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Abstract. Recent studies have reported more extreme, compounding impacts from multi-hazards than from single hazards 

owing to complex interrelationships interrelationships of hazard, exposure and vulnerability in a multi-hazard setting. 

However, our current understanding of multi-hazard impacts is primarily based on case studies of individual events. To 

complement this, we examine the disaster records of the global emergency events database EM-DAT from 2000 to 2018 for 10 

evidence of multi-hazard risk dynamics. We develop an algorithm to identify multi-hazard events which usesusing the the 

information on associated hazards as well as spatiotemporal relationships between disaster records. in EM-DAT andT. We 

then perform a Based on the results, we identify and conceptualize distinct patterns of compounding impacts which we term 

archetypes. We identified that twice as many hazards are part ofind that 35% multi-hazardof  events and 61% of hazards are 

multi-hazard  when considering a spatial overlap of at least 5025% and a time lag of at most 31 year monthsin addition to the 15 

information of associated hazards. These multi-hazard events account forOverall, the multi-hazards accounted for 78% of the 

total damages, 83% of the total people affected and 69% of the total deathsin the reported disaste. We also statistically 

analysis compareto  the assess potential risk dynamics in reported impacts of selected hazard pair typesimpacts of hazards 

pairs, single hazards and combinations of two single hazards. The analysis suggests distinct patterns of compounding 

impacts, which vary depending depending on hazard and impact type. We conceptualize four archetypes to describe these 20 

patterns (“the whole is greater than the sum of its parts”, “the whole equals the sum of its parts”, “one hazard dominatespart 

determines the whole”, and “total impact cannot be exceededthe whole and the parts are limited by total impact”) to describe 

these patterns and to guide the integration of multi-hazard interrelationships into risk assessments.  All archetypes have in 

common that However, as a general trend, hazard pairs have at least as or more much impact as single hazards and as 

combinations of two isolated single hazards. To capture the patterns and to integrate them into risk analysis and decision 25 

making, we propose the development of generic archetypes of multi-hazard risk dynamics. Nonetheless, the uncertainties 

and limitations encountered highlight that future research should focus on improving data on multi-hazards and their 

impacts.  
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1 Introduction 

Multiple studies have reported disproportionate impact amplifications during multi-hazard or compound events   (e.g., see 30 

Gill and Malamud 2016; Zscheischler et al. 2018; de Ruiter et al. 2020). These amplifications can arise from several 

different elements in the multi-hazard context that interrelate with each other, leading to changes in impact (De Angeli et al. 

2023). The interrelationships can be on the hazard, exposure as well as vulnerability level and it is widely recognized that 

disregarding them can lead to an over- or underestimation of risk (Leonard et al. 2014; Zscheischler and Seneviratne 2017; 

Hillier et al. 2020; de Ruiter and van Loon 2022; De Angeli et al. 2022; Ward et al. 2022) as well as ineffective or even 35 

harmful risk reduction strategies (de Ruiter et al. 2021; Ward et al. 2020; Hurk et al. 2023).  

In the past decade, multiple studies have reported disproportionate impact amplifications during multi-hazard or compound 

events (de Ruiter et al., 2020; Gill & Malamud, 2016; Zscheischler et al., 2018). Such events are characterised by hazardous 

conditions overlapping in space or time or both. Examples are: the 2018 Osaka earthquake followed by flooding and 

landslides (de Ruiter et al., 2020);, concurrent heatwaves in major bread basket regions (Kornhuber et al., 2020);, or and 40 

floods from spatially and temporally coinciding pluvial, fluvial and coastal drivers (Eilander et al., 2023).  

 

Impact amplifications during multi-hazard events can arise from several different elements of disasterthe risk chain that 

interrelate with each other (De Angeli et al., 2022). These interrelationships can be on the hazard, exposure as well as 

vulnerability level and include feedback and dynamic processes. Throughout the article, we follow the UNDRR (2017) 45 

definitions for risk, hazard, exposure and vulnerability. Moreover, we use the term “multi-hazard impact” for impact 

generated from multiple hazards and accounting for all interrelationships on any level following Ward et al. (2022). Table 

1Table 1 provides an overview of the key definitions used in this article.  

 

It is widely recognized that disregarding such interrelationships can lead to an over- or underestimation of risk (De Angeli et 50 

al., 2022; de Ruiter & van Loon, 2022; Hillier et al., 2020; Kappes et al., 2012; Leonard et al., 2014; Terzi et al., 2019; Ward 

et al., 2022; Zscheischler & Seneviratne, 2017). It can also lead to as well as ineffective or even harmful risk reduction 

strategies as measures to decrease the risk of one hazard may lead to increase of risk of another hazard (de Ruiter et al., 

2020; Hurk et al., 2023; Ward et al., 2022). This means that multi-hazard impact cannot simply be modelled by adding up 

the impacts from single hazard impact models, which is known as multilayer single-hazard approach (Zschau, 2017). 55 

Instead, interrelationships of the risk elements should be considered in risk modelling, which is also as highlighted in the 

UN's Sendai Framework (UNDRR, 2017) and reflected in the IPCC’s AR6 cycle (IPCC, 2023).  

 

 

In this article, we follow the UNDRR definitions for risk, hazard, exposure and vulnerability (UNDRR 2017). Moreover, we 60 

use the term “multi-hazard impact” for impact generated from multiple hazards and accounting for all interrelationships on 
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the hazard, exposure and vulnerability level following (Ward et al. 2022) and the term “multi-hazard risk dynamics” for 

changes in risks caused by those interrelationships. Table 1 provides an overview of the key risk definitions used in this 

article.  

 65 

So far, hazard-hazard interrelationships have been researched most of the different types of interrelationships and several 

classification systems have been proposed (Gill and Malamud 2014; Liu, Siu, and Mitchell 2016; van Westen and Greiving 

2017; Tilloy et al. 2019; Zscheischler et al. 2020; De Angeli et al. 2022). Though the terms differ across systems, they 

describe similar and overlapping concepts including statistical dependence between hazards, amplifications of hazard 

magnitude or triggering relationships. Methodological reviews and guidelines for quantifying the interrelationships have also  70 

been published (Tilloy et al. 2019; Bevacqua et al. 2021). Understanding and accounting for the hazard interactions is 

important, because they can lead to an impact that is different than the sum of the single-hazard effects  (Kappes et al. 2012; 

Terzi et al. 2019). 

 

Interactions on the exposure and vulnerability level have been less extensively researched, but examples of different types o f 75 

changes in exposure and vulnerability been identified. For example, changes in exposure can arise, due to migration and 

evacuation (Tierolf et al. 2023) or due to losses and damages from a previous hazard that are not yet recovered (De Angeli et  

al. 2022). Furthermore, de Ruiter and van Loon (2022) discuss the complex interactions between hazards and vulnerability 

and identify key types of changes in vulnerability, such as the effects of an earlier hazard on the vulnerability at the time  of a 

second hazard. It has also been identified that a combined load from multiple hazards can cause higher damage than the 80 

summed damages of the separate hazards (Zuccaro et al. 2008; Li et al. 2012).  

 

So far, most multi-hazard research has focused on hazard-hazard interrelationships, and several classification systems have 

been proposed (De Angeli et al., 2022; Gill & Malamud, 2014; Liu et al., 2016; Tilloy et al., 2019; van Westen & Greiving, 

2017; Zscheischler et al., 2020). Though the terms used in these classifications differ across systems, they describe similar 85 

and overlapping concepts including statistical (in)dependence between hazards, spatiotemporal relationships, amplifications 

of magnitude, or and triggering relationships. Methodological reviews and guidelines for quantifying interrelationships have 

also been published (Bevacqua et al., 2021; Tilloy et al., 2019). Hazard-exposure and hazard-vulnerability interrelationships 

have been researched less extensively, but a number of types have already been identified. For instance, changes in exposure 

can arise due to migration and evacuation (Tierolf et al., 2023) or due to losses and damages from a previous hazard that are 90 

not yet recovered (De Angeli et al., 2022). Furthermore, de Ruiter & van Loon (2022) identified and discuss key types of 

dynamics of vulnerability, such as the effects of an earlier hazard on the vulnerability at the time of a second hazard. It has 

also been identified that a combined load from multiple hazards can cause higher damage than the summed damages of the 

separate hazards (Li et al., 2012; Zuccaro et al., 2008).  

 95 
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To our knowledge, few studies exist that consider the interrelationships on all levels together to investigate their overall 

effect on impact. One example is the comprehensive modelling framework developed by De Angeli et al. (2022), which 

integrates interrelationships on all levels to assess multi-hazard impact on the built environment and illustrates this by a case 

study with a hypothetical combined seismic and flood scenario. Another example is the multivariate linear regression 

analysis by (Budimir et al., (2014), which showsed that past earthquake-and-landslide events were associated with more 100 

fatalities than earthquakes alone when considering several independent covariates representing hazard, exposure and 

vulnerability elements. However, data limitations prevented the authors from assessing whether the hazard pair is associated 

inwith more fatalities than the sum of the constituent hazards or, in other words, whether impact amplifications arise.  

 

In general, the way in which impact data are currently collected and stored makes it difficult to study and understand 105 

compounding impacts in a multi-hazard or compound event context. Issues range from missing data and biases, which affect 

the reliability of the data (e.g., Gall et al., 2009), to the single-hazard focus and limited spatiotemporal information of many 

well-known impact databases, such as HANZE for floods (Paprotny et al., 2018), the NOAA natural hazards data for 

tsunamis, earthquakes and volcanic eruptions (NOAA, n.d.) or DESINVENTAR (UNDRR, n.d.) (Delforge et al., 2023)for 

various types of hazards. The single-hazard focus necessitates the investigation and linkage of possible multi-hazard 110 

conditions, but this is hindered by the limited spatiotemporal information.  Finally, impacts are being observed and stored on 

an event level and additional (statistical) methods are needed to attribute them to individual hazard components (Budimir et 

al., 2014).  

 

Recently, Lee et al. (2024) have shown that the information on main and associated disasters in the emergency events 115 

database EM-DAT (Delforge et al., 2023) can be used to classify the disaster records into different types of multi-hazard 

events. However, hazards occurring simultaneously or in close succession at the same location have been reported in 

separate disaster records in multiple instances. The Guatemala 2010 volcanic eruption and tropical cyclone (Gill & 

Malamud, 2014) and the tropical cyclones Idai and Kenneth hitting Mozambique in 2019 (de Ruiter & van Loon, 2022) are 

two examples of hazards that are recognized as multi-hazard events in the scientific literature but reported as separate 120 

records in EM-DAT. 

Recently, . However, an increasing trend in the reporting of associated hazards suggests that multi-hazards have been, and 

may still be, underreported with impacts being assigned only to a single main hazard. Moreover, hazards occurring 

simultaneously or in close succession at the same location have been reported in separate disaster records in multiple 

instances. An example of this is the Guatemala volcanic eruption and tropical cyclone that was described as detailed case 125 

study in Gill and Malamud (2014).  

 

(Lee et al. 2024)New possibilities for leveraging EM-DAT for multi-hazard analyses arise from the recently developed 

GDIS dataset of geocoded disaster locations (Rosvold & Buhaug, 2021) as well as MYRIAD-HESA, an new algorithm for 
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identifying multi-hazard events on the basis of spatiotemporal overlaps (Claassen et al., 2023).  In this article, we make use 130 

of these possibilities to reexamine the disaster records in EM-DAT. Our aim is to gain a better understanding of 

compounding impacts of multi-hazards for different types of hazards and impacts.  

