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Abstract. Rainfall is intrinsically connected to the incidence of landslide catastrophes. Exploring the ideal rainfall threshold 

model (RTM) for an area in order to determine the rainfall warning level (RWL) for the region for daily landslide hazard 

warning (LHW) is critical for precise prevention and management of local landslides. In this paper, a method for calculating 

rainfall thresholds using multilayer perceptron (MLP) regression is proposed for 453 rainfall-induced landslides. First, the 

study area was divided into subareas based on topography and climate conditions. Then, two methods, MLP and ordinary 10 

least squares (OLS), were utilized to explore the optimal RTM for each subregion. Subsequently, 11 factors along with three 

models were selected to predict landslide susceptibility (LS). Finally, to obtain daily LHW result for the study area, a 

superposition matrix was employed to overlay the daily RWL with the ideal LS prediction results. The following are the 

study's findings: (1) The optimal RTMs and calculation methods are different for different subregions. (2) The Three-

dimensional convolutional neural network model produces more accurate LS prediction results. (3) The daily LHW was 15 

validated using anticipated rainfall data for July 19, 2020, and the validation results proved the correctness of the LHW 

results and RTM. 

1 Introduction 

Landslide catastrophes accounted for 71.55% of geological disasters in China from 2005 to 2021, according to the China 

Statistical Yearbook (http://www.stats.gov.cn/sj/ndsj/). Frequent landslide catastrophes endanger people's lives and property 20 

(Xing et al., 2021). Rainfall will lead to landslide disasters by changing the pore pressure in the soil body (Zhao et al., 2022) 

and weakening the shear strength of the geotechnical body (Chan et al., 2018). According to research (Marin et al., 2020; 

Yuniawan et al., 2022): rainfall is intrinsically connected to the great majority of landslide deformation and instability. 

Therefore, it is significant to delineate the rainfall thresholds for different rainfall conditions and areas through the study for 

the fine development of landslide hazard warning (LHW) and disaster prevention and control. LHW is described as the 25 

conditional prediction of probable landslide temporal and spatial probability under the limitations of triggering and inducing 

variables (Budimir et al., 2015). The rainfall warning level (RWL) (i.e., the temporal probability of landslide occurrence) 

calculated by the rainfall threshold model (RTM) is the triggering factor in this study, and the inducing factor is the 
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prediction result of landslide susceptibility (LS) (i.e., the spatial probability of landslide occurrence) calculated by the 

susceptibility model. 30 

The spatial probability of landslide occurrence can be reflected by LS (Huang et al., 2022b). General linear models (Aksha et 

al., 2020), information value models (Yu et al., 2022), machine learning models, and others are among the methods used to 

predict LS. Machine learning models can fit and predict the nonlinear relationship between LS and landslide predisposing 

factors more effectively than other kinds of models (Guo et al., 2021). Commonly used machine learning models include 

logistic regression (Baharvand et al., 2020), artificial neural networks (Jiang et al., 2014), support vector machines (SVM) 35 

(Zhu and Hu, 2012), random forests (RF) (Chen et al., 2014), Bayesian algorithms (He et al., 2019) and deep learning 

algorithms (Huang et al., 2020). However, determining which model is best suited for LS prediction is challenging, and there 

is great uncertainty in the LS prediction results of various machine learning models (Xia et al., 2020). Even little 

improvements in LS prediction accuracy might have a significant influence on LS zoning (Chen et al., 2018). Therefore, to 

decrease the uncertainty of LS results, different susceptibility models are frequently employed to predict LS in the study area, 40 

and the model with the greatest accuracy is chosen. 

RTM approaches primarily include of deterministic methods based on physical and hydrological models, as well as 

empirical methods based on landslide cataloguing and rainfall event statistics (Chung et al., 2017; Wu et al., 2015). The 

former establishes the relationship between rainfall and landslide stability through dynamic hydrological models and 

determines the critical rainfall threshold for landslide instability in the physical model (Ciurleo et al., 2019). However, due to 45 

the difficulty in accurately obtaining hydrological parameters and geotechnical parameters on a large scale, this method is 

only applicable to smaller study area (Wu and Yeh, 2020). The latter is mainly derived by calculating the relationship 

between historical landslide and rainfall data (Abraham et al., 2020a; Pradhan et al., 2019). This method is widely used 

because of its advantages of convenience in data acquisition, strong applicability, and excellent results (Martinovic et al., 

2018). Currently, commonly used RTM include the intensity of rainfall - duration of rainfall (I-D) threshold model 50 

(Abraham et al., 2019; Lee et al., 2014) and effective rainfall - duration of rainfall (E-D) threshold model (Abraham et al., 

2020b; Peruccacci et al., 2017). The regression methods used to calculate the RTM include logistic regression (Mathew et al., 

2014), ordinary least squares (OLS) regression (Rossi et al., 2017) and quantile regression (Salee et al., 2022). There are 

differences in the applicability of different RTM and different regression methods in different regions (Marin, 2020; Segoni 

et al., 2018). Therefore, to decrease uncertainty in LHW, several regression methods and RTM must be used to establish the 55 

best appropriate rainfall threshold for a certain location. 

Given that many researchers have employed the log-log coordinates system for RTM regression analysis (He et al., 2020), 

this study proposes to use MLP regression method to study the rainfall thresholds under various rainfall durations. 

Simultaneously, the third dimension indicator "rainfall for the day" (R) was introduced to create the E-D-R RTM based on 

the E-D RTM (Liu et al., 2022). 60 
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In this study, the Three Gorges Reservoir Area (TGRA) was used as the study area, and the landslides were first catalogued 

to get the E and D data during the five days before the landslides, as well as the R data at the time of the landslides. 

