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Abstract. Rainfall is intrinsically linked to the occurrence of landslide catastrophes. Identifying the most suitable rainfall 

threshold model for an area is crucial for establishing effective daily landslide hazard warnings, which are essential for the 

precise prevention and management of local landslides. This study introduces a novel approach that utilizes multilayer 

perceptron (MLP) regression to calculate rainfall thresholds for 453 rainfall-induced landslides. This research represents the 

first attempt to integrate MLP and ordinary least squares methods for determining the optimal rainfall threshold model 10 

tailored to distinct subregions, categorized by topographical and climatic conditions. Additionally, an innovative application 

of a three-dimensional convolutional neural network (CNN-3D) model is introduced to enhance the accuracy of landslide 

susceptibility predictions. Finally, a comprehensive methodology is developed to integrate daily rainfall warning levels with 

landslide susceptibility predictions using a superposition matrix, thus offering daily landslide hazard warning results for the 

study area. The key findings of this study are as follows: (1) The optimal rainfall threshold models and calculation methods 15 

vary across different subregions, underscoring the necessity for tailored approaches. (2) The CNN-3D model substantially 

improves the accuracy of landslide susceptibility predictions. (3) The daily landslide hazard warnings were validated using 

anticipated rainfall data from July 19, 2020, thereby demonstrating the reliability of both the landslide hazard warning results 

and the rainfall threshold model. This study presents a substantial advancement in the precise prediction and management of 

landslide hazards by employing innovative modeling techniques. 20 

1 Introduction 

According to the China Statistical Yearbook, landslides accounted for 71.55% of geological disasters in China between 2005 

and 2021 (http://www.stats.gov.cn/sj/ndsj/). Frequent landslides pose significant risks to both lives and property (Xing et al., 

2021). Rainfall triggers landslides by altering pore pressure in the soil (Zhao et al., 2022) and reducing the shear strength of 

the geotechnical materials (Chan et al., 2018). Research indicates that rainfall is intrinsically linked to the majority of 25 

landslide deformations and instabilities(Marin et al., 2020; Yuniawan et al., 2022). Therefore, it is crucial to delineate the 

rainfall thresholds for various conditions and regions to improve landslide hazard warnings and disaster prevention efforts. 

Landslide hazard warning is described as the conditional prediction of the temporal and spatial probabilities of landslide 

occurrence based on triggering and inducing factors (Budimir et al., 2015). In this study, the rainfall warning level (i.e., the 
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temporal probability of landslide occurrence) derived from the rainfall threshold model serves as the triggering factor, while 30 

the landslide susceptibility predictions (i.e., the spatial probability of occurrence) act as the inducing factor. 

Landslide susceptibility reflects the spatial probability of landslide occurrence (Huang et al., 2022b). Methods for predicting 

landslide susceptibility include general linear models (Aksha et al., 2020), information value models (Yu et al., 2022), and 

various machine learning models. Machine learning models are more effective than other types in capturing and predicting 

the nonlinear relationships between landslide susceptibility and predisposing factors (Guo et al., 2021). Commonly used 35 

machine learning models include logistic regression (Baharvand et al., 2020), artificial neural networks (Jiang et al., 2014), 

support vector machines (SVM) (Chang et al., 2023; Zhu and Hu, 2012), random forests (RF) (Chen et al., 2014; Huang et 

al., 2024), Bayesian algorithms (He et al., 2019), and deep learning algorithms (Huang et al., 2020). However, selecting the 

most suitable model for landslide susceptibility prediction remains challenging, and significant uncertainty exists in the 

results obtained from different machine learning models (Xia et al., 2020). Even small improvements in prediction accuracy 40 

can significantly impact landslide susceptibility zoning (Chen et al., 2018). Therefore, to reduce uncertainty in landslide 

susceptibility results, multiple susceptibility models are often applied, and the model with the highest accuracy is selected for 

the study area. 

Rainfall threshold modeling approaches primarily include of deterministic methods based on physical and hydrological 

models, as well as empirical methods based on landslide cataloguing and rainfall event statistics (Chung et al., 2017; Wu et 45 

al., 2015). Deterministic methods establish the relationship between rainfall and landslide stability through dynamic 

hydrological models and determine the critical rainfall threshold for landslide instability (Ciurleo et al., 2019). However, due 

to the challenges of accurately obtaining hydrological and geotechnical parameters on a large scale, this method is primarily 

applicable to smaller study areas (Wu and Yeh, 2020). Empirical methods are mainly derived by calculating the relationship 

between historical landslide and rainfall data (Abraham et al., 2020a; Pradhan et al., 2019). This approach is widely used due 50 

to its advantages in data acquisition convenience, applicability, and effectiveness (Martinovic et al., 2018). Commonly used 

rainfall threshold models include the intensity-duration (I-D) threshold model (Abraham et al., 2019; Lee et al., 2014) and 

the effective rainfall-duration of rainfall (E-D) threshold model (Abraham et al., 2020b; Peruccacci et al., 2017). Regression 

methods used to calculate the rainfall threshold model include logistic regression (Mathew et al., 2014), ordinary least 

squares (OLS) regression (Rossi et al., 2017) and quantile regression (Salee et al., 2022). The applicability of various rainfall 55 

threshold models and regression methods differs across regions (Marin, 2020; Segoni et al., 2018). Therefore, to reduce 

uncertainty in landslide hazard warnings, multiple regression methods and rainfall threshold models should be employed to 

determine the most appropriate threshold for a specific location. 

Given that many researchers have employed the log-log coordinate system for regression analysis of rainfall threshold 

models (He et al., 2020), this study proposes to use of the multilayer perceptron (MLP) regression method to examine 60 
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rainfall thresholds under various rainfall durations. Additionally, the third-dimension indicator, "daily rainfall" (R) was 

incorporated to develop the E-D-R rainfall threshold model, extending the E-D rainfall threshold model (Liu et al., 2022). 

