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Abstract. To achieve efficient modeling of flood flow and subsequent solute transport in real-world flood events, the present 

study couples the CA-based shallow water flow (SWFCA) solver of Chang et al. (2022) with a CA-based advanced solute 

transport (ASTCA) solver as a novel coupled approach. This coupled approach is GPU-parallelized by using OpenCL 2.1 10 

under Nvidia CUDA to enhance efficiency. The accuracy of the coupled approach is verified and compared with a popular 

finite-volume-based coupled approach consisting of a Godunov-type FV-HLLC model for flood flow and a Godunov-type 

FV-TVD model for solute transport through four test cases. The efficiency of the coupled approach is next assessed through 

three real-world flood cases with massive computational cells. From the simulated results, the ASTCA solver is found to 

have better accuracy than the state-of-the-art FV-TVD model. Regarding the efficiency, the SWFCA and ASTCA solvers 15 

respectively outperform the FV-HLLC and FV-TVD models by 1.28-1.33 and 2.90-3.33 times. After GPU parallelization, 

the SWFCA solver, ASTCA solver, and CA-based coupled approach respectively speed up the simulations by 57.64-76.23, 

53.55-69.88, and 56.32-74.15 times, which is a remarkable progress as the simulations are performed on a PC with a normal 

graphic card. Hence, the proposed approach is a useful tool for real-world flood flow and solute transport simulations. 

1 Introduction 20 

Flood inundation is one of the major natural disasters worldwide, which not only threatens lives and inundates properties, but 

also drifts wastes with fast-moving water flows and subsequently impacts people’s health (Addison-Atkinson et al., 2022). 

Over the last decade, the rapid development of high-performance computing resources and the convenient availability of 

high-quality topographic/hydrologic datasets have led to more and more applications to conduct shallow water flows and 

solute transport in complicated real-world flood inundation problems. Such complicated real-world problems always require 25 

high-resolution meshes in large spatial domains, sometimes having a large number of simulations from probabilistic 

viewpoints. As a consequence, the demands of using accurate and effective models to simulate real-world shallow water 

flows and subsequent solute transport are dramatically increasing as many serious flooding events have occurred all over the 

world. 
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Generally speaking, such demands can be fulfilled by coupling a shallow water flow model and a passive solute transport 30 

model (Addison-Atkinson et al., 2022). In terms of the shallow water flow models, they either solve the full or simplified 

versions of the two-dimensional (2D) shallow water equations (SWEs) (Castro-Orgaz and Hager, 2019). In the past two 

decades, various numerical methods have correspondingly been proposed to numerically solve the 2D SWEs, which can be 

categorized into mesh-based and meshless models. For the mesh-based models, finite difference methods, finite element 

methods, and finite volume (FV) methods are the three popularly used models, as extensively summarized by Toro et al. 35 

(2001) and Castro-Orgaz and Hager (2019). In terms of the meshless methods like smoothed particle hydrodynamics (SPH) 

models (Chang et al., 2011; Kao and Chang, 2012), Chang et al. (2014; 2016; 2024) and Sarkhosh and Jin (2021) have an 

extensive summary on them. Among these models, FV methods are one of the most popular modeling methods because of 

their strong capabilities in handling complex flow transitions such as hydraulic jumps/drops and wet-dry interfaces (Yu and 

Chang, 2021; Zhao and Liang, 2022). Although these FV methods can simulate complex conditions with transcritical flows 40 

and wet-dry interfaces with good accuracy (Martins et al., 2018), these FV methods are still time-consuming especially for 

real-world applications, especially for FV models with an implicit time integration (Chang et al., 2022). 

As for the solute transport models, a general way is to numerically solve the 2D depth-averaged advection-diffusion 

equations (the 2D ADEs) (Morales-Hernández et al., 2019). Since discontinuities of solutes are commonly seen in floods, 

numerical difficulties, i.e., numerical diffusion and oscillation, are raised in the presence of the sharp or discontinuous 45 

gradient of solute concentration introduced by the non-linear advection terms in the 2D ADEs (Chang and Chang, 2017). 

Various solute transport models are developed to handle the numerical diffusion and oscillation in different ways, e.g., the 

finite difference models (Liang et al., 2010), the finite element models (Lee and Seo, 2007), the Lattice Boltzmann models 

(Ginzburg et al., 2015; Wang et al., 2018), the finite volume models (Morales-Hernández et al., 2019; Zhang et al. 2015), 

and the meshless approaches such as the Lagrangian approaches (Chang and Chang, 2017; Liu et al., 2020). Specifically, 50 

FV-type solute transport models are popularly used due to their effectiveness in simultaneously controlling numerical 

diffusion and oscillation. Among various FV solute transport models, the Godunov-type FV models with the total variation 

diminishing (TVD) scheme are found to be satisfactory (Liang, 2010; Lin and Liu, 2019) despite the introduced tedious 

numerical procedures and heavy computational demands. Nevertheless, numerical diffusion and compression are still 

unresolved in specific conditions, e.g., in simulating triangle-shaped or trapezoidal-shaped profiles (Hou et al., 2015). 55 

To enhance numerical efficiency, in the last decade, Cellular Automata (CA) framework has been widely adopted by many 

researchers to establish their efficient models (Chang et al., 2022), because it can solve complex physics through several 

simple and explicit algebraic equations instead of heavy numerical operators. In addition, CA framework is naturally prone 

to parallel computing (Chang et al., 2021). For the CA-based shallow water flow models, e.g., the CA flood inundation 

model (Dottori and Todini, 2011), the CA2D model (Ghimire et al., 2013), the WCA2D model (Guidolin et al., 2016) and 60 

the OFS-CA model (Jahanbazi et al., 2017), a set of simple generic transition rules is used to simulate the movement of 

water instead of numerically solving the 2D SWEs, so that satisfactory efficiency is obtained (Guidolin et al., 2016). Aiming 

to benefit from the remarkable efficiency of the WCA2D model, Chang et al. (2021) have modified the WCA2D model to 
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consider spatial roughness and coupled it with the SWMM as an integrated 2D-1D-1D (overland-gully-sewer) urban 

inundation model which can finish a real-world simulation with high efficiency. However, all of the aforementioned CA-65 

based models use water levels to determine water movements thus they behave like a non-inertia wave approximation 

(Caviedes-Voullième et al., 2018), which is inappropriate for simulating flows with strong discontinuities (Costabile et al., 

2017; Caviedes-Voullième et al., 2020). To solve this limitation, Chang et al. (2022) have utilized a new framework to build 

a CA-based shallow water (SWFCA) solver, which explicitly simulates the movement of mass and inertia in a set of simple 

algebraic equations instead of numerically solving the 2D SWEs like the aforementioned FV models. The Bernoulli 70 

hydraulic head is used as the key to link the exchange of mass (water depth) and inertia (water velocity), making the 

SWFCA solver behave like dynamic waves. Besides, the SWFCA solver preserves the well-balanced property without the 

need to include special treatment for bed elevation. Through several test cases with regular flows or discontinuous flows, the 

SWFCA solver has been demonstrated to be as accurate as a Godunov-type first-order FV shallow-water flow model with a 

popular flux calculation method HLLC (the FV-HLLC model). Specifically, in simulating very shallow flows in very steep 75 

slopes, the SWFCA solver is found to be as accurate as the FV-HLLC model with a second-order TVD scheme. In terms of 

numerical efficiency, the SWFCA solver can be faster than the FV-HLLC model by 1.21-1.28 times. However, such an 

efficiency is still insufficient for real-world flood inundation applications. Additionally, the SWFCA solver has not yet been 

parallelized to fully benefit from the natural advantage of CA framework on parallel computing. 