 

We identify multi-hazard events following the approach by Lee et al. (2024) in combination with the GDIS dataset and a 

MYRIAD-HESA-inspired algorithm to account for spatiotemporal overlaps of disaster records.  135 

 

We focus on events with a (partial) spatial overlap and their immediate impacts rather than so-called systemic or complex 

impacts which can also arise from spatially distinct but temporally coinciding events due to global and sectoral 

interconnectedness (Hochrainer-Stigler et al., 2020; Simpson et al., 2021). We extract and derive impacts of hazard pairs and 

impacts of single hazards for different hazard types and perform a statistical analysis to compare impacts of hazard pairs, 140 

single hazards and combinations of two  isolated single hazards. Based on the identified differences and 

indifferencessimilarities, we distinguish four “archetypes” of compounding impacts, which can guide the integration of 

multi-hazard interrelationships into risk assessments.  

 

The above-mentioned efforts have focussed on analysis of or methods for hazard-hazard interactions, hazard-145 

exposure interactions or hazard-vulnerability interactions. For the built environment, de Angeli et al. (2022) propose 

a comprehensive modelling framework that integrates all three types of interactions for an assessment of multi-

hazard impact. In this way, such a framework can enable the detection of overall changes in impact and risk due to 

the multi-hazard context through modelling. Nonetheless, our current understanding of multi-hazard impact in past 

events still is limited, with most evidence, as described above, being from case studies.  150 

 of this study is to explore the role of multi-hazard risk dynamics in globally reported disaster impacts to add to the existing 

body of knowledge based on case studies. To this end, we use the disaster records the emergency events data base EM-DAT 

(Delforge et al. 2023), which is, to our knowledge, the only publicly data available source for disaster events including 

quantitative information on socio-economic impacts with global coverage. This database is widely-used in disaster risk 

science (Jones, Guha-Sapir, and Tubeuf 2022) and has been used before for multi-hazard analyses, in particular to classify 155 

historical disasters into different types of multi-hazard events by levering the information on main and associated hazards of 

each disaster record (Lee et al. 2024).  

 

 identify multi-hazard events in EM-DAT using not only the information on associated hazards(Lee et al. 2024), but also 

accounting for spatiotemporal relationships between disaster records following the common argumentation that hazards 160 

occurring close in time and space can cause significant risk dynamics (Kappes et al. 2012; de Ruiter et al. 2020; De Angeli et 

al. 2022). As a consequence the identified events can consist of multiple disaster records. We then identify those impacts in 
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the data set that have been caused by hazard pairs and those that have been caused by single hazards, and perform a 

statistical analysis to assess differences in impacts.  

 165 

Statistical methods have previously shown to be useful for detecting differences in impacts. In this study, we compare both 

hazard pair impacts to single hazard impacts as well as hazard pair impacts to the combined impacts of two single hazards of 

the same type. The underlying idea is that the impacts of a hazard pair should equal the sum of impacts of two single 

hazards, if there are no multi-hazard risk dynamics. Conversely, a difference will point to multi-hazard risk dynamics. 

 170 

In this article, we follow the UNDRR definitions for risk, hazard, exposure and vulnerability (UNDRR 2017). Moreover, we 

use the term “multi-hazard impact” for impact generated from multiple hazards and accounting for all interrelationships on 

the hazard, exposure and vulnerability level following Table 1 provides an overview of the key risk definitions used in this 

article.  

 175 

 

Table 1 Definitions of terms used in this article 

Term Definition Source 

Risk A combination of hazard, exposure and impact vulnerability as illustrated by the conceptual 

equation: Hazard x Exposure x Vulnerability 

(UNDRR, 2017) 

Hazard A process, phenomenon or human activity that may cause loss of life, injury or other health 

impacts, property damage, social and economic disruption, or environmental degradation. 

(UNDRR, 2017) 

Exposure The situation of people, infrastructure, housing, production capacities and other tangible human 

assets located in hazard-prone areas. 

(UNDRR, 2017) 

Vulnerability The conditions determined by physical, social, economic, and environmental factors or processes 

which increase the susceptibility of an individual, a community, assets, or systems to the impacts 

of hazards. 

(UNDRR, 2017) 

Multi-hazard The selection of multiple major hazards that the country faces and the specific contexts where 

specific hazards may occur over time simultaneously, cascadingly or cumulatively over time, and 

taking into account interrelated effects.  

(UNDRR, 2017) 

Multi-hazard  

impact /risk 

Impact / risk generated from multiple hazards and as well the interrelationships interrelationships 

between these hazards and considering interrelationships on the vulnerability and exposure  level. 

(Ward et al., 

2022) 

Multi-hazard 

risk dynamics 

Changes in risk or impact caused by interrelationships on the hazard, vulnerability or exposure 

level as compared to a case of no interrelationships. 

This article 

 

The primary aim  of this study is to explore the role of multi-hazard risk dynamics in globally reported disaster impacts to 

add to the existing body of knowledge based on case studies. To this end, we use the disaster records the emergency events 180 
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data base EM-DAT (Delforge et al. 2023), which is, to our knowledge, the only publicly data available source for disaster 

events including quantitative information on socio-economic impacts with global coverage. This database is widely-used in 

disaster risk science (Jones, Guha-Sapir, and Tubeuf 2022) and has been used before for multi-hazard analyses, in particular 

to classify historical disasters into different types of multi-hazard events by levering the information on main and associated 

hazards of each disaster record (Lee et al. 2024).  185 

 

However, there are several challenges related to the use of EM-DAT for multi-hazard analyses, which apply to other global 

impact databases as well. First of all, EM-DAT has well-known issues related to reporting biases (Gall, Borden, and Cutter 

2009) as well as the general reliability of the impact data (Guha-Sapir and Below 2002; Moriyama, Sasaki, and Ono 2018; 

Panwar and Sen 2020). In addition, the database records disasters from a single hazard perspective, though up to two 190 

associated hazards are included. An increasing trend in the reporting of associated hazards (Lee et al. 2024) as well as 

recently developed global multi-hazard data sets (Claassen et al. 2023) also suggest that multi-hazards have been, and may 

still be, underreported with impacts being assigned only to a single main hazard. Moreover, hazards occurring 

simultaneously or in close succession at the same location have been reported in separate disaster records in multiple 

instances. An example of this is the Guatemala volcanic eruption and tropical cyclone that was described as detailed case 195 

study in Gill and Malamud (2014). In light of these challenges and the fact that EM-DAT is widely used, a secondary aim of 

this study is to examine the opportunities and limitations of this database for multi-hazard analysis.  

 

To achieve these two aims, we set out to identify multi-hazard events in EM-DAT using not only the information on 

associated hazards, but also accounting for spatiotemporal relationships between disaster records following the common 200 

argumentation that hazards occurring close in time and space can cause significant risk dynamics (Kappes et al. 2012; de 

Ruiter et al. 2020; De Angeli et al. 2022). As a consequence the identified events can consist of multiple disaster records. We 

then identify those impacts in the data set that have been caused by hazard pairs and those that have been caused by single 

hazards, and perform a statistical analysis to assess differences in impacts.  

 205 

Statistical methods have previously shown to be useful for detecting differences in impacts. For example, Budimir, Atkinson, 

and Lewis (2014) employed them to show that earthquake-landslide pairs result in more fatalities than earthquake single 

hazards. In this study, we compare both hazard pair impacts to single hazard impacts as well as hazard pair impacts to the 

combined impacts of two single hazards of the same type. The underlying idea is that the impacts of a hazard pair should 

equal the sum of impacts of two single hazards, if there are no multi-hazard risk dynamics. Conversely, a difference will 210 

point to multi-hazard risk dynamics. 
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2 Data 

This study uses the international disaster database EM-DAT (Delforge et al., 2023), which contains information on natural 

hazards and their impacts together with the global data set of geocoded disaster locations GDIS (Rosvold & Buhaug, 2021), 

which contains geospatial footprints of the impact areas. 215 

 

2.1 EM-DAT 

EM-DAT is, to our knowledge, the only publicly available data available source with global coverage for disaster events that 

includesing multiple hazard types and quantitative information on socio-economic impacts. The database EM-DAT rerecords 

events with substantial impact that are related to natural as well as technological hazards on country level from 1900 – 220 

present. Substantial impact is defined as an event which that resulted in either at least ten deaths, at least 100 people affected, 

or a call for international assistance orf an emergency declaration. Each entry corresponds to a disaster event on a at country 

level. Events that span multiple countries are reported separately for each country, as opposed to being recorded as a single 

physical disaster event.  

For example, the 2004 Indian Ocean earthquake and tsunami is reported in 12 individual disaster records, including records 225 

in several Asian and African countries.  

 

Each disaster record in EM-DAT contains mandatory and optional fields. The mandatory fields relevant to this study are the 

unique event identifier, the country, the continent, the start year, as well as and the disaster type. We also use the optional 

fields, although data are frequently missing. Relevant optional fields are: the disaster subtype;, a first and second associated 230 

disaster, which represent subsequent or co-occurring hazards that may have contributed to the disaster impact;, the start date 

and end date;, as well as a and several number of human and economic impact variables.  

 

EM-DAT uses a hierarchical classification system with types and subtypes for the main hazards, but not for the associated 

hazards. The types and subtypes are not clearly defined and the system for classifying the associated hazards is not 235 

documented. We use nine different hazard type terms throughout this article. Table 2 shows how we relate main hazards, 

based on the type and sub type, and associated hazards to these terms. EM-DAT records that contain other hazard types, 

either as main hazard or as associated hazard, are excluded for this analysis.  

 

Table 2 Hazard types used in this article versus terms used in EM-DAT 240 

Terms used in this article Terms used in EM-DAT 

Hazard types  Disaster type  Disaster subtype Associated disaster  

Earthquake (eq) Earthquake Ground movement Earthquake 
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Tsunami  (ts)  Tsunami Tsunami/tidal wave,  

Volcanic eruption (vo) Volcanic activity Ashfall, lahar, pyroclastic flow, lava flow Volcanic activity 

Landslide (ls) Landslide Landslide, rockfall, mudslide, avalanche 

(snow, debris, mudflow, rock) 

Slide (land, mud, snow, rock), 

avalanche (snow, debris)   

Coldwave (cw) Extreme 

temperature 

Cold wave Cold wave 

Heatwave (hw) Heat wave Heat wave 

Extreme wind (ew) Storm Convective storm, tropical cyclone, extra-

tropical storm 

Storm 

Flood (fl) Flood Coastal flood, riverine flood, flash flood Flood 

Drought (dr) Drought All (Drought) Drought 

 

 

In terms of impact, we consider the number of people affected, number of deaths, and damages. Throughout the following 

sections we will use the term “impact” to refer to these three quantities. Their definitions are: 

• Number of pPeople aAffected: Nonumber. iInjured, nNumbero. aAffected and nNumbero. hHomeless, where. 245 

nNumbero. Aaffected are the people needing immediate assistance due to the disaster. If only the number of 

families affected or houses damaged are reported, the figure is multiplied by the average family size for the 

affected area. 

• Number of dDeaths: confirmed fatalities directly imputed to the disaster plus missing people whose 

whereabouts since the disaster are unknown and so they are presumed dead based on official figures. 250 

• Damages: refers to total economic damage in US $ adjusted for inflation.   

 

EM-DAT is known to exhibit several biasesWhile EM-DAT is being widely used in disaster risk science (Jones et al., 2022), 

it has well-known issues related to reporting biases (Gall et al., 2009) as well as the general reliability and accuracy of the 

impact data (Guha-Sapir & Below, 2002; Moriyama et al., 2018; Panwar & Sen, 2020). The biases are due to having entire 255 

records missing rather than fields missing within records (Gall et al., 2009). These include time bias, hazard-related bias, 

threshold bias, accounting bias, geographic bias, as well as systemic bias. We exclude data from before the year 2000 to 

minimize time bias as recommended by the maintainers of EM-DAT (Delforge et al., 2023). However, other the other bias 

types remain, posing a limitation to this study. For example, heatwaves are known to be underreported in EM-DAT 

(Brimicombe et al., 2021; Harrington & Otto, 2020).Such biases only become apparent when comparing different disaster or 260 

hazard databases (Koç and Thieken 2018; Moriyama, Sasaki, and Ono 2018; Panwar and Sen 2020). 