Following that, the rainfall thresholds corresponding to the E-D and E-D-R models for distinct landslide occurrence 

probabilities were calculated using both OLS and MLP regression methods, respectively. To explore the optimal RTM for 

the study area and the feasibility of neural network for RTM research, as well as to categorize RWL based on the optimal 65 

RTM. Then, select the factors that induce landslide occurrence and predict the LS results using RF, SVM, and 3D 

convolutional neural network (CNN-3D) models, and utilize the LS results with the best accuracy as the spatial probability 

of landslide occurrence in the study area. Finally, the daily RWL is combined with the LS result using the superposition 

matrix to achieve the daily LHW, which serves as a reference for precision prevention and management of local landslide 

disasters. 70 

2. Methods 

2.1 Rainfall Threshold Model 

2.1.1 OLS Regression 

OLS regression is a commonly used linear regression method that can be used to establish a linear relationship between the 

independent variable (𝑥) and the dependent variable (𝑦). It minimizes the error between the predicted value and the actual 75 

observed value by seeking the slope and intercept that best fits the data (Lim et al., 2023). 

The basic form of its regression model can be expressed as: 

𝑦 = 𝛽0 +∑ 𝛽𝑖
𝑛
𝑖=1 𝑥𝑖 ,           (1) 

where 𝑦 denotes the dependent variable, 𝑥𝑖 denotes the independent variable, 𝑛 denotes the number of independent variables, 

𝛽𝑖 denotes the coefficients of the independent variables, and 𝛽0 denotes the constant intercept. 80 

2.1.2 MLP Regression 

MLP is a common neural network with the ability of nonlinear mapping, which can learn complex nonlinear functional 

relationships through multiple layers of nodes. Currently, it has been widely used in many fields such as geospatial analysis 

(Hasan et al., 2023; Wang et al., 2023b), aerodynamics (Barcenas et al., 2023), atmospheric science (Hoffman and Jasinski, 

2023), rainfall prediction (Narimani et al., 2023), and image fusion (Mei et al., 2023). In the regression analysis of scatter 85 

data, a scatter data set can be regarded as composed of multiple input-output data pairs, and the model adjusts the weights of 

the model by minimizing the error between the predicted value and the actual data, and finally realizes the regression of 

scatter data. In this study, we built an MLP model with two hidden layers (Fig. 1). 
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Figure 1: Schematic diagram of the MLP model. 90 

2.1.3 E-D-R Rainfall Threshold Model 

The E-D-R RTM is based on the E-D RTM, with the introduction of the R metrics at the third latitude to optimize the 

original RTM. To investigate the E-D-R RTM, the E-D RTM must first be determined. 

The E-D RTM aims to investigate the effective rainfall as a function of duration of rainfall (Teja et al., 2019). The scatter is 

generally analyzed by regression in a log-log coordinates system, and then the resulting fitted straight line is transformed 95 

into a result in a Cartesian coordinate system. The expression for this is: 

𝐸 = 𝛼 × 𝐷𝛽 ,            (2) 

Assume that the linear equation obtained by fitting in the log-log coordinates system has an intercept of 𝑏 and a slope of 𝑎. 

Then, in the above equation, 𝛼 = 10𝑏, 𝛽 = 𝑎, and 𝐷 denotes the duration of rainfall (d). E is the effective rainfall (mm), 

which refers to the total amount of rainfall that actually infiltrates and acts on the landslide body in addition to the slope 100 

runoff and evaporation (Huang et al., 2022a). The effective rainfall formula used in this study is as follows: 

𝐸 = ∑ 𝑘𝑖−1𝑛
𝑖=1 𝐸𝑖  ,           (3) 

where 𝐸 denotes the effective rainfall, 𝐸𝑖 is the rainfall on the previous 𝑖 days, and 𝑘 is the effective rainfall coefficient. The 

value of k is usually set to 0.8 (Huang et al., 2022a). Furthermore, it has been shown that the effective rainfall in the first 5 

days of the TGRA has a strong link with landslide events (Zhou et al., 2022). Therefore, the number of days of rainfall 105 

statistics 𝑛 in this work is set to 5. 
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The third dimension of the indicator R is added based on the E-D RTM to expand the threshold model from two to three 

dimensions, and the RTL meet the following relational equation: 

𝑇 = max{𝐺𝐸 , 𝐺𝑅} ,           (4) 

where 𝑇 denotes the final RWL, while 𝐺𝐸 and 𝐺𝑅 denote the RWL for the E-D model and R, respectively. 110 

2.2 CNN-3D Model 

Convolutional Neural Network (CNN) is a deep learning algorithm, widely used in image recognition (Fan et al., 2022; Gill 

et al., 2022), natural language processing (Jin et al., 2023; Kaliyar et al., 2021) and other domains. Its primary concept is to 

extract features from input data using a convolution operation (Youssef et al., 2022). However, for one- and two-dimensional 

CNNs, feature extraction for induced factor data is only performed at a single raster point. Both methods ignore the spatial 115 

information around the raster points (Yang et al., 2022). As a result, this study presents CNN-3D in order to fully use the rich 

spatial information around the raster points in order to increase the prediction accuracy of LS. The structure of CNN-3D is 

similar to that of CNN, but since the input data contains more information, CNN-3D can provide more accurate results (Liu 

et al., 2023). 

We picked a three-dimensional structure to create samples in this experiment. Before producing the samples, an n-channel 120 

picture is formed by superimposing n components. Each pixel is then extended outwards by 7 pixels to generate a 15 × 15 × 

n image as input. Subsequently, through operations such as convolution and pooling in the hidden layer, the high-level 

features are mapped to the low-dimensional space and stored in the neural units of the fully connected layer, and finally 

classified using the Softmax function to obtain the results of landslides and non-slides (Fig. 2). 

 125 

Figure 2: Schematic diagram of CNN-3D structure. 
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3. Overview of the Study Area 

3.1 Physical and Geographical Characteristics 

The study area is located in the upper reaches of the Yangtze River between Sandouping in Yichang City and Jiangjin 

District in Chongqing, which is situated at longitude 105°50′- 111°42′ E and latitude 28°30′-31°45′ N (Cheng et al., 2022), 130 

encompassing a total of 29 administrative districts and counties in Hubei Province and Chongqing Municipality (7 districts 

and counties in Hubei, and 22 districts and counties in Chongqing), and covering a total area of 5.67×104km2 (Fig. 3).The 

climate of the region is subtropical monsoon with an average annual precipitation of 445-1813 mm (Long et al., 2021). And 

the abundant rainfall in the area is a major factor inducing landslides (Guo et al., 2022). 