On the other hand, for the CA-based solute transport models, so far only Milašinović et al. (2019) have established their 80 

weighted cellular automata for pollution transport (CAPT) model to simulate groundwater transported contaminant based on 

the predicted velocity field from their weighted cellular automata for unsteady groundwater flow (WCAGW) or Darcy’s law-

based cellular automata for unsteady groundwater flow (MACCA-GW) models. In their CAPT model, the pollutant transport 

of flow advection and turbulent diffusion mechanisms are simulated by the corresponding set of transition rules that only 

contain algebraic equations. This model is appropriate and efficient for low Reynold flows, but it cannot be extended to 85 

solve solute transport in floods, which is usually in flows with very high Reynold numbers. As a result, Wang et al. (2024) 

have further developed a CA-based solute transport modeling (STMCA) solver that replaces the tedious numerical operators 

in solving the 2D-ADEs with a set of simple algebraic equations. The accuracy of the STMCA solver is demonstrated to be 

the same as a high-accuracy Godunov-type FV model with a TVD scheme (hereinafter referred to as the FV-TVD model) 

with better efficiency up to 2.90-3.27 times faster than the FV-TVD model. Nevertheless, in certain flows with considerably 90 

high Péclet numbers such that flow advection dominates solute transport processes, the STMCA solver and FV-TVD model 

may both encounter unwanted numerical diffusion and/or compression. Furthermore, the STMCA solver has not been GPU-

based parallelized to fully benefit from the inherent nature of CA framework on parallel computing. 

To fill this gap, the objective of this study is to develop a CA-based coupled approach for dynamic-wave flow and solute 

transport simulations. For this goal, the SWFCA solver (Chang et al., 2022) is adopted to simulate dynamic-wave flows. As 95 

for the solute transport modeling, the present study extends the research of Wang et al. (2024) to develop a CA-based 

advanced solute transport (ASTCA) solver with additional procedures to increase the accuracy in flows with high Péclet 
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numbers. The SWFCA and ASTCA solvers are coupled to constitute a coupled approach. Furthermore, GPU-based 

parallelization is implemented on both the two solvers to further enhance the numerical efficiency by OpenCL 2.1 under 

Nvidia CUDA. The accuracy of the newly proposed ASTCA solver is first verified. Then, the performance of the coupled 100 

approach is assessed through three real-world cases involving the simulations of one pluvial and two fluvial floods on real-

scale terrains with numerous computational cells. Technical discussion is devoted to the efficiency of the GPU-parallelized 

coupled approach. 

2 Methodology 

This study couples the SWFCA solver with a newly proposed ASTCA solver as an effective tool to simulate flood flow and 105 

subsequent solute transport. Specifically, the new ASTCA solver utilizes the developed methodology for simulating the flow 

advection, turbulent diffusion, and material decay transport mechanisms from Wang et al. (2024) with additional treatments 

to increase the accuracy in high Péclet number flows. In subsect. 2.1, the SWFCA solver is briefly introduced. Next, the new 

ASTCA solver is introduced in Subsect. 2.2. The coupling methodology for linking the SWFCA and ASTCA solvers is 

discussed in Subsect. 2.3. 110 

2.1 The CA-based shallow flow (SWFCA) solver of Chang et al. (2022) 

The SWFCA solver is proposed to provide a CA-based shallow water flow modeling tool that can behave like dynamic 

waves. To achieve this goal, the SWFCA solver uses the square-shaped cell to discretize the computational domain into a set 

of computational cells. Regarding the neighborhood configuration for defining the spatial relation between a computational 

cell and its surrounding cells, the Von Neumann neighborhood configuration is used in the SWFCA solver. As a result, there 115 

are four Von Neumann neighbors at the east, north, west, and south sides of a computational cell. Based on the decided 

neighborhood configuration, the SWFCA solver uses the Bernoulli hydraulic head as the key factor to determine the water 

movement so that the coupled relations between water depths and velocities can be reasonably considered. Then, a set of 

transition rules that consist of five sequential steps to distribute mass (water depths) and inertias (water velocities) from the 

central cell to its four neighbor cells are incorporated in the SWFCA solver (Chang et al., 2022). In the first step, the 120 

SWFCA solver uses the Bernoulli hydraulic heads and mass fluxes to delineate the flow direction and flow condition (either 

the normal or special flow conditions) of each flow transport route. Then, based on the determined flow direction, the mass 

flux of a flow transport route is computed by using the Manning and Weir equations in the second step. In the third step, the 

predicted water depth of each computational cell is decided and is used with the modified energy equation in the fourth step 

to find the predicted water velocity of each flow transport route. Finally, the SWFCA solver updates the states of each 125 

computational cell in the fifth step. After the five steps are executed, the tasks for assigning the boundary conditions and 

computing the adaptive step based on the Courant-Friedrichs-Lewy (CFL) for the next time marching are performed. For 

more details on the SWFCA solver, the readers are referred to Chang et al. (2022). 
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2.2 The CA-based advanced solute transport (ASTCA) solver 

The ASTCA solver is proposed to further increase the accuracy of the STMCA solver in flows with a high Péclet number. 130 

For this purpose, the ASTCA solver adopts the same square-shaped cell for discretizing the computational domain as the 

SWFCA solver. Also, the Von Neumann neighborhood configuration of the SWFCA solver is used in the ASTCA solver 

according to its convenience for programming and satisfactory accuracy (Chang et al., 2022). The ASTCA solver considers 

the same solute transport mechanisms as the STMCA solver, i.e., the flow advection, turbulent diffusion, and material decay 

mechanisms, and they are. These mechanisms are simulated by computing the transported mass leaving/entering each 135 

computational cell, which is mathematically described by Eqs. 1 and 2 and conceptually drawn in Fig. 1 by Wang et al. 

(2024). After the transported mass of the three mechanisms for each cell is determined, the ASTCA solver then updates the 

solute concentration of each central cell. It is worth mentioning that, in the actual implementation, the solute mass is used 

instead of the solute concentration for the sake of programming convenience. Finally, the ASTCA solver assigns the 

boundary conditions and determines the adaptive time step for the next time marching by using the same methodology as the 140 

STMCA solver, which can be found in Wang et al. (2024). 