 

However, gGuidelines for handling how to handle biases and missingness in disaster risk science are still lacking in disaster 

risk science. Approaches for missingness differ across studies. Deletion, augmentation and imputation, or a combination of 

Formatted: Normal, Indent: Left:  0 cm



10 

 

these, are most common for studies using EM-DAT as a primary or secondary data source (Jones et al., 2023). Deletion is 265 

simpler, but deemed inferior to augmentation and imputation because it poses a higher risk of introducing bias especially 

when data are not missing at random (Nakagawa & Freckleton, 2008).MAR However, bias can be introduced by 

augmentation and imputation as well, if the data set used to develop those methods is already biased due to the missing 

cases.  

 270 

We use two approaches for dealing with missing data. First, we use a deletion approach for distributions or statistics of 

hazard impacts. The approach, called ‘available case analysis’, utilizes only the observed data points for each variable. 

Because variables with few observations are less likely to be representative of the various possible underlying conditions in 

terms of hazard intensity, vulnerability and exposure than variables with many observations, we only conduct in -depth 

analyses for variables with at least 50 observations. Second, we use an imputation approach for total aggregate results that 275 

involve sums. Here, we assume missing values to be zeros. This is currently the standard approach in the literature though it  

inevitably leads to an underestimation of total impacts (Jones et al., 2023; Lee et al., 2024). After preprocessing to handle 

biases and missingness, The subset of EM-DAT that we are analysingwe obtained a data subset containings 5868 disaster 

records, of which 74% have one hazard, 22% have two hazards, and 4% have three hazards. This corresponds to a total of 

7605 hazards (5868*74%*1 + 5868*22%*2 + 5868*4%*3 = 7605).  This ss when following the approach of Lee at al. 280 

(2024) to reclassifying EM-DAT records.  

Here, we describe how these numbers differ when considering spatiotemporal overlaps between disaster records and 

allowing multi-hazard events to consist of multiple disaster records. 

 

A challenge arises when accounting for spatiotemporal overlaps between records: individual hazards can often no longer be 285 

uniquely assigned to one event but are part of multiple events. This is different to the case when each disaster record 

constitutes an event and individual hazards are confined to this event. Therefore, we shift the perspective from the level of 

disaster record to level of individual hazard. We exemplify this with numbers. The data subset contains a total number of 

7605 hazards (Using the values from the first paragraph: 74% * 5868 disaster records * 1 hazard + 22% * 5868 disaster 

records * 2 hazards + 4% * 5868 disaster records * 3 hazards = 7605 hazards). 57% of the 7605 hazards are single -hazards 290 

and 43% are part of multi-hazards according to Lee’s classification approach. These multi-hazards caused 57% of the total 

damages, 40% of the total people affected and 49% of the total deaths globally, which is comparable to Lee et al.’s results 

who assessed all natural hazards in EM-DAT from 1900 - 2023. 

 

2.2 GDIS  295 

GDIS is an open-source extension to EM-DAT and provides geographical approximations for main geophysical, 

meteorological, hydrological and climatological disaster types from 1960 – 2018 period (Rosvold and Buhaug, 
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2021)(Rosvold and Buhaug, 2021). It includes spatial geometries for floods, storms, earthquakes, volcanic activity, extreme 

temperatures, landslides, and droughts, however not for wildfires. Overall, GDIS provides impact zones for almost 90% of 

these types of records.  300 

 

 

 

The spatial geometries in GDIS correspond to administrative areas, as contained in the Global Administrative Areas database 

(GADM, n.d.)(GADM, n.d.). The geometries are derived from EM-DAT’s country field or optional “”Location” field, which 305 

lists the name(s) of the affected administrative area(s), or “Latitude” and “Longitude” fields, which provide coordinates for 

the location. Most locations can be described on the spatial resolution of administrative level 1 (typical 

state/province/region). The highest resolution corresponds to level 3 (district/commune/village) and the lowest resolution 

corresponds to level 0 (country). However, as hazards are unlikely to affect the preciseentire area of an administrative region, 

the spatial geometries have to be regarded as crude approximates of the impact zones.   310 

3 Method 

Our method has two main parts and is outlined in Figure 1Figure 1: firstly, developing multi-hazard data sets based on EM-

DAT and GDIS; and secondly performing the statistical analyses of the impacts of single and multi-hazard..  

 

The In the first part we re-(developingclassify the disaster records into single-hazard and multi-hazard eventsdata sets) has 315 

three steps. In the second part we analyse the impacts. 

 

 In the first part,First, we The first part involves three stepsis involves. First, we preprocessing create a georeferencethe EM-

DAT d data set of disaster records by and thea geo-referencing them e by joining EM-DAT and using GDIS (Section 3.1.1). 

Second, we develop a data set ofidentify identify spatiotemporally overlapping disaster record pairs (Section 3.1.2).  by 320 

assessing whether disaster records in EM-DAT have spatiotemporal overlaps. Third, we develop derive the disaster record 

chains, hazard chains, and (multi-)single-hazard and multi-hazards events, by using the spatiotemporally overlapping pairs 

together with information from the associated disaster fields in EM-DAT (Section 3.1.3).  

 

The second part also involves three steps. . Each of these steps is described in more detail in Sections 3.1.1 - 3.1.3.   325 

 

The second part (statistical analysis of impacts) has two steps. First, we assess the share of multi-hazards and their impacts in 

global disasters we identify impacts of single hazards and of hazard pairs from the events for further analysis(Section 3.2.1). 

Second, we identify and statistically compare impacts of hazard pairs, single hazards and combinations of two single hazards 
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compare the impacts (Section 3.2.2) of single hazards with impacts of hazard pairs. For simplicity, we restrict ourselves to 330 

hazard pairs as multi-hazards.  Third, we compare the combined impacts of two individual single hazards with the impacts of 

hazard pairs. Each of these steps is described in more detail in Sections 3.2.1 - 3.2.3.identify and conceptualize patterns of 

compounding impacts from multi-hazards in four distinct archetypes (Section 3.2.3).  

 

 335 

Figure 1 The two main parts and sub-steps of the methodology 



13 

 

3.1 Re-classifying disaster records into single-hazard and multi-hazard events 

In this section, we describe the three steps to identify single-hazard and multi-hazard events based on the EM-DAT 

disaster records. The python code of the algorithm can be found on GitHub (link to be added upon publication).3.1 

Developing Multi-Hazard Data Sets 340 

 

In this section, we describe the three steps to identify multi-hazard events in EM-DAT. The python code of the algorithm can 

be found on GitHub (link to be added upon publication). 

3.1.1 Preprocessing and gGeoreferencinged disaster records 

In the first step, weWe create a data set of georeferencedpreprocess and geo-reference disaster records using EM-DAT and 345 

GDIS data. The GDIS geometries can be linked to the EM-DAT data set via the unique disaster event identifier that is 

present in both data sets. Given the properties of,, and guidelines for,, EM-DAT and GDIS,the datasets, we only include 

disaster records that fall within the period 2000 – 2018 and belong to one of the seven disaster types listed in the second 

column of .  

 350 

EM-DAT uses a hierarchical classification system with types and subtypes for the main disasters. The associated disasters do 

not follow the main classification system of EM-DAT but appear to correspond to either the disaster type or the disaster 

subtype. For consistency we map them to a disaster type. If the associated disasters cannot be mapped to one of the seven 

disaster types, we exclude the record from the analysis.  

 355 

In the remainder of the paper we use the term hazard types instead of disaster type to be in line with terminology of the 

disaster risk field (PreventionWeb, 2023). We use nine different hazard types that capture different combinations of disaster 

type and subtype as well as the associated disasters. EM-DAT records that contain other hazard types are excluded for this 

analysis. We use the same terms for the hazard types as (Claassen et al., 2023); they are given in the first column of .  

 360 

Finally, we link the GDIS geometries to the EM-DAT data set via the unique disaster event identifier that is present in both 

datasets. 

Table 2 shows how we relate main hazards, based on the type and sub type, and associated hazards to these terms. EM-DAT 

records that contain other hazard types, either as main hazard or as associated hazard, are excluded for this analysis.  

 365 

Table 2 Hazard types used in this article versus terms used in EM-DAT 

Terms used in this article Terms used in EM-DAT 

Hazard types  Disaster type  Disaster subtype Associated disaster  
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Earthquake (eq) Earthquake 

 

Ground movement Earthquake 

Tsunami  (ts) Tsunami Tsunami/tidal wave,  

Volcanic eruption (vo) Volcanic activity Ashfall, lahar, pyroclastic flow, lava flow Volcanic activity 

Landslide (ls) Landslide Landslide, rockfall, mudslide, avalanche 

(snow, debris, mudflow, rock) 

Slide (land, mud, snow, rock), 

avalanche (snow, debris)   

Coldwave (cw) Extreme 

temperature 

Cold wave Cold wave 

Heatwave (hw) Heat wave Heat wave 

Extreme wind (ew) Storm Convective storm, tropical cyclone, extra-

tropical storm 

Storm 

Flood (fl) Flood Coastal flood, riverine flood, flash flood Flood 

Drought (dr) Drought All (Drought) Drought 

 

 

 

The associated disasters do not follow the main classification system of EM-DAT but appear to correspond to either the 370 

disaster type or the disaster subtype. For consistency we map them to a disaster type. If the associated disasters cannot be 

mapped to one of the seven disaster types we focus on in this study, we exclude the record from the analysis. In the rest of 

the paper we use the term hazard types instead of disaster type to be in line with terminology of the disaster risk field 

(PreventionWeb, 2023). We use nine different hazard types that capture different combinations of disaster type and subtype 

as well as the associated disasters. We use the same terms for the hazard types as in a previous paper (Claassen et al. 2023); 375 

they are given in the first column of Table 2. 

3.1.2 Identifying sSpatiotemporally overlapping disaster record pairs 

In the second step, weWe use the spatial geometries and dates associated with each disaster record to identify spatiotemporal 

overlaps between pairs of disaster records using their spatial geometries and dates. We explain the algorithm with the 

illustration in Figure 2Figure 2. This example has five disaster records A – E. Figure 2Figure 2a shows the relevant 380 

information for the algorithm as stored obtained fromin EM-DAT. Each disaster record has a start date as well as a main 

hazard type and optionally one or two associated hazard types. End dates are often missing. The algorithm works as follows: 

1. We create a list of all possible pairwise combinations of disaster records per country. We focus on pairs within a single 

country, because this is how disasters are recorded in EM-DAT. Alternatively, we could have merged the records of 

different countries when they correspond to the same physical disaster event. This would give a better estimation of the 385 

number of events from a physical perspective. However, our main goal is to assess and compare differences in impact 

from single-hazards and multi-hazards focussing on spatiotemporal overlaps. We reasons that considering the records of 

different countries individually enables us to better separate areas which that are affected by multiple hazards from areas 
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which that are affected by a single hazard.  Suppose disaster records A – E are in one country, then all possible 

combinations pairs would be “A, B”, “A, C”, “A, D”, “A, E”, “B, C”, “B, D”, “B, E” and “D, E”.  390 

2. We then assess the spatial overlap for each of the these pairspairs from step 1. WTo this end, we calculate the 

intersecting area between the disaster records from the spatial geometries, as well as the  fractions that the intersecting 

area constitutes toof the intersecting areas compared to the total areas of each of the individual events. We refer to the 

higher value of the two fractions as the intersection percentage and use a minimum value as criterion to define spatially 

overlapping disaster records. Because disasters are unlikely to affect the entire area of an administrative region, the 395 

spatial geometries of the disaster records are relatively crude approximations of the impact zones. We reason that the 

smaller greater the intersecting area of two footprints, the less more likely it is that the actual disaster impact zones 

overlap. The idea behind the threshold is to keep only those combinations that have a reasonable likelihood of actually 

having overlapping disaster zones. We use a threshold of 50% and perform a sensitivity analysis (0%, 25%, 50%, 75%, 

100%)1  on this choice. Given the spatial geometries in Figure 2Figure 2b, the spatially overlapping pairs would be “A, 400 

B”, “A, C” and “B, D”.  

