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Abstract. The complexity of flood risk models is intrinsically linked to a variety of sources of uncertainty (hydrology, hy-

draulics, exposed assets, vulnerability, coping capacity, etc.) that affect the accuracy and reliability of the analyses. Estimating

the uncertainties associated with the different components allows us to be more confident in the risk values on the ground,

thus providing a more reliable assessment for investors, insurance and flood risk management purposes. In this study, we in-

vestigate the flood risk of the entire Central Apennines District (CAD) in Central Italy using the laRgE SCale inUndation5

modEl - Flood Risk, RESCUE-FR, focusing on the interaction between the uncertainty of the hydraulic Manning parameter

and the risk variability. We assess the coherence between the quantile flood risk maps generated by our model and the official

risk maps provided by the CAD authority and focusing on three specific zones within the CAD region. Thus, RESCUE-FR is

used to estimate the Expected Annual Damage (EAD) and the Expected Annual Population Affected (EAPA) across the CAD

region and to conduct a comprehensive uncertainty analysis. The latter provides a range of confidence of risk estimation that is10

essential for identifying vulnerable areas and guiding effective mitigation strategies.

1 Introduction

Floods are one of the world’s most devastating natural disasters, posing a significant threat to human life, infrastructure,

economy and the environment (Doocy et al., 2013; Rentschler et al., 2022; Llasat et al., 2009). Defined as the temporary

inundation of land not normally covered by water (Sayers et al., 2013), floods have shaped human civilization throughout15

history and continue to challenge societies worldwide. In recent years, the frequency and severity of flood events have increased

due to factors such as climate change, land use change and population growth (Schilling et al., 2014; Blöschl et al., 2017; Cred,

2020).

Understanding flood risk, defined as the probability of a flood event combined with its potential adverse consequences,

is paramount to effective disaster preparedness, response and mitigation strategies (EU Floods Directive, 2007). Flood risk20

assessment plays a crucial role in assessing the vulnerability of communities, infrastructure and ecosystems to flood events.

It involves estimating the likelihood and potential impact of flooding (defined as hazard), taking into account the exposure

(the presence of people, assets and systems in hazard zones) and the vulnerability (the susceptibility of these elements to

flood damage) (UNISDR, 2009). Accurate flood risk assessment informs land use planning, emergency management and
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infrastructure development, helping to identify high risk areas and prioritize mitigation measures (Falter et al., 2014; Convertino25

et al., 2019).

Despite its importance, flood risk assessment presents several challenges, particularly at large spatial scales that are funda-

mental for comparative analyses. Traditional methods for large scale analysis often rely on empirical or simplified models that

may overlook important spatial variability and uncertainty in flood hazard and impact estimates such as a simple aggregation of

local flood depth maps and damage assuming homogeneous return periods (Alfieri et al., 2016; Vorogushyn et al., 2018). In ad-30

dition, the dynamic nature of flood risk, influenced by socio-economic changes and climate variability, adds further complexity

to long-term assessments (Field, 2012).

Latest advances in hydrology and hydrodynamics modeling have enabled more accurate and detailed assessments of flood

risk at larger spatial scales. These models provide improved representations of flood hazard, ranging from empirical methods

to detailed hydrodynamic simulations (Manfreda et al., 2011; Schumann et al., 2013). Among these, LISFLOOD stands out as35

a widely used model for large-scale flood inundation mapping. It provides valuable insights into flood extent and depth (Bates

et al., 2010). In addition, the advances in large-scale flood modeling have contributed significantly to the assessment of flood

risk at the continental scale. The Catchment-based Macro-scale Floodplain Model (CaMa-Flood), developed by Yamazaki

et al. (2011), is an example of this progress, using advanced hydrodynamic simulations to capture the complex interactions

between precipitation, land surface characteristics and river systems. High-resolution topographic data, coupled with advanced40

modeling techniques, allow for more precise delineation of flood extent and depth, enhancing the reliability of flood risk

assessments (Sampson et al., 2015; Yan et al., 2015).

Despite these improvements, flood hazard estimates are still quite uncertain. Uncertainty generally affects the reliability

of risk estimates and arises from a variety of sources, including the climate projections, the model parameters and also the

socioeconomic factors ruling the estimate of losses (Dankers et al., 2014; Ward et al., 2014).45

The estimation of large scale flood losses is a complex issue due to the different interactions between systems that are

complex such as: urban, suburban, agriculture, etc. In fact Merz et al. (2010b) and Meyer et al. (2013) highlight different types

of damage. These include, for example: direct damage (damage caused by contact between water and structures), indirect

damage (damage to customers/suppliers who cannot access the flooded area), damage due to business interruption (e.g. due to

broken tools as a result of the flood), intangible damage (loss of life, epidemics, environmental damage, etc.) and risk mitigation50

costs (installation of mitigation infrastructure, maintenance, etc.).