2.2.1 Determines the transported mass of the three solute transport mechanisms for each cell 

For a central cell, the solute concentrations of the central cell (𝐶0) and ith neighbor cell (𝐶1) are first computed by 

𝐶0 = 𝑀0 (𝑙2𝑑0)⁄   𝐶𝑖 = 𝑀𝑖 (𝑙2𝑑𝑖)  ∀𝑖 ∈ {1 … 4}⁄         (1) 

where 𝑀0 and 𝑀𝑖 are the solute mass of the central and ith neighbor cells, respectively, 𝑑0 and 𝑑𝑖 refer to the water depths of 145 

the central and ith neighbor cells, respectively, l is the cell length. In Eq. 1 and the following equations, variables without a 

superscript are at time t. The transported mass of each mechanism is then decided, which is introduced as follows 

1. Turbulent diffusion mechanism 

In this mechanism, the solutes are actively moved from high concentration to low concentration. Furthermore, a local weight 

system is incorporated to ensure mass conservation. For a central cell, the solute concentration differences between the 150 

central cell and its neighbor cells are first computed by 

∆𝐶𝑖,𝐷𝑓 = 𝑚𝑎𝑥(𝐶0 − 𝐶𝑖 , 0)  ∀𝑖 ∈ {1 … 4}         (2) 

where the subscript Df refers to this mechanism. The ith neighbor cell receives transported mass from the central cell if 

∆𝐶𝑖,𝐷𝑓 > 0. The weight of the ith neighbor cell is decided as 

𝑊𝑖,𝐷𝑓 =
(𝐷0,𝑖∆𝐶𝑖,𝐷𝑓)

∑ 𝐷0.𝑖∆𝐶𝑖,𝐷𝑓
⁄   ∀𝑖 ∈ {1 … 4}        (3) 155 

where 𝐷0,𝑖 is the diffusion coefficient along the direction of the ith neighbor cell. The total transported mass from the central 

cell to its four neighbor cells at time 𝑡 + ∆𝑡 is given 

https://doi.org/10.5194/nhess-2024-131
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



6 

 

𝐼𝑡𝑜𝑡,𝐷𝑓
𝑡+∆𝑡 = 𝑚𝑖𝑛 (

𝐼𝑳,𝐷𝑓

𝑊𝑳,𝐷𝑓
, 𝐼𝑡𝑜𝑡,𝐷𝑓

𝑡+∆𝑡 + 𝐼𝑡𝑜𝑡,𝐷𝑓)         (4) 

where the subscript L refers to the index of the neighbor cell with the maximum weight, 𝑊𝑳,𝐷𝑓 is the maximum weight, 𝐼𝑳,𝐷𝑓 

is the transported mass to the neighbor cell with the maximum weight (= 𝐷0,𝑳∆𝐶𝑳,𝐷𝑓𝑑0∆𝑡) with ∆𝑡 is the adaptive time step, 160 

𝐼𝑡𝑜𝑡,𝐷𝑓
𝑡+∆𝑡  refers to the maximum value of total transported mass that will not cause artificial oscillation, 𝐼𝑡𝑜𝑡,𝐷𝑓  is the total 

transported mass at the previous time stage. 𝐼𝑡𝑜𝑡,𝐷𝑓
𝑡+∆𝑡  is determined as 

𝐼𝑡𝑜𝑡,𝐷𝑓
𝑡+∆𝑡 = 𝑙2𝑚𝑖𝑛 (

∆𝐶𝑖,𝐷𝑓|
∆𝐶𝑖,𝐷𝑓>𝜏

𝑊𝑖,𝐷𝑓

𝑑𝑖
+

1

𝑑0

)  ∀𝑖 ∈ {1 … 4}        (5) 

where 𝜏 refers to a small tolerance (=10-8 in the present manuscript). After 𝐼𝑡𝑜𝑡,𝐷𝑓
𝑡+∆𝑡  is computed, the transported mass to the ith 

neighbor cell is decided by 165 

𝐼𝑖,𝐷𝑓
𝑡+∆𝑡 = 𝑊𝑖,𝐷𝑓𝐼𝑡𝑜𝑡,𝐷𝑓

𝑡+∆𝑡   ∀𝑖 ∈ {1 … 4}          (6) 

2. Flow advection mechanism 

In this mechanism, the solute is passively moved according to the velocity field. Consequently, the transported mass to the i th 

neighbor cell is written as 

𝐼𝑖,𝐴𝑑𝑣
𝑡+∆𝑡 = 𝑚𝑎𝑥(Θ(0,𝑖)𝑞0,𝑖

𝑡+∆𝑡 , 0)𝐶0,𝑖∆𝑡 × 𝑙         (7) 170 

where the subscript Adv represents the flow advection mechanism, 𝑞0,𝑖
𝑡+∆𝑡 is the computed unit-width discharge at the ith cell 

edge from the SWFCA solver at the time 𝑡 + ∆𝑡, 𝐶0,𝑖 is the solute concentration at the cell edge, and Θ(0,𝑖) is an internal 

variable for checking  𝑞0,𝑖
𝑡+∆𝑡  is toward the cell edge (Θ(0,1) = 1, Θ(0,2) = 1, Θ(0,3) = −1, and Θ(0,4) = −1). The ASTCA 

solver also introduces the use of the flux limiter to formulate 𝐶0,𝑖. Taking 𝐶0,1 and 𝐶0,3 as an example, they are given by 

𝐶0,1 = 𝐶0 + 0.5𝑙 × 𝑆0,1  𝐶0,3 = 𝐶0 − 0.5𝑙 × 𝑆0,3        (8) 175 

𝑆0,1 = 𝑆0,3 =
1

𝑙
𝜙(𝑟0,1⟷3)(𝐶1 − 𝐶0)          (9) 

𝑟0,1⟷3 =
𝐶0−𝐶3

𝐶1−𝐶0
            (10) 

with 𝜙(𝑟) is the flux limiter. In the proposed ASTCA solver, the Superbee flux limiter is selected as the flux limiter because 

of its recognized accuracy. Nevertheless, numerical compression that will distort the simulated profile is found to emerge in 

flows with a high Péclet number (Hou et al., 2015). The reason for this distortion is related to the underestimation and 180 

overestimation of the transported mass, which will subsequently make the Superbee flux limiter tend to smoothen the 

concentration profile segments with relatively steeper slopes and sharpen the concentration profile segments with relatively 

milder slopes (Hou et al., 2015). Such a numerical difficulty can occur when simulating triangle-shaped, trapezoidal-shaped, 
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or Gaussian-shaped profiles, as extensively studied by Hou et al. (Hou et al., 2015). As drawn in Fig. 2a, the transported 

mass through the 1st cell edge by Eq. 7 with a value of |𝑞0,1
𝑡+∆𝑡|𝐶0,1∆𝑡 × 𝑙 (the gray area at the 1st cell edge) is underestimated 185 

as the actual transported mass should be the green trapezoidal area. Thus, 𝐶0,1 is adjusted to be a mean value as 𝐶0,1 =

(𝐶0,1 + 𝐶0,1
′ ) 2⁄  where 𝐶0,1

′  is estimated by the unit-width discharge at the 1st cell edge, and the piecewise slope and water 

depth of the central cell. A general form for adjusting 𝐶0,𝑖 is given by 

𝐶0,𝑖 = 𝐶0,𝑖 − Θ(0,𝑖)0.5𝑆0,𝑖 ×
|𝑞0,𝑖|∆𝑡

𝑑0
          (11) 

if and only if 𝐼𝑖,𝐴𝑑𝑣
𝑡+∆𝑡 > 0. It is worth mentioning that 𝐶0,𝑖 could produce false diffusion at the tail and front of a moving 190 

concentration profile, particularly the rectangle-shaped profile, in steady flows. The false diffusion is related to the fact that 

the well-mixed assumption of solute is no longer guaranteed when flows are in a steady state. To mitigate this false diffusion, 

taking the central cell and its 1st cell edge in Fig. 2b as an example, the ASTCA solver computes the upstream and 

downstream bounds of 𝐶0,1  as 𝐶0,1
𝑢𝑠 = (5𝐶3 − 𝐶3,3) 2⁄  and 𝐶0,1

𝑑𝑠 = (3𝐶1 − 𝐶1,1) 2⁄ , respectively, to include the spatial 

tendency of the profile in the adjustment. Then, if the central cell is at the profile front (i.e., 𝐶3 > 0 and 𝐶1 = 0), 𝐶0,1 will be 195 

set as 𝐶0,1
𝑑𝑠  if 𝐶0,1 < 𝛿 × 𝐶0,1

𝑑𝑠  to express the condition that the profile front has not touched the cell edge. If the central cell is 

at the profile tail (i.e., 𝐶3 = 0 and 𝐶1 > 0), 𝐶0,1 is conversely enlarged to be max(𝛿𝐶0,1
𝑑𝑠 , 𝐶0,1) to represent the condition that 

the solute concentration of the central cell is underestimated. In the present study, 𝛿 is computed by an empirical formula of 

