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Abstract. Rainfall is intrinsically ecennectedlinked to the incidenceoccurrence of landslide catastrophes.
Exploringldentifying the ideatmost suitable rainfall threshold model (RTFM)-for an area in-orderto-determine-therainfall
warning-HeveH{RWL)is crucial for theregienestablishing effective daily landslide hazard warnings, which are essential for
dathy-landshide-hazard-warning-(EHW)-is-eritical-forthe precise prevention and management of local landslides. ta-thispaper;
a-method-for-calculatingrainfall-thresholds-using-This study introduces a novel approach that utilizes multilayer perceptron

(MLP) regression is—prepesed-to calculate rainfall thresholds for 453 rainfall-induced landslides. First-the-study-area-was
ivided-into-subareas-based-on-topography—and-climate—conditions—Fhen—two-methods; This research represents the first

are-differentfor-differentrainfall threshold model tailored to distinct subregions—2)}-TFhe-TFhree, categorized by topographical

and climatic conditions. Additionally, an innovative application of a three-dimensional convolutional neural network medel

produces—more—acecurate—LS—prediction—resuts:(CNN-3D) model is introduced to enhance the accuracy of landslide

susceptibility predictions. Finally, a comprehensive methodology is developed to integrate daily rainfall warning levels with

landslide susceptibility predictions using a superposition matrix, thus offering daily landslide hazard warning results for the

study area. The key findings of this study are as follows: (1) The optimal rainfall threshold models and calculation methods

vary across different subregions, underscoring the necessity for tailored approaches. (2) The CNN-3D model substantially

improves the accuracy of landslide susceptibility predictions. (3) The daily EHW-was-landslide hazard warnings were

validated using anticipated rainfall data forfrom July 19, 2020, thereby demonstrating the reliability of both the landslide

hazard warning results and the validation—+resultsproved-the-correctness-ef-rainfall threshold model. This study presents a
substantial advancement in the EHW results—precise prediction and RFMmanagement of landslide hazards by employing

innovative modeling techniques.
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1 Introduction

Landslide-catastrephesAccording to the China Statistical Yearbook, landslides accounted for 71.55% of geological disasters

in China frembetween 2005 teand 2021;—accerding—to-the-China—Statistical Yearboek (http://www.stats.gov.cn/sj/ndsj/).

Frequent landslide—catastrophes—endanger—peopleslandslides pose significant risks to both lives and property (Xing et al.,
2021). Rainfall wit-lead-to-landslide-disasterstriggers landslides by ehanging-thealtering pore pressure in the soil bedy-(Zhao

et al., 2022) and weakeningreducing the shear strength of the geotechnical bedymaterials (Chan et al., 2018). According-to
research-(Marin-et-al—2020:Yuniawan-et-al;—2022):Research indicates that rainfall is intrinsically connectedlinked to the
great-majority of landslide defermation-and-instability.deformations and instabilities(Marin et al., 2020; Yuniawan et al.,
2022). Therefore, it is significantcrucial to delineate the rainfall thresholds for differentrainfativarious conditions and areas
through-the—studyfor-thefine—development-ofregions to improve landslide hazard warping—(LEHW)warnings and disaster
prevention and-—control—LHW efforts. Landslide hazard warning is described as the conditional prediction of probable
fandslide—the temporal and spatial prebabitity—under—the—limitations—ofprobabilities of landslide occurrence based on
triggering and inducing variablesfactors (Budimir et al., 2015). Fhe-In this study, the rainfall warning level (RW.L)-{i.e., the
temporal probability of landslide occurrence) ealeulated-byderived from the rainfall threshold model (RTM)-isserves as the
triggering factor-in-this-study—and, while the landslide susceptibility predictions (i.e., the spatial probability of occurrence)

act as the inducing factor-is-the-prediction-result-of-landslide.

Landslide susceptlblllty QL%)—QHe—reflects the spatial probability of landslide occurrence}-caleulated-by—the-susceptibility
(Huang et al., 2022b). GeneralMethods for

predicting landslide susceptibility include general linear models (Aksha et al., 2020), information value models (Yu et al.,
2022), and various machine learning models;—and-others-are-among-the-metheds—used-to-predictLS.. Machine learning
models ean-fitare more effective than other types in capturing and predietpredicting the nonlinear relationshiprelationships
between LS-and-landslide susceptibility and predisposing factors-meore-effectively-than-otherkinds-of-medels (Guo et al.,
2021). Commonly used machine learning models include logistic regression (Baharvand et al., 2020), artificial neural
networks (Jiang et al., 2014), support vector machines (SVM) (Chang et al., 2023; Zhu and Hu, 2012), random forests (RF)
(Chen et al., 2014; Huang et al., 2024), Bayesian algorithms (He et al., 2019), and deep learning algorithms (Huang et al.,
2020). However, determining-whichselecting the most suitable model is-best-suited-for LSlandslide susceptibility prediction
isremains challenging, and there-is-greatsignificant uncertainty exists in the LS-predictien-results ef-variousobtained from
different machine learning models (Xia et al., 2020). Even littlesmall improvements in LS-prediction accuracy might-have-a
significant-influence—on—LS—can significantly impact landslide susceptibility zoning (Chen et al., 2018). Therefore, to
decrease-thereduce uncertainty ef-LSin landslide susceptibility results, differentmultiple susceptibility models are frequenthy
employed-to-predict LS-in-the-study-areaoften applied, and the model with the greatesthighest accuracy is ehosenselected for
the study area.
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RFMRainfall threshold modeling approaches primarily include of deterministic methods based on physical and hydrological

models, as well as empirical methods based on landslide cataloguing and rainfall event statistics (Chung et al., 2017; Wu et
al., 2015). Fhe-former—establishesDeterministic methods establish the relationship between rainfall and landslide stability
through dynamic hydrological models and determinesdetermine the critical rainfall threshold for landslide instability in-the

physical-medel-(Ciurleo et al., 2019). However, due to the difficulty—inchallenges of accurately obtaining hydrological
parameters-and geotechnical parameters on a large scale, this method is enlyprimarily applicable to smaller study areaareas

(Wu and Yeh, 2020). The-latter-isEmpirical methods are mainly derived by calculating the relationship between historical
landslide and rainfall data (Abraham et al., 2020a; Pradhan et al., 2019). This methoedapproach is widely used because-ofdue
to its advantages ef-convenience-in data acquisition;—streng_convenience, applicability, and exeeHentresuliseffectiveness
(Martinovic et al., 2018). Currenthy—eommontyCommonly used RFMrainfall threshold models include the intensity—ef
rainfall—-duration-efrainfall (1-D) threshold model (Abraham et al., 2019; Lee et al., 2014) and the effective rainfall—-
duration of rainfall (E-D) threshold model (Abraham et al., 2020b; Peruccacci et al., 2017). Fhe—regressionRegression
methods used to calculate the RFMrainfall threshold model include logistic regression (Mathew et al., 2014), ordinary least
squares (OLS) regression (Rossi et al., 2017) and quantile regression (Salee et al., 2022). Fhere-are-differencesin-theThe
applicability of different-RTMvarious rainfall threshold models and different-regression methods n-eifferentdiffers across
regions (Marin, 2020; Segoni et al., 2018). Therefore, to deereasereduce uncertainty in LHW—severatlandslide hazard
warnings, multiple regression methods and RFM-—mustrainfall threshold models should be usedemployed to
establishdetermine the bestmost appropriate rainfat-threshold for a eertainspecific location.