Due to the difficulty of representing all of these types of damage in models, modelers generally limit themselves to assessing

direct damage (Merz et al., 2010b) because it can be associated with various hydraulic variables provided by flood hazard

models, such as water depth, velocity, etc. These types of direct flood damage models can have different levels of complexity

in terms of the variables considered and the spatial scale. They can be univariate, assuming that flood damage is influenced55

by only one variable (usually water depth), and multivariate, assuming that flood damage is influenced by several variables

including flood depth, inundation duration, flow velocity, and resistance parameters (e.g., building type, construction material)

(Gerl et al., 2016). In terms of spatial scale, they can be micro-scale (the damage is assessed at the building scale), meso-scale

2



(the damage is assessed at the spatial aggregation) and large-scale (the damage is assessed at the municipal, regional, national

scale) (Merz et al., 2010b).60

Quantifying the overall uncertainty in both hazard and impact estimates is essential to understand the robustness of results

in flood risk assessment and management (USACE, 1992; Peterman and Anderson, 1999; Downton and Pielke, 2005; Dankers

and Feyen, 2009; Alfieri et al., 2015, 2016). Incorporating estimation uncertainty allows a probabilistic assessment of risk,

providing a confidence interval for the results obtained rather than a deterministic risk value. This is useful for informed

decision-making (Kreibich et al., 2017; Merz and Thieken, 2009; Merz et al., 2010a), in particular where we do not have data65

to validate our own damage estimates (Figueiredo et al., 2018; Molinari et al., 2020). More generally, this type of estimation

supports the decision-making needs of different stakeholders who may have different attitudes to risk or different cost-benefit

ratios for risk reduction measures (Merz and Thieken, 2009).

In this paper, we show how the variability of the Manning roughness parameter can affect the risk estimate. We consider

here the Manning parameter as representative of most of the uncertainty characterizing the hydraulic modeling of flood risk.70

This is only one of the sources of uncertainty that need to be assessed in this context, such as the uncertainty in the estimates

of the hydrological discharge, the vulnerability curve, the exposed asset values, and so on. Assessing uncertainty from other

sources could provide additional insights and improve the overall confidence; but, achieving this requires a balance between

the spatial resolution and the uncertainty assessment.

In this context, the use of a large-scale, simple and computationally inexpensive flood hazard model facilitates the parametric75

uncertainty analysis. To this aim we use the hydrologic-hydraulic modeling approach named RESCUE (laRgE SCale inUn-

dation modEl), which was suited for the specific scope of the probabilistic assessment of flooded areas (Pavesi et al., 2022).

Coupled with a damage model, this provides an estimate of the uncertainty of the flood risk. The RESCUE framework, com-

bined with the damage model, is called RESCUE-FR (RESCUE - Flood Risk). The area of the study is the Central Apennines

District (CAD) in the center of Italy with a geographic surface of 42,298.22 km2. The RESCUE-FR framework is applied to80

the 25 main river basins in the area, as defined by the Italian National Geoportal, with areas ranging from 125 km2 to over

17,000 km2. Although this article proposes a case study for Italy, where some damage studies have been carried out for the

specific geographic region (see, e.g., Molinari et al., 2014; Amadio et al., 2019), we decided to adopt here the continental

damage model of Huizinga (2007) and Huizinga et al. (2017) in order to be able to extend our analysis to a large transnational

context in the future works. In addition, we estimate the population affected by floods; for this scope, we make the common85

simplifying assumption that the population is fully affected if located in the flooded area, regardless of the water depth (Ward

et al., 2013; Alfieri et al., 2015).

The innovative aspect of this work is twofold:

– providing a more complete view of flood risk on a large scale assessing the associated uncertainties, given by the use of

large scale flood models; this approach is achievable, not through complex models requiring intensive computational pro-90

cessing and calibration parameters, but through simpler large-scale models that illustrate the trade-off between quantile

uncertainty and spatial resolution/detail;
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– developing the RESCUE-FR framework, which integrates simple, globally accepted hazard, vulnerability and exposure

assessment methodologies to ensure wider applicability of flood risk estimates across regional boundaries.

The paper is structured as follows: in Section 2 we explain the methods of RESCUE-FR framework, in Section 3 we present95

the study area, in Section 4 we present the main results and discussions, and in Section 5 we draw the main conclusions of our

work.

2 Methods

2.1 Flood risk analysis

Hazard, vulnerability and exposure are the three fundamental modeling components of flood risk. In this work, we provide a100

probabilistic assessment of risk by accounting for the uncertainty due to the hydraulic modeling parameter, denoted here as

n. To this aim we make some simplifying assumptions; we assume that the probability of flooding (i.e. the hazard) and the

hydraulic characteristics of the inundation (e.g. water depth and velocity) are fully determined by the probability distribution

function of the peak discharge, p(Q), and of the Manning roughness parameter, p(n) (where p(.) indicates the probability

density function), where Q and n are independent of each other. Moreover, we assume that the damage, D (which results105

from the product of vulnerability and exposure), depends only on the water depth in the flooded area, h. Thus, risk R can be

described by the following equation

R=

∫
Ω

Rn p(n)dn=

∫
Ω

 ∞∫
Q∗

D(h(Q,n))p(Q)dQ

p(n)dn (1)

where Q∗ is the minimum peak discharge value producing damages and Rn = EQ [D|n] (with EX [.] denoting expectation

relative to the probability distribution function of the variable X) is the expected annual economic loss in a given year, i.e.110

the Expected Annual Damage (EAD), and for a specific value of n in the range of variability Ω. Thus, R= En [Rn|n] is the

average EAD (respect to the probability distribution of n) and, like Rn, is expressed in monetary terms.

Similarly, we can estimate the average population exposed to the effects of flooding in a given year, i.e. the Expected Annual

Population Affected (EAPA), which is instead expressed in number of inhabitants. We denote Θn = EQ [η|n] the EAPA for a

specific value of n in the range of variability Ω and Θ= En [Θn|n] the average EAPA. These are obtained by substituting the115

damage function D(h(Q,n)) in Eq.(1) with the function η(Q,n) counting the number of affected inhabitants as function of the

hydrological load Q and of the Manning parameter value n. As previously mentioned, we assume that the affected population

does not depend on the water depth.