0.95 − 1000 (𝐷0,𝑖∆𝐶𝑖,𝐷𝑓) (𝐶0,𝑖𝑙|𝑞0,𝑖
𝑡+∆𝑡|/𝑑0)⁄  by the present study to account for the relative strength between the turbulent 

diffusion and flow advection. 200 

3. Turbulent diffusion mechanism 

The decreased mass due to this mechanism is estimated by 

𝐼𝑡𝑜𝑡,𝐷𝑒𝑐𝑎𝑦
𝑡+∆𝑡 = ∆𝑡 × 𝑘[𝐶0]𝑁 × (𝑙2𝑑0)          (12) 

where k and N are the temporal decay rate and order of the reaction, respectively. 

After the transported mass of the three mechanisms is computed, a simple mass conservation check is performed to avoid the 205 

occurrence of negative solute mass. The summed transported mass is first computed as 𝐼𝑡𝑜𝑡
𝑡+∆𝑡 = ∑ (𝐼𝑖,𝐴𝑑𝑣

𝑡+∆𝑡 + 𝐼𝑖,𝐷𝑓
𝑡+∆𝑡) +4

𝑖=1

𝐼𝑡𝑜𝑡,𝐷𝑒𝑐𝑎𝑦
𝑡+∆𝑡  and compared with 𝑀0. If 𝑀0 < 𝐼𝑡𝑜𝑡

𝑡+∆𝑡, 𝐼𝑖,𝐷𝑓
𝑡+∆𝑡, 𝐼𝑖,𝐴𝑑𝑣

𝑡+∆𝑡 , and 𝐼𝑖,𝐷𝑒𝑐𝑎𝑦
𝑡+∆𝑡  are all multiplied by 𝑀0 𝐼𝑡𝑜𝑡

𝑡+∆𝑡⁄ . 

2.2.2 Update the solute mass of each cell 

The solute mass of each central cell is updated by a simple equation as 

𝑀0
𝑡+∆𝑡 = 𝑀0 − ∑ (𝐼𝑖,𝐴𝑑𝑣

𝑡+∆𝑡 + 𝐼𝑖,𝐷𝑓
𝑡+∆𝑡) − 𝐼𝑡𝑜𝑡,𝐷𝑒𝑐𝑎𝑦

𝑡+∆𝑡4
𝑖=1         (13) 210 

with 𝑀0
𝑡+∆𝑡 is the updated solute mass of the central cell. 
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Figure 1: The flowcharts of the (a) SWFCA and (b) ASTCA solvers, respectively. 
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Figure 2: The schematic illustrations of the additional treatments of the ASTCA solver to increase the accuracy in high Péclet 215 
number flows. The treatments for (a) numerical compression and (b) numerical diffusion, respectively. 

2.3 The coupling methodology between the SWFCA and ASTCA solvers 

The SWFCA and ASTCA solvers are completely coupled in the same program to avoid unnecessary variable exchange 

between the two solvers. The execution of the two solvers is sequential, i.e., the ASTCA solver is executed after the SWFCA 

solver is performed since the ASTCA solver requires the predicted transport mass fluxes to conduct the simulation. The 220 

flowchart of the proposed CA-based coupled approach is drawn in Fig. 3a. As this figure displays, the coupled approach will 

first call the SWFCA solver to execute its five sequential steps to compute the updated velocity field. Then, the boundary 

conditions are assigned, and the ASTCA solver is commanded to determine the transported mass of the three solute transport 
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mechanisms. The ASTCA solver then computes the new solute mass based on the determined transported mass of solutes. 

Then, the boundary conditions of the ASTCA solver are assigned. After that, the global-wised adaptive time step for the two 225 

solvers is determined under the CFL and diffusion conditions. The present approach then moves into the next time marching 

until the simulation is finished. 

As the SWFCA and ASTCA solvers will be GPU-parallelized, it is essential to count the number of loops that would be 

needed to parallelize (Yu and Chang, 2023). As displayed in Fig. 3a, for the SWFCA solver, there is one main loop for the 

first and second steps. The third step incorporates a main loop to compute the predicted water depth of each computational 230 

cell, and another main loop to check whether the delineated flow directions in the first step are unchanged with the predicted 

water depth. Next, both the fourth and fifth steps require one main loop. As to the assignment of the boundary conditions, 

there is a relatively small loop introduced. As for the ASTCA solver, there is a main loop to compute the transported mass of 

the three mechanisms for each cell, and a main loop to update the solute mass of each cell. Then, there is a relatively small 

loop for assigning the boundary conditions. Hence, there are eight main loops and two relatively small loops for the 235 

proposed approach. Totally, there are ten loops. 

3 The GPU parallelization of the SWFCA and ASTCA solvers 

In GPU-based parallelization, the executions of the described computing procedures in Subsects. 2.1 and 2.2 are applied on 

GPUs instead of sequentially on the CPU since GPUs can provide satisfactory enlargement of efficiency without the use of 

high-performance computing equipment (Dazzi et al., 2018; Sanders and Schubert, 2019; Yu and Chang, 2023). Given that 240 

the SWFCA solver is programmed in C++, the newly developed ASTCA solver is also written in C++ to maintain 

consistency between the two solvers. Furthermore, the API of OpenCL 2.1 under the Nvidia CUDA (Compute Unified 

Device Architecture) is used to write the GPU-parallelized SWFCA and ASTCA solvers so that they can benefit from the 

remarkable portability of OpenCL. The details for implementing GPU parallelization on the SWFCA and ASTCA solvers 

are introduced in Subsects. 3.1 and 3.2, respectively. 245 

3.1 The GPU parallelization of the SWFCA solver 

In the SWFCA solver, the states of each computational cell (i.e., the Bernoulli hydraulic head, water depths, and water 

velocities) and the states of each cell edge (i.e., unit-width discharges and mass fluxes) are stored in their corresponding 1D 

arrays. Equivalently speaking, GPU parallelization is to let the computations of these 1D arrays in a loop be executed 

parallelly on GPUs. In the OpenCL structure, the parallelization is undertaken by executing kernel functions with variables 250 

in the virtual OpenCL workspace. Since the allocated variables in the virtual OpenCL workspace cannot be directly accessed 

by the main thread in the CPU, it is essential to lower the time-consuming readings/writings of variables between the main 

thread and the virtual OpenCL workspace. Correspondingly, to implement the GPU-based parallelization on the SWFCA 

solver, the aforementioned state variables of any central cell and any cell edge are all allocated in the OpenCL workspace. 
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Furthermore, when executing the kernel functions, the local sizes for specifying the size of a work-group instance (i.e., the 255 

block) for the enqueueNDRangeKernel function are filled with NULLRange. In this way, the OpenCL implementation will 

determine the appropriate work-group instances dynamically. 