Given that many researchers have employed the log-log eeeordinatescoordinate system for RFM-regression analysis of
rainfall threshold models (He et al., 2020), this study proposes to use of the multilayer perceptron (MLP) regression method
to study-theexamine rainfall thresholds under various rainfall durations. SimultanesushyAdditionally, the third--dimension
indicator—, "daily rainfall-for-the-day" (R) was intreducedincorporated to ereatedevelop the E-D-R RFM-based-enrainfall
threshold model, extending the E-D RFMrainfall threshold model (Liu et al., 2022).

In this study, the Three Gorges Reservoir Area (FGRAJ-was usedselected as the study area,—and-the-tandshdes. Landslides
were first-catalogued to getobtain the E and D data duringfor the five days befere-the-landshidespreceding each landslide, as
well as the R data at the time of the landslides. FeHowing-thatSubsequently, the rainfall thresholds corresponding to the E-D

and E-D-R models for distinetvarying landslide occurrence probabilities were calculated using both OLS and MLP
regression methods,—+espeetively—Fe-. The study aims to explore the optimal RFMrainfall threshold model for the study area
and, assess the feasibility of neural network—for RTM-research—as-well-as-to-networks in rainfall threshold modeling, and
categorize RW\hrainfall warning levels based on the optimal RTFM-—Then;select-themodel. Landslide-inducing factors that
induce-were selected, and landslide eceurrence-and-predict-the-LS—+resultssusceptibility was predicted using RF, SVM, and
3D convolutional neural network (CNN-3D) models—and-utitize-the-LS. The most accurate susceptibility results with-the
best-aceuracywere used as the spatial probability of landslide occurrence in the study area. Finally, the daily RW.l—is-rainfall
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warning level was combined with the £S—+esult-landslide susceptibility results using thea superposition matrix to achieve

thegenerate daily EH\W -which-serves-aslandslide hazard warnings, providing a reference for preeisienthe precise prevention

and management of local landslide disasters. The study flowchart is shown in Fig. 1.
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Figure 1. Flowchart of this study.

2. Methods
2.1 Rainfall Threshold Model
2.1.1 OLS Regression

OLS regression is a eemmonlywidely used linear regression methed-that-can-be-used-te-establishtechnique for establishing a
linear relationship between thean independent variable (x) and thea dependent variable (y). It minimizes the errordifference
between the predicted value-and the-actual-observed value by seekingfinding the slope and intercept that best fits the data
(Lim et al., 2023).

The basic form of itsthe OLS regression model ean-beis expressed as:

y =B+ 21 Bixi, 1)

where y denotes the dependent variable, x; denotes the independent variable, n denotes the number of independent variables,

B; denotes the coefficients of the independent variables, and S, denotes the constant intercept.
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2.1.2 MLP Regression

MLP is a eemmoen-commonly used neural network with-the-abilitycapable of nonlinear mapping, which-eanenabling it to
learn complex nonlinear functional relationships through multiple layers of nodes. Currenthy—it—It has been widely

wsedapplied in manyvarious fields—sueh—as, including geospatial analysis (Hasan et al., 2023; Wang et al., 2023b),

aerodynamics (Barcenas et al., 2023), atmospheric science (Hoffman and Jasinski, 2023), rainfall prediction (Narimani et al.,
2023), and image fusion (Mei et al., 2023). In-the regression analysis of scatter data, a scatter data set can-be-regardedis
treated as eomposeda collection of multiple-input-output data pairs;and-the. The model adjusts theits weights ef-the-medel
by minimizing the error between the-predicted value-and the-actual data, and-finalhyrealizestheultimately achieving accurate

regression a Q gata- a a '3. APy an \ /] -ll==‘ A a ALO-Haaentave o~

\W_’ \ v J H_l

Input Layer Hidden Layer Output Layer

2.1.3 E-D-R Rainfall Threshold Model

The E-D-R RTM-is-based-onrainfall threshold model builds upon the E-D RFM—with-the-intreduction-ofrainfall threshold
model by introducing the R metrics—at-the-metric as a third latitudedimension to optimize the original RTFMmodel. To
investigateanalyze the E-D-R RFM;rainfall threshold model, it is essential first to establish the E-D RFM-must-first-be
determinedrainfall threshold model.

The E-D RTM-aims-to-investigate-therainfall threshold model examines the relationship between effective rainfall as—a
funection-efand the duration of rainfall (Teja et al., 2019). The scatter plot is generathytypically analyzed byusing regression
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in a log-log eoordinatescoordinate system, and-thenwith the resulting fitted straight-line isthen transformed into a result-ina

Cartesian coordinate system. The expression for this is:

E=axDF, 2)

Assume that-the linear equation ebtained-by-fittingfitted in the log-log eeerdinatescoordinate system has an intercept of b
and a slope of a. Then, in the-above-eguationthis context, &« = 10”, 8 = a, andwhere D denotes the duration of rainfall (¢)-
in days), and E is the effective rainfall (in mm), which-refers-tedefined as the total ameunt-ef-rainfall that actuathy-infiltrates
and aets-enimpacts the landslide-bedy-in-addition-to-the, excluding slope runoff and evaporation (Huang et al., 2022a). The
effective rainfall formula usedapplied in this study is-as-foHows:

E=YL k' E, ©)

where E denotes the effective rainfall, E; is the rainfall on the previous i days, and k is the effective rainfall coefficient—Fhe
vatue-of-kis-usuatly, typically set to 0.8 (Huang et al., 2022a). FurthermoreAdditionally, it has been shewsndemonstrated that
the-effective rainfall iawithin the first 5 days of-the TGRA-has-a-streng-Hnkin the Three Gorges Reservoir Area is strongly

correlated with landslide events (Zhou et al., 2022). Therefore, the number of days efn_considered for rainfall statistics #-in

this werkstudy is set to 5.