Note that Eq. (1) provides the average with respect to n variability of EAD or EAPA in any point of the flooded area. Results

can be integrated in space at the desired aggregation scale. Given the main objective of this work, in the application of the120

framework to the case study (sections 3 and 4) we particularly focus on the probability distribution of Rn and Θn at different

spatial scales.
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Finally, we used a simplified approach to account for flood protection works. In large-scale flood hazard models, the res-

olution of the Digital Terrain Model (DTM) is often insufficient to represent flood defense structures, and comprehensive

databases detailing such defenses are often not available for manual integration. Previous studies have used various simplified125

approaches, such as assuming a uniform level of protection (Rojas et al., 2013), or using the Gross Domestic product (GDP)

per capita (Feyen et al., 2012) or the exposure (Zanardo and Salinas, 2022) as a proxy for level of protection. We adopt here a

uniform level of protection by assuming the threshold value Q∗ in Eq. (1) equal to design return period of the flood protection

works. While such assumption may add an additional component of uncertainty, we surmise that it is less significant than the

uncertainty on the Manning parameter as it mainly affects the lower part of the damage distribution, which has a lesser impact130

on risk.

In the next subsections we describe in detail the methodology of the three component of the RESCUE-FR framework.

2.2 The hazard model: RESCUE

RESCUE is a large-scale inundation model that allows the assessment of flood hazard over large areas (Pavesi et al., 2022). It is

a hybrid model combining geomorphological and hydrological-hydraulic approaches and consists of four distinct components.135

1. Geomorphological analysis: using a DTM, the river network is extracted and segmented into nodes and reaches. This

segmentation helps to identify critical points such as breach nodes or channel heads. Each river segment is divided into

equal lengths where possible.

2. Cross-section definition: average cross sections are defined for each reach identified in step 1. Key hydraulic properties

such as wetted perimeter and area are derived using the Height Above Nearest Drainage (HAND) model (Nobre et al.,140

2011) as described in Zheng et al. (2018). These properties, together with water levels, are used to calculate key parame-

ters such as the mean wetted area and the hydraulic radius. Manning’s equation is then used to generate the rating curve

for each segment.

3. Hydrological load: the discharge in all river reaches for a given return period is calculated using the rational formula. This

approach requires minimal information on the hydroclimatic conditions of the catchment and includes parameters such145

as the runoff coefficient and the critical rainfall intensity derived from an Intensity-Duration-Frequency (IDF) curve (see

sec. 3.1). This approach is used because it is simple and flexible, and although it is usually applied to small catchments,

it can be applied to larger catchments if it is properly calibrated.

4. Flood map generation: flood maps are generated by solving the 1D hydrodynamic model under steady-state conditions.

Starting from downstream boundary conditions, the gradually-varied-flow equation is solved along the river network to150

calculate water profiles for each segment. Water levels at segment nodes are interpolated and spatially propagated using

the HAND map to identify flooded areas based on the terrain elevation and the water depth.

The framework produces the extent of the flooded area for specific peak discharge values, corresponding to given return

period scenarios, and the related values of the water depth h(Q,n) in any DTM cell of the area. To solve the integrals in Eq.
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(1), that is to account for the probability distribution of the peak discharge and the uncertainty associated with the Manning155

roughness parameter n, a Monte Carlo analysis is performed, resulting in several flood maps for each return period and Manning

values.

2.3 Probabilistic mapping of flood hazard scenarios

The general approach to probabilistic flood mapping involves the evaluation of the statistical distributions for both model

inputs (the peak discharge Q) and the parameters. Samples are taken simultaneously from each distribution and used as inputs160

to numerous model simulations. For each simulation, the inundated area is delineated and the flood inundation is defined

in probabilistic terms by analyzing the distribution of the results (e.g. the water depth). In RESCUE we incorporate only

the statistical variability of the Manning roughness parameter n, considering it as representative of most of the uncertainty

characterizing the hydraulic modeling of flood risk. Indeed, floodplain roughness is the main factor of uncertainty impacting

the hydraulic modeling (Annis et al., 2020). This is represented in RESCUE-FR by the Manning coefficient. It represents a165

significant proportion of the overall uncertainty in hydraulic flood risk modelling, as it incorporates factors such as variations

in terrain elevation, the extent of flood prone areas and potential channel restrictions due to the presence of infrastructure.

To account for the variability of the Manning coefficient, we perform a Monte Carlo analysis using Latin Hypercube Sam-

pling (LHS), as described in McKay et al. (2000). Compared to the case of Pavesi et al. (2022), where a uniform distribution

of the Manning’s parameter n was assumed to assess the adaptation of flood hazard in flood-prone areas to official maps, we170

identified two key points:

1. the use of a uniform distribution for the roughness parameter, giving equal weight to all roughness values in an al-

most wide distribution, resulted in a certain overestimation of the water depth in the channel and consequently in the

floodplains;

2. the elevation of the channel cells obtained from the DTM is uncertain due to the presence of a water body; this affects175

the estimate of the channel bottom slope, which often results in null or very low values, thus introducing an additional

source of uncertainty in the estimation of the rating curve.