In the aspects of the actual GPU implementation, the whole flowchart of the GPU-parallelized proposed approach is drawn 

in Fig. 3b for illustration. At the beginning of a simulation, the main thread will call the SWFCA solver to allocate the 

required state variables in the virtual OpenCL workspace. Input data is read and sent into the virtual OpenCL workspace for 260 

initialization. At each time stage, the computations of the five main loops are performed by sequentially executing the five 

kernel functions. As to the task of assigning the boundary conditions, it is moved and combined with the task of determining 

the new adaptive time step since the number of the boundary cells is often much less than the number of computational cells. 

An additional state variable is correspondingly incorporated with values of 1 as the SWFCA solver’s boundary cell and 0 as 

the other cell to merge these two tasks. The merged two tasks will introduce a main loop to compute the adaptive time step 265 

of a central cell and assign the corresponding boundary condition if the central cell is marked as the SWFCA solver’s 

boundary cell. A reduction operator is incorporated to find the minimum value of the adaptive time steps. Furthermore, as 

drawn in Fig. 3b, the task for assigning the boundary conditions in the ASTCA solver is merged with that of the SWFCA 

solver, which will be introduced in the next subsection. 

3.2 The GPU parallelization of the ASTCA solver 270 

The ASTCA solver is GPU-parallelized by using the identical parallelization implementation of the SWFCA solver. The 

state variables in the ASTCA solver, i.e., solute mass and turbulent diffusion coefficients of each computational cell, and 

mass flux across the cell edge, are all allocated in the virtual OpenCL workspace. The computations of the two sequential 

steps of the ASTCA solver are applied on GPUs by executing two corresponding kernel functions, as Fig. 3b displays. 

Regarding the size of a work-group instance in executing the two kernel functions, the ASTCA solver also lets the OpenCL 275 

implementation dynamically decide it. As previously mentioned in Subsect. 3.1, the task for assigning the boundary 

conditions is moved and merged with that of the SWFCA solver. A value of 2 is added to the state variable of the SWFCA 

solver that is used for identifying the SWFCA solver’s boundary cell (a value of 1) to represent the ASTCA solver’s 

boundary cell. With this treatment, the number of loops to be parallelized in the GPU-parallelized proposed approach is eight, 

which is less than the original proposed approach (ten in total). 280 

4 Model verification 

In this section, the accuracy of the proposed CA-based coupled approach is investigated through four test cases. Since the 

accuracy of the SWFCA solver has already been demonstrated to be satisfactory (Chang et al., 2022), only the accuracy of 

the ASTCA solver is herein verified and compared with the STMCA solver of Wang et al. (2024) and the state-of-the-art 

FV-TVD model of Liang (2010). The selected FV-TVD model is coupled with a widely used FV-HLLC model as a FV-285 
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based coupled approach for the rest analysis by a similar mean as the proposed CA approach. As for the STMCA solver, it 

uses the simulated results of the FV-HLLC model to perform its solute transport computation. 

 

Figure 3: (a) The flowchart of the SWFASTCA approach. The number of the main loops that scan over each computational cell 

and the number of the small loops for assigning the boundary conditions are both marked. (b) The flowchart of the GPU-290 
parallelized CA-based approach. The readings/writings between the main thread (CPU) and virtual OpenCL workspace (GPU) 

are drawn in the figure. 
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4.1 Case 1: solute transport in a 2D uniform velocity field (movement of solutes with steep gradients in a 2D steady 

uniform flow) 

Case 1 simulates the solute transport with concentration discontinuities in a horizontal and frictionless channel that has a 295 

length of 10,000 m and a width of 10 m (Chang and Chang, 2017). A uniform water depth of 0.5 m and water velocities as 

u=0.7 m/s and v=0 m/s are given for the velocity field. The left and right edges of the computational domain are both 

prescribed as the transmissive boundary. In such a way, the released solutes will be passively moved by the specified 

velocity field only along the x direction. The computational domain is discretized by a square cell with a length of 2 m, 

resulting in 25,000 computational cells. As for the concentration field, there are four scenarios herein. For the first two 300 

scenarios, the initial solute concentration profile is given as a rectangle-shaped profile (i.e., top hat tracer) with a 

concentration of 1 kg/m3 within |𝑥 − 400| ≤ 800 m. The time-invariant and uniform diffusion coefficient for the first 

scenario is given as 0 m2/s so that an infinite Péclet number is introduced. As a result, the first scenario is in the advection-

dominated condition. As for the second scenario, the diffusion coefficient is given as 10 m2/s to let this scenario be in the 

diffusion-dominated condition. For the third scenario, the initial solute concentration profile is a triangle-shaped profile 305 

along the x direction with its center at x=800 m, a base length of 800 m, and a peak concentration of 1 kg/m3. In the fourth 

scenario, a trapezoidal-shaped profile with its center at x=800 m, a top length of 80 m, a base length of 600 m, and a peak 

concentration of 1 kg/m3 is used to define the initial solute concentration profile. The diffusion coefficients in the last two 

scenarios are both given as 0 m2/s. Therefore, the first, third, and fourth scenarios are all in the advection-dominated 

condition. The simulation durations of the four scenarios are all 9000 s to observe the movement of the solute, and the L2 310 

norm of solute concentration is computed by taking all the simulated solute concentrations in the computational domain at 

this time. The analytical solutions in the advection-dominated scenarios are straightforward to derive since these scenarios 

are all in the pure advection condition. As to the diffusion-dominated scenario, the analytical solution by Tian et al. (2022) is 

used. 

The simulated results of the ASTCA solver, STMCA solver, and FV-TVD model at t=9000 s in the four scenarios are drawn 315 

in Figs. 4a-4d, respectively. The analytical solutions are also included in these figures for reference. Inspection from these 

figures reveals that the STMCA solver and FV-TVD model produce almost identical results in all scenarios. As to the 

ASTCA solver, its accuracy is found to be higher than the STMCA solver and FV-TVD model in advection-dominated 

scenarios. In the first scenario, the ASTCA solver successfully mitigates the unwanted numerical diffusions near the fronts 

and tails that are seen in the STMCA solver and FV-TVD model (Fig. 4a). As for the third and fourth scenarios (drawn in 320 

Figs. 4c and 4d, respectively), both the STMCA solver and FV-TVD model give distorted results because of the numerical 

compression. Conversely, the ASTCA solver produces results that agree with the analytical solutions well. In the second 

scenario, the ASTCA solver, STMCA solver, and FV-TVD model give very similar results that all match the analytical 

solutions well. The L2 norms of solute concentrations are computed and listed in Table 1. From this table, it is found that the 

accuracy of the STMCA solver and FV-TVD model is almost identical. As to the ASTCA solver, it outperforms the STMCA 325 

solver and FV-TVD model in all four scenarios. It is worth mentioning that the ASTCA solver still has better performance 
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than the STMCA solver and FV-TVD model in the diffusion-dominated scenario, which means that the inclusion of the 

additional treatments for mitigating unwanted numerical diffusion and compression is meaningful and effective even in the 

diffusion-dominated condition. Thus, based on Figs. 4a-4d and Table 1, the STMCA solver is verified to have the same 

accuracy as the FV-TVD model. As for the proposed ASTCA solver, it outperforms the STMCA solver and FV-TVD model 330 

in both the advection-dominated and diffusion-dominated scenarios, particularly in the advection-dominated scenarios where 

significant accuracy enhancement is seen. Additionally, it is deduced that the accuracy enhancement becomes less when the 

diffusion begins to dominate. 