The indicator R is introduced as a third dimension ef-the-indicatorR-is-added-based-onto extend the E-D RFM-te-expand
therainfall threshold model from two to three dimensions, anrd-the-RTL—meetresulting in a model that satisfies the following

relational equation:

T = max{Gg, Gr} , 4)

where T denotes the final R\WWArainfall warning level, while G; and G denote the R\W.rainfall warning levels for the E-D

model and RR_dimension, respectively.

2.2 CNN-3D Model

A Convolutional Neural Network (CNN) is a deep learning algorithmwidehyused extensively utilized in image recognition

(Fan et al., 2022; Gill et al., 2022), natural language processing (Jin et al., 2023; Kaliyar et al., 2021) and various other

domains. ls—primary—cencept-is-to-extractThe core principle of CNN involves extracting features from input data using
athrough convolution eperatienoperations (Youssef et al., 2022). However, forin one- and two-dimensional CNNs, feature

extraction for induced factor data is enbytypically performed at a single raster point. Both methods igrereoverlook the spatial
information areundsurrounding the raster points (Yang et al., 2022). As-a-+resuttConsequently, this study presentsintroduces
CNN-3D in-erder-to fully useleverage the rich spatial information areund-thesurrounding raster points-in-erderto-increase,
thereby enhancing the prediction accuracy of LS-landslide susceptibility. The structure of CNN-3D is-simiartomirrors that




160

165

170

175

of traditional CNN, but sinee-the-inputdue to the inclusion of additional spatial data-centains-mere-information, CNN-3D can
provideyield more accurate results (Liu et al., 2023).

We picked-aA three-dimensional structure was selected to ereategenerate samples in this experiment. Befere-producing-the
samplesPrior to sample generation, an n-channel pictureimage is formedcreated by superimposing an components. Each

pixel is then extended eutwardsoutward by 7 pixels—te—generate—, resulting in a 15 x 15 x nn image used as input.
Subsequently, through-operations such as convolution and pooling in the hidden layer—the map high-level features are
mapped-to thea low-dimensional space-and, which are then stored in the neural units of the fully connected layer;-and-finaty
classified. Finally, classification is performed using the Softmax function to ebtain-theresulis—oflandslidesdetermine

[N

Conv o Poolmg » connected

landslide and non-shides{Fig—2)

Softmax‘\

-

—

Input

landslide outcomes.

3. Overview of the Study Area
3.1 Physical and Geographical Characteristics

The study area is located in the upper reaches of the Yangtze River-between-, extending from Sandouping in Yichang City
ahdto Jiangjin District in Chongging-which-is-sittated-atlongitude. It lies between longitudes 105°50-E and 111°42’-E and
latitudelatitudes 28°30-N_and 31°45'-N (Cheng et al., 2022),—encompassing—a—total-of . This area encompasses 29
administrative districts and counties, including 7 in Hubei Province and 22 in Chongqing Municipality—{(7¢istricts—and

counties-in-Hubel—and—22 districts-and-countiesin-Chongging)—and, covering a total area of 5.67>10*km? (Fig. 32).The
chimate-of the-region isexperiences a subtropical monsoon climate, with an-average annual precipitation efranging from 445-

to 1813 mm (Long et al., 2021). And-theThe abundant rainfall in the arearegion is a majersignificant factor inducing
fandslidescontributing to landslide occurrences (Guo et al., 2022).
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3.2 Landslide Data CataloguingGeomerphelegy-geology, and Study Area Subdivision

Cataloging landslide data is crucial for studying rainfall thresholds (Gariano et al., 2021). This process involves recording

essential information, including the time of occurrence, geographic location, and associated rainfall stations for each

landslide event. The historical landslide data used in this study were provided by the Wuhan Geological Survey Center

(http://www.wuhan.cgs.gov.cn/). To identify the corresponding rainfall stations for each historical landslide, the Thiessen

polygon method was employed to match each landslide point with the nearest rainfall station (Zhao et al., 2019), thereby

obtaining the pre-landslide rainfall data (see Fig. 2, Thiessen polygons).

After filtering and cleaning, a total of 453 historical landslides with accurate rainfall information, dates, and locations were

identified (see Fig. 2, Landslides). Historical rainfall data indicate that precipitation in the study area is primarily

concentrated between May and October. The differing climatic conditions between the dry and rainy seasons may lead to

varying impacts of rainfall on landslide movements (Soralump et al., 2021). ehmate—play—the-mestimpertant-role—in
preparatory-process-of-landslide-initiation-in-any-—regionBased on this information, the historical landslides were classified

into rainy season and dry season landslides according to their occurrence times (Fig. 3(b)).

Dry
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195 Figure 3: Zoning map of the study area. (a) Schematic diagram of the sub-region merger; (b) Number of historical landslide

hazard sites in each sub-region.

Given the substantial influence of geomorphological, geological, and climatic conditions on landslide triggers during the
rainy season (Dahal and Hasegawa, 2008), and-the-differences-between-them-lead-to-different-rainfall thresholds in-various
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can vary across different regions. Fherefore—in-Accordingly, this study;_further subdivided the landslide data from the

whelerainy season. The study area was divided into 10-zenes—{Fig—4)-by—considering-thetopegraphyseveral sub-regions
based on terrain and climatic condltlonsef—the—studyﬂarea—and—thegpumal-RlNLwa& with rainfall thresholds calculated for
each zone-separately—Among-them;Z.1Z1-and-Z13-3
in-the-folded-region;. However, due to the limited historical landslide data in regions Z»i, Zz, Z2s, Z24Z3 and Zg4, adjacent

regions were merged to mitigate potential inaccuracies in rainfall threshold calculations caused by insufficient data.
Specifically, Z,1 and Z,, were combined; Z,s, Z,4, and Zz were combined; and Z,s are-the-lowrainfall-zone;and Z4 were
combined. The final regional subdivision is illustrated in Fig. 3(a). For dry season landslides, due to relatively highuniform
rainfall zene—h+gh—#a+nia“—zene—m9derate—ra##au—zene—and h4gh—ramiaﬂ—zene49—the—lew-and4nedmm—meuntam—reg&ew
respeetively;Zs-

and-plain—zonethe small number of events, no further subdivision was performed, and the rainfall threshold was calculated

for the entire study area.
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4. Results