In this study, the Three Gorges Reservoir Area was selected as the study area. Landslides were catalogued to obtain the E 

and D data for the five days preceding each landslide, as well as the R data at the time of the landslides. Subsequently, the 

rainfall thresholds corresponding to the E-D and E-D-R models for varying landslide occurrence probabilities were 65 

calculated using both OLS and MLP regression methods. The study aims to explore the optimal rainfall threshold model for 

the study area, assess the feasibility of neural networks in rainfall threshold modeling, and categorize rainfall warning levels 

based on the optimal model. Landslide-inducing factors were selected, and landslide susceptibility was predicted using RF, 

SVM, and 3D convolutional neural network (CNN-3D) models. The most accurate susceptibility results were used as the 

spatial probability of landslide occurrence in the study area. Finally, the daily rainfall warning level was combined with the 70 

landslide susceptibility results using a superposition matrix to generate daily landslide hazard warnings, providing a 

reference for the precise prevention and management of local landslide disasters. The study flowchart is shown in Fig. 1. 

 

Figure 1. Flowchart of this study. 

2. Methods 75 

2.1 Rainfall Threshold Model 

2.1.1 OLS Regression 
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OLS regression is a widely used linear regression technique for establishing a linear relationship between an independent 

variable (𝑥) and a dependent variable (𝑦). It minimizes the difference between the predicted and observed value by finding 80 

the slope and intercept that best fits the data (Lim et al., 2023). 

The basic form of the OLS regression model is expressed as: 

𝑦 = 𝛽0 +∑ 𝛽𝑖
𝑛
𝑖=1 𝑥𝑖 ,           (1) 

where 𝑦 denotes the dependent variable, 𝑥𝑖 denotes the independent variable, 𝑛 denotes the number of independent variables, 

𝛽𝑖 denotes the coefficients of the independent variables, and 𝛽0 denotes the constant intercept. 85 

2.1.2 MLP Regression 

MLP is a commonly used neural network capable of nonlinear mapping, enabling it to learn complex nonlinear functional 

relationships through multiple layers of nodes. It has been widely applied in various fields, including geospatial analysis 

(Hasan et al., 2023; Wang et al., 2023b), aerodynamics (Barcenas et al., 2023), atmospheric science (Hoffman and Jasinski, 

2023), rainfall prediction (Narimani et al., 2023), and image fusion (Mei et al., 2023). In regression analysis of scatter data, a 90 

scatter data set is treated as a collection of input-output data pairs. The model adjusts its weights by minimizing the error 

between predicted and actual data, ultimately achieving accurate regression. 

2.1.3 E-D-R Rainfall Threshold Model 

 

The E-D-R rainfall threshold model builds upon the E-D rainfall threshold model by introducing the R metric as a third 95 

dimension to optimize the original model. To analyze the E-D-R rainfall threshold model, it is essential first to establish the 

E-D rainfall threshold model. 

The E-D rainfall threshold model examines the relationship between effective rainfall and the duration of rainfall (Teja et al., 

2019). The scatter plot is typically analyzed using regression in a log-log coordinate system, with the resulting fitted line 

then transformed into a Cartesian coordinate system. The expression for this is: 100 

𝐸 = 𝛼 × 𝐷𝛽 ,            (2) 

Assume the linear equation fitted in the log-log coordinate system has an intercept of 𝑏 and a slope of 𝑎. Then, in this 

context, 𝛼 = 10𝑏, 𝛽 = 𝑎, where 𝐷 denotes the duration of rainfall (in days), and E is the effective rainfall (in mm), defined 

as the total rainfall that infiltrates and impacts the landslide, excluding slope runoff and evaporation (Huang et al., 2022a). 

The effective rainfall formula applied in this study is: 105 
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𝐸 = ∑ 𝑘𝑖−1𝑛
𝑖=1 𝐸𝑖  ,           (3) 

where 𝐸 denotes the effective rainfall, 𝐸𝑖  is the rainfall on the previous 𝑖 days, and 𝑘 is the effective rainfall coefficient, 

typically set to 0.8 (Huang et al., 2022a). Additionally, it has been demonstrated that effective rainfall within the first 5 days 

in the Three Gorges Reservoir Area is strongly correlated with landslide events (Zhou et al., 2022). Therefore, the number of 

days 𝑛 considered for rainfall statistics in this study is set to 5. 110 

The indicator 𝑅 is introduced as a third dimension to extend the E-D rainfall threshold model from two to three dimensions, 

resulting in a model that satisfies the following relational equation: 

𝑇 = max{𝐺𝐸 , 𝐺𝑅} ,           (4) 

where 𝑇 denotes the final rainfall warning level, while 𝐺𝐸 and 𝐺𝑅 denote the rainfall warning levels for the E-D model and 𝑅 

dimension, respectively. 115 

2.2 CNN-3D Model 

A Convolutional Neural Network (CNN) is a deep learning algorithm extensively utilized in image recognition (Fan et al., 

2022; Gill et al., 2022), natural language processing (Jin et al., 2023; Kaliyar et al., 2021) and various other domains. The 

core principle of CNN involves extracting features from input data through convolution operations (Youssef et al., 2022). 

However, in one- and two-dimensional CNNs, feature extraction for induced factor data is typically performed at a single 120 

raster point. Both methods overlook the spatial information surrounding the raster points (Yang et al., 2022). Consequently, 

this study introduces CNN-3D to fully leverage the rich spatial information surrounding raster points, thereby enhancing the 

prediction accuracy of landslide susceptibility. The structure of CNN-3D mirrors that of traditional CNN, but due to the 

inclusion of additional spatial data, CNN-3D can yield more accurate results (Liu et al., 2023). 

A three-dimensional structure was selected to generate samples in this experiment. Prior to sample generation, an n-channel 125 

image is created by superimposing 𝑛 components. Each pixel is then extended outward by 7 pixels, resulting in a 15 × 15 × 𝑛 

image used as input. Subsequently, operations such as convolution and pooling in the hidden layer map high-level features to 

a low-dimensional space, which are then stored in the neural units of the fully connected layer. Finally, classification is 

performed using the Softmax function to determine landslide and non-landslide outcomes. 