4.2 Case 2: solute transport in a 2D rotating velocity field (transport of Gaussian-shaped solutes with steep gradients 

in a 2D steady rotating flow) 335 

Case 2 considers a rotating velocity field of Liu et al. (2020) since the circulation phenomenon is commonly seen in river 

and overland flows. Also, this kind of rotating velocity field is recognized to be difficult for mesh-based models so it is used 

to test our proposed ASTCA solver (Liu et al., 2020). The corresponding solute transports are thus along both the x and y 

directions. The computational domain is a frictionless and horizontal square-shaped plate with a length of 3400 m. A 

uniform water depth of 1.0 m is prescribed for the velocity field. The water velocities of the counter-clockwise velocity field 340 

are specified as 𝑢 = −0.001π(𝑦 − 1700) m/s and 𝑣 = 0.001π(𝑥 − 1700) m/s, meaning one rotation takes 2000 s. As to 

the boundary condition, all of the four edges are set as the transmissive boundary. A square cell with a length of 4 m is 

adopted to discretize the computational domain into 724,201 cells. The concentration field is a Gaussian-shaped 

concentration profile as 

𝐶(𝑥, 𝑦, 𝑡) = 𝑒𝑥𝑝 (−
(𝑥−𝑥𝑜(𝑡))

2

2𝜎𝑥
2 −

(𝑦−𝑦𝑜(𝑡))
2

2𝜎𝑦
2 )         (14) 345 

where 𝜎𝑥 and 𝜎𝑦 are the variance in the x and y directions, respectively, 𝑥𝑜(𝑡) and 𝑦𝑜(𝑡) refer to the center of the Gaussian-

shaped profile. In the present study, 𝜎𝑥 = 𝜎𝑦 = 200 m. Initially, the center of the Gaussian-shaped profile is located at (900 

m, 1700 m). The simulation duration is given as 2000 s to see the simulated profile after one rotation. The L2 norm of solute 

concentration is computed by using the simulated profile at 2000 s. 

The analytical and simulated solute concentration profiles after one rotation (t=2000 s) along the lines x= 900 m and y= 1700 350 

m are respectively drawn in Figs. 5a and 5b. From these two figures, the STMCA solver and FV-TVD model provide almost 

identical results. However, both the two solute concentration profiles have a spuriously flat area near the center. Such a 

distortion can still be found in the ASTCA solver but with a much less magnitude. The L2 norm of solute concentrations is 

computed and listed in Table 1. Inspection from Table 1 reveals that the accuracy of the STMCA solver is the same as the 

FV-TVD model, and the accuracy of the ASTCA solver is significantly higher than the other two. Hence, based on Figs. 5a-355 

5b and Table 1, the ASTCA solver has proven its ability to provide more reliable results than the state-of-the-art FV-TVD 
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model in a 2D rotating velocity field. The additional treatments for increasing the accuracy are proven to be effective in more 

complex flow conditions. 

 

Figure 4: Model verification Case 1. The comparison of the analytical and simulated results when t=9000 s. The rectangle-shaped 360 
profiles with (a) D=0 m2/s and (b) D=10 m2/s. (c) The triangle-shaped profile with D=0 m2/s. (d) The trapezoidal-shaped profile 

with D=0 m2/s. 
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Figure 5: Model verification Case 2. The solute concentration profiles along (a) x= 900 m and (b) y=1700 m of the ASTCA solver, 

STMCA solver, and FV-TVD model after one rotation (t=2000 s). 365 

Table 1: The comparison of the numerical accuracy among the proposed ASTCA solver, STMCA solver, and FV-TVD model in 

Cases 1-2 of the model verification. 

Case Scenarios 
The ASTCA solver The STMCA solver The FV-TVD model 

L2 norm L2 norm L2 norm 

1 
Rectangle-shaped profile 

with D=0 m2/s 
0.00502 0.03166 0.03166 

 
Rectangle-shaped profile 

with D=10 m2/s 
0.00228 0.00248 0.00248 

 
Triangle-shaped profile 

with D=0 m2/s 
0.00364 0.04090 0.04090 

 
Trapezoidal-shaped 

profile with D=0 m2/s 
0.00204 0.07928 0.07928 

2  0.00485 0.01207 0.01207 
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4.3 Case 3: solute transport in a 2D dambreak flows over a triangular bump with various boundary conditions 

(discontinuous solute concentrations in dambreak flows over a complex terrain with various boundary conditions) 370 

In Case 3, solute transport in unsteady dambreak flows is involved to check the ASTCA solver. This dambreak flow case 

originates from the CADAM project and is extensively used to discover the ability of a shallow water flow model to handle 

partially reflective waves, hydraulic jumps/drops, and wet-dry interfaces (Chang et al., 2011; Kao and Chang, 2012). The 

computational domain comprises a reservoir with a length of 15.5m and a width of 1.0 m, a rectangular rough channel with a 

length of 22.5 m and a width of 1.0 m. A gate is placed at the downstream end of the reservoir where x=15.5 m. A triangular 375 

bump with a length of 6.0 m and a height of 0.4 m is located between 22.5 m and 34.5 m. All of the bed elevations except for 

the triangular bump are zero. The Manning roughness coefficient is specified as 0.0125 s/m1/3. Details of the configuration of 

this case can be found in Chang et al. (2022). Similar to Chang et al. (2022), the first and second scenarios of this CADAM 

project are selected for Case 3, i.e., the first scenario with the dry bed condition and the open end, and the second scenario 

with the wet bed condition and the closed end. The computational domain is discretized by square cells with a length of 0.1 380 

m into 4,411 cells. The initial solute concentration profiles for the two scenarios are both the trapezoidal-shaped profile with 

the center at x=14.5 m, top length of 1 m, base length of 2 m, and peak concentration of 1 kg/m3. The simulation durations of 

the two scenarios are both 40 s. The analytical solution for solute concentration is absent in this case. The comparison among 

the ASTCA solver, STMCA solver, and FV-TVD model is conducted by taking the simulated concentration profiles at t=7.0 

s and 8.1 s for the sake of demonstration. 385 

The three simulated concentration profiles at t=7.0 s and 8.1 s in the two scenarios are respectively drawn in Figs. 6a and 6b. 

From the two figures, it is found that at two times, the ASTCA solver, STMCA solver, and FV-TVD model produce very 

similar concentration profiles despite the latter two simulating relatively bent curves at the tail and front of the profiles 

because of unwanted numerical diffusion/compression. The ASTCA solver successfully maintains straight lines near the tail 

and front of the profiles at both two times in both of the two scenarios. Correspondingly, the accuracy of the STMCA solver 390 

is the same as the FV-TVD model. The ASTCA solver can provide more physically reliable simulated results than the 

STMCA solver and FV-TVD model. Thus, the ASTCA solver has better performance than the STMCA solver and FV-TVD 

model in simulating solute transport in dambreak flows. 

4.4 Case 4: solute transport in a pluvial flood on a real-scale terrain 

Case 4 includes the solute transport in a pluvial flood event on a real-scale terrain in Taiwan. The terrain used by Wang et al. 395 

(2024) for their model applications and efficiency assessment is selected for Case 4. This study site is located in the southern 

region of Taiwan, as Fig. 6a of Wang et al. (2024) depicts. The corresponding terrain is in the downstream part of the Dianbo 

River catchment (depicted in Fig. 6a of Wang et al. (2024)) and has a 10-year return period flood levee along the Dianbo 

River mainstream, as drawn in Fig. 6b of Wang et al. (2024). The present study uses the same land use (Fig. 6c of Wang et al. 