4.1 Rainfall Threshold Model Results
4.1.1 E-D Rainfall Threshold Model

Rainfall-triggered landslide—is—a—+randomlandslides are rare and smal-probabilityevent—and-f-onlyprobabilistic events.
Relying solely on the minimum threshold is-used-to-warn-offor geological hazards,-i-wit-produce-many warnings can result
in numerous ineffective warnings (i.e., False Positive Error) (Sarkar et al., 2023). While-decreasing-the-public'sThis not only
diminishes public trust in disaster warning, i-wit-result-in-a-waste-ofbut also leads to wasted resources foron preventive and
control activities, which-is-net-faverable-to-the-advancement-ef-impeding progress in disaster prevention and mitigation.
TFhereforeConsequently, most of-the—current studies on RTFM-use—a—variety—ofrainfall threshold models utilize various
threshold curves with different landslide probabilities (Sheng et al., 2022), in—order—to improveenhance the
reasonablenessreliability and accuracy of rainfall warning—Generathy,—thewarnings. Typically, landslide probability

12
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indicatesrefers to the proportion of the-rumber—of-landslides triggered by rainfall exceeding a eertainspecified threshold
ameng-aH-eceurringrelative to the total number of landslides (Yang et al., 2020).

In-the-caleulation-efFor OLS regression _calculation, the E and D seatters-efdata from historical landslide hazard locations in
each—area—were firstinitially plotted intein the E-D log-log eceerdinatescoordinate system;—and-the. The 50% landslide
probability rainfall threshold curve was then derived by fitting this data using OLS regression. The fitted curves were then
wsedsubsequently employed to runperform OLS regression analysis on the-historical landslide hazard points above and
and 25% landslide
probability rainfall threshold eurvecurves (Fig. #4). Finally, the straight lines from the log-log eserdinatescoordinate system
straight-Hnes-were transformed-te-converted into curves in the Cartesian coordinate system curves-(Table 1).

below thethese curves-te-get, resulting in the 75%

‘1 (a) (b) wl (©)
- - o
' D) ’ !
o @ / o © 2R0)
' l!uh. ! ’ ' DMIL ) ' D(d}‘ !
(€)
Legend
° Landslide
B 75% Landslide Probability Rainfall Threshold Curve
50% Landslide Probability Rainfall Threshold Curve
25% Landslide Probability Rainfall Threshold Curve

2 3
D)

Figure 7-Plotef4: E-D rainfall threshold model results plotted in the log-log esordinatescoordinate system {using OLS regression)-.
In the figure, regions are labelled as follows: a isrepresents the Zi1 region, b isrepresents the Zi» region, c isrepresents the Zis
region, d isrepresents the Z21Z2, region, e isrepresents the Z23Z24Z3 region, f isrepresents the ZzsZ4 region, and g isrepresents the
Dry Season,

Table 1: E-D rainfall threshold equation {derived from OLS regression}-.
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Region Landsl_ic_ie Equat_ions E-D equation
probability (Log-log coordinates system)

75% y=0.4383x+1.4679 E=29.3697xD0-4383

Zn 50% y=1.2420x+0.7552 E=5.6912xD12420
25% y=2.6894x-0.4164 E=0.3834xD268%

75% y=0.6981x+1.3464 E=22.2024>D0-691

Z12 50% y=0.9113x+0.8721 E=7.4490>D09113
25% y=1.8193x+0.0102 E=1.0238>D18193

75% y=1.0019x+1.1887 E=15.4419>D10019

Z13 50% y=1.4792x+0.6246 E=4.2131>D14792
25% y=1.8201x+0.0759 E=1.1910>D18201

5% y=0.9977x+1.2307 E=17.0098 D097

ZnZ» 50% y=1.6825x+0.4075 E=2.5556>D" 6825
25% y=1.7100x-0.0969 E=0.8000>D?*7100

5% y=0.5633x+1.3125 E=20.5353 D0 5633

22322473 50% y=1.7673x+0.2014 E=1.5900>D1 7673
25% y=2.8230x-0.7986 E=0.1590>D?2 8230
75% y=1.1974x+1.0675 E=11.6815>D!1974

Za5Z4 50% y=1.4525x+0.6027 E=4.0059xD14525
25% y=2.4652x-0.2305 E=0.5882>D?24652

75% y=0.7295x+0.9706 E=9.3454>D0.729

Dry Season 50% y=2.1754x-0.1679 E=0.6794>D321754
25% y=2.7079x-0.7646 E=0.1719>D27079

In the ealeulation-eF-MLP regression_analysis, the rainfall thresholds eorrespending-tefor a 50% landslide probability were
initially fitted separately for each duration of rainfall (D)—werefirst-fitted-separately—The). MLP regression was then
performed-on-the-applied to historical landslide data above and below thethese thresholds;+espectively; to ebtain-the75%
fandslide—probabiityand-25%landslide—probability-determine the rainfall thresholds eerresponding—tofor 75% and 25%
landslide probabilities for each D. Bue-te-the-lack-efLimited historical landslide hazard-data atfor a D of 1 in some regions
(e.g., region-Zy») and thesmal-ameuntof-historical-andslide-hazardinsufficient data atfor a D of 5 in semeother regions (e.g.,
region-Zy1)-these-ean) may lead to Hratienalresulis-ofinaccuracies in the fitted rainfall thresholds. +aTo address this regard;
this-study-usedissue, Gaussian regression (Kumar and Kavitha, 2021) and GM(1,1) grey prediction model (Chen and Huang,
2013) were employed to correct the rainfall thresheldresulis-ebtainedthresholds derived from MLP regression. The corrected

results are shown in Fig. 85 and Table 2.
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Figure 8—Plotof5: E-D rainfall threshold model results {plotted using MLP regression).. In the figure, regions are labelled as
follows: a isrepresents the Zi1 region, b isrepresents the Zi2 region, ¢ isrepresents the Zas region, d isrepresents the Z21Z2; region, e
srepresents the Zz3Z24Z3 region, f isrepresents the ZzsZ4 region, and g isrepresents the Dry Season. The red, blue, and purple
points in-Fig-—8-are-thedenote rainfall threshold pem%&ebtamed—ﬁcem—the—ﬁiévalues fltted for dm‘-eren{varlous landslide probabilities.
FhelineLine segments are justincluded solely for eennecti isual clarity and
have-ne-do not convey any practical information.

Table 2: E-D rainfall threshold {(derived from MLP regressiony-.