3. We also assess the temporal overlap for each overlapping pairof the pairs from step 1. We Because end dates are often 

missing in the disaster records, we calculate the time difference between the start dates of the pair. We use a maximum 

time lag as a criterion to define temporally overlapping disaster records. We use a time lag of 3 months and perform a 

sensitivity analysis on this choice (0 months, 1 month, 3 months, 6 months, 12 months)2. Figure 2c depicts the time lags. 405 

Suppose all the times between events disasters (Δt21, Δt32, Δt43, Δt54) are 1 month, the temporally overlapping pairs using 

a 3 month time-lag would be “A, B”, “A, C”, “A, D”, “B, C”, “B, D”, “B, E” and “D, E”. 

4. We identify all spatiotemporally overlapping disaster record pairs based on the previous assessments of spatial and 

temporal overlap. In the example, these are “A, B”, “A, C” and “B, D”. 

3.1.3 Disaster record chains, hazard chains and (Deriving eventsmulti-)hazard events 410 

WIn the third step, we  derive single-hazard events and multi-hazard events by identifying all build a data set of disaster 

record chains and dissolve them into hazard chains. We start by building a disaster record and a hazard chain for each 

disaster record in EM-DAT. The chains contain all disaster records s and hazards that have potentially contributed to the 

reported impact through direct or indirect spatiotemporal overlaps. To develop the disaster record chains, wWe use an 

iterative algorithm that utilizes on the previously identified overlapping disaster record pairs. We explain the algorithm using 415 

expanding the previous previously introduced example from in Figure 2Figure 2da-c:   

• For each disaster record (from EM-DAT), we find all pairs of spatiotemporally overlapping disaster records that 

include this disaster record. In each of those pairs, ifT the other disaster record in the pair is preceding the record of 

 
1 The criterion is ≥ for all spatial overlap values, except for the 0% value. In this case the criterion is >.   
2 The criterion is ≤ for all time lag values. 
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interest in time, it is considered to be a contributing disaster record , if it is preceding in timerecord. For example, 

consider if D to beis the disaster record of interest, t. Then, B is a contributing disaster record.  record, as the latter 420 

occurs earlier in time.  

• If the contributing disaster record has in turn another contributing disaster record, we add that one as well , thus , 

thus considering indirect contributions. Here, A is contributing disaster record to B. Hence, we add A as 

contributing disaster record to D as well. Adding indirectly contributing disaster records is a recursive process. For 

theis example the recursive process stops here, because A has no further contributing disaster records. 425 

• The An entire disaster record chain thenevent consists of the disaster record of interest and all contributing disaster 

records ordered in time (A, B, D) as well as the hazards included in those disaster records.  

• We obtain the hazard chain by replacing each disaster record by the hazard or set of hazards that it contains (A1, 

B1, D1, D2). Events which are fully included in another event are marked as duplicates and not used in part of the 

analysis. They have been events at the time their impact was recorded but evolved to include additional hazards 430 

later on. For example, “A1, B1” is fully included in “A1, B1, D1, D2”, which is marked by parenthesis in Figure 2e. 

Note that the same hazard can be part of multiple events. For example, hazard “A1” is part of event “A1, C1, C2, 

C3” as well as “A1, B1, D1, D2” 

Figure 2d presents the data set of disaster record chains and hazards chains we obtain from the algorithm for this example.  

In the last step, we build a data set of (multi-)hazard events. These are those hazard chains, that are not included in another 435 

hazard chain. For example, “A1, B1” is fully included in “A1, B1, D1, D2”. Therefore, we do not consider “A1, B1” to be an 

event by itself, but part of the event “A1, B1, D1, D2”. Figure 2e shows the resulting events for the example and Figure 

2Figure 2ef illustrates how the terms hazard, disaster record and event relate to each other.  
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440 

 

Figure 2 Illustration Example withof five disaster records  A, B, C, D and E. a) RIllustration of relevant fields in obtained from 

EM-DAT; b) SSpatial geometries of disaster records; c) Start dates ofTimes between disaster records; d) Data set of contributing 

disaster records, disaster record chains and hazard chains; de) Data set of multi-hazard events;Disaster records, their contributing 

disaster records and corresponding events. Parentheses indicate events which are fully included in another event. ef) Illustration of 445 
how the terms individual hazards, disaster records and (multi-)hazard events relate to each other. 

 

In the last step, we build a data set of (multi-)hazard events. These are those hazard chains, that are not included in another 

hazard chain. For example, “A1, B1” is fully included in “A1, B1, D1, D2”. Therefore, we do not consider “A1, B1” to be an 
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event by itself, but part of the event “A1, B1, D1, D2”. Figure 2e shows the resulting events for the example and Figure 2f 450 

illustrates how the terms hazard, disaster record and event relate to each other.  

3.2 AnalysingStatistical Analysis of iImpacts 

In this section, we describe the three steps offor analysing and comparing impacts of single-hazards and impacts of multi-

hazards. The python code of the algorithm can be found on GitHub (link to be added upon publication).the statistical 

analysis.  455 

3.2.1 Impacts Assessing the share of multi-hazards and their impacts of single hazards and hazard pairs 

We follow a number of steps to assess the share of multi-hazards and their impacts in global disasters, as illustrated by the 

flowchart in the box of step 3.2.1 in Figure 1. Starting point are the derived single- and multi-hazards events with duplicates 

removed. First, we determine the total number of events. The ones that contain one hazards are single-hazard events. The 

ones that contain more than one hazard are multi-hazard events. Then, we determine the share of multi-hazard events in the 460 

total number of events. We also determine the share of hazards that occur in multi-hazard events. We determine this by 

subtracting the share of single-hazards from 100% to avoid double counting due to hazards being part of more than one 

multi-hazard event. The share of single hazards is given by the number of single-hazard events divided by the total number 

of hazards in the disaster records and converted to a percentage. Similarly, we determine the share of impacts caused by 

multi-hazards: we subtract the share of impacts caused by single hazards from 100%, where the share of impacts caused by 465 

single hazards is the sum of impacts caused by single hazards divided by the total impacts of all disaster records and 

converted to a percentage.  

 

 

To start with, we create a data set of the human and socioeconomic impacts of single hazards and of hazard pairs. We focus 470 

on damages, number of people affected, and number of deaths. For simplicity, we use the term impact to refer to them 

collectively. We create the data set by selecting all hazard chains consisting of one or two hazards. These would be “A1”, 

“A1, B1” and “E1, E2” in the example of Figure 2d. If the chain consists of one hazard, we record a single hazard impact. If 

a chain consists of two hazards, we record a hazard pair impact. Note that a chain of hazards can belong to one disaster 

record or two disaster records. If they belong to two disaster records, we sum the impacts to obtain the overall impact of both 475 

hazards.  

3.2.2 Identifying and comparing impacts of hazard pairs, single hazards and combinations of two single hazards 

Comparison of single hazard impacts and hazard pair impacts 

We create a data set of the human and socioeconomic impacts of single hazards and of hazard pairs. We focus on damages, 

number of people affected, and number of deaths. We create the data set by selecting all events (including the duplicates) 480 
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consisting of one or two hazards. These would be “A1”, “A1, B1” and “E1, E2” in the example of Figure 2Figure 2d. If the 

event consists of one hazard, we record a single hazard impact. If an event consists of two hazards, we record a hazard pair 

impact. Note that the hazards of a hazard pair can belong to one disaster record or two disaster records. If they belong to t wo 

disaster records, we sum their impacts to obtain the total of both hazards.  

 485 

We examine distributions and compare means to analyse impacts of hazard pairs, single hazards and combinations of two 

single hazards for different hazard and impact types. We have the distribution of impacts for hazard pairs and for single 

hazards from the previous step but not for the combinations of two single hazards. For the latter, we can only derive the 

mean by summing the mean impacts of the underlying single hazards. To compare the means, we construct confidence 

intervals (CIs) with a percentile bootstrap (N=10,000). If the CIs do not overlap, we conclude that the difference in impacts 490 

is statistically significant. Otherwise, we conclude that the difference is statistically not significant.  

In the second step, we use boxplots to examine the distributions of impacts of single hazards and the impacts of hazard pairs 

for different hazard types. Then, to assess whether impacts are different for single hazards and for hazard pairs, we compare 

the confidence intervals (CIs) of their means. We construct the CIs with a percentile bootstrap (N=10,000). If the CIs 

overlap, we conclude that the difference in impacts is not statistically significant. If there is no overlap, the difference is 495 

statistically significant.  

3.2.3 Comparison of the combined impacts of two single hazards and of hazard pairs 

In the third step, we do not examine data distributions with boxplots, because we do not have a direct data set of 

combined impacts of two single hazards. However, we use the same CI approach as above to compare whether 

differences in impacts are statistically significant or not. Here, the mean combined impacts of two single hazard types 500 

is given by the sum of the mean impacts of two single hazard types. 3.2.3 Identifying and conceptualizing patterns of 

compounding impacts 

We identify different patterns of compounding impacts based on the detected differences and similarities in impacts of 

hazard pairs, single hazards and combinations of two single hazards. We conceptualize these patterns and call them 

archetypes, inspired by the field of system dynamics, which uses the term to describe common dynamics that recur in many 505 

different settings (Senge, 1990).   

nd sidentified four 

4. Results  

WFirst we first show the main results related toshow the prevalence share of events that are multi-hazard eventss and 

theirtheir share of impacts (step 3.2.1). Then, we show the results of the statistical comparison of impacts of hazard pairs, 510 

single hazards and combinations of two single hazards (step 3.2.2). Finally, we describe distinct patterns of compounding 
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impacts (step 3.2.3). Additional results on intermediate outputs of steps 3.1.1 and 3.1.2 can be found in sections A.1 and A.2 

of the Appendix. 

 when considering both the information of associated hazards in EM-DAT as well as spatiotemporal overlaps between the 

disaster records. These are the results of method step 3.2.3. For more details on intermediate results of method steps 3.1.2 515 

and 3.1.2, we refer to sections A.1 and A.2 of the appendix. Thereafter, we show the results of the statistical analysis of 

impacts which were described in method steps 3.2.1 - 3.2.3. 

4.1 Prevalence Share of mMulti-hHazards events and their Share of iImpacts  

The data sets of identified (multi-)hazard events for different criteria can be found at Zenodo (link to be added upon 

publication). The subset of EM-DAT that we are analysing contains 5868 disaster records, of which 74% have one hazard, 520 

22% have two hazards, and 4% have three hazards. This corresponds to 74% single hazards and 26% multi -hazards when 

following the approach of Lee at al. (2024) to reclassifying EM-DAT records. Here, we describe how these numbers differ 

when considering spatiotemporal overlaps between disaster records and allowing multi-hazard events to consist of multiple 

disaster records. 

 525 

A challenge arises when accounting for spatiotemporal overlaps between records: individual hazards can often no longer be 

uniquely assigned to one event but are part of multiple events. This is different to the case when each disaster record 

constitutes an event and individual hazards are confined to this event. Therefore, we shift the perspective from the level of 

disaster record to level of individual hazard. We exemplify this with numbers. The data subset contains a total number of 

7605 hazards (Using the values from the first paragraph: 74% * 5868 disaster records * 1 hazard + 22% * 5868 disaster 530 

records * 2 hazards + 4% * 5868 disaster records * 3 hazards = 7605 hazards). 57% of the 7605 hazards are single -hazards 

and 43% are part of multi-hazards according to Lee’s classification approach. These multi-hazards caused 57% of the total 

damages, 40% of the total people affected and 49% of the total deaths globally, which is comparable to Lee et al.’s results 

who assessed all natural hazards in EM-DAT from 1900 - 2023. 