 135 

Figure 3: Geographic location of study area. 

3.2 Study Area Subdivision and Landslide Data Cataloguing 

Geomorphology, geology, and climate play the most important role in preparatory process of landslide initiation in any 

region (Dahal and Hasegawa, 2008), and the differences between them lead to different rainfall thresholds in various regions. 

Therefore, in this study, the whole study area was divided into 10 zones (Fig. 4) by considering the topography and climatic 140 

conditions of the study area, and the optimal RTM was calculated for each zone separately. Among them, Z11, Z12 and Z13 

are the moderate rainfall zone, low rainfall zone and high rainfall zone in the folded region; Z21, Z22, Z23, Z24 and Z25 are the 

low rainfall zone, relatively high rainfall zone, high rainfall zone, moderate rainfall zone and high rainfall zone in the low 
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and medium mountain region, respectively; Z3 is the high rainfall zone in the medium and high mountain region; and Z4 is 

the high rainfall zone in the hilly and plain zone. 145 

 

Figure 4: Zoning map of the study area. 

Before landslide data cataloguing, the corresponding rainfall dataset needs to be acquired. Based on the abundance of rainfall 

stations in the study area (refer to Fig. 3, Rainfall Station), Thiessen polygon method were used for the delineation (Zhao et 

al., 2019), which facilitates the finding of rainfall stations corresponding to landslides. The Thiessen polygon method results 150 

satisfy the following conditions: (1) each polygon contains one and only one rainfall station; (2) any point within each 

polygon is the closest to the rainfall station within the unit; (3) the points on the boundary are the same distance to the two 

neighboring rainfall stations. The result of its division is shown in Fig. 5. 
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Figure 5: Thiessen polygon method results map. 155 

Landslide data cataloguing is the basis for the study of rainfall thresholds (Gariano et al., 2021), and its main contents 

include basic information such as the time of occurrence of landslides, geographic location, associated rainfall stations, and 

so on. The landslide cataloguing data in this study were obtained from the historical landslide hazard data provided by 

Wuhan Geological Survey Centre (http://www.wuhan.cgs.gov.cn/). 

A total of 453 historical landslides with precise rainfall information, particular dates, and places were acquired by 160 

aggregating historical landslide data, removing landslides with no rainfall and missing rainfall data (refer to Fig. 3, 

Landslide). 

The rainfall in the study area is mainly concentrated from May to October, and the differences in climatic conditions 

between the dry and wet seasons might result in various impacts of rainfall on landslide movement (Soralump et al., 2021). 

Therefore, in this study, according to the time of occurrence of historical landslides, landslides occurring from May to 165 

October are classified as rainy season landslides, while landslides occurring from November to April are classified as dry 

season landslides. According to the records, there were 412 rainy season landslides and 41 dry season landslides (Fig. 6). 

Among them, rainfall thresholds for rainy season landslides were calculated separately according to the sub-districts; 

whereas the number of dry season landslides is small and further subdivision is not conducive to the calculation of rainfall 

thresholds, so only rainfall thresholds for dry season landslides were calculated for the entire study area. 170 
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Figure 6: Number of landslides in each sub-district in the rainy season and the whole region in the dry season. 

Figure 6 shows that the five zones Z21, Z22, Z23, Z3 and Z4 have less catastrophe spots. To avoid insufficient data affecting 

rainfall threshold accuracy, this study merged some neighboring regions (Z21 and Z22 merged; Z23, Z24, and Z3 merged; and 

Z25 and Z4 merged) based on the geographic location of each region for rainfall threshold calculation. 175 

4. Results 

4.1 Rainfall Threshold Model Results 

4.1.1 E-D Rainfall Threshold Model 

Rainfall-triggered landslide is a random and small probability event, and if only the minimum threshold is used to warn of 

geological hazards, it will produce many ineffective warnings (i.e., False Positive Error) (Sarkar et al., 2023). While 180 

decreasing the public's trust in disaster warning, it will result in a waste of resources for preventive and control activities, 

which is not favorable to the advancement of disaster prevention and mitigation. Therefore, most of the current studies on 

RTM use a variety of threshold curves with different landslide probabilities (Sheng et al., 2022), in order to improve the 

reasonableness and accuracy of rainfall warning. Generally, the landslide probability indicates the proportion of the number 

of landslides triggered by rainfall exceeding a certain threshold among all occurring landslides (Yang et al., 2020). 185 

In the calculation of OLS regression, the E and D scatters of historical landslide hazard locations in each area were first 

plotted into the E-D log-log coordinates system, and the 50% landslide probability rainfall threshold curve was derived by 

fitting using OLS regression. The fitted curves were then used to run OLS regression analysis on the historical landslide 

hazard points above and below the curves to get the 75% landslide probability rainfall threshold curve and the 25% landslide 
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probability rainfall threshold curve (Fig. 7). Finally, the log-log coordinates system straight lines were transformed to 190 

Cartesian coordinate system curves (Table 1). 

 

Figure 7: Plot of E-D rainfall threshold model results in log-log coordinates system (OLS regression). In the figure, a is the Z11 

region, b is the Z12 region, c is the Z13 region, d is the Z21Z22 region, e is the Z23Z24Z3 region, f is the Z25Z4 region, and g is the Dry 

Season 195 

Table 1: E-D rainfall threshold equation (OLS regression). 