Region Duration of rainfall (D)  75% threshold (mm)  50% threshold (mm)  25% threshold (mm)
1 14.2305 10.1800 1.9625
2 36.4914 23.3267 8.7024
Zu 3 63.5907 37.0893 18.6210
4 76.6291 41.7210 22.9260
5 103.0000 53.8090 32.6260
1 57.9690 2.4749 0.1550
70 2 59.6126 20.0312 6.8458
3 62.3002 38.0666 17.3107
4 61.0451 34.2639 14.1966
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5 63.2107 36.7170 19.0748

1 10.8122 6.3897 1.9677

2 42.1870 26.1761 10.1656

Z13 3 66.7259 29.0723 11.5028
4 73.7542 48.4590 24.8502

5 87.3909 55.1944 31.0476

1 24.2575 7.4117 1.1585

2 42.5658 15.8642 2.5160

ZnZ2 3 67.0825 35.8785 9.5152
4 84.8807 47.0166 20.3769

5 102.6789 58.1546 18.9942

1 5.5210 1.0893 0.5702

2 33.3538 10.1252 3.7901

Z23Z2473 3 59.1386 25.2715 7.0353
4 57.8357 27.9044 10.4444
5 162.7467 87.5204 37.3694

1 15.9482 8.6114 1.2742

2 29.2418 21.1900 10.4545

Z25Z4 3 64.6284 29.0526 14.8209
4 73.3920 52.0651 20.0756
5 104.1990 70.4430 25.8100

1 5.0503 0.6647 0.5818

2 15.7035 5.1495 1.6332

Dry Season 3 22.2420 10.8428 3.2452
4 30.0733 18.1523 10.2084
5 47.1948 33.3588 26.4428

The threshold curves generatedderived from OLS regression in the log-log eeerdinatescoordinate system eoften
exhibittypically display an upward trend, as shewnillustrated in Fig. #—and4, with the slopes of the rainfall threshold curves
for 25%, 50%, and 75% landslide prebability—graduaty—decrease—Frem—Fig—8probabilities decreasing progressively. As
shown in Fig. 5, the rainfall thresholds obtained from MLP regression for differentvarious landslide probabilities alse-show-a
generally exhibit an increasing trend—but. However, the relatively-smatameunt-oflimited historical landslide data in some

subregions resulis—in—relatively—unreasonableleads to less accurate rainfall thresholds (e.g., the rainfall threshold for the
Z3Z 473 region shows a large increase when D is 5).

4.1.2 E-D-R Rainfall Threshold Model

BasedBuilding on the abeve-E-D rainfall threshold model, the third dimension indicator R was intreducedincorporated to
construetdevelop the E-D-R rainfall threshold model. In this model, the value of R is taken-egualset to the rainfall threshold
corresponding to when-a duration of D isequal to 1 in the E-D RFM-rainfall threshold model. These three indicators
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vistathycollectively form a closed "box" (Fig. 9)-with6), demonstrating "nested"” relationships between-theamong different

landslide probability levels.

D @) o R )

Figure 96: Schematic diagram of the E-D-R rainfall threshold model ebtained-fremillustrated using the OLS regression {results
300 from the Z13)tnFig—9the- region as an example. The green, yellow, and red boxes indicatein the figure represent landslide
probabilities corresponding to rainfall thresholds of <25%, 25-50%, and 50-75%, respectively.

4.1.3 Model Accuracy Verification

The accuracy of the model was tested-in-thisresearch-utitizingevaluated using 82 landslide hazardshazard events from 2019
and 2020 that were not invehvedincluded in the RFM-rainfall threshold model calculations-in—2019-and-2020.. Figure 10

305 depicts7 shows the aumberdistribution of landslide hazardshazard events in-each-regionacross different regions.

17



30

— (3% [0
W S wn

Quantity

(=]

Z, Z, Z,; Z,)Z,, Z,2,,Z, Z,,Z, Dry Season

Figure 10-Fhenumber7: Number of landslide hazard events in each region of the validation set.

In the-actualpractical landslide controlwork—it-is-impessible-to-ebtain-theprevention, real-rainfall-on-a-certain-day-in-the—-
time future;—se—it—can-enly-bereplaced-by-theforecast—_rainfall—n-orderto-make-the— data is unavailable and must be

310 substituted with forecasted rainfall. To enhance the realism of the validation data seurce-effor the rainfall threshold model
more—realistic, this study relies-en-the-abundantused numerous rainfall forecastingforecast stations nwithin the study area
{Fig—11)-and-counts-theforecastto gather forecasted rainfall amounts for the 82 landslide events on the day of the-occurrence
of-these-82-landslide-hazards-as-wel-as-the-previeus-5and for the five days ferprior. Notably, the validation-of-the-medel-

Fhe-rainfall forecast stations in-Fig—11t-are-distributedused here were established later and differ from the rainfall stations
315 wused in the landslide cataloguing (Fig. 2, Rainfall Station). These forecast stations, covering the entire study area at 0.05<

intervals, a
aprovide real-ti

the-forecast-datato-ensure-the-aceuracy-of the data-time updates on forecasted rainfall.
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The research-regionstudy area was classified into four warning categories based on the rainfall threshold elassification-results:
attentionAttention (<25%), special—attentionSpecial Attention (25-50%), warningWarning (50%--75%), and severe
warningSevere Warning (>75%). Figure 12-displays8 presents the ultimate-outcemesresults of the validation process for
each region's fourRFMrainfall threshold model categories. FurthermoreAdditionally, Table 3 displaysshows the proportion
of hazardous eircumstancessituations corresponding to the two-warning“Severe Warning” and “Warning” levels ef“severe
warning-and-"warning”-in the E-D-R RFMrainfall threshold model validation results.
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Figure 12:-The-distribution8: Distribution of warning levels in the validation set for each partitioned region. tn-the-figure,—a
isRegions are labelled as follows: a represents the Zi1 region, b isrepresents the Zi2 region, ¢ isrepresents the Zis region, d
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isrepresents the Z21Z2; region, e isrepresents the Z23Z2473 region, f isrepresents the Z2sZ4 region, and g isrepresents the Dry Season.

Table 3: Proportion of hazard events corresponding to the “Severe Warning” and “Warning” levels in the E-D-R RFMrainfall

threshold model for each partitioned region.