 535 

We find that that a higherwithin our data set the proportionshare of of hazards that are part of multi-hazards is events and 

higher share of hazards are multi-hazard  likely higher than the 43% detected using Lee et al. (2024). According to their 

approach due to spatiotemporal overlaps of the disaster records in EM-DAT. , there are 5868 events of which 26% are multi-

hazard events and include 43% of the hazards. The multi-hazard events caused 57% of the total damages, 40% of the total 

people affected and 49% of the total deaths globally.  540 

 

The higher shares that we find are due to spatiotemporal overlaps of the disaster records in EM-DAT. However, there is 

uncertainty related to the choice of overlap criteria Figure 3Figure 3a-f show the results for different assumptions of 

spatiotemporal overlap. Figure 3a a showss the total number of identified events, Figure 3b shows the proportion share of 
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hazards that are part of multi-hazardevents that are multi-hazard events, Figure 3c shows the share of hazards that are 545 

associated with multi-hazard events and Figures 3d-f show the shares of total damages, number of people affected and 

number of deaths caused by the share of hazards associated with multi-hazard eventss for different assumptions for 

spatiotemporal overlap.  

 

The lower the criterion for minimum spatial overlap and the higher the criterion for maximum time lag,  the lower the 550 

number of events and  the higher the proportion share of hazards that are part of multi-hazards and their impactss. For 

example, compared to Lee et al. (2024), , the number of events decreases to 4636 and the proportion of hazards that are part 

of multi-hazardsshare of multi-hazard events increases to 3561% when assuming a spatial overlap of at least 50% and a time 

lag of at most 3 months. The identified multi-hazard events include 218 different hazard combinations and consist of up to 

32 individual hazards from 5 different hazard types rather than at most 3 different hazards and hazard types in the disaster 555 

records. Furthermore, t he share of hazards associated with multi-hazard events increases by almost 50% to 61%when 

assuming a spatial overlap of at least 50% and a time lag of at most 90 da. ys. Together these hazards Together they causedd 

78% of the total damages, 83% of the total people affected and 69% of the total deaths globally.  

 

 When increasing the time lag to 1 year, the proportion increases to 76% and together they cause 91% of the total damages, 560 

91% of the total people affected and 95% of the total deaths globally.  

 

Similarly, the number of events that we identify depends on the choice of spatiotemporal overlap criteria. The data sets of 

identified (multi-)hazard events for different criteria can be found at Zenodo (link to be added upon publication). Similarly, 

the number of events that we identify depends on the choice of spatiotemporal overlap criteria.Here, we present the results 565 

for a spatial overlap of at least 50% and a time lag of at most 90 days as Figure 3 gives an indication of sensitivity. In this 

case, we identify 2291 (multi-)hazard events of which 65% are single-hazard events and 35% are multi-hazard events. It may 

seem contradictory that the number of multi-hazard events is lower than the number of EM-DAT disaster records, whereas 

the number of individual hazards that are part of multi-hazards is higher. This is because a disaster record contains at most 

three hazards, whereas the multi-hazard events that we derive can have more hazards. Overall, we find 218 event types with 570 

different hazard combinations, which consist of up to 32 individual hazards from 5 different hazard types.  
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Figure 3 Share of (a) Number of hazards that are part of multi-hazardevents,s (b) share of multi-hazard events, (c) share of 

hazards associated with multi-hazard events as well as their share in when accounting for spatiotemporal overlaps between the 

disaster records in EM-DAT for different values of minimum spatial overlap and maximum time lag as well as their (db) total 575 
damages, (ec) total people affected and (fd) total deaths when accounting for spatiotemporal overlaps between the disaster records 

in EM-DAT.. 

4.2 Comparison of impacts of hazard pairs, single hazards and combinations of two single hazards Comparison of 

Single Hazard and Hazard Pair Impacts 

Now we present the statistical analysis of impacts. Again, Wwe present the results for a spatial overlap of at least 50% and a 580 

time lag of at most 90 days. Figure 4Figure 4 shows the boxplots  distributions of the distributions of impacts of single 

hazards and hazard pairs and single hazards for different hazard types as well as the mean values with 95% confidence 

interval (CI) for hazard pairs, single hazards and combinations of two single hazards. We only show impact types and hazard 

types with sample sizes N ≥ 50 in an attempt to capture the broad range of underlying hazard intensity, exposure and 

vulnerability conditions in from which the impacts arise. There are eight combinations cases in terms of combination of 585 
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impact type and hazard pair types that fulfil this criterion. For extreme winds and floods, sufficient data are available for 

total damages, number of total deaths, and total number of people affected (first column of Figure 4Figure 4).  For floods and 

landslides, as well as consecutive floods, sufficient data are available for number of total deaths and total number of people 

affected (second and third column of Figure 4Figure 4). For earthquake and landslides, sufficient data are available for total 

deathspeople affected (fourth column of Figure 4Figure 4). Sample sizes are reported in Table C1 and Table C2 in the 590 

Appendix.  

 

 

For all variables (impacts of single hazards and of hazard pairs), the mean value is higher than the 75%-quantile; for 9 of the 

16 variables the mean value is even higher than the 95%-quantile. Thus, the majority of impacts are clustered towards the 595 

lower end of the impact range while a few very high data points pull the mean upwards. Not surprisingly thenConsequently, 

the uncertainties about the mean are large compared to the spread of the distributions: For 10 of the 16 variables, the 

uncertainty about the mean is larger than the 75% inter-quantile range. 

 

The first four columns of the matrix in  600 

Table 3 lists the results of the comparison of the mean reported average impacts of hazard pairs with those of the 

correspondingand single hazards. In three cases, the impacts of the hazard pair are significantly higher than those of both 

single hazards (damages for extreme winds and floods, number of deaths for consecutive floods, and number of people 

affected for consecutive floods). Also, in three cases, the impacts of the hazard pair are significantly higher than those of  one 

but not the other of the single hazards , but not of the other (number of deaths for floods and landslides, number of people 605 

affected for floods and landslides, and number of people affected for earthquakes and landslides). Finally, in two cases, the  

average impacts of the hazard pair are not significantly different than those of either of the single hazards (number of deaths 

for extreme winds and floods and number of people affected for extreme winds and floods). In no case is the average impact 

of a hazard pair significantly lower than those of either or both single hazards.  

 610 

The last four columns of the matrix in  

Table 34 lists the results of the comparison of mean the reported average impacts of hazard pairs with and combinations of 

two single hazardsthe combined reported average impacts of the two corresponding single hazards. In two cases, the impacts 

of the hazard pair are significantly higher than the combined impacts of the two single hazardscombinations of two single 

hazards (number of deaths of consecutive floods and number of people affected of consecutive floods). In all other cases, no 615 

statistical difference is detected. In no case is the average impact of a hazard pair significantly lower than those of the 

combined impacts of the two single hazards. 
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 620 

 

 

 

 

Figure 4 Boxplots of impact data for single hazards as well as hazard pairs (,) for different impact types and hazard types as well 625 
as mean values and their bootstrap 95% CI for single hazards, hazard pairs (,) and the combined impact of two single hazards (+). 
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The rows show different impact metrics. The columns show different hazard types (ew – extreme wind, fl – flood, ls – landslide, eq 

– earthquake). Only combinations of impact and hazard type with N > 50 are shown. 

 

 630 

Table 3 Statistically significant differences in average mean impacts of hazard pairs, single  compared to average impacts of 

underlying single hazards and two single hazard combined (ew – extreme wind, fl – flood, ls – landslide, eq – earthquake). Pairs  

are denoted by a ‘,’ and combinations of two single hazards are denoted by a ‘+’. A ‘>+’ denotes indicates that the impact of the 

variable in the row is higher than of the variable in the column value of the hazard pair is higher than the value of the single 

hazard and a ‘=’ denotes no difference. 635 

  ew fl eq ls ew+fl fl+fl fl+ls eq+ls 

Damages 

ew,fl 

> >   =    

Number of deaths = =   =    

Number of people affected = =   =    

Damages 

fl,fl 

        

Number of deaths  >    >   

Number of people affected  >    >   

Damages 

fl,ls 

        

Number of deaths  >  =   =  

Number of people affected  =  >   =  

Damages 

eq,ls 

        

Number of deaths         

Number of people affected   = >    = 

 

4.3 Archetypes of compounding impacts 

We identify four distinct patterns of compounding impacts based on the differences and similarities in mean impacts of 

hazard pairs, single hazards and combinations of two single hazards (Table 4). observed four different patterns which we In 

the first archetype, the impact of the hazard pair is higher than the impacts of both underlying single hazards as well as their 640 

combined impact. We see this pattern in number of deaths and number of people affected of flood-flood pairs. In the second 

archetype, the impact of the hazard pair is higher than the impacts of both underlying single hazards, but not different from 

their combined impact. We see this pattern in damages of extreme wind – flood pairs. In the third archetype, the impact of 

hazard pair is higher than the impacts of one of the underlying single hazards but neither different from the impact of the 

other or from their combined impact. We see this pattern in number of deaths and number of people affected of flood – 645 

landslide pairs as well as number of people affected in earthquake – landslide pairs. In the fourth archetype, the impact of a 

hazard pair is neither different from the impact of any of the underlying single hazards nor from their combined impact.  
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 650 

 

 

 

Table 4 Four archetypes describing distinct patterns of compounding impacts of hazard pairs. “haz1,haz2” denotes a hazard pair; 

“haz1” and “haz2” denote the underlying single hazards; and “haz1+haz2” denotes the underlying single hazards combined. A ‘>’ 655 
indicates that the impact of the variable in the row is higher than of the variable in the column and a ‘=’ denotes no 

difference.Statistically significant differences in average impacts of hazard pairs compared to combined average impacts of the 

two underlying single hazards (ew – extreme wind, fl – flood, ls – landslide, eq – earthquake). A ‘+’ denotes that the value of the 

hazard pair is higher than the combined value of the two underlying single hazards and a ‘=’ denotes that no difference. 

  haz1 haz2 haz1+haz2 

Archetype 1 

“The whole is greater than the sum of its parts” 

haz1,haz2 

> > > 

Archetype 2 

“The whole equals the sum of its parts” 
> > = 

Archetype 3 

“One part determines the whole” 
> = = 

Archetype 4 

“The whole and the parts are limited by total impact” 
= = = 

 

 

Damages 

Number of Deaths 

Number of People Affected 

5 Discussion 660 

The aim of this study was to gain understanding of multi-hazards and their compounding impacts by analysing the 

emergency events database EM-DAT.  