3. Overview of the Study Area 130 

3.1 Physical and Geographical Characteristics 

The study area is located in the upper reaches of the Yangtze River, extending from Sandouping in Yichang City to Jiangjin 

District in Chongqing. It lies between longitudes 105°50′E and 111°42′E and latitudes 28°30′N and 31°45′N (Cheng et al., 
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2022) . This area encompasses 29 administrative districts and counties, including 7 in Hubei Province and 22 in Chongqing 

Municipality, covering a total area of 5.67×104km2 (Fig. 2).The region experiences a subtropical monsoon climate, with 135 

average annual precipitation ranging from 445 to 1813 mm (Long et al., 2021). The abundant rainfall in the region is a 

significant factor contributing to landslide occurrences (Guo et al., 2022). 

 

Figure 2: Geographic location of the study area and Thiessen polygon results for rainfall stations. 

3.2 Landslide Data Cataloguing and Study Area Subdivision 140 

Cataloging landslide data is crucial for studying rainfall thresholds (Gariano et al., 2021). This process involves recording 

essential information, including the time of occurrence, geographic location, and associated rainfall stations for each 

landslide event. The historical landslide data used in this study were provided by the Wuhan Geological Survey Center 

(http://www.wuhan.cgs.gov.cn/). To identify the corresponding rainfall stations for each historical landslide, the Thiessen 

polygon method was employed to match each landslide point with the nearest rainfall station (Zhao et al., 2019), thereby 145 

obtaining the pre-landslide rainfall data (see Fig. 2, Thiessen polygons). 

After filtering and cleaning, a total of 453 historical landslides with accurate rainfall information, dates, and locations were 

identified (see Fig. 2, Landslides). Historical rainfall data indicate that precipitation in the study area is primarily 

concentrated between May and October. The differing climatic conditions between the dry and rainy seasons may lead to 

varying impacts of rainfall on landslide movements (Soralump et al., 2021). Based on this information, the historical 150 

landslides were classified into rainy season and dry season landslides according to their occurrence times (Fig. 3(b)). 
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Figure 3: Zoning map of the study area. (a) Schematic diagram of the sub-region merger; (b) Number of historical landslide 

hazard sites in each sub-region. 

Given the substantial influence of geomorphological, geological, and climatic conditions on landslide triggers during the 155 

rainy season (Dahal and Hasegawa, 2008), rainfall thresholds can vary across different regions. Accordingly, this study 

further subdivided the landslide data from the rainy season. The study area was divided into several sub-regions based on 

terrain and climatic conditions, with rainfall thresholds calculated for each region. However, due to the limited historical 

landslide data in regions Z21, Z22, Z23, Z3 and Z4, adjacent regions were merged to mitigate potential inaccuracies in rainfall 

threshold calculations caused by insufficient data. Specifically, Z21 and Z22 were combined; Z23, Z24, and Z3 were combined; 160 

and Z25 and Z4 were combined. The final regional subdivision is illustrated in Fig. 3(a). For dry season landslides, due to 

relatively uniform rainfall and the small number of events, no further subdivision was performed, and the rainfall threshold 

was calculated for the entire study area. 

4. Results 

4.1 Rainfall Threshold Model Results 165 

4.1.1 E-D Rainfall Threshold Model 

Rainfall-triggered landslides are rare and probabilistic events. Relying solely on the minimum threshold for geological 

hazards warnings can result in numerous ineffective warnings (i.e., False Positive Error) (Sarkar et al., 2023). This not only 
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diminishes public trust in disaster warning, but also leads to wasted resources on preventive and control activities, impeding 

progress in disaster prevention and mitigation. Consequently, most current studies on rainfall threshold models utilize 170 

various threshold curves with different landslide probabilities (Sheng et al., 2022), to enhance the reliability and accuracy of 

rainfall warnings. Typically, landslide probability refers to the proportion of landslides triggered by rainfall exceeding a 

specified threshold relative to the total number of landslides (Yang et al., 2020). 

For OLS regression calculation, the E and D data from historical landslide hazard locations were initially plotted in the E-D 

log-log coordinate system. The 50% landslide probability rainfall threshold curve was then derived by fitting this data using 175 

OLS regression. The fitted curves were subsequently employed to perform OLS regression analysis on historical landslide 

hazard points above and below these curves, resulting in the 75% and 25% landslide probability rainfall threshold curves 

(Fig. 4). Finally, the straight lines from the log-log coordinate system were converted into curves in the Cartesian coordinate 

system (Table 1). 

 180 

Figure 4: E-D rainfall threshold model results plotted in the log-log coordinate system using OLS regression. In the figure, regions 

are labelled as follows: a represents the Z11 region, b represents the Z12 region, c represents the Z13 region, d represents the Z21Z22 

region, e represents the Z23Z24Z3 region, f represents the Z25Z4 region, and g represents the Dry Season. 
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Table 1: E-D rainfall threshold equation derived from OLS regression. 

Region 
Landslide 

probability 

Equations 

(Log-log coordinates system) 
E-D equation 

Z11 

75% y=0.4383x+1.4679 E=29.3697×D0.4383 

50% y=1.2420x+0.7552 E=5.6912×D1.2420 

25% y=2.6894x-0.4164 E=0.3834×D2.6894 

Z12 

75% y=0.6981x+1.3464 E=22.2024×D0.6981 

50% y=0.9113x+0.8721 E=7.4490×D0.9113 

25% y=1.8193x+0.0102 E=1.0238×D1.8193 

Z13 

75% y=1.0019x+1.1887 E=15.4419×D1.0019 

50% y=1.4792x+0.6246 E=4.2131×D1.4792 

25% y=1.8201x+0.0759 E=1.1910×D1.8201 

Z21Z22 

75% y=0.9977x+1.2307 E=17.0098×D0.9977 

50% y=1.6825x+0.4075 E=2.5556×D1.6825 

25% y=1.7100x-0.0969 E=0.8000×D1.7100 

Z23Z24Z3 

75% y=0.5633x+1.3125 E=20.5353×D0.5633 

50% y=1.7673x+0.2014 E=1.5900×D1.7673 

25% y=2.8230x-0.7986 E=0.1590×D2.8230 

Z25Z4 

75% y=1.1974x+1.0675 E=11.6815×D1.1974 

50% y=1.4525x+0.6027 E=4.0059×D1.4525 

25% y=2.4652x-0.2305 E=0.5882×D2.4652 

Dry Season 

75% y=0.7295x+0.9706 E=9.3454×D0.7295 

50% y=2.1754x-0.1679 E=0.6794×D2.1754 

25% y=2.7079x-0.7646 E=0.1719×D2.7079 

In the MLP regression analysis, the rainfall thresholds for a 50% landslide probability were initially fitted separately for each 185 

duration of rainfall (D). MLP regression was then applied to historical landslide data above and below these thresholds to 

determine the rainfall thresholds for 75% and 25% landslide probabilities for each D. Limited historical landslide data for a 