In general the discussion of the reliability of the rating curves and the key parameters influencing the rating curves is based

on the model proposed by Zheng et al. (2018) and has been addressed in the literature by various authors (Garousi-Nejad et al.,

2019; Godbout et al., 2019; Johnson et al., 2019; Ghanghas et al., 2022). In particular, from Ghanghas et al. (2022) results,180

changes in Manning roughness and channel slope predominantly affect rating curves during high flows, while the absence of

bathymetric data has a significant influence at low flows, with the effect decreasing as discharge increases. In RESCUE, our

primary focus is on high flows, allowing us to neglect the bathymetric factor. In addition, the study by Johnson et al. (2019)

suggests that wider ranges for varying the Manning parameter can be considered to improve the accuracy of rating curve

estimate and the effectiveness of flood mapping models.185

To address issues related to the channel bed slope parameter, particularly in low relief areas characterized by very low or

zero slopes, we decided to extend the lower limit of the Manning range parameter from 0.03 to 10−3 m−1/3s, deviating from
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the approach used in Pavesi et al. (2022). In addition, to overcome the challenges associated with the uniform distribution

of the Manning parameter, as discussed in point 1, we chose a normal probability distribution of the Manning parameter. In

general, there is no widely accepted probability distribution for the Manning coefficient, as its estimation relies heavily on190

empirical formulae and expert judgement, making it inherently subjective (Stephens and Bledsoe, 2020). Comparative studies

such as Papaioannou et al. (2017) show that normal, lognormal, gamma and beta distributions can all be used with minimal

difference in results, leaving the choice of distribution to the expert judgement of the modeller. For the probabilistic modeling

of Manning, we assumed for n a normal distribution with parameters µ= 0.0505 m−1/3s and σ = 0.01921 m−1/3s. These

parameters were chosen to ensure that 99% of the sample is positive and that the sample values around the mean are consistent195

with literature values for Manning n in floodplains as reported in Chow et al. (1988).

2.4 Flood damage model

The results from the hazard model, the water depth in each DTM cell of the flooded area h(Q,n), can be combined with the

damage model D(h) to produce probabilistic estimates of risk, according to Eq. (1). The damage model follows the procedure

described in Huizinga (2007), which is valid for all European countries. The choice of this type of damage model is guided by200

the fact that the hazard model is implemented and solved at a large scale and therefore requires an consistent damage model

at the same scale (Merz et al., 2010b). In addition, the RESCUE model in combination with this damage model can also be

used in an international context in a future work. This is introduced considering the product of the vulnerability, which strictly

depends on the water depth, and the exposure, i.e. the exposed assets value.

Besides, with regard to estimating the affected population η(Q,n), we consider the resident population affected for each205

positive water depth as in Alfieri et al. (2015) and Ward et al. (2013).

After calculating D(h(Q,n)) and η(Q,n) maps, i.e. in all the DTM cells of the inundated areas generated by the hazard

model, we can derive the Rn and Θn maps by numerically solving the inner integral in Eq. (1) cell by cell; then, the empirical

cumulative distribution functions (ECDFs) of Rn and Θn are calculated for each cell.

In the following subsections the two components of the damage model and the population database used in the analyses are210

described in detail.

2.4.1 Vulnerability curves

The vulnerability assessment is based on relative (i.e. expressed in percentage terms) depth-damage functions at the European

scale. As documented in Huizinga (2007) and Huizinga et al. (2017), these curves are derived from a comprehensive literature

review of flood damage data and damage functions for 11 European countries. Five depth-damage curves are established215

for distinct economic sectors, namely residential, commercial, industry, infrastructure and agriculture. For those countries

for which no information on flood vulnerability is available, the vulnerability curves are the mean value between the curves

available for the European continent.
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2.4.2 Exposure

The exposure is available for each of the 11 European countries and at the European scale; the latter is the average maximum220

assets damage among all the countries for which we have information. For countries with no information on the overall

value of the exposed assets, a methodology is applied to scale the average maximum losses (obtained from countries with

available information) at national scale across different economic sectors using GDP (Gross Domestic Product) per capita PPS

(Purchasing Power Standards) obtained from EUROSTAT. For further explanation see Huizinga (2007).

In this way, the maximum damage values are known for all countries. Since these values refer to the year 2007, it is nec-225

essary to take inflation into account and to update the maximum damage values for each country. This adjustment is made by

calculating the ratio between the Consumer Price Index (CPI) of the current year and that of 2007. For further clarification the

reader is referred to Huizinga et al. (2017).

This procedure is widely accepted as the standard approach for large-scale damage assessment in Europe, as shown by

Rojas et al. (2013) and Merz et al. (2010b). The outlined procedure provides clear damage estimates for individual countries230

at the national level, but lacks differentiation at the sub-regional level (NUTS 3). The NUTS classification (Nomenclature of

Territorial Units for Statistics) is a hierarchical system used to subdivide the economic territory of the EU for the purposes

of the collection, development and harmonization of European regional statistics and the socio-economic analysis of regions,

whereby NUTS 1 represents large socio-economic regions, NUTS 2 represents basic regions for the implementation of regional

policies and NUTS 3 represents small regions for specific diagnosis. Our study is particularly focused on this differentiation235

and therefore we have rescaled the maximum damage values to the NUTS 3 level. This rescaling was achieved by assigning

weights derived from the ratio between the national GDP and the GDP of the respective province.

The assessment of exposed assets is carried out using the Corine Land Cover (CLC) map, which includes 44 different

land cover classes. We adopt the methodology outlined in Huizinga (2007) to assess exposure on land cover grid data. This

methodology is based on the integration of data from the European Land Use/Cover Area Frame Statistical Survey (LUCAS).240

Following the principles of Huizinga’s methodology, a statistical mapping aligns the observed LUCAS with the CLC classes,

resulting in a cross-tabulation. This cross-tabulation provides a comprehensive allocation of land use percentages within each

CLC cell. Finally, we calculate a damage function for each land cover class as a linear combination of the corresponding

damage functions for different land use classes. The weights in the sum are determined from Huizinga (2007).

2.4.3 Population245

To assess the population at risk, we chose to use the European baseline dataset HANZE 2.0 (Paprotny and Mengel, 2023).