 

We found that the number of events and number of hazards that are considered multi-hazard are are likely higher than 

recorded in EM-DAT and identified by Lee et al. (2024)with the associated disaster fields. This is due to spatiotemporal 665 

overlaps between the disaster records as: multi-hazard events may involve multiple disaster records.  ADDIN 

ZOTERO_ITEM CSL_CITATION {"citationID":"exbVMZQ7","properties":{"formattedCitation":"(de Ruiter and van Loon 

2022)","plainCitation":"(de Ruiter and van Loon 
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2022)","noteIndex":0},"citationItems":[{"id":17,"uris":["http://zotero.org/users/local/tcuAUHht/items/G2M44RWN"],"item

Data":{"id":17,"type":"article-journal","container-title":"iScience","DOI":"10.1016/j.isci.2022.104720","ISSN":"2589-670 

0042","issue":"8","journalAbbreviation":"iScience","language":"English","note":"publisher: Elsevier\nPMID: 

35874100","source":"www.cell.com","title":"The challenges of dynamic vulnerability and how to assess 

it","URL":"https://www.cell.com/iscience/abstract/S2589-0042(22)00992-

0","volume":"25","author":[{"family":"Ruiter","given":"Marleen C.","non-dropping-

particle":"de"},{"family":"Loon","given":"Anne F.","non-dropping-particle":"van"}],"accessed":{"date-675 

parts":[["2024",7,5]]},"issued":{"date-parts":[["2022",8,19]]}}}],"schema":"https://github.com/citation-style-

language/schema/raw/master/csl-citation.json"} (de Ruiter & van Loon, 2022)that  and our algorithm ADDIN 

ZOTERO_ITEM CSL_CITATION {"citationID":"PgdRcFng","properties":{"formattedCitation":"(Ruiter and Loon 

2022)","plainCitation":"(Ruiter and Loon 

2022)","noteIndex":0},"citationItems":[{"id":17,"uris":["http://zotero.org/users/local/tcuAUHht/items/G2M44RWN"],"item680 

Data":{"id":17,"type":"article-journal","container-title":"iScience","DOI":"10.1016/j.isci.2022.104720","ISSN":"2589-

0042","issue":"8","journalAbbreviation":"iScience","language":"English","note":"publisher: Elsevier\nPMID: 

35874100","source":"www.cell.com","title":"The challenges of dynamic vulnerability and how to assess 

it","URL":"https://www.cell.com/iscience/abstract/S2589-0042(22)00992-

0","volume":"25","author":[{"family":"Ruiter","given":"Marleen C.","dropping-685 

particle":"de"},{"family":"Loon","given":"Anne F.","dropping-particle":"van"}],"accessed":{"date-

parts":[["2024",7,5]]},"issued":{"date-parts":[["2022",8,19]]}}}],"schema":"https://github.com/citation-style-

language/schema/raw/master/csl-citation.json"} (Ruiter and Loon 2022)The aim of this study was two-fold. On one hand, we 

aimed to increase our understanding of the prevalence of multi-hazards in global disasters and their impacts. On the other 

hand, we aimed to shed light on the potential and limitations of using EM-DAT for multi-hazard analyses, as it is one of the 690 

most commonly used impact data bases in disaster risk science. EM-DAT has some multi-hazard information as it reports up 

to three different hazards per disaster record. However, many well-known multi-hazards are not captured as such but 

reported as independent events, such as the Guatemala 2010 volcanic eruption and tropical cyclone (Gill and Malamud 

2014). In this study, we developed an algorithm to identify multi-hazards, which takes into account the existing multi-hazard 

information in EM-DAT as well as spatiotemporal overlaps between the disaster records. We obtained a new data set of 695 

multi-hazards and their impacts. Furthermore, we analysed and compared impacts of single hazards and hazard pairs using 

descriptive statistics. Here, we discuss our main findings.  

 

To start with, when we account for spatiotemporal overlaps our analysis suggests that there are up to twice as many hazards 

that are part of multi-hazards than reported by EM-DAT (Section 4.1). This is the case for a time lag of 1 year and spatial 700 

overlap 25%. In addition, multi-hazard events may span multiple disaster records and include up to 32 different hazards, 
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while EM-DAT reports only up to 3 different hazards for each disaster record. However, there remainsis substantial 

uncertainty related into the identification of multi-hazard events in EM-DATs.  

 

On one hand, the uncertainty is due to the limited spatiotemporal information in the data. To begin with, tThe resolution of 705 

spatial footprints in GDIS varies from local administrative units to country level and varies in size introducing uncertainty 

regarding the actual overlap of hazard-exposed areasare coarse. Hazards may be affecting the same administrative area, but 

not actually be overlapping. In some cases, GDIS resolves hazard footprints at high spatial level, in some cases only at 

country level. This means we do not know if hazards actually overlapped (see Appendix A.2 for examples and a discussion). 

In addition, all the individual hazards within a disaster record are associated with the same footprint, even though their 710 

footprints may have very different extents. Similarly, the temporal information in EM-DAT is crude and limited. As end 

dates are partially missing, we used start dates and a time lag, which is a crude approximation of the actual time lag between 

hazards. Again, tThe temporal information used here is also here provided on disaster record level, but not on the level of 

individual hazards. Finally, we still lack understanding on how much time lag and overlap should be considered , although 

some suggestions and sensitivity analysis is provided by Claassen et al. (2023). Dde Ruiter et al. (2020) suggest that hazards 715 

should be analysed together if direct impacts of a subsequent hazard spatially overlap before recovery from a previous 

hazard is considered to be completed, but information on recovery times duration is limited.  

 

On the other hand, the increasing trend in the reporting of associated disasters in EM-DAT (Lee et al., 2024) suggest that 

impacts may have been, and still are being, assigned to a single main hazard even though additional hazards have occurred 720 

leading to an underestimation of multi-hazards. We also encountered several similarsuch cases during our analysis. An 

example is tropical cyclone Grace, which followed the 7.2-magnitude earthquake in Haiti in August 2021 (Daniels, 2021) 

but is not reported in EM-DAT. Despite these uncertainties in the data and method, multi-hazards are likely underreported in 

EM-DAT.  

 725 

 

 

 Furthermore, the We also found that the reported multi-hazards contributed to a disproportionately high share of 

total impacts globally compared to single hazards, which is in agreements with the is confirming the results of (Lee 

et al. (2024). When statistically and Section 4.1). The question is whether this difference is statistically significant 730 

and there are indeed risk dynamics causing disproportionate impact amplifications in multi-hazard events.  

comparing impacts of hazard pairs, single hazards as well as combinations of two single hazards, the results differed 

per impact and hazard type, suggesting that there are different patterns of compounding impacts. Archetype 2 - 

“The whole is greater than the sum of its parts”: The impact of the pair is significantly higher than the impact of 

both individual hazards and also significantly higher than the combined impact of the two single hazards. Such a 735 
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pattern could arise when both hazards in the pair contribute significantly to the impact and even exacerbate each 

other’s impacts when co-occurring simultaneously or consecutively. This could, for example, be the case when a 

previous flood increases vulnerability leading to more impacts in a second flood (de Ruiter et al. 2020) or when a 

previous flood intensifies a second flood due to already saturated soils and thus leading to higher impacts (Berghuijs 

et al. 2019). 740 

 Archetype 1 - “The whole equals the sum of its parts”: The impact of the pair is significantly higher than the impact 

of both individual hazards, but not significantly different than the combined impact of the two single hazards. Such 

a pattern would emerge when both hazards in the pair contribute significantly to the impact, but do not significantly 

affect each other’s impact, that is, there is no disproportionately heightened impact by the combined action of the 

two hazards. This could, for example, be the case for damages of extreme wind and flood pairs which have different 745 

damage causing mechanisms to the built environment. Floods tend to affect the interior of buildings and the lower 

floors, whereas extreme winds tend to damage the exterior of buildings and, in particular, the roof (Amini and 

Memari 2020).  

1. Archetype 4 - “One of the hazards dominates the impact”: The impact of the pair is significantly higher than the 

impact of one hazard but not the other, and not significantly different from the combined impacts of two single 750 

hazards.  Such a pattern could arise when one hazard is so impactful that, in comparison, the contribution of other 

hazard is negligible, possibly combined with a “total loss and damage is already reached”-effect. This could, for 

example, be the case for the number of people affected by flood – landslide pairs and earthquake – landslide pairs. 

Floods and earthquakes usually occur on larger spatial scales than landslides and trigger landslides within the 

already affected area so that the landslide will not add to the number of affected people. 755 

 Archetype 3 - “Total loss and damage is already reached by one hazard”: The impact of the pair is not significantly 

different from the impact of either of the single hazards and not significantly different from the combined impacts 

of two single hazards. Such a pattern could emerge when a hazard causes an ultimate impact to an exposed element, 

such as total loss for a building or death for a person, or when the impact metric only reports that an element has 

been affected but not to what degree. In both cases, a second hazard acting on the same elements cannot increase 760 

the value of the impact metric anymore. This could potentially be the case for the total number of people affected by 

extreme wind and flood pairs when the same area is hit by both hazards.  

Nonetheless, there are commonalities across all cases: The average impact of a hazard pair is as high or higher than the 

average impact of a single hazard and as high or higher than the combined average impacts of the two underlying single 

hazards, while the opposite was not found. This suggests that multi-hazard interactions leading to increased impact tend to 765 

outweigh multi-hazard interactions leading to decreased impact. Again, the results need to be treated with care because of 

large uncertainties in the impact data but also because of known biases and limitations of EM-DAT.  
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In cases where there is a significant difference, this could indeed point to an actual difference in impacts. However, it may 

also be caused by biases such as systematic double counting of impacts of consecutive disasters or geographical biases. Also, 770 

in several cases, two consecutive disaster records report the exact same number of impacts suggesting potential double 

counting when adding them up. For example, two consecutive earthquakes in Iceland have reported the exact same 

numberamount of reported total damages (reported under disaster numbers 00-0076-ISL and 2000-0335-ISL), suggesting 

potential double counting when adding them up. The fact that we came across these inconsistencies by chance, suggests that 

there are many more. 775 

 

In cases where there is no significant difference found between two impact variables, this could either mean that there is 

indeed no difference between those variables or that there is a difference but not sufficient evidence in the data set to detect 

that it..However, it maybe Several factors contribute to these uncertainties. Firstly, a handful of extremely high data points 

are pulling the mean impact value up from the bulk of data points clustered at the lower end of the distribution. In addition, 780 

the sample sizes of impact data are small per hazard pair type, which is due to the many different event types as well as 

missing impact data in EM-DAT. While we considered 9 hazard types, we could only analyse impacts for four hazard types 

and four hazard pair types when requiring a sample size of at least N=50. Especially, impacts for extreme temperatures and 

droughts are missing. For these types, the complexity and difficulty to assess impacts is well known (Wilhite et al., 2007). 

Lastly, the hazards occurred under diverse conditions in terms of hazard intensity, exposure and vulnerability, which can 785 

cause a wide range of impacts. Ideally, these factors would be controlled for in the analysis, as done for example by  Budimir 

et al. (2014). However, EM-DAT does not contain sufficient information to do so.  

 

Finally, we could identify and conceptualize four distinct patterns of compounding impacts. While we acknowledge the 

substantial uncertainty in the association of each case to a particular archetype in our results, there are possible explanations 790 

and real world cases that support the existence of such patterns in general:  

 To answer this, we performed a statistical analysis comparing impacts of hazard pairs with impacts of single 

hazards as well as combined impacts of two single hazards of the same hazard types. The results differ per 

combination of impact type and hazard types. However, they are difficult to interpret because of the large 

uncertainties encountered as well as questionable data quality owing to known biases and limitations of EM-DAT. 795 

In cases where there is no significant difference found between two impact variables, this could either mean that 

there is indeed no difference between those variables or that there is a difference, but not sufficient evidence in the 

data set to detect that, for example due to the large uncertainties and right skewed distributions. On the other hand, 

in cases where there is a significant difference, this could indeed point to an actual difference in impacts, but it is 

also possibly caused by biases such as systematic double counting of consecutive disasters or geographical biases. 800 

There are many limitations preventing a more detailed analysis of multi-hazard impacts. To begin with, we 

encountered a number of reporting errors or inconsistencies in EM-DAT. In several cases, associated hazards are 
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not reported. For example, the 7.2-magnitude earthquake in Haiti in August 2021 (reported under disaster number 

2021-0511-HTI) is followed by a tropical cyclone (Daniels 2021), which is not reported in EM-DAT. Also, in 

several cases, two consecutive disaster records report the exact same number of impacts suggesting potential double 805 

counting when adding them up. For example, two consecutive earthquakes in Iceland have reported the exact same 

number of total damages (reported under disaster numbers 00-0076-ISL and 2000-0335-ISL). The fact that we came 

across these inconsistencies by chance, suggests that there are many more.  