D of 1 in some regions (e.g., Z12) and insufficient data for a D of 5 in other regions (e.g., Z11) may lead to inaccuracies in the 

fitted rainfall thresholds. To address this issue, Gaussian regression (Kumar and Kavitha, 2021) and GM(1,1) grey prediction 

model (Chen and Huang, 2013) were employed to correct the rainfall thresholds derived from MLP regression. The 190 

corrected results are shown in Fig. 5 and Table 2. 
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Figure 5: E-D rainfall threshold model results plotted using MLP regression. In the figure, regions are labelled as follows: a 

represents the Z11 region, b represents the Z12 region, c represents the Z13 region, d represents the Z21Z22 region, e represents the 

Z23Z24Z3 region, f represents the Z25Z4 region, and g represents the Dry Season. The red, blue, and purple points denote rainfall 195 
threshold values fitted for various landslide probabilities. Line segments are included solely for visual clarity and do not convey 

any practical information. 

Table 2: E-D rainfall threshold derived from MLP regression. 

Region Duration of rainfall (D) 75% threshold (mm) 50% threshold (mm) 25% threshold (mm) 

Z11 

1 14.2305 10.1800 1.9625 

2 36.4914 23.3267 8.7024 

3 63.5907 37.0893 18.6210 

4 76.6291 41.7210 22.9260 

5 103.0000 53.8090 32.6260 

Z12 

1 57.9690 2.4749 0.1550 

2 59.6126 20.0312 6.8458 

3 62.3002 38.0666 17.3107 

4 61.0451 34.2639 14.1966 

5 63.2107 36.7170 19.0748 
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Z13 

1 10.8122 6.3897 1.9677 

2 42.1870 26.1761 10.1656 

3 66.7259 29.0723 11.5028 

4 73.7542 48.4590 24.8502 

5 87.3909 55.1944 31.0476 

Z21Z22 

1 24.2575 7.4117 1.1585 

2 42.5658 15.8642 2.5160 

3 67.0825 35.8785 9.5152 

4 84.8807 47.0166 20.3769 

5 102.6789 58.1546 18.9942 

Z23Z24Z3 

1 5.5210 1.0893 0.5702 

2 33.3538 10.1252 3.7901 

3 59.1386 25.2715 7.0353 

4 57.8357 27.9044 10.4444 

5 162.7467 87.5204 37.3694 

Z25Z4 

1 15.9482 8.6114 1.2742 

2 29.2418 21.1900 10.4545 

3 64.6284 29.0526 14.8209 

4 73.3920 52.0651 20.0756 

5 104.1990 70.4430 25.8100 

Dry Season 

1 5.0503 0.6647 0.5818 

2 15.7035 5.1495 1.6332 

3 22.2420 10.8428 3.2452 

4 30.0733 18.1523 10.2084 

5 47.1948 33.3588 26.4428 

The threshold curves derived from OLS regression in the log-log coordinate system typically display an upward trend, as 

illustrated in Fig. 4, with the slopes of the rainfall threshold curves for 25%, 50%, and 75% landslide probabilities decreasing 200 

progressively. As shown in Fig. 5, the rainfall thresholds obtained from MLP regression for various landslide probabilities 

generally exhibit an increasing trend. However, the limited historical landslide data in some subregions leads to less accurate 

rainfall thresholds (e.g., the rainfall threshold for the Z23Z24Z3 region shows a large increase when D is 5). 

4.1.2 E-D-R Rainfall Threshold Model 

Building on the E-D rainfall threshold model, the third dimension indicator R was incorporated to develop the E-D-R rainfall 205 

threshold model. In this model, the value of R is set to the rainfall threshold corresponding to a duration of D equal to 1 in 

the E-D rainfall threshold model. These three indicators collectively form a closed "box" (Fig. 6), demonstrating "nested" 

relationships among different landslide probability levels. 
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Figure 6: Schematic diagram of the E-D-R rainfall threshold model illustrated using the OLS regression results from the Z13 210 
region as an example. The green, yellow, and red boxes in the figure represent landslide probabilities corresponding to rainfall 

thresholds of <25%, 25-50%, and 50-75%, respectively. 

4.1.3 Model Accuracy Verification 

The accuracy of the model was evaluated using 82 landslide hazard events from 2019 and 2020 that were not included in the 

rainfall threshold model calculations. Figure 7 shows the distribution of landslide hazard events across different regions. 215 

 

Figure 7: Number of landslide hazard events in each region of the validation set. 
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In practical landslide prevention, real-time future rainfall data is unavailable and must be substituted with forecasted rainfall. 

To enhance the realism of the validation data for the rainfall threshold model, this study used numerous rainfall forecast 

stations within the study area to gather forecasted rainfall amounts for the 82 landslide events on the day of occurrence and 220 

for the five days prior. Notably, the rainfall forecast stations used here were established later and differ from the rainfall 

stations used in the landslide cataloguing (Fig. 2, Rainfall Station). These forecast stations, covering the entire study area at 

0.05° intervals, provide real-time updates on forecasted rainfall. 