E-D-R (MLP)

E-D (OLS) E-D-R(OLS)

Legend

IDMI

0
E-D (MLP)

o
1

E-D-R(MLP)  E-D(OLS)

E-D-R (OLS)

Severe Warning
Warning

Special Attention
Attention

Region Regression approach Level Percentage (%)
Severe Warning 46.88
MLP .
Warning 12.50
Zu -
Severe Warning 40.63
OLS .
Warning 40.63
Severe Warning 7.69
MLP .
Warning 92.31
Z12 -
Severe Warning 53.85
OLS .
Warning 46.15
Severe Warning 80.00
MLP .
Z13 Warning 20.00
OLS Severe Warning 60.00
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Warning 40.00

Severe Warning 44.44
MLP .
Warning 33.33
ZnZ» -
Severe Warning 44.44
OoLS .
Warning 55.56
Severe Warning 33.33
MLP .
Warning 66.67
Z23Z2423 -
Severe Warning 0.00
OoLS .
Warning 100.00
Severe Warning 50.00
MLP .
Warning 20.00
22574 -
Severe Warning 70.00
OLS .
Warning 30.00
Severe Warning 40.00
MLP .
Warning 50.00
Dry Season -
Severe Warning 60.00
OLS .
Warning 30.00

The following conclusions raycan be drawn from an-analysis-efanalyzing the prediction accuracy of the four categories of
RFM:rainfall threshold models:

(1) The aceuraciesaccuracy of the E-D-R RFM-rainfall threshold model, as computed using both MLP regression and OLS
regression—are—much—better—than—, significantly surpasses that of the comparable E-D RFM—TheE-D-R-RTM-predict
outputsrainfall threshold model. With the inclusion of the R indicator in the third dimension, the E-D-R rainfall threshold
model's predictions no longer include the "Attention” warning level for all areas (except Zi1-exeepted)-when-the-R-indicator
was-included-in-the-third-dimension—Furthermore). Moreover, there has been a-risean increase in the percentage of hazard
incidents eategorized-asclassified under the "Warning" and "Severe Warning" categories across all regions. Compared withto

the E-D model, the proportion of hazardous conditions categorized as "Warning" and "Severe Warning" in the “\Warning”

and-"Severe-Warning"—warning-levels-of the E-D-R-RTM-increasesE-D-R rainfall threshold model increased from 41.46% to
76.82%, andwhile the result-ofproportion for OLS regression rereasesrose from 69.51% to 91.46%.

(2) FheAlthough the prediction accuracies of the E-D-R RTFM-fer—each-—region—arerainfall threshold model vary slightly
different-between the-MLP regression and the-OLS regressionbut-in-general for each region, the totaloverall proportion of
hazardous conditions atin the warning-levels-ef-"Warning" and "Severe Warning" islevels remains similar.
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(3) Table 4 presents the optimal rainfall threshold model for each region. The E-D-R models obtained from MLP regression

are identified as the optimal models for the Z;3 and Z;3Z,4Z5 regions, demonstrating the feasibility of utilizing neural

networks (MLP) for rainfall threshold model research.

Table 4: Optimal RFMrainfall threshold model for each partitioned region.

Region Optimal rainfall threshold modelling (regression approach)
Znin E-D-R (OLS)
Z12 E-D-R (OLS)
Z13 E-D-R (MLP)
ZnZ» E-D-R (OLS)
Z23Z2473 E-D-R (MLP)
Z25Z4 E-D-R (OLS)

Dry Season E-D-R (OLS)

4.2 Landslide Susceptibility Results

4.2.1 Landslide Inducing Factor Selection

Combined—withBased on the research resultsfindings of previous scholars (Chen et al.,, 2021; Chen et al., 2020;
Habumugisha et al., 2022; Li et al., 2022; Li et al., 2020; Rohan et al., 2023) and considering the actual-situationspecific
conditions of the study area, this study selected a total of 11 landshde-inducing-factors—ineluding that potentially induce
landslides. These factors include elevation, Normalized Difference Vegetation Index (NDVI), Topographic Wetness Index

(TWI), road density, stratigraphic lithology, tectonic density, river distance, slope, curvature, land cover, and slope structure;

were-selected-in-this-study- (Table 5).

Table 5: Sources of data for landslide-inducing factors.

Factor Category Data Source Inducing Factor
Elevation
Geological Map Slope

Topography and Geomorphology STRM DEM-{30s) Curvature

Slope Structure

Stratigraphic Lithology

Geological Lithology Geological Map . .
Tectonic Density
. National Basic Geographic Database TWI
Hydrological Factor
yerelos STRM DEM-(305) River Distance
Land Use Landsat Remote Sensing Image-301) NDVI
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Land Cover Type

Human Engineering Activities OpenStreetMap Road Density

Among them;-thethese factors, slope structure censidersrefers to the relationship between the slope aspect of the slepe-and
the—inclination of the rock formation (Niu et al., 2014),—and-different. Different types of slope structures can lead-te
differencesresult in variations in landslide size and intensity. Based on differentthe slope gradient (o), slope direction (y), and
inclination (o) and tendency (B) of the rock formation, the-foHowing-eight-types-of-slope structures are classified_into the
following eight types (Table 6).

Table 6: Classification of slope structure types and percentage-of-each-type-intheir respective percentages within the study area.

CodeClass Relationship between o, B, vy and ¢ Area (%)

ANearly horizontal slope a<5° 1.720
BOver-dip slope a>5°, [y-B|€[0°, 30°) or [y-B|E[330°, 360°), >0, 5.127
CFlat-dip slope a>5°, [y-B|€[0°, 30°) or [y-B|E[330°, 360°), c=0. 0.000
BUnder-dip slope a>5°, [y-B|€[0°, 30°) or [y-B|E[330°, 360°), <o 13.581
EDip-obligue slope a>5°, [y-BIE[30°, 60°) or |y-B|E[300< 3309 17.559
FTransverse slope a>5°, |y-B|€6O< 120°) or |y-B|€[240< 300 32.066
GAnticlinal-oblique slope a>5°, |y-B|E[120°, 150°) or |y-B|€[210< 2409 15.089
HAnticlinal slope a>5°, |y-B|E[150< 2109 14.857

Stratigraphic lithology data was obtained by vectorizing and classifying geological maps {seateat a 1:200,000)- scale. Each
lithology has-a-differentis associated with distinct pedogenic envirenmentand-willvaryenvironments, leading to variations in
composition and stability, which affeets-the-in turn influence landslide occurrence ef-landslides-(Cobos-Mora et al., 2023). In
this paper—the-study, the area iswas classified into four lithological categories: carbonate, clastic, carbonate and clastic, as
well as tgnreousigneous and metamorphic rocks. n-additionwhen-the-research-area-is-Furthermore, in large and-mest-of-the
tectonies—are-study areas where tectonic features are highly intertwined-with-each-other, the distance frem-tectoniesisno
fenger-suitableto tectonic structures becomes less relevant as a eorrelationcorrelating factor—and; instead, tectonic density
should be used-insteadconsidered (Wang et al., 2014). Also,-since-the-road-data-also-show-interlocking-status;-this-paper-use