 

 Moreover, the uncertainties in impacts are large, especially related to the mean impact per hazard (pair) type, 810 

making it challenging to arrive at general conclusions. In part this is due to a handful of extremely high impact data 

points pulling the mean value up from the bulk of data points clustered at the lower end of the distribution and 

introducing uncertainty. In addition, the sample sizes of impact data are small per event type, that is, per unique 

combination of number and types of hazards. On one hand, this is due to the many different event types found. On 

the other hand, impact data are frequently missing in EM-DAT. While we considered 9 hazard types, we could only 815 

analyse impacts for four hazard types and four hazard pair types when requiring a sample size of at least N=50. 

Especially, impacts for extreme temperatures and droughts are missing. For these types, the complexity and 

difficulty to assess impacts is well known (Wilhite, Svoboda, and Hayes 2007). Finally, the hazards occurred under 

diverse conditions in terms of hazard intensity, exposure and vulnerability, which can cause a wide range of 

impacts. Ideally, these factors would be controlled for in the analysis, as done for example by Budimir, Atkinson, 820 

and Lewis (2014) in a comparison of fatalities of earthquake-and-landslide hazards as opposed to earthquake single 

hazards. However, EM-DAT includes insufficient information to do so.  

Nonetheless, there are commonalities across all cases: In all cases, the average impact of a hazard pair is as high or higher 

than the average impact of a single hazard, while the opposite was not found in any cases. Also in all cases, the average 

impact of a hazard pair is as high as or higher than the combined average impacts of the two underlying single hazards, while  825 

the opposite was not found in any cases. This suggests that multi-hazard interactions leading to increased impact tend to 

outweigh multi-hazard interactions leading to decreased impact. 

To answer this, we performed a statistical analysis comparing impacts of hazard pairs with impacts of single hazards as well 

as combined impacts of two single hazards of the same hazard types. The results differ per combination of impact type and 

hazard types.  830 

 

The results of the statistical analysis suggest that there are different patterns of impact-generating mechanisms in multi-

hazard events for different types of impact and hazard types. We observed four different patterns which we call archetypes, 

inspired by the field of system dynamics which uses the term to describe certain common dynamics that seem to recur in 

many different settings (Senge 1990). We provide short descriptions of each archetype and hypothesize possible 835 

explanations, while noting that there is large uncertainty on whether each case falls into a particular archetype. 
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Archetype 1 - “The whole equals the sum of its parts”: The impact of the pair is significantly higher than the impact of both 

individual hazards, but not significantly different than the combined impact of the two single hazards. Such a pattern would 

emerge when both hazards in the pair contribute significantly to the impact, but do not significantly affect each other’s 840 

impact, that is, there is no disproportionately heightened impact by the combined action of the two hazards. This could, for 

example, be the case for damages of extreme wind and flood pairs which have different damage causing mechanisms to the 

built environment. Floods tend to affect the interior of buildings and the lower floors, whereas extreme winds tend to damage 

the exterior of buildings and, in particular, the roof (Amini and Memari 2020).  

 845 

Archetype 2 - “The whole is greater than the sum of its parts”: The impact of the pair is significantly higher than the impact 

of both individual hazards and also significantly higher than the combined impact of the two single hazards. Such a pattern 

could arise when both hazards in the pair contribute significantly to the impact and even exacerbate each other’s impacts 

when co-occurring simultaneously or consecutively. This could, for example, be the case when a previous flood increases 

vulnerability leading to more impacts in a second flood (de Ruiter et al. 2020) or when a previous flood intensifies a second 850 

flood due to already saturated soils and thus leading to higher impacts (Berghuijs et al. 2019). 

1. Archetype 12 (“- “The whole is greater than the sum of its parts”): TheA pattern where the impact of thea hazard 

pair is significantly higher than the impact of bothtwo hazards and also significantly higher than the combined . 

Such a pattern This would arise when both hazards in the pair exacerbate each other’s impacts if they co-occur 

simultaneously or consecutively. Real world examples of such a pattern are a previous flood which that increases 855 

vulnerability leading to more impacts from a second flood (de Ruiter et al. 2020), a previous flood which that 

intensifies a second flood due to already saturated soils and thus leading to higher impacts (Berghuijs et al., 2019), 

or a progressive increase of a building’s physical vulnerability due to multiple loads (Zuccaro et al., 2008). 

2. Archetype 21 (- “The whole equals the sum of its parts”): A pattern where the impact of a hazard pair is comparable 

to the combined impact of two single hazards would emerge when the hazards do not significantly affect each 860 

other’s impact. This could, for example, be the case for damages to the built environment caused by of extreme 

wind and a flood, because they havewhich have with different damage causing mechanismsto the built environment. 

Floods tend to affect the interior of buildings and the lower floors, whereas extreme winds tend to damage the 

exterior of buildings and, in particular, the roof (Amini & Memari, 2020).  

 Archetype 34 (- “One of the part determines the wholes the impact”): A third pattern would emerge when one 865 

hazard is so impactful that, in comparison, the contribution of other hazard is negligible, possibly combined with a 

“the whole and the parts are limited by total impact”-effect (Archetype 4). This could, for example, be the case for 

the number of people affected by flood – landslide pairs and earthquake – landslide pairs. Floods and earthquakes 

usually occur on larger spatial scales than landslides and trigger landslides within the already affected area so that 
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the landslide will not add to the number of affected people, even though it may add to the severity in which they are 870 

affected. 

3.  

4. Archetype 43 (- “The whole and the parts are limited by total impactloss and damage is already reached by one 

hazard”): Another pattern could emerge when one hazard causes an ultimate impact to an exposed element, such as 

total loss for a building or death for a person, or when the impact metric only reports that an element has been 875 

affected but not to what degree. In both cases, a second hazard acting on the same elements cannot increase the 

value of the impact metric anymore. This could potentially be the case for the number of people affected by extreme 

wind and flood pairs when the same area is hit by both hazards.  

 

 880 

Archetype 3 - “Total loss and damage is already reached by one hazard”: The impact of the pair is not significantly different 

from the impact of either of the single hazards and not significantly different from the combined impacts of two single 

hazards. Such a pattern could emerge when a hazard causes an ultimate impact to an exposed element, such as total loss for a 

building or death for a person, or when the impact metric only reports that an element has been affected but not to what 

degree. In both cases, a second hazard acting on the same elements cannot increase the value of the impact metric anymore. 885 

This could potentially be the case for the total number of people affected by extreme wind and flood pairs when the same 

area is hit by both hazards.  

 

Archetype 4 - “One of the hazards dominates the impact”: The impact of the pair is significantly higher than the impact of 

one hazard but not the other, and not significantly different from the combined impacts of two single hazards.  Such a pattern 890 

could arise when one hazard is so impactful that, in comparison, the contribution of other hazard is negligible, possibly 

combined with a “total loss and damage is already reached”-effect. This could, for example, be the case for the number of 

people affected by flood – landslide pairs and earthquake – landslide pairs. Floods and earthquakes usually occur on larger 

spatial scales than landslides and trigger landslides within the already affected area so that the landslide will not add to the 

number of affected people. 895 

 

There are many limitations preventing a more detailed analysis of multi-hazard impacts. To begin with, we encountered a 

number of reporting errors or inconsistencies in EM-DAT. In several cases, associated hazards are not reported. For 

example, the 7.2-magnitude earthquake in Haiti in August 2021 (reported under disaster number 2021-0511-HTI) is 

followed by a tropical cyclone (Daniels 2021), which is not reported in EM-DAT. Also, in several cases, two consecutive 900 

disaster records report the exact same number of impacts suggesting potential double counting when adding them up. For 

example, two consecutive earthquakes in Iceland have reported the exact same number of total damages (reported under 
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disaster numbers 00-0076-ISL and 2000-0335-ISL). The fact that we came across these inconsistencies by chance, suggests 

that there are many more.  

 905 

Moreover, the uncertainties in impacts are large, especially related to the mean impact per hazard (pair) type, making it 

challenging to arrive at general conclusions. In part this is due to a handful of extremely high impact data points pulling the 

mean value up from the bulk of data points clustered at the lower end of the distribution and introducing uncertainty. In 

addition, the sample sizes of impact data are small per event type, that is, per unique combination of number and types of 

hazards. On one hand, this is due to the many different event types found. On the other hand, impact data are frequently 910 

missing in EM-DAT. While we considered 9 hazard types, we could only analyse impacts for four hazard types and four 

hazard pair types when requiring a sample size of at least N=50. Especially, impacts for extreme temperatures and droughts 

are missing. For these types, the complexity and difficulty to assess impacts is well known (Wilhite, Svoboda, and Hayes 

2007). Finally, the hazards occurred under diverse conditions in terms of hazard intensity, exposure and vulnerability, which 

can cause a wide range of impacts. Ideally, these factors would be controlled for in the analysis, as done for example by 915 

Budimir, Atkinson, and Lewis (2014) in a comparison of fatalities of earthquake-and-landslide hazards as opposed to 

earthquake single hazards. However, EM-DAT includes insufficient information to do so.  

6 Conclusion and Recommendations 

For this study, we asked “What can we learn about multi-hazards and their risk dynamics from global disaster 

records?”. To answer the question, we developed an algorithm that identifies multi-hazard events using the existing 920 

multi-hazard information in EM-DAT as well as spatiotemporal overlaps between the disaster records based on the 

spatial geometries provided in GDIS. We also conducted a statistical analysis to compare the impacts of hazard pairs 

with the impacts of (combinations of) single hazards for different impact metrics and hazard types. Despite the well-

known limitations of EM-DAT related to completeness of the records as well as reliability of the impact data, which 

prevents detailed analyses of the data, we found the database to be useful for exploring high-level patterns at the 925 

global scale.  

 

Our approach for identifying multi-hazard events indicatedBy accounting for spatiotemporal overlaps between disaster 

records in EM-DAT, we found that almost 50% more hazards occurred in a multi-hazard context than previously reported, 

although substantial uncertainty remains in the identification of multi-hazard events. Despite the uncertainty, t that up to 930 

twice as many individual hazards have not occurred as isolated single-hazards, but have been part of multi-hazard events, 

than it appears from EM-DAT alone. The exact number remains uncertain, because the information on the spatial and 

temporal extent of the hazards is coarse and additional hazards may have occurred but not have been reported, either due to 

reporting biases or because they did not cause a disaster according to the EM-DAT inclusion criteria. Future research should 
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be directed at improving the completeness of EM-DAT as well as at developing high resolution spatial and temporal 935 

footprints of the corresponding individual hazards to enable the assessment of spatiotemporal overlaps. While there is 

uncertainty on whether we correctly identified each hazard as either being a part of or as not being part of a multi-hazard 

event, the resulting identified multi-hazard event setevents provide promising case studies for investigating impact-relevant 

spatiotemporal relations between hazards and their role in compounding impacts in complex multi-hazard events. Overall, 

multi-hazards have caused disproportionately high impacts in global disasters, but it appears that there are different patterns 940 

of compounding impacts The statistical analysis indicates that there are different types of multi-risk dynamics which depend 

on the impact metric as well as theand hazard type. We conceptualized four distinct archetypes to capture the encountered 

patterns. In all archetypes, hazard pairs tend to have at least as much impact than single hazards or combinations of two 

single hazards but never less impact.  This suggests that multi-hazard interactions leading to increased impact tend to 

outweigh multi-hazard interactions leading to decreased impact. 945 

7 RecommendationsIn some cases, the average reported impacts of a hazard pair were comparable to those of a 

single hazard or even two single hazards combined. In other cases, the average reported impacts of a hazard pair 

were larger than those of a single hazard or two single hazards combined.  