The study area was classified into four warning categories based on the rainfall threshold results: Attention (<25%), Special 

Attention (25-50%), Warning (50-75%), and Severe Warning (≥75%). Figure 8 presents the results of the validation process 225 

for each region's rainfall threshold model categories. Additionally, Table 3 shows the proportion of hazardous situations 

corresponding to the “Severe Warning” and “Warning” levels in the E-D-R rainfall threshold model validation results. 

 

Figure 8: Distribution of warning levels in the validation set for each partitioned region. Regions are labelled as follows: a 

represents the Z11 region, b represents the Z12 region, c represents the Z13 region, d represents the Z21Z22 region, e represents the 230 
Z23Z24Z3 region, f represents the Z25Z4 region, and g represents the Dry Season. 
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Table 3: Proportion of hazard events corresponding to the “Severe Warning” and “Warning” levels in the E-D-R rainfall 

threshold model for each partitioned region. 

Region Regression approach Level Percentage (%) 

Z11 

MLP 
Severe Warning 46.88 

Warning 12.50 

OLS 
Severe Warning 40.63 

Warning 40.63 

Z12 

MLP 
Severe Warning 7.69 

Warning 92.31 

OLS 
Severe Warning 53.85 

Warning 46.15 

Z13 

MLP 
Severe Warning 80.00 

Warning 20.00 

OLS 
Severe Warning 60.00 

Warning 40.00 

Z21Z22 

MLP 
Severe Warning 44.44 

Warning 33.33 

OLS 
Severe Warning 44.44 

Warning 55.56 

Z23Z24Z3 

MLP 
Severe Warning 33.33 

Warning 66.67 

OLS 
Severe Warning 0.00 

Warning 100.00 

Z25Z4 

MLP 
Severe Warning 50.00 

Warning 20.00 

OLS 
Severe Warning 70.00 

Warning 30.00 

Dry Season 

MLP 
Severe Warning 40.00 

Warning 50.00 

OLS 
Severe Warning 60.00 

Warning 30.00 

The following conclusions can be drawn from analyzing the prediction accuracy of the four categories of rainfall threshold 

models: 235 

(1) The accuracy of the E-D-R rainfall threshold model, as computed using both MLP regression and OLS regression, 

significantly surpasses that of the comparable E-D rainfall threshold model. With the inclusion of the R indicator in the third 

dimension, the E-D-R rainfall threshold model's predictions no longer include the "Attention" warning level for all areas 

(except Z11). Moreover, there has been an increase in the percentage of hazard incidents classified under the "Warning" and 

"Severe Warning" categories across all regions. Compared to the E-D model, the proportion of hazardous conditions 240 
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categorized as "Warning" and "Severe Warning" in the E-D-R rainfall threshold model increased from 41.46% to 76.82%, 

while the proportion for OLS regression rose from 69.51% to 91.46%. 

(2) Although the prediction accuracies of the E-D-R rainfall threshold model vary slightly between MLP regression and OLS 

regression for each region, the overall proportion of hazardous conditions in the "Warning" and "Severe Warning" levels 

remains similar. 245 

(3) Table 4 presents the optimal rainfall threshold model for each region. The E-D-R models obtained from MLP regression 

are identified as the optimal models for the Z13 and Z23Z24Z3 regions, demonstrating the feasibility of utilizing neural 

networks (MLP) for rainfall threshold model research. 

Table 4: Optimal rainfall threshold model for each partitioned region. 

Region Optimal rainfall threshold modelling (regression approach) 

Z11 E-D-R (OLS) 

Z12 E-D-R (OLS) 

Z13 E-D-R (MLP) 

Z21Z22 E-D-R (OLS) 

Z23Z24Z3 E-D-R (MLP) 

Z25Z4 E-D-R (OLS) 

Dry Season E-D-R (OLS) 

4.2 Landslide Susceptibility Results 250 

4.2.1 Landslide Inducing Factor Selection 

Based on the research findings of previous scholars (Chen et al., 2021; Chen et al., 2020; Habumugisha et al., 2022; Li et al., 

2022; Li et al., 2020; Rohan et al., 2023) and considering the specific conditions of the study area, this study selected a total 

of 11 factors that potentially induce landslides. These factors include elevation, Normalized Difference Vegetation Index 

(NDVI), Topographic Wetness Index (TWI), road density, stratigraphic lithology, tectonic density, river distance, slope, 255 

curvature, land cover, and slope structure (Table 5). 

Table 5: Sources of data for landslide-inducing factors. 

Factor Category Data Source Inducing Factor 

Topography and Geomorphology 
Geological Map 

STRM DEM 

Elevation 

Slope 

Curvature 

Slope Structure 

Geological Lithology Geological Map 
Stratigraphic Lithology 

Tectonic Density 
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Hydrological Factor 
National Basic Geographic Database 

STRM DEM 

TWI 

River Distance 

Land Use Landsat Remote Sensing Image 
NDVI 

Land Cover Type 

Human Engineering Activities OpenStreetMap Road Density 

Among these factors, slope structure refers to the relationship between the slope aspect of the inclination of the rock 

formation (Niu et al., 2014). Different types of slope structures can result in variations in landslide size and intensity. Based 

on the slope gradient (σ), slope direction (γ), and inclination (α) and tendency (β) of the rock formation, slope structures are 260 

classified into the following eight types (Table 6). 

Table 6: Classification of slope structure types and their respective percentages within the study area. 