To ensure the reasonableness—of-the-rational selection of landslide—-inducing factors, this-study—used-Pearson correlation
analysis was employed to exploreexamine the degree of correlation among the selected inducing-factors (Zhang et al., 2022)
(Fig. 439). The value-of-correlation_coefficient ranges from -1 to 1—Fhe, where values closer the-value-is-to 1 or -1-the
indicate a stronger the-correlation between the twe-variables, and thevalues closer the-value-is-to 0-the indicate a weaker the
correlation between-the-two-variables-(Cao et al., 2023).
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FheAs shown in Fig. 9, the correlation coefficients between themost inducing factors are low, as-shewn-in-Fig—13-with the
exception of thea somewhat higher correlation value-between elevation and river distance (0.53). Giventhat-elevation
Elevation and river distance are twe-impertantboth critical factors fercausing-tandshides{in landslide occurrence—elevation
is inherentin-thefundamental to landslide susceptibility assessment of-LS-(Wang et al., 2022b), which-affectsaffecting the
distribution of submerged layers as-well-asand the intensity of human activities; and-the-erosive-effect-of thewhile river en
the-shorelineerosion can damagedestabilize slopes by undercutting the feet-of the-slopebase and seften-thesoftening rock and
soil massmasses (Selamat et al., 2022)),-they-are-al-). Therefore, both factors were retained in this study. TheseUltimately

11 inducing factors were i i ' selected for landslide susceptibility assessment

researchin the study area.
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Figure 9: Pearson correlation analysis results for landslide-inducing factors.
4.2.2 Grading of Landslide Susceptibility Factors

Combined-withConsidering the actual-situationspecific conditions of the study area and the-results-ofinsights from previous

studiesresearch, the-elass classification of each landslide predisposing factor-and, along with the_corresponding result map-of
this—study—are—shewn, is presented in Table 7 and Fig. 1410. The landslide susceptibility evaluation was earried—out
#conducted using raster cells with a-sizedimensions of 30m < 30m. H's-alse-worth-petinglt is important to emphasize that
the historical landslide data utitizedused for LSsusceptibility prediction inchudesencompasses all 6,888 recorded

landslideslandslide events, not just the 453 events filtered for inclusion in the RFMrainfall threshold model calculations.
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Table 7: Classification of landslide--inducing factors_used in this study.

Predisposing Factor Classification Criteria Code

<300
(300,600]
. (600,900]
Elevation (m) (900,1200] :
(1200,1500]

>1500

['170]
0,0.2]
(0.2,0.4]
NDVI b
(0.4,0.6]
(0.6,0.8]

(0.8,1]

<6
(6,8]
TWI (8,10] c
(10,14]
>14

[0,0.5]
(0.5,1.2]
Road Density (km/km?) (1.2,2.5] d
(2.5,5.0]
>5.0

Carbonates
. L Clastic rocks
Stratigraphic Lithology . e
Carbonates and clastic rocks

Igneous and metamorphic rocks

[0,0.03]
(0.03,0.12]
Tectonic Density (km/km?) (0.12,0.24] f
(0.24,0.38]
>0.38

<500
. . (500,1000]
River Distance (m) (1000.1500] g

>1500

[0,10]
Slope (9 (10,20] h
(20,30]
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(30,40]
(40,50]
>50

<3
(-3-1]
Curvature (m™) (-1,0]
(0,1]

>1

Urban land
Agricultural land
Forest land
Land Cover
Grassland
Water

Other Land

ANearly horizontal slope
BOver-dip slope
BUnder-dip slope
Slope Structure EDip-obligue slope
FTransverse slope
GAnticlinal-oblique slope

HAnticlinal slope
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Figure 34:-Landshde-10-1: Grading results for landslide-inducing factors-gradingresulis-map. (a) Elevation; (b) NDVI; (c) TWI;
(d) Road density; (e) Stratigraphic lithology; (f) Tectonic density.
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Figure 10-2: Grading results for landslide-inducing factors (continued). (g) River distance; (h) Slope; (i) Curvature; (j) Land cover;
(k) Slope structure.

4.2.3 Landslide Susceptibility Evaluation Results

In this study, three models, CNN-3D, RF and SVM, were usedemployed to evaluate the LSlandslide susceptibility of the
study areaand-the. The optimal LS—resul-was-chesenlandslide susceptibility results obtained from these models were then
selected for subsequent daily EHW-landslide hazard warnings. The relevant indicators-ebtainedperformance metrics from the

training of the three models are shownpresented in Table 8.

Table 8 indicates that the AUC values for the CNN-3D, RF, and SVM models are 0.96, 0.82, and 0.83, respectively. These

AUC values demonstrate that all three models effectively predict the probability of landslide occurrence in the study area,

with the CNN-3D model exhibiting superior predictive accuracy compared to the RF and SVM models. Furthermore, the

CNN-3D model outperforms the RF and SVM models across the other four metrics. Consequently, the landslide
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420 susceptibility results from the CNN-3D model were classified into five categories using the natural breaks method (Fig. 11)

and were subsequently utilized for daily landslide hazard warnings.

Table 8: Results effrom the training of the susceptibility evaluation medetmodels.

Model Evaluation Indicators

Model —
AUC Accuracy Precision Recall F1_score
CNN-3D 0.96 0.9003 0.8663 0.9295 0.8968
RF 0.82 0.7500 0.7656 0.7416 0.7534
SVM 0.83 0.7630 0.7625 0.7623 0.7624

425
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Figure 15-CNN-3DB-medeHandshidell: Landslide susceptibility results from the CNN-3D model.

430 As—a—whole—the—Overall, areas of high landslide disaster—high—susceptibility areas—in the study arearegion are mainly
eencentratedpredominantly located along the-riverbanks and in the central and eastern regions—-terms-ef-sections. Within

the district and county seepes;—the-landslide-disasterboundaries, high susceptibility areas are mainrhyprimarily concentrated
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atin Zigui, the northern part of Badong, the southern part of Xingshan, the central part of Fengjie, the central part of

Wanzhou, and the southeastern part of Zhongxian.

4.3 Landslide Hazard Warning

4.3.1 Landslide Hazard Results for Each Rainfall Warning Level

In this study, a superposition matrix (Table 9) was created to couple-the-daibyRWIL with-the LSresult-to-generate-the-daily

priority-prevention-zeneintegrate the daily rainfall warning level with the landslide susceptibility results, thereby generating

daily landslide hazard warnings.

Table 9: LandshdeSuperposition matrix of landslide susceptibility and rainfall warning level-superposition-matrixlevels. In the
table, the numerical codes represent the following zones: 1 — Relatively stable zone, 2 — General prevention zone, 3 — Secondary
prevention zone, and 4 — Priority prevention zone.