(2024)) and specification of the “pollutant release” regions (Fig. 6d of Wang et al. (2024)) for releasing pollutants. The used 400 
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DEM has 28,743 cells with a length of 20 m. The sewer networks are ignored as the focus is not on the overland flow 

modeling. 

 

Figure 6: Model verification Case 3. The comparison in simulated solute concentration profiles among the ASTCA solver, STMCA 

solver, and FV-TVD model when t=7.0 s and 8.1 s in the (a) first and (b) second scenarios. 405 
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To introduce a pluvial flood on this study site, the used rainfall data of a historical 23 August 2018 event by Wang et al. 

(2024) is utilized again, as drawn in Fig. 6e of Wang et al. (2024). The simulation duration is given as 24 hours to let the 

overland flows recede. The pollutants will be released from the “pollutant release” regions once the water depth of a cell in 

the regions exceeds 0.3 m. The pollutants are released in an initial concentration of 1000 ppm and a first-order decay rate k 

of 0.02 1/hr. Finally, the diffusion coefficients are computed by using the proposed formulas that include the consideration 410 

of longitudinal dispersion and turbulent diffusion (Liang et al., 2010). The comparison in accuracy is conducted by 

examining the solute concentration map and the predicted solute concentration hydrographs in two observed points 

(locations are the same as in Wang et al. (2024), see Fig. 6d for illustration). For more details, the readers are referred to 

Wang et al. (2024). 

The solute concentration maps of the ASTCA solver, STMCA solver, and FV-TVD model are drawn in Fig. 7a for 415 

comparison. The “pollutant releases” regions are also drawn in this figure. Apparently, the three solute concentration maps 

are almost the same and reasonable. The solute concentration hydrographs at the observed points P1 and P2 are drawn in 

Figs. 7b and 7c, respectively. It is found that, at each observed point, the STMCA solver gives almost the same result as the 

FV-TVD model. The result of the ASTCA solver is quite similar to those of the STMCA solver and FV-TVD model despite 

the latter two both introducing some minor variations near the peaks of the hydrographs. This finding is related to the fact 420 

that the ASTCA solver has additional treatments to provide better estimations of the transported mass. Thus, although the 

results are almost the same, the results of the ASTCA solver are relatively more reliable than the STMCA solver and FV-

TVD model. 

5 Model efficiency assessment 

The efficiency of the original and GPU-parallelized CA-based coupled approaches for various flood flows and subsequent 425 

solute transport in real-world flood events is evaluated through three selected cases (Cases A-C). Basically, many serious 

flooding events in recent years are either pluvial flooding due to heavy rainfall or fluvial flooding because of overtopping 

rivers. Therefore, the present study adopts several pluvial and fluvial flooding events to test our proposed approach. Case A 

considers the solute transport in a fluvial flood event due to serious dambreak flows toward buildings. Cases B and C 

respectively simulate pollutant events in pluvial and fluvial flood events on a real-world terrain in Taiwan. In each case, 430 

there are normal and fine grid systems for the assessment. Hence, there are totally six scenarios. To make a fair assessment, 

the FV-based, CA-based, and GPU-parallelized CA-based approaches are programmed based on the same structure. All of 

the simulations are conducted on an Intel (R) Core (TM) i9 PC equipped with 6.0 GB RAM and a core of 3.4 GHz clock 

speed. The equipped graphic card is an Intel (R) UHD Graphics 630 graphic card. 

 435 
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Figure 7: Model verification Case 4. (a) The solute concentration maps of the ASTCA solver, STMCA solver, and FV-TVD model. 

The solute concentration hydrographs of the ASTCA solver, STMCA solver, and FV-TVD model at the observed points (b) P1 and 

(c) P2. 
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5.1 Case delineation 440 

Regarding Case A, the “100% bed slopes” scenario in the extended efficiency evaluation section of Chang et al. (2022) is 

utilized. The used DEM with a 2.5 m grid resolution under the normal grid system is the real-scale Toce River Valley terrain 

with buildings in a staggered layout (Testa et al., 2007). The Manning roughness coefficient is given as 0.025 s/m1/3 

according to Chang et al. (2024). For constructing the fine grid system, the original DEM is interpolated into a grid 

resolution of 1.25 m by the inverse density weight (IDW) interpolation method, leading to 219,856 cells. The short-duration 445 

heavy rainfall event is replaced with a fluvial flood event. The high inflow hydrograph by Testa et al. (2007) is scaled back 

to the original scale and prescribed on the left edge of the computational domain. The simulation duration is given as 6 hours 

to let the flows gradually recede. 

Cases B and C use the layout and settings in Sect. 4.4, including the terrain, land use, sewer network, and “pollutant releases” 

regions, to prepare pollutant events in the pluvial and fluvial flood events. The pluvial flood of Case B is driven by assigning 450 

the collected rainfall data on the Ziguan rain gauge (location displayed in Fig. 6b of Wang et al. (2024)) of a historical 23 

August 2018 event (rainfall series drawn in Fig. 6e of Wang et al. (2024)) onto the terrain. The released water flows across 

the whole terrain and causes flooding in the low-lying areas of the terrain, as shown in Fig. 7a of Wang et al. (2024). Case C 

introduces a fluvial flood by assigning a historical overbank hydrograph in 2016 Typhoon Megi (see Fig. 6f of Wang et al. 

(2024)) at a breach point in the upstream edge of the terrain (location is drawn in Fig. 6b of Wang et al. (2024)). The 455 

released water flows along the low-lying valley in the eastern part of the terrain so that the caused flooding has greater water 

depths and higher water velocities because of the terrain, as reported in Fig. 7c of Wang et al. (2024). On the other hand, 

concerning the normal and fine grid systems, the 20 m-resolution DEM with 28,743 cells is regarded to be under the normal 

grid system. The fine grid system with a grid resolution of 10 m is created by the IDW interpolation method, resulting in a 

DEM with 114,972 cells. The simulation duration is 24 hours. 460 

As to the settings for solute simulations, for Case A, a time-invariant solute concentration with a value of 1 kg/m3 is 

prescribed on the left edge of the simulated terrain where the dambreak flows are released. The other edges are set as outlet 

boundary conditions to let the released solutes freely leave. Cases B and C use the same solute settings as Wang et al. (2024), 

i.e., pollutants are released in an initial concentration of 1000 ppm, and a material decay of k=0.02 1/hr and N=1. The 

diffusion coefficients are computed by the approach of Liang et al. (2010), see Eqs. 17-18 of Wang et al. (2024). 465 

5.2 Efficiency assessment 

The run times of the FV-based, CA-based, and GPU-parallelized CA-based approaches are recorded to conduct the 

assessment. Additionally, the present study also records the run times of the FV-HLLC model, SWFCA, GPU-parallelized 

SWFCA solver, FV-TVD model, ASTCA solver, and GPU-parallelized ASTCA solver to make a detailed analysis. It is 

noted that these run times exclude the run times for assigning the boundary conditions and determining the new adaptive 470 

time step. The aforementioned run times in the six scenarios are recorded and displayed in Table 2. 
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Table 2: The efficiency analysis of the CA-based couple approach through three real-world cases with six scenarios. 