Class Relationship between α, β, γ and σ Area (%) 

Nearly horizontal slope α≤5° 1.720 

Over-dip slope α>5°, |γ-β|∈[0°, 30°) or |γ-β|∈[330°, 360°), σ>α 5.127 

Flat-dip slope α>5°, |γ-β|∈[0°, 30°) or |γ-β|∈[330°, 360°), σ=α 0.000 

Under-dip slope α>5°, |γ-β|∈[0°, 30°) or |γ-β|∈[330°, 360°), σ<α 13.581 

Dip-oblique slope α>5°, |γ-β|∈[30°, 60°) or |γ-β|∈[300°, 330°) 17.559 

Transverse slope α>5°, |γ-β|∈60°, 120°) or |γ-β|∈[240°, 300°) 32.066 

Anticlinal-oblique slope α>5°, |γ-β|∈[120°, 150°) or |γ-β|∈[210°, 240°) 15.089 

Anticlinal slope α>5°, |γ-β|∈[150°, 210°) 14.857 

Stratigraphic lithology data was obtained by vectorizing and classifying geological maps at a 1:200,000 scale. Each lithology 

is associated with distinct pedogenic environments, leading to variations in composition and stability, which in turn influence 

landslide occurrence (Cobos-Mora et al., 2023). In this study, the area was classified into four lithological categories: 265 

carbonate, clastic, carbonate and clastic, as well as igneous and metamorphic rocks. Furthermore, in large study areas where 

tectonic features are highly intertwined, the distance to tectonic structures becomes less relevant as a correlating factor; 

instead, tectonic density should be considered (Wang et al., 2014).  

To ensure the rational selection of landslide-inducing factors, Pearson correlation analysis was employed to examine the 

degree of correlation among the selected factors (Zhang et al., 2022) (Fig. 9). The correlation coefficient ranges from -1 to 1, 270 

where values closer to 1 or -1 indicate a stronger correlation between the variables, and values closer to 0 indicate a weaker 

correlation (Cao et al., 2023). 

As shown in Fig. 9, the correlation coefficients between most inducing factors are low, with the exception of a somewhat 

higher correlation between elevation and river distance (0.53). Elevation and river distance are both critical factors in 

landslide occurrence—elevation is fundamental to landslide susceptibility assessment (Wang et al., 2022b), affecting the 275 

distribution of submerged layers and the intensity of human activities; while river erosion can destabilize slopes by 
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undercutting the base and softening rock and soil masses (Selamat et al., 2022)). Therefore, both factors were retained in this 

study. Ultimately, 11 inducing factors were selected for landslide susceptibility assessment in the study area. 

 

Figure 9: Pearson correlation analysis results for landslide-inducing factors. 280 

4.2.2 Grading of Landslide Susceptibility Factors 

Considering the specific conditions of the study area and insights from previous research, the classification of each landslide 

predisposing factor, along with the corresponding result map, is presented in Table 7 and Fig. 10. The landslide susceptibility 

evaluation was conducted using raster cells with dimensions of 30m × 30m. It is important to emphasize that the historical 

landslide data used for susceptibility prediction encompasses all 6,888 recorded landslide events, not just the 453 events 285 

filtered for inclusion in the rainfall threshold model calculations. 

Table 7: Classification of landslide-inducing factors used in this study. 

Predisposing Factor Classification Criteria Code 

Elevation (m) 

≤300 

a 

(300,600] 

(600,900] 

(900,1200] 

(1200,1500] 

>1500 
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NDVI 

[-1,0] 

b 

(0,0.2] 

(0.2,0.4] 

(0.4,0.6] 

(0.6,0.8] 

(0.8,1] 

TWI 

≤6 

c 

(6,8] 

(8,10] 

(10,14] 

>14 

Road Density (km/km2) 

[0,0.5] 

d 

(0.5,1.2] 

(1.2,2.5] 

(2.5,5.0] 

>5.0 

Stratigraphic Lithology 

Carbonates 

e 
Clastic rocks 

Carbonates and clastic rocks 

Igneous and metamorphic rocks 

Tectonic Density (km/km2) 

[0,0.03] 

f 

(0.03,0.12] 

(0.12,0.24] 

(0.24,0.38] 

>0.38 

River Distance (m) 

≤500 

g 
(500,1000] 

(1000,1500] 

>1500 

Slope (°) 

[0,10] 

h 

(10,20] 

(20,30] 

(30,40] 

(40,50] 

>50 

Curvature (m-1) 

≤-3 

i 

(-3,-1] 

(-1,0] 

(0,1] 

>1 



19 

 

Land Cover 

Urban land 

j 

Agricultural land 

Forest land 

Grassland 

Water 

Other Land 

Slope Structure 

Nearly horizontal slope 

k 

Over-dip slope 

Under-dip slope 

Dip-oblique slope 

Transverse slope 

Anticlinal-oblique slope 

Anticlinal slope 

 

Figure 10-1: Grading results for landslide-inducing factors. (a) Elevation; (b) NDVI; (c) TWI; (d) Road density; (e) Stratigraphic 

lithology; (f) Tectonic density. 290 
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Figure 10-2: Grading results for landslide-inducing factors (continued). (g) River distance; (h) Slope; (i) Curvature; (j) Land cover; 

(k) Slope structure. 

4.2.3 Landslide Susceptibility Evaluation Results 

In this study, three models, CNN-3D, RF and SVM, were employed to evaluate the landslide susceptibility of the study area. 295 

The optimal landslide susceptibility results obtained from these models were then selected for subsequent daily landslide 

hazard warnings. The relevant performance metrics from the training of the three models are presented in Table 8. 

Table 8 indicates that the AUC values for the CNN-3D, RF, and SVM models are 0.96, 0.82, and 0.83, respectively. These 

AUC values demonstrate that all three models effectively predict the probability of landslide occurrence in the study area, 

with the CNN-3D model exhibiting superior predictive accuracy compared to the RF and SVM models. Furthermore, the 300 

CNN-3D model outperforms the RF and SVM models across the other four metrics. Consequently, the landslide 
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susceptibility results from the CNN-3D model were classified into five categories using the natural breaks method (Fig. 11) 

and were subsequently utilized for daily landslide hazard warnings. 

Table 8: Results from the training of the susceptibility evaluation models. 

Model 
Model Evaluation Indicators 

AUC Accuracy Precision Recall F1_score 

CNN-3D 0.96 0.9003 0.8663 0.9295 0.8968 

RF 0.82 0.7500 0.7656 0.7416 0.7534 

SVM 0.83 0.7630 0.7625 0.7623 0.7624 

 305 

Figure 11: Landslide susceptibility results from the CNN-3D model. 