Region 
Landslide 

probability 

Equations 

(Log-log coordinates system) 
E-D equation 

Z11 

75% y=0.4383x+1.4679 E=29.3697×D0.4383 

50% y=1.2420x+0.7552 E=5.6912×D1.2420 

25% y=2.6894x-0.4164 E=0.3834×D2.6894 

Z12 

75% y=0.6981x+1.3464 E=22.2024×D0.6981 

50% y=0.9113x+0.8721 E=7.4490×D0.9113 

25% y=1.8193x+0.0102 E=1.0238×D1.8193 
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Z13 

75% y=1.0019x+1.1887 E=15.4419×D1.0019 

50% y=1.4792x+0.6246 E=4.2131×D1.4792 

25% y=1.8201x+0.0759 E=1.1910×D1.8201 

Z21Z22 

75% y=0.9977x+1.2307 E=17.0098×D0.9977 

50% y=1.6825x+0.4075 E=2.5556×D1.6825 

25% y=1.7100x-0.0969 E=0.8000×D1.7100 

Z23Z24Z3 

75% y=0.5633x+1.3125 E=20.5353×D0.5633 

50% y=1.7673x+0.2014 E=1.5900×D1.7673 

25% y=2.8230x-0.7986 E=0.1590×D2.8230 

Z25Z4 

75% y=1.1974x+1.0675 E=11.6815×D1.1974 

50% y=1.4525x+0.6027 E=4.0059×D1.4525 

25% y=2.4652x-0.2305 E=0.5882×D2.4652 

Dry Season 

75% y=0.7295x+0.9706 E=9.3454×D0.7295 

50% y=2.1754x-0.1679 E=0.6794×D2.1754 

25% y=2.7079x-0.7646 E=0.1719×D2.7079 

In the calculation of MLP regression, the rainfall thresholds corresponding to 50% landslide probability for each duration of 

rainfall (D) were first fitted separately. The MLP regression was then performed on the historical landslide data above and 

below the thresholds, respectively, to obtain the 75% landslide probability and 25% landslide probability rainfall thresholds 

corresponding to each D. Due to the lack of historical landslide hazard data at a D of 1 in some regions (e.g., region Z12) and 200 

the small amount of historical landslide hazard data at a D of 5 in some regions (e.g., region Z11), these can lead to irrational 

results of the fitted rainfall thresholds. In this regard, this study used Gaussian regression (Kumar and Kavitha, 2021) and 

GM(1,1) grey prediction model (Chen and Huang, 2013) to correct the rainfall threshold results obtained from MLP 

regression. The corrected results are shown in Fig. 8 and Table 2. 
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 205 

Figure 8: Plot of E-D rainfall threshold model results (MLP regression). In the figure, a is the Z11 region, b is the Z12 region, c is 

the Z13 region, d is the Z21Z22 region, e is the Z23Z24Z3 region, f is the Z25Z4 region, and g is the Dry Season 

The red, blue, and purple points in Fig. 8 are the rainfall threshold points obtained from the fit for different landslide 

probabilities. The line segments are just for connecting the individual threshold points for viewing purposes and have no  

Table 2: E-D rainfall threshold (MLP regression). 210 

Region Duration of rainfall (D) 75% threshold (mm) 50% threshold (mm) 25% threshold (mm) 

Z11 

1 14.2305 10.1800 1.9625 

2 36.4914 23.3267 8.7024 

3 63.5907 37.0893 18.6210 

4 76.6291 41.7210 22.9260 

5 103.0000 53.8090 32.6260 

Z12 

1 57.9690 2.4749 0.1550 

2 59.6126 20.0312 6.8458 

3 62.3002 38.0666 17.3107 
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4 61.0451 34.2639 14.1966 

5 63.2107 36.7170 19.0748 

Z13 

1 10.8122 6.3897 1.9677 

2 42.1870 26.1761 10.1656 

3 66.7259 29.0723 11.5028 

4 73.7542 48.4590 24.8502 

5 87.3909 55.1944 31.0476 

Z21Z22 

1 24.2575 7.4117 1.1585 

2 42.5658 15.8642 2.5160 

3 67.0825 35.8785 9.5152 

4 84.8807 47.0166 20.3769 

5 102.6789 58.1546 18.9942 

Z23Z24Z3 

1 5.5210 1.0893 0.5702 

2 33.3538 10.1252 3.7901 

3 59.1386 25.2715 7.0353 

4 57.8357 27.9044 10.4444 

5 162.7467 87.5204 37.3694 

Z25Z4 

1 15.9482 8.6114 1.2742 

2 29.2418 21.1900 10.4545 

3 64.6284 29.0526 14.8209 

4 73.3920 52.0651 20.0756 

5 104.1990 70.4430 25.8100 

Dry Season 

1 5.0503 0.6647 0.5818 

2 15.7035 5.1495 1.6332 

3 22.2420 10.8428 3.2452 

4 30.0733 18.1523 10.2084 

5 47.1948 33.3588 26.4428 

The threshold curves generated from OLS regression in the log-log coordinates system often exhibit an upward trend, as 

shown in Fig. 7, and the slopes of the rainfall threshold curves for 25%, 50%, and 75% landslide probability gradually 

decrease. From Fig. 8, the rainfall thresholds obtained from MLP regression for different landslide probabilities also show a 

generally increasing trend, but the relatively small amount of historical landslide data in some subregions results in relatively 

unreasonable rainfall thresholds (e.g., the rainfall threshold for the Z23Z24Z3 region shows a large increase when D is 5). 215 

4.1.2 E-D-R Rainfall Threshold Model 

Based on the above E-D rainfall threshold model, the third dimension indicator R was introduced to construct the E-D-R 

rainfall threshold model. In this model, the value of R is taken equal to the rainfall threshold corresponding to when D is 1 in 

the E-D RTM. These three indicators visually form a closed "box" (Fig. 9), with "nested" relationships between the different 

landslide probability levels. 220 
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Figure 9: Schematic of the E-D-R rainfall threshold model obtained from the OLS regression (Z13). 

In Fig. 9, the green, yellow, and red boxes indicate rainfall thresholds of <25%, 25-50% and 50-75% landslide probability, 

respectively. 

4.1.3 Model Accuracy Verification 225 

The accuracy of the model was tested in this research utilizing 82 landslide hazards events that were not involved in the 

RTM calculations in 2019 and 2020. Figure 10 depicts the number of landslide hazards events in each region. 