Case 
Grid 

resolution 

The FV-based coupled 

approach 
 The CA-based coupled approach  

The GPU-parallelized CA-based coupled 

approach 

  
The FV-
HLLC 

model 

The FV-

TVD model 
 

The 
SWFCA 

solver 

The ASTCA 

solver 

Total run 

time 
 

The GPU-

parallelized 

SWFCA 
solver 

The GPU-

parallelized 

ASTCA 
solver 

Total run 

time 

 (m) Run time (s) Run time (s)  Run time (s) Run time (s) Run time (s)  Run time (s) Run time (s) Run time (s) 

  (1) (2)  (3) (4) (5)=(3)+(4)  (6) (7) (8)=(6)+(7) 

A 2.5 450.9 469.7  351.6 155.3 506.9  6.1 2.9 9.0 

 1.25 4787.8 5148.2  3678.8 1601.6 5280.4  57.3 26.4 83.7 

B 20 248.8 253.1  192.9 87.4 280.3  2.9 1.4 4.3 

 10 1204.5 1254.6  919.6 416.1 1335.7  13.1 5.9 19.0 

C 20 239.5 247.7  188.6 74.4 263.0  2.6 1.1 3.7 

 10 1338.3 1423.7  1006.2 447.2 1453.4  13.2 6.4 19.6 

Average ratio (%) 48.9% 51.1%  69.6% 30.4% 100.0%  68.4% 31.6% 100.0% 

Efficiency 

     
The speed-

up ratio 

The speed-

up ratio 
  

The speed-

up ratio 

The speed-

up ratio 

The speed-

up ratio 

     (9)=(1)/(3) (10)=(2)/(4)   (11)=(3)/(6) (12)=(4)/(7) (13)=(5)/(8) 

A 2.5    1.28 3.02   57.64 53.55 56.32 

 1.25    1.30 3.21   64.20 60.67 63.09 

B 20    1.29 2.90   66.62 62.43 65.19 

 10    1.31 3.02   70.20 70.53 70.30 

C 20    1.27 3.33   72.54 67.64 71.08 

 10    1.33 3.18   76.23 69.88 74.15 

Based on the computed speed-up ratios in Table 2, the SWFCA solver is found to be faster than the FV-HLLC model by 

1.28-1.30 times, which complies with the outcome of Chang et al. (2022). As to the ASTCA solver, its efficiency is 

increased up to 2.90-3.33 times compared to the FV-TVD model, which is close to the STMCA solver in Chang et al. (2022) 475 

but with higher accuracy found in this research. Thus, the STMCA solver is both more accurate and efficient than the state-

of-the-art FV-TVD model. On the other hand, after implementing the GPU parallelization, the SWFCA solver, ASTCA 

solver, and the CA-based approach enlarge their efficiency up to 57.64-66.62, 53.55-62.43, and 56.32-74.15 times, 

respectively. This outcome is quite satisfactory since the simulations are performed on a simple PC equipped with a graphic 

card that is not subjected to high-performance parallel computing. The speed-up ratios are expected to be higher if more 480 

advanced equipment can be used. Consequently, the GPU-parallelized SWFCA solver, ASTCA solver, and proposed 

approach are all demonstrated to be efficient tools in real-world simulations. Nevertheless, the speed-up ratios of the GPU-

parallelized SWFCA solver are relatively larger than those of the GPU-parallelized ASTCA solver, which is because the 
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SWFCA solver has more steps to be GPU-parallelized than the ASTCA solver. Nevertheless, inspection of the average ratios 

in Table 2 reveals that the original and GPU-parallelized SWFCA solvers consume most of the run times (68.4%-69.6%). 485 

Thus, the SWFCA solver still remains to be the bottleneck. Interestingly, for the FV-based approach, the FV-TVD model 

consumes more run times than the FV-HLLC model because it requires more operations for extrapolations and gradient 

computations. 

6 Conclusions 

The present study establishes a coupled approach that comprises the SWFCA solver for dynamic-wave flow modeling and a 490 

new ASTCA solver for solute transport modeling. Additional treatments have been developed into the ASTCA solver to 

further increase the accuracy in flows with high Péclet numbers. The CA-based coupled approach is then GPU-parallelized 

by using OpenCL 2.1 under Nvidia CUDA. The accuracy of the newly developed ASTCA solver is first verified and 

compared to a FV-TVD model through four test cases. Next, the efficiency of the original and GPU-parallelized CA-based 

coupled approaches is assessed through three real-world cases with massive computational cells. An efficiency comparison 495 

is also performed by using a FV-based coupled approach that consists of a popularly used FV-HLLC model for flood flows 

and the FV-TVD model for solute transport. All of the simulations are conducted on an Intel (R) Core (TM) i9 PC with 6.0 

GB RAM and an Intel (R) UHD Graphics 630 graphic card. Based on the simulated results, the conclusions are drawn as 

follows. 

Concerning numerical accuracy, the ASTCA solver has much better accuracy than the STMCA solver and FV-TVD model, 500 

particularly in the advection-dominated scenarios with rectangle-shaped/triangle-shaped/trapezoidal-shaped profiles. As for 

numerical efficiency, compared to the FV-HLLC and FV-TVD models, the SWFCA and ASTCA solvers are found to 

increase the efficiency up to 1.28-1.33 and 2.90-3.33 times, respectively. Thus, the ASTCA solver is more accurate and 

efficient than the state-of-the-art FV-TVD model. After implementing GPU parallelization, the SWFCA solver, ASTCA 

solver, and CA-based approach achieve accelerations of 57.64-76.23, 53.55-69.88, and 56.32-74.15 times, respectively. This 505 

outcome is satisfying since the simulations are performed on a PC without a high-level graphic card for parallel computing. 

Hence, the proposed CA-based approach has been proven to be a useful tool for real-world flood flows and solute transport 

simulations. 

 

Code availability 510 

Concerning the used numerical models, in shallow water flow modeling, the FV-HLLC model is the “HLLC scheme” 

described by Yu and Chang (2021). The full description of the SWFCA solver can be found in Chang et al. (2022). As for 

solute transport modeling, the FV-TVD model's computing methodology in the present research comes from Liang (2010). 
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As for the STMCA solver, the readers are referred to Wang et al. (2024) for the complete description of its computing 

methodology. The ASTCA solver built in this research is extensively introduced in Sect. 2, where the workflow for the CA-515 

based couple approach is given in this section as well. The strategy for GPU implementation on the CA-based coupled 

approach is given in Sect. 3. 

 

Data availability 

The data used for Cases 1-2 in model verification can be reproduced directly by the descriptions given in the texts. The data 520 

for Case 3 in model verification is from Morris (2000). The data for Case 4 in model verification, including the digital 

elevation model (DEM), ground use, locations of the two observed points, polygon for the “pollutant release” regions, and 

historical rainfall data, can be downloaded from the URL provided by the present study 

https://www.space.ntu.edu.tw/navigate/a/#/s/D4C6ADB06F934BB4BCCAB47BF68E08476BL. Data for Case A in model 

efficiency assessment can be prepared by using the data by Testa et al. (2007). Data for Case B in model efficiency 525 

assessment can be derived by using data from Case 4 in model verification. Data for Case C in the model efficiency 

assessment is prepared by using the data of Case B with additional information about the location of the breach point and the 

assigned historical overbank hydrograph at the breach point, which are also given in the aforementioned URL. Figures in 

Sects. 2 and 3 are drawn by Microsoft PowerPoint version 2019. Figures in Sect. 4 (model verification) are made with 

Matplotlib version 3.7.3, available under the Matplotlib license at https://matplotlib.org/. 530 
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