Overall, areas of high landslide susceptibility in the study region are predominantly located along riverbanks and in the 

central and eastern sections. Within the district and county boundaries, high susceptibility areas are primarily concentrated in 

Zigui, the northern part of Badong, the southern part of Xingshan, the central part of Fengjie, the central part of Wanzhou, 

and the southeastern part of Zhongxian. 310 

4.3 Landslide Hazard Warning 

4.3.1 Landslide Hazard Results for Each Rainfall Warning Level 

In this study, a superposition matrix (Table 9) was created to integrate the daily rainfall warning level with the landslide 

susceptibility results, thereby generating daily landslide hazard warnings. 
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Table 9: Superposition matrix of landslide susceptibility and rainfall warning levels. In the table, the numerical codes represent 315 
the following zones: 1 – Relatively stable zone, 2 – General prevention zone, 3 – Secondary prevention zone, and 4 – Priority 

prevention zone. 

Susceptibility 

Rainfall Threshold Level 
Very Low Low Moderate High Very High 

Caution 1 1 1 1 2 

Special Caution 1 1 1 2 3 

Warning 1 1 2 3 4 

Severe Warning 1 2 3 4 4 

Based on the landslide susceptibility results depicted in Fig. 11 and utilizing the superposition matrix from Table 9, the 

landslide hazard warning outcomes corresponding to each rainfall level were determined (Fig. 12). 

 320 

Figure 12: Landslide hazard maps for each rainfall warning level. (a) Attention level hazard; (b) Special attention level hazard; (c) 

Warning level hazard; (d) Severe warning level hazard. 

4.3.2 Daily Landslide Hazard Warning 

In 2020, the Yangtze River experienced its worst basin-wide flood since 1998. On July 19, the "Yangtze River Flood No. 2 

of 2020" was advancing through the study area toward the middle and lower reaches of the river, leading to persistent 325 

rainfall and numerous landslides. Thus, 19 July, 2020 was selected as a case study for landslide hazard warning and 

validation (Fig. 13). Using the superposition matrix in Table 9, Fig. 13.d was overlaid on Fig. 12 to derive the landslide 

hazard warning results for 19 July, 2020 (Fig. 14). 
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Figure 13: Various rainfall parameters and rainfall warning levels for July 19, 2020. (a) Effective rainfall interpolated by Kriging; 330 
(b) Daily rainfall interpolated by Kriging; (c) Duration of rainfall estimated using Thiessen polygons; (d) Rainfall warning levels 

calculated using the optimal rainfall threshold model. 

 

Figure 14: Landslide hazard warning results for 19 July, 2020. 
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On July 19, 2020, seven landslide hazards were identified, as depicted in Fig. 14. Of these, five were classified within the 335 

priority prevention zone, and two within the secondary prevention zone, which confirms the accuracy of both the landslide 

hazard warning results and the rainfall threshold model. 

5. Discussion 

5.1 Discussion of Rainfall Threshold Model 

To identify the most effective rainfall thresholds in the study area, this study employs two regression methods, OLS and 340 

MLP, alongside two rainfall threshold models, E-D and E-D-R. Regardless of the regression method used, the results reveal 

that the E-D-R model exhibits superior warning accuracy compared to the E-D model. Additionally, the optimal rainfall 

threshold models for the Z13 and Z23Z24Z3 areas are the E-D-R models derived from the MLP regression, demonstrating the 

viability of neural networks (MLP) in rainfall threshold modeling. However, given that the dataset in this study is relatively 

small (comprising only 453 landslides) and simple (involving only 3 variables), it may not fully capture the advantages of 345 

neural networks for rainfall threshold modeling. Nevertheless, we consider this a valuable effort. Future studies could 

incorporate additional variables, such as peak rainfall and rainfall intensity, and applying neural networks is likely to 

enhance the accuracy of rainfall warning models. 

To explore the reasons for the E-D-R model's superior warning accuracy, this study examines area Z12 as a case study and 

illustrates points where the rainfall warning level has been modified (i.e. landslides with increased warning levels) in the R-E 350 

plane view (Fig. 15). 

 

Figure 15: Transition process of rainfall warning levels in the Z12 region. The green line indicates the boundary between the 

Special Attention and Attention levels, the yellow line denotes the boundary between the Warning and Special Attention levels, 

and the orange line marks the boundary between the Severe Warning and Warning levels. 355 
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Figure 16: Rainfall processes at the transition points of rainfall warning levels. 

The chart illustrates that the inclusion of the R indication significantly elevated the rainfall warning level for the four 

landslides. In the E-D model, P1 was classified as “Caution”, while the other three landslides were categorized as “Special 

Caution”. However, in the E-D-R model with OLS regression, the warning level of P2 was upgraded to “Warning”, and the 360 

warning levels of the remaining three landslides were elevated to “Severe Warning”. Similarly, all four landslides were 

classified to “Warning” in the E-D-R model using the MLP regression. The transitions in rainfall warning levels for these 

landslides directly contributed to the improved accuracy of the E-D-R model in the Z12 region. 

An in-depth analysis of the rainfall processes for these four landslides prior to their occurrence (Fig. 16) reveals that they 

experienced relatively low rainfall in the four days leading up to the landslide, resulting in a lower E value, but substantial 365 

rainfall on the day of the landslide. These characteristics resulted in higher warning accuracy for these four landslides within 

the E-D-R rainfall threshold model, suggesting that the R indicator has notable sensitivity to landslides triggered by heavy 

rainfall. 

5.2 Discussion of Daily Landslide Hazard Warning 

In this study, RF, SVM, and CNN-3D models were used to predict landslide susceptibility in the Three Gorges Reservoir 370 

Area. A comparative analysis revealed that the CNN-3D model offers superior predictive accuracy for landslide 

susceptibility within the study area. Further examination of the CNN-3D model's results show that the regions with high 

landslide susceptibility are predominantly located in areas with sparse vegetation, fragile stratigraphic lithology, close to 

rivers, and active human engineering activities, which is similar with the results reported by Wang et al (2022a). 