 

 950 

We propose the further investigation and development of archetypes to capture the the different patterns. and make initial 

suggestions for the hazard types analysed in this study. Such archetypes could help decide on the level of complexity to take 

into account in risk assessments and risk management for a region of interest if relevant hazard types and impact metrics are  

known. For some types of hazard and impact, modelling the impact of one dominant hazard may yield a reasonable 

approximation of multi-hazard impact, while in other cases modelling single-hazards impacts separately and adding them up 955 

may yield a reasonable approximation, while yet in other cases, it may be important to take into account interaction effects 

leading to either increased or decreased impacts compared to a simple sum of individual impacts. However, future further 

research using more reliable data sources is needed to confirm these archetypes, to validate them for use in forward-looking 

risk assessments, to explore potentially additional forms of compounding impacts,  and to expand them for additional hazard 

types and impact metrics. 960 

 

 

Future research should also be directed at improving the reporting of multi-hazards and their impacts. In the long run, 

standardized reporting procedures should be established and implemented to ensure that multi-hazards and their impacts are 

documented sufficiently and consistently. This is essential for aligning research efforts and advancing the disaster risk field, 965 

as well as for translating findings into effective policy recommendations for risk assessment and reduction.  
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In the short-term, we recommend to improve and support the existing information in EM-DAT. To start with, a quality 

control of the impact data that solely focuses on the most disastrous records could already improve overall reliability because 

these records dominate any statistical data analysis that is based on mean values or total values. Data science techniques 970 

could be explored to automate the identification of errors and inconsistencies.  Another key area to improve the usability of 

EM-DAT would be to develop high resolution data sets of (multi-)hazard intensities as well as exposure and vulnerability 

that can readily be linked to the disaster records. On one hand, tThis wocould enable a deeper analysis of multi-hazard risk 

dynamicsoccurrence and impacts because as factors determining the context in which the hazards occurred can be controlled 

for. On the other hand, this could help identify as yet unrecorded impactful events and reduce reporting bias. Finally, 975 

consistent and standardized methods to estimate impacts are needed to better enable comparison across countries and even 

events. Quality of impact data could also be improved by leveraging new impact Also, impact data sets that are becoming 

available with novel methods could be readily linkab. These data sets should also be made linkable to EM-DAT to le to EM-

DAT. They could be used to enable cross-validation of impacts of different data sets, and increase the sample size of 

impacts,, which in turn could enable an analysis of impacts for (multi-)hazard types that had to be excluded from the 980 

statistical analysis in this study.  

Future research should be directed at improving the completeness of EM-DAT as well as at developing high resolution 

spatial and temporal footprints of the corresponding individual hazards to enable the assessment of spatiotemporal overlaps. 

 

Appendices 985 

Appendix A An Exploratory Data Analysis of the Joint EM-DAT and GDIS Data Set 

This section relates to method step 3.1.1. The data set of geo-referenced disaster events covers the period 2000 – 2018 and 

the nine hazard types listed in . It contains 5,868 disaster records. Table A1 shows the availability of data in the optional 

fields in these records. In case of associated disasters, we assume that empty fields means that no other hazards have taken 

place. In all other cases, we assume that data are missing. The temporal information is most complete. All events have a star t 990 

year and start month as well as an end year. All events other than droughts also have an end month. The exact day is missing 

more frequently.  

Table A1 Count of events and the data availability of key variables in the geo-refenced data set 

 
Event cCount Start 

dDate 

End 

dDate 

DTotal 

Damages 

NTotal 

Number of 

dDeaths 

NTotal Number 

of pPeople 

aAffected 

Geospatial 

fFootprint 

fl 2782 100% 92% 30% 72% 88% 91% 

ew 1629 100% 97% 52% 74% 73% 77% 
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cw 198 100% 47% 8% 83% 29% 85% 

dr 188 96% 4% 40% 4% 60% 80% 

hw 118 100% 48% 13% 84% 31% 79% 

ls 353 100% 98% 12% 96% 64% 91% 

eq 480 100% 100% 42% 64% 97% 96% 

vo 93 100% 90% 15% 13% 89% 82% 

ts 27 100% 100% 70% 100% 85% 93% 

 

The availability of impact data depends on the hazard type as well as impact type and ranges from 4% for total number of 995 

deaths due to droughts to 100% for total number of deaths due to tsunamis (Table A1). Human impact is available more than 

total damages. Availability also fluctuates across the years and continents. For total deaths it ranges from 64% in 2004 to 

78% in 2007 and from 40% in Oceania to 79% in Asia. For total affected it ranges from 73% in 2010 and 2018 to 87% in 

2017 and from 55% in Europe to 90% in Africa. For damage is ranges from 22% in 2006 to 48% in 2013, and from 14% in 

Africa to 44% in Oceania.  1000 

 

The availability of spatial footprints also differs per hazard type, year and continent, but less so than the impact variables. It 

ranges from 77% for extreme wind to 96% of earthquakes, from 71% in 2018 to 93% in 2006 and from 77% in Europe to 

89% in the Americas. Overall, we could associate 87% (5090/5668) of all events with a spatial footprint which is in line with 

the 89% reported by the developers of GDIS (Rosvold and Buhaug 2021)Overall, we could associate 87% (5090/5668) of all 1005 

events with a spatial footprint which is in line with the 89% reported by the developers of GDIS (Rosvold & Buhaug, 2021).  

 

These results suggests that data for impact and geospatial footprint are not missing at random (MAR) in our extracted data 

set which poses a risk of bias in the subsequent analysis. This is in line with the findings of Jones et al. (2022)Jones et al. 

(2022) who identified the year the disaster occurred, income-classification of the affected country and hazard types as 1010 

significant predictors of missingness for human and economic impact variables in a formal statistical analysis of the entire 

EM-DAT data set.  

Appendix B Pairs of Spatiotemporally Overlapping Disaster Records 

This section relates to method step 3.1.2. Out of the 5,868 disaster records, 5,090 events have spatial footprints. These can be 

grouped into 12,951,505 unique combinations of two events. 107,406 pairs have spatial overlap.  1015 

 

Figure B1 shows a histogram of the intersection percentage. Notable is the high number of event pairs with 0% overlap and 

with 100% when rounded to 2 decimals. The high number of events 0% overlap is likely caused by rounding errors for 

events that impacted adjacent administrative areas and these event pairs are considered to not be overlapping. Figure B2a 
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shows an example. The high number of events with 100% overlap is also likely due to the fact that the resolution is on 1020 

administrative boundary level: As soon as events are within the same administrative district they fully overlap, whereas only 

large scale impact events that affected multiple administrative districts can partially overlap. Figure B2b-c show examples 

with different overlap percentages. 

 

 1025 

Figure B1 Histogram of the intersection percentage of the 107406 EM-DAT events with spatial overlap 

 

There is uncertainty on whether or not the actual impact zones overlap for all pairs of intersecting events, because the spat ial 

footprints are an approximation on the level of administrative regions and the events are unlikely to have affected the entire 

region (Rosvold and Buhaug 2021)(Rosvold & Buhaug, 2021). This uncertainty could potentially reduce by considering the 1030 

combination of the scale of the natural hazards (e.g., landslides are local events while heat waves and cold waves are 

regional or national level events), the extent of the damage (e.g., higher damages and fatalities are likely to stem from larger 

impact zones), and the administrative level of the footprint (e.g., a footprint consisting of multiple district level polygons 

which have been joint to a greater area is more likely to represent the actual impact area than a footprint consisting of a 

single country-level polygon).  1035 
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Figure B2 Example event pairs with spatial overlap. Individual event impact zones are plotted in blue and yellow. The overlapping 

impact zone is plotted in green. 

For example, in Figure B2b, event 2014-0009-USA is a cold wave and event 2014-0317-USA is a convective storm 1040 

associated with a cold wave. As these are larger scale weather phenomena the overlapping administrative zone is likely to 

reflect the actual overlapping impact zone. However, in Figure B2c, event 2006-0128-USA is storm associated with a flood 

and event 2008-0173-USA is a riverine flood, and, in Figure B2d, event 2006-0598-USA is a riverine flood associated with 

heavy rain and event 2006-0744-USA is a storm. In these two cases, additional data on impact extent, or by proxy hazard 

extent, would be required to confirm actual overlap.  1045 

 

Table B1 shows the number of pairs of overlapping events for different spatial and temporal criteria. As expected, the 

number of pairs of overlapping events is lowest when requiring a high intersection percentage and a low time lag as overlap 

criteria.  

 1050 

Table B1 Number of pairs of overlapping events using different spatial and temporal overlap criteria. 

Time lag \ Intersection  >0% >=50% >=100% 

0 days 31 21 17 
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1 month 1,339 758 480 

3 months 3,575 1,917 1,164 

6 months 5,865 3,023 1,798 

12 months 11,630 6,059 3,631 

Any 107,406 54,712 33,245 

 

Appendix C Sample size of impact data for single hazards and hazard pairs 

This section presents sample size for the data used in Sect. 4.2. Table C1 shows the sample sizes for single hazards for a 

spatial overlap of at least 50% and a time lag of maximum 91 days. Table C2 shows the sample sizes for hazard pairs for a 1055 

spatial overlap of at least 50% and a time lag of maximum 91 days. 

Table C1 Sample sizes of impact data for single hazards for a minimum spatial overlap of 50% and a time lag of maximum 91 

days (ew – extreme wind, fl – flood, ls – landslide, eq – earthquake, dr – drought, cw – cold wave, hw – heat wave, vo – volcanic 

activity, ts – tsunami) 

Hazard  Damages Number of 

dDeaths 

Number of 

pPeople aAffected 

fl 428 1102 1479 

ew 354 527 524 

eq 109 171 281 

dr 52 4 91 

ls 21 230 147 

cw 12 146 50 

vo 10 6 65 

ts 5 6 4 

hw 3 64 23 

 1060 

Table C2 Sample size of impact data for hazard pairs for a minimum spatial overlap of 50% and a maximum time lag 91 days (ew 

– extreme wind, fl – flood, ls – landslide, eq – earthquake, dr – drought, cw – cold wave, hw – heat wave, vo – volcanic activity, ts – 

tsunami) 

Hazard 1 Hazard 2 Damages Number of 

dDeaths 

Number of 

pPeople 

aAffected 

fl ls 178 417 439 

ew fl 133 205 220 

eq ls 28 44 56 

ew ew 16 26 23 
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fl fl 15 67 87 

ew ls 15 28 31 

fl ew 12 23 24 

ew cw 11 22 11 

ts ts 10 15 13 

hw dr 7 9 2 

ls fl 6 23 22 

eq eq 5 8 15 

dr hw 5 
 

3 

eq ts 4 9 11 

ls ls 3 12 9 

eq fl 3 5 5 

fl dr 2 1 5 

fl cw 2 5 4 

dr fl 1 1 6 

fl eq 1 4 5 

vo eq 1 
 

4 

fl ts 1 2 3 

eq ew 1 2 2 

eq dr 1 
 

2 

ls eq 1 1 1 

dr cw 1 1 1 

vo ts 1 1 1 

dr eq 1 
 

1 

ew dr 1 
 

1 

vo ls 
 

1 3 

hw ew 
 

5 2 

fl hw 
 

3 2 

eq hw 
 

1 2 

hw fl 
 

4 1 

cw cw 
 

3 1 

ew hw 
 

3 1 

vo fl 
 

1 1 

hw ls 
 

1 1 

ls dr 
  

1 

cw eq 
  

1 
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eq cw 
  

1 

dr ew 
  

1 

vo vo 
  

1 

cw fl 
 

1  

cw hw 
 

1  

ls ts 
 

1  

cw ls 
 

1 87 

ls cw 
 

1 31 

 

Code Availability 1065 

The code to develop multi-hazard event data sets as well as to perform the statistical analysis of impacts has been publicly 

released on GitHub. (Link to be added upon publication). 
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The multi-hazard event dataset compiled during the is study, is openly available on Zenodo. (Link to be added upon 

publication).  1070 
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