., a footprint consisting of multiple district level polygons which have been joint to a 

greater area is more likely to represent the actual impact area than a footprint consisting of a single country-level polygon).  

 570 
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Figure B2 Example event pairs with spatial overlap. Individual event impact zones are plotted in blue and yellow. The overlapping 
impact zone is plotted in green. 

For example, in Figure B2b, event 2014-0009-USA is a cold wave and event 2014-0317-USA is a convective storm 

associated with a cold wave. As these are larger scale weather phenomena the overlapping administrative zone is likely to 575 

reflect the actual overlapping impact zone. However, in Figure B2c, event 2006-0128-USA is storm associated with a flood 

and event 2008-0173-USA is a riverine flood, and, in Figure B2d, event 2006-0598-USA is a riverine flood associated with 

heavy rain and event 2006-0744-USA is a storm. In these two cases, additional data on impact extent, or by proxy hazard 

extent, would be required to confirm actual overlap.  

 580 

Table B1 shows the number of pairs of overlapping events for different spatial and temporal criteria. As expected, the 

number of pairs of overlapping events is lowest when requiring a high intersection percentage and a low time lag as overlap 

criteria.  

 

Table B1 Number of pairs of overlapping events using different spatial and temporal overlap criteria. 585 

Time lag \ Intersection  >0% >=50% >=100% 

0 days 31 21 17 

1 month 1,339 758 480 
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3 months 3,575 1,917 1,164 

6 months 5,865 3,023 1,798 

12 months 11,630 6,059 3,631 

Any 107,406 54,712 33,245 

 

Appendix C Sample size of impact data for single hazards and hazard pairs 

This section presents sample size for the data used in Sect. 4.2. Table C1 shows the sample sizes for single hazards for a 

spatial overlap of at least 50% and a time lag of maximum 91 days. Table C2 shows the sample sizes for hazard pairs for a 

spatial overlap of at least 50% and a time lag of maximum 91 days. 590 

Table C1 Sample sizes of impact data for single hazards for a minimum spatial overlap of 50% and a time lag of maximum 91 
days (ew – extreme wind, fl – flood, ls – landslide, eq – earthquake, dr – drought, cw – cold wave, hw – heat wave, vo – volcanic 
activity, ts – tsunami) 

Hazard  Damages Number of Deaths Number of People 

Affected 

fl 428 1102 1479 

ew 354 527 524 

eq 109 171 281 

dr 52 4 91 

ls 21 230 147 

cw 12 146 50 

vo 10 6 65 

ts 5 6 4 

hw 3 64 23 

 

Table C2 Sample size of impact data for hazard pairs for a minimum spatial overlap of 50% and a maximum time lag 91 days (ew 595 
– extreme wind, fl – flood, ls – landslide, eq – earthquake, dr – drought, cw – cold wave, hw – heat wave, vo – volcanic activity, ts – 
tsunami) 

Hazard 1 Hazard 2 Damages Number of 

Deaths 

Number of 

People Affected 

fl ls 178 417 439 

ew fl 133 205 220 

eq ls 28 44 56 

ew ew 16 26 23 

fl fl 15 67 87 

ew ls 15 28 31 

fl ew 12 23 24 

ew cw 11 22 11 
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ts ts 10 15 13 

hw dr 7 9 2 

ls fl 6 23 22 

eq eq 5 8 15 

dr hw 5 
 

3 

eq ts 4 9 11 

ls ls 3 12 9 

eq fl 3 5 5 

fl dr 2 1 5 

fl cw 2 5 4 

dr fl 1 1 6 

fl eq 1 4 5 

vo eq 1 
 

4 

fl ts 1 2 3 

eq ew 1 2 2 

eq dr 1 
 

2 

ls eq 1 1 1 

dr cw 1 1 1 

vo ts 1 1 1 

dr eq 1 
 

1 

ew dr 1 
 

1 

vo ls 
 

1 3 

hw ew 
 

5 2 

fl hw 
 

3 2 

eq hw 
 

1 2 

hw fl 
 

4 1 

cw cw 
 

3 1 

ew hw 
 

3 1 

vo fl 
 

1 1 

hw ls 
 

1 1 

ls dr 
  

1 

cw eq 
  

1 

eq cw 
  

1 

dr ew 
  

1 

vo vo 
  

1 

cw fl 
 

1  

cw hw 
 

1  
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Code Availability 

The code to develop multi-hazard event data sets as well as to perform the statistical analysis of impacts has been publicly 600 

released on GitHub. (Link to be added upon publication). 

Data Availability 

The multi-hazard event dataset compiled during the is study, is openly available on Zenodo. (Link to be added upon 

publication).  
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