HANZE (Historical Analysis of Natural Hazards in Europe) dataset was released in 2017, revised and expanded as HANZE

2.0 in 2023. It was the first comprehensive exposure dataset with resolution matching pan-European flood hazard maps, namely

100 m, covering the years 1870 to 2020, designed specifically to enable the analysis of exposure and land-use change within

flood assessment studies. This decision was made in favor of the finer grid resolution compared to the 1 km resolution available250

in other European datasets.
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3 Study Case: Central Apennine District

To illustrate and discuss the advantages of a probabilistic approach for large-scale flood risk mapping, we apply RESCUE-FR

on the area pertaining to the Central Apennines River Basin District (CAD). The CAD is a geographical area of 42,298.22 km2

located in the heart of Italy (yellow area in Figure 1). It stretches from the Tyrrhenian Sea to the Adriatic Sea, including the255

Apennines, and comprises seven regions: Emilia-Romagna, Tuscany, Umbria, Latium, Marche, Abruzzi and Molise. As shown

in Figure 1, Rome, Perugia, Pesaro, Ancona, Ascoli Piceno, Teramo, Pescara, Chieti, L’Aquila, Viterbo and Latina are among

the most important cities (the boundary of each municipality is reported in the figure) in the district in terms of population and

economic activity.

The CAD climate is Mediterranean, with rainfall concentrated in the autumn and winter months. The morphology is char-260

acterized by mountains, hills and valleys, shaped by the erosive action of the rivers and streams that cross the area. The most

vulnerable areas are those located in the floodplains of rivers and their tributaries.

The CAD Authority provides the official flood risk map for the whole district through the PGRAAC (Piano di Gestione

del Rischio Alluvioni dell’Appennino Centrale, i.e. the flood risk management plan of the Central Apennines). These maps

are qualitative risk maps that can be considered as a reference for the assessment of the RESCUE-FR model. The PGRAAC265

maps are obtained by superimposing flood hazard maps (which result generally from different hydrologic methods and detailed

hydrodynamic models) and a detailed land use vector map. These risk maps do not represent risk in economic terms, but are

based on the identification of four qualitative risk classes: R1 (low risk), R2 (moderate risk), R3 (high risk), R4 (very high risk).

The CAD Authority maps are based on a risk matrix that considers different return period flood maps and evaluates the land

use within the flooded area. Regions with lower return periods and urban land use, with potentially high damage to buildings270

and people, have higher risk (R4 or R3). Conversely, areas with higher return periods and agricultural or forest land use have

moderate (R2) to low risk (R1). The four classes, from R1 to R4, are in order of increasing risk severity.

3.1 Model setup

Identifying the exact location of rivers is crucial to flood risk assessment. Relying solely on an unconditioned DTM for river

extraction can lead to inaccuracies, particularly in planimetry, which may lead to incorrect overlapping with land use types275

such as residential or others that are not appropriate. To address this issue, we used the MERIT Hydro dataset (Yamazaki et al.,

2019), which is hydrologically conditioned globally, ensuring a more accurate representation of river networks. This choice

increases the reliability of the analysis by minimizing inaccuracies in river delineation and subsequent overlaps with land use

categories for damage estimation.

The RESCUE model setup mirrors the configuration used in Pavesi et al. (2022) in terms of geomorphological analysis280

and hydrological discharge estimation. A threshold area for channelization of Ac = 10 km2 and an average reach length of

λ= 1 km are used for geomorphological analysis. The rational method uses the IDF curves at the regional scale based on the

Two Components Extreme Value (TCEV) distribution provided by the VAPI project (Rossi and Villani, 1994). The hydrologic

model also includes the modified Soil Conservation Service-Curve Number (SCS-CN) approach by Hawkins et al. (2010).
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Figure 1. Area of interest: the Central Apennines District (Italy) divided in municipalities (black boundary); the main cities in terms of

population and economic activity are reported (black dots).

Only in the Adriatic coastal areas, where the SCS-CN method does not accurately reproduce the peak discharge, the rational285

approach is discarded. Therefore, to ensure reliable discharge estimation in these catchments, we integrated official basin-scale

studies obtained from hydrologic-hydraulic reports available online (AUBAC, 2024).

We also deviate from Pavesi et al. (2022) for the hydraulic Manning distribution. We choose a normal distribution for the

Manning parameter n with a mean of µ= 0.0505 m−1/3s and a standard deviation of σ = 0.01921 m−1/3s. These parameter

choices were made on the basis of the discussions outlined in Section 2.3.290

The analysis was carried out on the 25 main catchments defined by the Italian National Geoportal. The simulations were

run separately for each of these basins. The basin to be simulated is then defined a priori and the area in which the simulation

is carried out coincides with the area of the basin. In order to assess risk and damage scenarios in each catchment, we have

discretized the peak discharge return period in chosen intervals ranging from 100 to 1000 year return period. In this regard,

for each return period, we conducted 11 simulations using Latin Hypercube Sampling (LHS) to ensure that each sample was295
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representative of a certain probability of occurrence of the Manning parameter. In a single simulation, the same Manning

coefficient is used across the entire spatial domain.