 

Figure 10: The number of landslide hazard events in each region of the validation set. 
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In the actual landslide control work, it is impossible to obtain the real rainfall on a certain day in the future, so it can only be 230 

replaced by the forecast rainfall. In order to make the validation data source of the rainfall threshold model more realistic, 

this study relies on the abundant rainfall forecasting stations in the study area (Fig. 11) and counts the forecast rainfall on the 

day of the occurrence of these 82 landslide hazards as well as the previous 5 days for the validation of the model. 

 

Figure 11: Map of rainfall forecasting stations. 235 

The rainfall forecast stations in Fig. 11 are distributed at 0.05° intervals, and the forecast rainfall data were provided by the 

Wuhan Geological Survey Centre. The data are updated in real time according to meteorological changes, and the data used 

in the study are adopted from the latest update of the forecast data to ensure the accuracy of the data. 

The research region was classified into four warning categories based on the rainfall threshold classification results: attention 

(<25%), special attention (25-50%), warning (50%-75%), and severe warning (≥75%). Figure 12 displays the ultimate 240 

outcomes of the validation process for each region's four RTM categories. Furthermore, Table 3 displays the proportion of 

hazardous circumstances corresponding to the two warning levels of “severe warning” and “warning” in the E-D-R RTM 

validation results. 
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Figure 12: The distribution of warning levels in the validation set for each partitioned region. In the figure, a is the Z11 region, b is 245 
the Z12 region, c is the Z13 region, d is the Z21Z22 region, e is the Z23Z24Z3 region, f is the Z25Z4 region, and g is the Dry Season 

Table 3: Proportion of hazard events corresponding to the “Severe Warning” and “Warning” levels in the E-D-R RTM for each 

partitioned region. 

Region Regression approach Level Percentage (%) 

Z11 

MLP 
Severe Warning 46.88 

Warning 12.50 

OLS 
Severe Warning 40.63 

Warning 40.63 

Z12 

MLP 
Severe Warning 7.69 

Warning 92.31 

OLS 
Severe Warning 53.85 

Warning 46.15 

Z13 

MLP 
Severe Warning 80.00 

Warning 20.00 

OLS 
Severe Warning 60.00 

Warning 40.00 
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Z21Z22 

MLP 
Severe Warning 44.44 

Warning 33.33 

OLS 
Severe Warning 44.44 

Warning 55.56 

Z23Z24Z3 

MLP 
Severe Warning 33.33 

Warning 66.67 

OLS 
Severe Warning 0.00 

Warning 100.00 

Z25Z4 

MLP 
Severe Warning 50.00 

Warning 20.00 

OLS 
Severe Warning 70.00 

Warning 30.00 

Dry Season 

MLP 
Severe Warning 40.00 

Warning 50.00 

OLS 
Severe Warning 60.00 

Warning 30.00 

The following conclusions may be drawn from an analysis of the prediction accuracy of the four categories of RTM:  

(1) The accuracies of the E-D-R RTM computed using MLP regression and OLS regression are much better than the 250 

comparable E-D RTM. The E-D-R RTM predict outputs no longer include the "Attention" warning level for all areas (Z11 

excepted) when the R indicator was included in the third dimension. Furthermore, there has been a rise in the percentage of 

hazard incidents categorized as "Warning" and "Severe Warning" categories across all regions. Compared with the E-D 

model, the proportion of hazardous conditions in the "Warning" and "Severe Warning" warning levels of the E-D-R RTM 

increases from 41.46% to 76.82%, and the result of OLS regression increases from 69.51% to 91.46%. 255 

(2) The prediction accuracies of the E-D-R RTM for each region are slightly different between the MLP regression and the 

OLS regression, but in general, the total proportion of hazardous conditions at the warning levels of "Warning" and "Severe 

Warning" is similar. 

(3) The optimal RTM for each region is shown in Table 4. 

Table 4: Optimal RTM for each partitioned region. 260 

Region Optimal rainfall threshold modelling (regression approach) 

Z11 E-D-R (OLS) 

Z12 E-D-R (OLS) 

Z13 E-D-R (MLP) 

Z21Z22 E-D-R (OLS) 

Z23Z24Z3 E-D-R (MLP) 

https://doi.org/10.5194/nhess-2024-109
Preprint. Discussion started: 19 July 2024
c© Author(s) 2024. CC BY 4.0 License.



18 

 

Z25Z4 E-D-R (OLS) 

Dry Season E-D-R (OLS) 

The optimal RTM for Z13 and Z23Z24Z3 regions are the E-D-R models obtained from the MLP regression, proving the 

feasibility of using neural networks (MLP) for RTM research. 

4.2 Landslide Susceptibility Results 

4.2.1 Landslide Inducing Factor Selection 

Combined with the research results of previous scholars (Chen et al., 2021; Chen et al., 2020; Habumugisha et al., 2022; Li 265 

et al., 2022; Rohan et al., 2023) and the actual situation of the study area, a total of 11 landslide inducing factors, including 

elevation, Normalized Difference Vegetation Index (NDVI), Topographic Wetness Index (TWI), road density, stratigraphic 

lithology, tectonic density, river distance, slope, curvature, land cover, and slope structure, were selected in this study. 

Table 5 shows the data sources for these 11 factors. 

Table 5: Source of data on landslide inducing factors. 270 

Factor Category Data Source Inducing Factor 

Topography and Geomorphology 
Geological Map 

STRM DEM (30m) 

Elevation 

Slope 

Curvature 

Slope Structure 

Geological Lithology Geological Map 
Stratigraphic Lithology 

Tectonic Density 

Hydrological Factor 
National Basic Geographic Database 

STRM DEM (30m) 

TWI 

River Distance 

Land Use Landsat Remote Sensing Image (30m) 
NDVI 

Land Cover Type 

Human Engineering Activities OpenStreetMap Road Density 

Among them, the slope structure considers the relationship between the slope aspect of the slope and the inclination of the 

rock formation (Niu et al., 2014), and different types of slope structures can lead to differences in landslide size and intensity. 