Regarding daily landslide hazard warnings, rainfall warning levels were calculated using the optimal rainfall threshold model 375 

for each sub-district based on forecast rainfall data from rainfall stations. The daily landslide hazard warning results were 
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then generated by employing a superposition matrix to integrate the rainfall warning levels with the landslide susceptibility 

results. On July 19, 2020, all seven identified landslide hazards were confirmed to be within the priority and secondary 

prevention zones. This indicates that the landslide hazard warning results derived from the rainfall threshold model are 

highly accurate and significantly contribute to effective landslide disaster prevention and control. Moreover, the process of 380 

translating landslide susceptibility results into hazard warnings through the rainfall warning levels and superposition matrix 

serves as a refinement mechanism. This correction reduces the areas requiring focused prevention and attention, thereby 

optimizing the allocation of resources for landslide management. 

It is also important to note that the spatial probability of landslide occurrence may vary between dry and rainy seasons, and 

the influence of different landslide-inducing factors may change under varying climatic conditions. This study primarily 385 

focused on the differences in rainfall thresholds across various climatic and topographic conditions, while the variations in 

spatial probability of landslide occurrence were not extensively explored. Additionally, changes in reservoir water levels and 

groundwater fluctuations in the Three Gorges Reservoir Area are significant factors influencing landslide occurrence; 

however, these factors were not included in this study due to data limitations. 

5.3 Practical Application of the Rainfall Threshold Model and Daily Landslide Hazard Warning 390 

In the practical prevention and control of landslide hazards, cost considerations are inevitable (Wang et al., 2023a). To 

maximize the protection of lives and property within a constrained budget, it is essential to prioritize and refine the areas that 

require focused attention, while maintaining the accuracy of landslide hazard warning results. 

The E-D-R rainfall threshold model, by incorporating the benefits of the E-D model, enhances sensitivity to landslides 

induced by heavy rainfall on the same day and achieves higher warning accuracy. Concurrently, the CNN-3D model, which 395 

effectively integrates spatial information around each raster point, provides more accurate landslide susceptibility predictions 

compared to the RF and SVM models. Thus, both the E-D-R rainfall threshold model and the CNN-3D model hold 

significant potential for application and development in landslide warning and prevention. The combination of these models' 

results through superposition can ensure high accuracy in landslide hazard warnings while also narrowing the focus areas 

using the rainfall warning levels derived from the rainfall threshold model. This approach helps meet the demands of 400 

effective landslide disaster prevention and control. 

Nevertheless, despite the high accuracy of the E-D-R rainfall threshold model and the CNN-3D model, certain uncertainties 

persist. For the rainfall threshold model: (1) Rainfall stations provide localized data, and there may be inaccuracies when 

extending this data to the entire study area using interpolation or Thiessen polygon methods. (2) Historical landslide data 

significantly influence the results of the rainfall threshold model; insufficient data or extreme rainfall conditions can lead to 405 

uncertainties in the final rainfall warning levels. (3) Although this study analyzed 10 regions across both dry and rainy 

seasons, the broad regional scope introduces uncertainty in rainfall thresholds due to varying topographic and 
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geomorphological conditions. For the CNN-3D model, uncertainties may arise from the selection of landslide-inducing 

factors, the size of the evaluation unit, and the division ratio of the training and test set. 

Therefore, in practical landslide prevention and control applications, it is crucial to tailor the predisposing factors and 410 

evaluation units to the specific local context to ensure the accuracy of the landslide susceptibility results (Zhang et al., 2023). 

Simultaneously, constructing a comprehensive historical landslide database is recommended. This database should be 

updated with new landslide events and corresponding rainfall data to recalibrate the area's rainfall threshold and refine the 

rainfall warning levels. As the historical landslide data accumulate, the uncertainty in the rainfall threshold model is 

expected to decrease, leading to more precise rainfall thresholds. With a sufficiently rich historical dataset, further regional 415 

subdivision may enhance rainfall warning accuracy. Ultimately, this approach will improve the precision of landslide hazard 

warnings and provide valuable technical support for vulnerability assessment and disaster preventive and mitigation efforts. 

6. Conclusion 

Landslide disaster warning is a critical tool for the prevention and management of landslides. To enhance the accuracy of 

landslide warning, this study employed two regression methods—MLP and OLS—and two rainfall threshold models—E-D 420 

and E-D-R. The study area was divided into two seasons, dry and rainy, as well as several sub-districts based on topography 

and rainfall patterns, to identify the optimal rainfall threshold model for the region and determine the daily rainfall warning 

levels. Additionally, 11 inducing factors were selected to assess landslide susceptibility in the study area using three models: 

RF, SVM, and CNN-3D. The final step involved integrating the rainfall warning levels with the landslide susceptibility 

results using a superposition matrix to produce daily landslide hazard warnings for the Three Gorges Reservoir Area. 425 

The results indicate that the E-D-R rainfall threshold model exhibits superior sensitivity to landslides triggered by heavy 

rainfall, resulting in higher rainfall warning accuracy compared to the E-D model when either regression method is applied. 

Specifically, for sub-district Z11, Z12, Z21Z22, Z25Z4, and Dry Season, the optimal rainfall threshold model is the E-D-R model 

derived from OLS regression. Conversely, for sub-districts Z13 and Z23Z24Z3, the optimal model is the E-D-R threshold 

obtained through MLP regression. Regarding landslide susceptibility, the CNN-3D model achieved an AUC of 0.96 and an 430 

accuracy of 0.9003, outperformed the RF and SVM models in prediction accuracy. 

Daily landslide hazard warnings were calculated by combining the daily rainfall warning levels with the landslide 

susceptibility results. The accuracy of these warnings was validated using data from the landslide event on July 19, 2020. Of 

the seven landslides on that date, five occurred in the priority prevention zone and two in the secondary prevention zone, 

confirming the reliability of the landslide hazard warning results and the effectiveness of the rainfall threshold model. 435 

The integration of rainfall warning levels with landslide susceptibility results provides actionable guidance for local 

landslide disaster prevention and control efforts. Moreover, the introduction of MLP into the regression analysis of rainfall 
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thresholds in this study contributes to the development of rainfall threshold models and offers a valuable approach for 

broader application. 
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