To account for flood protection works, we assumed a uniform level of protection in all areas. In Italy the areas exposed to

higher potential damage are generally protected by flood defenses up to a return period value of 200 year. Assuming a uniform

flood protection return period of 200 year in the whole area may lead to a significant underestimation of the risk in those300

areas, whose extent is not negligible, that are effectively unprotected. For this reason, we look for a trade-off between these two

issues and choose a uniform flood protection return period of 100 year. The choice of this return period is in agreement with the

studies of Ward et al. (2013) and Rojas et al. (2013). Hence, we assume Q∗ =Q100 in Eq. (1) to mitigate the overestimation of

flood risk associated with the lower return periods, where Q100 is the 1− 1/100 = 0.99 quantile of the probability distribution

of the peak discharge (the discharge for a return period of 100 years).305

As described in section 2.4.1, we adopted the European scale vulnerability curves following the procedure outlined by

Huizinga (2007). The NUTS 3 level was considered the most appropriate scale for our case study, which focused on the

Central Apennines District. It was therefore essential to assess differences between different provinces rather than regions

(NUTS 2 level). To ensure consistency with the methodology presented in Huizinga (2007), where a cross-tabulation between

LUCAS and CLC data is presented, we have updated the maximum damage values for each category from Huizinga (2007) to310

current values adjusted for inflation. In addition, we have chosen to use the CLC 2000 dataset (Büttner et al., 2002) and refer

to the land use percentages in each cell as reported in Huizinga (2007) report.

Finally, we refer to the baseline dataset HANZE 2.0 (Paprotny and Mengel, 2023) at 100 m spatial resolution to assess the

population at risk. This approach is consistent with established European methodologies, while ensuring an accurate represen-

tation of vulnerability curves tailored to our study area.315

4 Results and discussion

In this Section, we present and discuss the results of the analysis of flood risk estimation uncertainty carried out on the CAD

case study. First, we focus on evaluating the consistency between the flood risk maps generated by RESCUE-FR and the

official risk maps provided by the CAD authority. This comparison is essential to assess the reliability of RESCUE-FR; results

are illustrated in Figure 2 for the whole CAD region.320

In Figure 2, we compare the PGRAAC maps (panels a, c, e) with the RESCUE-FR risk maps at the 50-th quantile of

risk (the median of Rn distribution) (panels b, d, f), expressed in euro/year. Note that agricultural land use has significantly

different maximum damage values compared to the other land use types, varying by about two orders of magnitude because the

maximum damage value for agriculture in European countries is on average two to three orders lower than that associated with

residential, commercial and industrial land uses (Huizinga, 2007). To illustrate these differences, we have chosen a logarithmic325

scale for risk visualization (per order of magnitude), in line with the qualitative approach used by the CAD authority. To

simplify the representation and favor the comparison with PGRAAC maps, we assign three different risk classes based on the
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loss entity: C1 class risk value up to 102 euro/year, C2 up to 103 euro/year, C3 above 104 euro/year. Our classes, no matter

how they are defined, do not correspond to the R1-R4 risk classes used by CAD that are not defined in numeric values.

Figure 2a-b focus on an area of the Upper Tiber River at the confluence with the Chiascio River near Perugia. Here, the two330

flooded areas (RESCUE and PGRAAC) differ significantly, especially along the Chiascio River. In particular, RESCUE tends to

underestimate the flood extent for higher return periods compared to PGRAAC; this is due to errors in the DTM representation

of the valley (results not shown). However, in the case of forest/agricultural land use, despite a significant underestimation

of the flooded area, the error in risk assessment due to underestimation of the flooded area by the hazard model is not very

significant because the flooded area underestimated by RESCUE is in the low risk class R1 in PGRAAC risk map. This would335

be different if the land use was of a different type (residential, industrial, etc.), which would result in a higher risk class and

make the local underestimation more relevant.

Figure 2c-d show a zoomed-in section of the middle Tiber Valley, revealing a very good agreement between the two maps

in the transition from moderate/low-risk to high/very high-risk zones. However, we do notice some differences in high-risk

areas, which could be underestimated, particularly in zones adjacent to the river channel. This discrepancy is primarily due to340

the coarser resolution of the RESCUE-FR model. The CLC dataset, with a spatial resolution of 100 m, cannot capture detailed

land use variations within a single cell compared to the land use vector map used by CAD Authority. Therefore, if a cell has a

small percentage of residential or industrial land use but the majority is agricultural, it will be classified as agricultural damage.

However, the resulting underestimation of risk compared to the total risk is almost negligible. Finally, in Fig. 2 e-f we show

almost the entire Musone river risk maps, where we can draw similar conclusions to the panel c-d. The land use of the CAD345

area at risk is shown in Fig. 3 where panels a, b, c are focus respectively on the area at risk covered by panels a-b, panels c-d

and panels e-f of Fig. 2.

In general, RESCUE-FR shows a consistent agreement with the official CAD maps, with the exception of areas that cannot

be accurately mapped by the hazard model due to limitations of the DTM and the spatial resolution of the CLC, which may

miss localized areas of land use. In the following we analyze and discuss the results of the uncertainty analysis.350

Figure 4a shows an illustrative median Rn risk map of a segment within the Aterno-Pescara basin, derived from the

RESCUE-FR model analysis. Similar to Figure 2, the legend is log-scaled to highlight the variation in risk between differ-

ent land use types within cells. The purpose of this figure is to highlight the variability due to parameter uncertainty that is

reflected in the Rn probability curve, and to understand the added value of the uncertainty assessment. In general, three pat-

terns of risk distribution were identified throughout the analysis. These are shown in Figure 4b, c and d. To illustrate these355

patterns, we select three specific cells with different land uses, different empirical cumulative distribution functions (ECDFs)

and different distances from the channel along a cross-section of the risk area.