Based on different slope gradient (σ), slope direction (γ), and inclination (α) and tendency (β) of the rock formation, the 

following eight types of slope structures are classified (Table 6). 

Table 6: Classification of slope structure types and percentage of each type in the study area. 275 

Code Relationship between α, β, γ and σ Area (%) 

A α≤5° 1.720 

B α>5°, |γ-β|∈[0°, 30°) or |γ-β|∈[330°, 360°), σ>α 5.127 
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C α>5°, |γ-β|∈[0°, 30°) or |γ-β|∈[330°, 360°), σ=α 0.000 

D α>5°, |γ-β|∈[0°, 30°) or |γ-β|∈[330°, 360°), σ<α 13.581 

E α>5°, |γ-β|∈[30°, 60°) or |γ-β|∈[300°, 330°) 17.559 

F α>5°, |γ-β|∈60°, 120°) or |γ-β|∈[240°, 300°) 32.066 

G α>5°, |γ-β|∈[120°, 150°) or |γ-β|∈[210°, 240°) 15.089 

H α>5°, |γ-β|∈[150°, 210°) 14.857 

Stratigraphic lithology data was obtained by vectorizing and classifying geological maps (scale 1:200,000). Each lithology 

has a different pedogenic environment and will vary in composition and stability, which affects the occurrence of landslides 

(Cobos-Mora et al., 2023). In this paper, the study area is classified into four categories: carbonate, clastic, carbonate and 

clastic, as well as Igneous and metamorphic rocks. In addition, when the research area is large and most of the tectonics are 

intertwined with each other, the distance from tectonics is no longer suitable as a correlation factor, and tectonic density 280 

should be used instead (Wang et al., 2014). Also, since the road data also show interlocking status, this paper uses tectonic 

density and road density as evaluation factors. When using ArcGIS to calculate the density, the search radius is kept as 

default, and the area unit is square kilometers. 

To ensure the reasonableness of the selection of landslide inducing factors, this study used Pearson correlation analysis to 

explore the degree of correlation among the selected inducing factors (Zhang et al., 2022) (Fig. 13). The value of correlation 285 

ranges from -1 to 1. The closer the value is to 1 or -1, the stronger the correlation between the two variables, and the closer 

the value is to 0, the weaker the correlation between the two variables (Cao et al., 2023). 

 

Figure 13: Pearson correlation results for inducing factors. 
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The correlation coefficients between the inducing factors are low, as shown in Fig. 13, with the exception of the somewhat 290 

higher correlation value between elevation and river distance (0.53). Given that elevation and river distance are two 

important factors for causing landslides (elevation is inherent in the assessment of LS (Wang et al., 2022b), which affects the 

distribution of submerged layers as well as the intensity of human activities; and the erosive effect of the river on the 

shoreline can damage the foot of the slope and soften the rock and soil mass (Selamat et al., 2022)), they are all retained in 

this study. These 11 inducing factors were finally determined to be used in the TGRA's LS assessment research. 295 

4.2.2 Grading of Landslide Susceptibility Factors 

Combined with the actual situation of the study area and the results of previous studies, the class classification of each 

landslide predisposing factor and the result map of this study are shown in Table 7 and Fig. 14. The susceptibility evaluation 

was carried out in raster cells with a size of 30m × 30m. It's also worth noting that the historical landslide data utilized for LS 

prediction includes all 6,888 recorded landslides, not just the 453 filtered for inclusion in the RTM calculations. 300 

Table 7: Classification of landslide inducing factors. 

Predisposing Factor Classification Criteria Code 

Elevation (m) 

≤300 

a 

(300,600] 

(600,900] 

(900,1200] 

(1200,1500] 

>1500 

NDVI 

[-1,0] 

b 

(0,0.2] 

(0.2,0.4] 

(0.4,0.6] 

(0.6,0.8] 

(0.8,1] 

TWI 

≤6 

c 

(6,8] 

(8,10] 

(10,14] 

>14 

Road Density 

[0,0.5] 

d 

(0.5,1.2] 

(1.2,2.5] 

(2.5,5.0] 

>5.0 
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Stratigraphic Lithology 

Carbonates 

e 
Clastic rocks 

Carbonates and clastic rocks 

Igneous and metamorphic rocks 

Tectonic Density 

[0,0.03] 

f 

(0.03,0.12] 

(0.12,0.24] 

(0.24,0.38] 

>0.38 

River Distance (m) 

≤500 

g 
(500,1000] 

(1000,1500] 

>1500 

Slope (°) 

[0,10] 

h 

(10,20] 

(20,30] 

(30,40] 

(40,50] 

>50 

Curvature 

≤-3 

i 

(-3,-1] 

(-1,0] 

(0,1] 

>1 

Land Cover 

Urban land 

j 

Agricultural land 

Forest land 

Grassland 

Water 

Other Land 

Slope Structure 

A 

k 

B 

D 

E 

F 

G 

H 
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Figure 14: Landslide inducing factors grading results map. 

4.2.3 Landslide Susceptibility Evaluation Results 

In this study, three models, CNN-3D, RF and SVM, were used to evaluate the LS of the study area, and the optimal LS result 305 

was chosen for subsequent daily LHW. The relevant indicators obtained from the training of the three models are shown in 

Table 8. 

Table 8: Results of the training of the susceptibility evaluation model. 

Model 
Model Evaluation Indicators 

AUC Accuracy Precision Recall F1_score 

CNN-3D 0.96 0.9003 0.8663 0.9295 0.8968 

RF 0.82 0.7500 0.7656 0.7416 0.7534 

SVM 0.83 0.7630 0.7625 0.7623 0.7624 
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Table 8 shows that the AUC values for CNN-3D, RF, and SVM models are 0.96, 0.82, and 0.83, respectively. The AUC 

values indicate that all three models can better predict the probability of landslide occurrence in the study area, but the CNN-310 

3D model has a greater prediction accuracy than the RF and SVM models. In addition, for the other four metrics, the CNN-

3D model outperforms the RF and SVM models. As a consequence, in this study, the CNN-3D model's LS result was 

divided into five classes using the natural breaks approach (Fig. 15) and was used for subsequent daily LHW. 