In Figure 4b, we show the Rn distribution of cell 1, which is a typical cell close to the main river channel and therefore

always wet, with water depths often above 6 m (maximum damage). The distribution trend is asymptotic and there is no

variation in the inter-quantile range. The risk values are the values of a cell which remains in a commercial/residential land360

use, such as CLC class 1.1.2. For a description of the Corine land Cover (CLC) classes see, e.g., Büttner et al. (2002).
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Figure 2. Comparison between the PGRAAC maps (a, c, e) and the RESCUE-FR 50-th quantile of Rn risk maps (b, d, f); panels a) and b)

show a zoom on the upper Tiber River near the city of Perugia, panels c) and d) show a zoom on the middle Tiber valley near Rome, panels

e) and f) show a zoom on the entire Musone River in the Marche Region. See the text the definition of the PGRAAC and RESCUE-FR risk

classes.
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Figure 3. Land use of the Central Apennines District (Italy) area at risk; panel a) shows a zoom on the upper Tiber River near the city of

Perugia, panel b) shows a zoom on the middle Tiber valley near Rome, panel c) shows a zoom on the entire Musone River in the Marche

Region. classes
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Figure 4. Rn Empirical Cumulative Distribution Function (ECDF): a) zoom of the RESCUE-FR median risk map on the Aterno-Pescara

River; b) local distribution in a cell near the main channel (commercial/residential land cover); c) local distribution in a cell far from the

channel (agricultural land cover); d) local distribution of the risk of a cell that is very unlikely to get wet (commercial/residential land cover).

For a description of the Corine land Cover (CLC) classes see, e.g., Büttner et al. (2002).
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In the panel c, we see a different pattern of the risk Rn distribution, of a typical cell far from the main river channel that start

to be wet from about the 7-th quantile and with a large variation in its inter-quantile range. The Rn values are the values of a

cell which remains in a agricultural land use such as CLC class 2.4.1. For this type of land cover class the risk value is very

low compared to the land cover class representing the residential/commercial risk. The variability for agricultural land cover is365

therefore negligible in absolute economic terms.

Panel d, on the other hand, shows a typical cell which, despite being very close to the channel, is topographically much

higher than the channel bottom and therefore only flooded when the water depth reaches very high levels. Here we can see that

if we did not use such an approach to quantify the parametric uncertainty, we would greatly underestimate the risk associated

with a certain area. In fact, in this case, the land use is commercial/residential and therefore the relative risk is very high if the370

cell is flooded. Without this approach, we would probably have rated the risk in this cell as zero.

To summarize, there is a considerable variability in the risk values provided by large-scale maps due to the uncertainty in

the Manning parameter, embedding the parametric uncertainty of the hydraulic modeling approach. Thus, it is important to

understand how these risk values, Rn, can be used effectively. A clear and comprehensive view of the extent of risk variability

across the whole area is essential in order to identify the critical points across the area of interest, and thus delineate the areas375

where risk reduction efforts should be focused and their priority.

Therefore, in Figures 5 and 6 we present the main characteristics of the probability distribution of the expected annual

damage Rn and the expected annual population affected Θn aggregated at the municipal level; for both, we show the median

and the 90-th quantile. Note that the boundary of each municipality is depicted in black as in Figure 1. It is important to

stress that, as mentioned in Section 3.1, the analysis was carried out only for the 25 largest catchments. Since within some380

municipalities there are areas pertaining to catchments that are not simulated with RESCUE-FR, we have excluded these

municipalities from the discussion if the non-simulated area is 100% (gray municipalities in the figures). In all the other cases,

where only a fraction of the municipality area is not simulated, the risk (in terms of EAD or EAPA) in that municipality

is generally underestimated. This is visible in the maps because the non-simulated area within the municipality boundary

is in gray color. The gray areas are concentrated in the coastal areas, where the catchments are generally small. In general385

Rn increases with increasing Manning’s roughness because greater roughness leads to higher water depth. The water depth

increases monotonically with the damage in the damage model adopted.

From the analysis conducted, it emerges that the median EAD in the CAD is approximately 137 M euro, with an average

exposed population of around 5,350 individuals annually. When quantile 90-th of the total EAD and EAPA distributions is

assessed, these values increase by 34% and 27%, respectively.390

The values in Figures 5 and 6 show a wide range of annual losses in terms of EAD and EAPA. As expected, the highest

risk values are found in the major economic and populated cities (as reported in Section 3), where there are more developed

economic activities and larger resident population. Particularly Figure 5a shows that 63% of the CAD exhibits a median risk

of less than 1,000 euro/year or even null. For another 27%, the risk appears to be less than 100,000 euro/year, while for the

remaining 10%, it exceeds 100,000 euro/year. The reason for this large percentage at low risk is that the highest risks are in395

cities passing through main rivers, which have larger discharges than tributaries.
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Figure 5. Expected annual damage Rn distribution at the municipality scale: a) median quantile, b) 90-th quantile.

Moreover, by comparing figures 5a and 5b, it emerges that a different number of areas have a significant increase in EAD at

quantile 90-th compared to the median. This allows to quickly identify areas of high uncertainty and carefully decide where to

focus for further assessment or for risk management actions. This provides an immediate indication of areas that may require

priority actions to reduce the impact of potential flood-related disasters.400

As expected being the largest city in the area, the Municipality of Rome stands out as having the highest median risk,

estimated at around 82 M euro/year. This corresponds to 60% of the total risk in the CAD. This value is in line with the results

of a previous study (Fiori et al., 2023), which provided an estimated risk of 24.3 M euro/year, the same order of magnitude.

The difference is justified considering that the risk estimate of Fiori et al. (2023) results from the implementation of a detailed

two-dimensional hydrodynamic model, limited to the historic center of the city of Rome rather than the entire municipality.405

For the same area of the study mentioned above, our model has an average value of around 43 M euro. Despite a simplified

representation of the phenomenon, the model is able to provide reliable estimates, also enabling the assessment of parametric

uncertainty.