 

Figure 15: CNN-3D model landslide susceptibility results. 315 

As a whole, the landslide disaster high susceptibility areas in the study area are mainly concentrated along the riverbanks and 

in the central and eastern regions. In terms of district and county scopes, the landslide disaster high susceptibility areas are 

mainly concentrated at Zigui, the northern part of Badong, the southern part of Xingshan, the central part of Fengjie, the 

central part of Wanzhou, and the southeastern part of Zhongxian. 

4.3 Landslide Hazard Warning 320 

4.3.1 Landslide Hazard Results for Each Rainfall Warning Level 

In this study, a superposition matrix (Table 9) was created to couple the daily RWL with the LS result to generate the daily 

LHW result. Based on the superimposed matrix, four categories of landslide hazard levels will be obtained, where 1 

indicates relatively stable zone, 2 indicates general prevention zone, 3 indicates secondary prevention zone, and 4 indicates 

priority prevention zone. 325 
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Table 9: Landslide susceptibility and rainfall warning level superposition matrix. 

Susceptibility 

Rainfall Threshold Level 
Very Low Low Moderate High Very High 

Caution 1 1 1 1 2 

Special Caution 1 1 1 2 3 

Warning 1 1 2 3 4 

Severe Warning 1 2 3 4 4 

Based on the LS results shown in Fig. 15, combined with Table 9, the LHW results corresponding to each rainfall level were 

obtained (Fig. 16). 

 

Figure 16: Landslide hazard maps for each rainfall warning level. (a. attention level hazard; b. special attention level hazard; c. 330 
warning level hazard; d. severe warning level hazard). 

4.3.2 Daily Landslide Hazard Warning 

In 2020, the Yangtze River experienced its worst basin-wide flood since 1998. on July 19, the "Yangtze River Flood No. 2 of 

2020" was progressing through the TGRA to the middle and lower reaches of the Yangtze River, and the persistent rainfall 

induced many landslides. Therefore, in this study, 19 July 2020 was used as an example for LHW and validation. Based on 335 

the anticipated rainfall data at the time, E and D for the rainfall forecast stations from 14 July 2020 to 18 July 2020, and R 

for 19 July 2020, were calculated. Kriging interpolation was used to generate E (Fig. 17.a) and R (Fig. 17.b) for the whole 

research region. Since D is an integer ranging from 0 to 5, interpolation cannot be used to acquire D for the whole research 
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region; thus, this study uses the Thiessen polygon method and feature to raster method to obtain D for the entire study area 

(Fig. 17.c). 340 

The RWL for 19 July 2020 was calculated per sub-region (Fig. 17.d) using the optimum RTM for each sub-region obtained 

above (Table 4). 

 

Figure 17: Various rainfall parameters and rainfall warning levels for 19 July 2020. 

Based on the superposition matrix in Table 9, Fig. 17.d was superimposed on Figure 15 to obtain the LHW results for 19 345 

July 2020 (Fig. 18). 
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Figure 18: Landslide hazard warning results for 19 July 2020. 

On July 19, 2020, there were seven landslide hazards, as shown in Fig. 18. Five of them fell in the priority prevention zone 

and two in the secondary prevention zone, demonstrating the accuracy of both the LHW results and the rainfall threshold 350 

model. 

5. Discussion 

5.1 Discussion of Rainfall Threshold Model 

To investigate the best rainfall thresholds in the TGRA, two regression methods, OLS and MLP, and two RTM, E-D and E-

D-R, are used in this study. Regardless of the regression approach, the results reveal that the E-D-R model has greater 355 

warning accuracy than the E-D model. In addition, the optimal RTM for two areas, Z13 and Z23Z24Z3, are the E-D-R models 

obtained from the MLP regression, indicating the feasibility of using neural networks (MLP) for the study of RTM. However, 

since the dataset of this study is not large (only 453 landslides) nor complex (only 3 variables), it may not be able to clearly 

demonstrate the advantages of neural networks for rainfall threshold modeling. But we believe that this is a valuable attempt, 

and more variables such as peak rainfall and rainfall intensity can be added in subsequent studies, and the application of 360 

neural networks will certainly improve the accuracy of RWM. 
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To explore the reasons for the E-D-R model's higher warning accuracy, this study uses area Z12 as an example, and shows 

some of the points where the RWL has been changed (i.e. landslides where the RWL has been increased) in the R-E plane 

view (Fig. 19), where the colors of the landslides indicate the different RWL, and the meaning is the same as in Fig. 12. 

 365 

Figure 19: Rainfall warning level transition process (Z12 region). 

The chart shows that after the R indication was added, the RWL of the four landslides rose dramatically. The warning level 

of P1 in the E-D model was only “Caution”, and the warning levels of the remaining three landslides were only “Special 

Caution”, whereas in the E-D-R model using OLS regression, the warning level of P2 was raised to “Warning”, and the 

warning levels of the remaining three landslides were raised to “Severe Warning”. Similarly, the alert levels of all four 370 

landslip points were raised to “Warning” in the E-D-R model using the MLP regression method. These landslides with RWL 

transition were the direct reason of the E-D-R model's improved accuracy in the Z12 region. 

Further exploration of the rainfall process of these four landslides before the landslide occurred (Fig. 20) reveals that these 

four landslides received less rainfall in the four days before the landslide, resulting in a lower E, but more rainfall on the day 

of the landslide. The above characteristics make these four landslides have higher warning accuracy in the E-D-R RTM, 375 

indicating that the indicator R has some sensitivity in terms of landslides caused by heavy rain. 
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Figure 20: Rainfall processes at rainfall warning level transition points. 

5.2 Discussion of Daily Landslide Hazard Warning 

In this study, RF, SVM, and CNN-3D models were used to predict LS in the TGRA, and a comparison of the three models' 380 

results showed that the CNN-3D model predicts LS with more accuracy in the study area. In addition, further analysis of the 

CNN-3D model's LS results show that the very high LS zone is primarily distributed in areas with sparse vegetation, fragile 

stratigraphic lithology, close to rivers, and active human engineering activities, which is similar with the results of Wang et 

al (Wang et al., 2022a). 

In terms of daily LHW, RWL are calculated using the optimal RTM for each sub-district based on forecast rainfall data from 385 

rainfall stations. Subsequently, the daily LHW results were derived by utilizing a superposition matrix to combine the RWL 

and LS results. On July 19, 2020, all seven landslide hazards are confirmed to be in the priority prevention and secondary 

prevention zones. It can be observed that the LHW results obtained through the RTM have very high accuracy and are of 

great significance in the prevention and control of landslide disasters. In addition, the process of transforming the LS results 

into LHW results through the RWL and superposition matrix is essentially a correction process of the LS results. After the 390 

correction, the areas that need to be focused on prevention and attention can be reduced to a certain extent, which saves the 

cost of manpower and material resources in landslide prevention and control. 
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5.3 Practical Application of the Rainfall Threshold Model and Daily Landslide Hazard Warning 

In the actual prevention and control of landslide hazards, it is inevitable to consider the factor of cost (Wang et al., 2023a). 

To safeguard as many people's lives and property as possible within the limited cost range, it is necessary to narrow and 395 

refine the regions that must be prioritized while guaranteeing the accuracy of the LHW results. 

The E-D-R RTM, while considering the advantages of the E-D RTM, increases the sensitivity to landslides induced by heavy 

rainfall on the same day, and has higher landslide warning accuracy. Meanwhile, the CNN-3D model fully considers the 

spatial information around each raster point, and its predicted LS results have higher prediction accuracy than those of the 

RF and SVM models. Therefore, the E-D-R RTM and the CNN-3D model have a broad application space and development 400 

prospect in the warning and prevention of landslide disasters. The LHW results obtained by superposition of the results of 

the two models can ensure high accuracy and at the same time narrow down the areas that need to be focused on by virtue of 

the RWL results obtained by the RTM, so as to meet the requirements of landslide disaster prevention and control work. 

In addition, although the E-D-R RTM as well as the CNN-3D model have high accuracy, there are certain uncertainties. For 

the RTM: (1) The rainfall station can only accurately reflect the rainfall situation of the site, and there will be inaccuracies 405 

and uncertainties whether the rainfall data are extended to the whole study area by interpolation or Thiessen polygon method. 

(2) Historical landslide data play a decisive influence on the results of the rainfall threshold model. Either less historical 

landslide data or the existence of more extreme rainfall conditions will lead to uncertainty in the final RWL. (3) Although 

this study divided 10 regions as well as both dry and rainy seasons for the rainfall threshold study, the overall regional scope 

is still large. There will be some uncertainty in the rainfall thresholds for different topography and geomorphology in the 410 

region. For the CNN-3D model, the selection of landslide-inducing factors, the size of the evaluation unit, the division ratio 

of the training set test set, and so on, will produce uncertainty in the results of LS. 

Therefore, in the practical application of landslide prevention and control, it is necessary to combine the actual situation of 

the local area and select appropriate predisposing factors as well as evaluation units to ensure the accuracy of the LS results 

(Zhang et al., 2023). Simultaneously, a historical landslide database can be constructed. When a new landslide occurs, the 415 

corresponding rainfall data will be summarized into the database and the rainfall threshold of the area will be recalculated for 

the subsequent RWL. The uncertainty of the RTM is expected to reduce as the quantity of historical landslide data grows, 

and the rainfall thresholds will continue to converge to the ultimate rainfall thresholds for the region. Furthermore, when the 

historical landslide data are sufficiently rich, the region may be split further to constantly improve the accuracy of the rainfall 

warning level. Ultimately, the accuracy of LHW will be increased to give technical assistance for subsequent assessment of 420 

vulnerability as well as disaster preventive and mitigation efforts. 
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6. Conclusion 

Landslide disaster warning is an essential tool in the prevention and management of landslides. To improve the accuracy of 

landslide warning, this paper first chose two regression methods, MLP and OLS, and two RTM, E-D and E-D-R, and divided 

the TGRA into two dry and rainy seasons, as well as several sub-districts based on topography and rainfall, to explore the 425 

optimal RTM for the study area and obtain the daily RWL. Subsequently, 11 inducing factors were selected to investigate 

the LS in the study area utilizing three models: RF, SVM, and CNN-3D. Finally, using a superposition matrix, the RWL was 

overlaid on the LS results to achieve daily LHW in the TGRA. 

In terms of rainfall threshold models, the study's results suggest that the E-D-R RTM has superior sensitivity in terms of 

landslides induced by heavy rainfall, therefore the rainfall warning accuracy produced by either regression method is higher 430 

than that of the E-D model. In addition, for each sub-district, the optimal RTM for the four zones Z11, Z12, Z21Z22, Z25Z4, and 

Dry Season is the E-D-R RTM calculated by OLS regression; whereas the optimal RTM for the two zones Z13 and Z23Z24Z3 

is the E-D-R RTM obtained by MLP regression. In terms of LS, the CNN-3D model's AUC and Accuracy achieved 0.96 and 

0.9003, respectively, and its prediction accuracy outperformed the RF and SVM models. 

The daily LHW is calculated by combining the daily RWL and the landslide susceptibility results. Data from the 19 July 435 

2020 hazard event were utilized to verify the LHW results in this research. Of the seven landslide hazards on that date, five 

fell in the priority prevention zone and two in the secondary prevention zone, proving the accuracy of the LHW results and 

the RTM. 

The RTM was utilized to obtain the daily RTL, and then overlaid with the LS results to obtain the daily LHW, which may be 

used as guidance and reference for local landslide disaster prevention and control operations. In addition, the introduction of 440 

MLP to regression analysis of rainfall threshold in this study also further enriches the calculation method of RTM, which is 

of some significance for promotion. 
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