As for the population at risk, Figure 6a shows that 93% of the CAD have an average population affected of less than 10

persons per year or no risk at all. For another 6%, the risk appears to be less than 50 persons exposed per year, while for the410

remaining 1% it exceeds 2,500 persons exposed per year. Furthermore, it is interesting to note that in almost the 50% of the
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Figure 6. Expected annual population affected Θn distribution at the municipality scale: a) median quantile, b) 90-th quantile.

simulated area the population at risk is equal to zero (light green areas). This can be explained by the fact that in the catchments

that do not cross large urban centers, such as cities shown in Figure 1, the population is concentrated in the mountainous areas,

at high altitudes above the rivers and not affected by floods. Finally, the 90-th quantile does not show a significant variability in

the population exposed at the municipal level, since this varies only in relation to the flooded area and the intersection of this415

area with the population distribution, without taking into account the variation in water depth.

5 Conclusions

In this study, we present and discuss the assessment of the parametric uncertainty in flood risk estimation performed with

the large-scale risk model named RESCUE-FR. The model couples hazard assessment with economic damage estimation

through widely recognized methodologies and can be easily extended to the entire European continent. More importantly,420

thanks to its simplicity, RESCUE-FR allows to investigate uncertainty without excessive computational efforts. We analyze

here the effect of the variability of the Manning parameter, being representative of most of the different sources of uncertainty

related to hydraulic modeling. Further, we demonstrate how the resulting distribution of risk can be used effectively for risk

assessment and management. In fact, the methodology provides the distribution risk/damage values in economic terms and not
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a deterministic value of risk/damage, as is often the case with existing risk maps that are based on detailed models and provide425

deterministic outputs. The proposed approach takes into account parametric uncertainty and uses a large-scale hydrological-

hydraulic analysis that ensures a comprehensive and homogeneous, albeit simplified, representation of processes across the

region. This provides more informed results for stakeholders and decision makers, and allows for expanding to other areas

where these maps are lacking. The risk analysis was carried out for the CAD region (Central Italy). From this analysis we draw

the following main conclusions.430

– The RESCUE-FR model shows a consistent agreement with the qualitative risk maps provided by the CAD Authority.

There exist areas of discrepancies, where we generally observe an underestimation of the risk, that is mainly due to the

accuracy of the DTM and the limitations in the detailed mapping of land use changes given by the coarse resolution of

the Corine Land Cover.

– Through the uncertainty analysis, the RESCUE-FR model provides a range of estimated flood risk (the expected annual435

damage), revealing significant variability in risk values depending on the land use considered.

– We identified three different patterns of risk distribution at the cell scale, depending on the distance from the canal, the

orography and the different land use types. These patterns are useful to identify the critical points across the area of

interest, where a single-value estimate of risk could significantly underestimate risk.

– In terms of affected population, the variability is lower as it depends mainly on the extent of flooding, which is less440

influenced by the Manning parameter with respect to water depth. In this case, the median value could be sufficient

for the assessment of the expected annual population affected. Conversely, the expected annual damage has a higher

variability being directly linked to water depth, requiring a thorough examination of the distribution quantiles for a

comprehensive risk assessment of the whole area.

– Aggregating risk values at the municipal level provides a comprehensive overview of flood risk across the CAD region.445

This approach identifies areas of vulnerability and variability in risk levels, helping to prioritize risk reduction efforts.

– The comparison with a previous study for the Municipality of Rome demonstrates the reliability of the RESCUE-FR

model in providing valuable information on flood risk, despite its simplified representation compared to more detailed

hydrodynamic models.

We recall that the accuracy of RESCUE-FR estimates might be limited by the simplifying assumptions that, on the other450

hand, allow for an easy implementation of the uncertainty analysis. These include the spatial resolution of the maps used in

input (DTM and CLC). Although these maps allow a consistent use of information at a larger scale, the accuracy of the maps

could be improved by a finer resolution at the cost of an increased computational load. Furthermore, the use of open databases

containing the distribution of major defense structures, such as levees and dams, could improve the accuracy of risk estimate.

Finally, by assessing the uncertainty associated with individual parameters, we gain valuable insight into interpreting flood455

risk and understanding map results over large areas. However, it’s important to recognize that uncertainty comes from multiple
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sources beyond hydraulic parameters. Therefore, extending our analysis to assess different sources of uncertainty, including

those related to hydrologic and socio-economic modeling, will make the analysis more complete, as it would take into account

and compare different phenomena. This is far beyond the scope of this work, and will be object of future analyses.

Data availability. The hydrologically conditioned MERIT Hydro DTM is openly available at https://hydro.iis.u-tokyo.ac.jp/~yamadai/460

MERIT_Hydro/. For damage estimation we used the Corine Land Cover (CLC) map from https://land.copernicus.eu/en/products/corine-land-cover/

clc-2000, the vulnerability curves for Europe available at https://publications.jrc.ec.europa.eu/repository/handle/JRC105688 and the CPI at

https://data.worldbank.org/indicator/FP.CPI.TOTL?locations=IT. The NUTS3 regions boundary is available at https://ec.europa.eu/eurostat/

web/nuts and the corresponding NUT3 regions GDP at current market prices at https://ec.europa.eu/eurostat/databrowser/view/nama_10r_

3gdp/default/table?lang=en. The municipalities boundary are currently accessible at https://www.istat.it/it/archivio/222527, while the popu-465

lation dataset HANZE 2.0 is openly available at https://zenodo.org/records/6783023. Finally, the PGRAAC data that support the findings of

this study are available at http://www.autoritadistrettoac.it.
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