Susceptibility . .
Rainfall Threshold L&V Very Low Low Moderate High Very High

Caution 1 1 1 1 2
Special Caution 1 1 1 2 3
Warning 1 1 2 3 4
Severe Warning 1 2 3 4 4

Based on the LSlandslide susceptibility results shewndepicted in Fig. 15.-cembined-with-11 and utilizing the superposition
matrix_from Table 9, the LHW-resultslandslide hazard warning outcomes corresponding to each rainfall level were
obtaineddetermined (Fig. 4612).
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Figure 1612: Landslide hazard maps for each rainfall warning level. (a—attention) Attention level hazard; (b—special) Special
450 attention level hazard; (c—warning) Warning level hazard; (d-severe) Severe warning level hazard)-.

4.3.2 Daily Landslide Hazard Warning

In 2020, the Yangtze River experienced its worst basin-wide flood since 1998. erOn July 19, the "Yangtze River Flood No.
2 of 2020" was pregressingadvancing through the TGRA-te-study area toward the middle and lower reaches of the Yangtze
River—and-the-river, leading to persistent rainfall induced-manyand numerous landslides. Fherefore—in-this-studyThus, 19
455  July, 2020 was usedselected as an-examplea case study for EHW-landslide hazard warning and validation-—Based-on-the
anticipated-rainfal-data—at (Fig. 13). Using the superposition matrix in Table 9, Fig. 13.d was overlaid on Fig. 12 to derive

the time-E-and-Blandslide hazard warning results for the-rainfalforecast stationsfrom-1419 July, 2020 te-18-July-2020-and
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Figure 1713: Various rainfall parameters and rainfall warning levels for 19-Juhy2020July 19, 2020. (a) Effective rainfall
465 interpolated by Kriging; (b) Daily rainfall interpolated by Kriging; (c) Duration of rainfall estimated using Thiessen polygons; (d)
Rainfall warning levels calculated using the optimal rainfall threshold model.
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Figure Figure-1814: Landslide hazard warning results for 19 July, 2020.
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On July 19, 2020, there-were-seven landslide hazards were identified, as shewndepicted in Fig. 18—Five-ofthemfellinld. Of
these, five were classified within the priority prevention zone, and two i#awithin the secondary prevention zone,
demenstratingwhich confirms the accuracy of both the EHWIlandslide hazard warning results and the rainfall threshold
model.

5. Discussion

5.1 Discussion of Rainfall Threshold Model

To investigateidentify the bestmost effective rainfall thresholds in the TGRA;study area, this study employs two regression
methods, OLS and MLP, andalongside two RTMrainfall threshold models, E-D and E-D-R;—are—used—in—this—study..
Regardless of the regression appreachmethod used, the results reveal that the E-D-R model has—greaterexhibits superior

warning accuracy thancompared to the E-D model. ta-additionAdditionally, the optimal RTFMrainfall threshold models for
two—areas;the Ziz and ZxZwuZs areas are the E-D-R models obtainedderived from the MLP regression,

indicatingdemonstrating the feasibiityviability of using-neural networks (MLP) fer-the-study-of RTFM-—in rainfall threshold
modeling. However, sineegiven that the dataset ofin this study is rettarge-(relatively small (comprising only 453 landslides)

nor-complex—{and simple (involving only 3 variables), it may not be-able-to-clearhy-demeonstratefully capture the advantages
of neural networks for rainfall threshold modeling. ButNevertheless, we believe-thatconsider this is-a valuable attempt-and

maoreeffort. Future studies could incorporate additional variables, such as peak rainfall and rainfall intensity-can-be-added-in

subsequent-studies—and-the-application—of-, and applying neural networks will-certainkhy—improveis likely to enhance the

accuracy of RWMrainfall warning models.

To explore the reasons for the E-D-R model's highersuperior warning accuracy, this study usesexamines area Zi» as an
example;a case study and shews—seme—oftheillustrates points where the RWL—rainfall warning level has been
changedmodified (i.e. landslides where-the R\Wi-has-beenwith increased_warning levels) in the R-E plane view (Fig. 19}

34



35 @ Landslide (E-D Threshold Model)
P, e P.¢ 4 Landslide (E-D-R Threshold Model)
1 3 ‘l—OLS Threshold Class Boundary
30 = = MLP Threshold Class Boundary P
4
25
PZ
~20 |
£
E
&5 -
10
5
Ol Wy e T e =
1 . 1 1 . 1 1 1
16 18 20 22 24 26
E (mm)
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Figure 1916: Rainfall warning-levelprocesses at the transition precess{Zi-region).points of rainfall warning levels.

The chart showsillustrates that after-the inclusion of the R indication was—added—the RWL—of the fourlandslides—+ose
dramatically—Thesignificantly elevated the rainfall warning level ef-P.-in-for the four landslides. In the E-D model, P; was

onlyclassified as “Caution”, andwhile the warninglevels-of-the-remainingother three landslides were enlycategorized as
500 “Special Caution”—whereas. However, in the E-D-R model usingwith OLS regression, the warning level of P, was

raisedupgraded to “Warning”, and the warning levels of the remaining three landslides were raisedelevated to “Severe
Warning”. Similarly, the-alertlevels-of-all four landslippeintslandslides were raisedclassified to “Warning” in the E-D-R
model using the MLP regression-methed-—Fhese. The transitions in rainfall warning levels for these landslides with-RWL
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transition-weredirectly contributed to the-direct-reason-of-the-E-B-R-medel's improved accuracy of the E-D-R model in the

Z3, region.

Further-explorationAn in-depth analysis of the rainfall process—ofprocesses for these four landslides before-thelandslide
oceurredprior to their occurrence (Fig. 2016) reveals that these-four-landslidesreceived-lessthey experienced relatively low
rainfall in the four days beforeleading up to the landslide, resulting in a lower E_value, but meresubstantial rainfall on the
day of the landslide. Fhe-abeveThese characteristics make-thesefourlandslides-have-resulted in higher warning accuracy
infor these four landslides within the E-D-R RTM-indicatingrainfall threshold model, suggesting that the R indicator R-has
semenotable sensitivity ir-terms-ofto landslides eausedtriggered by heavy rain-rainfall.

5.2 Discussion of Daily Landslide Hazard Warning

In this study, RF, SVM, and CNN-3D models were used to predict LSlandslide susceptibility in the FGRA—and—a
comparison—of-the-three—models results-showedThree Gorges Reservoir Area. A comparative analysis revealed that the
CNN-3D model predicts-LS-with-mereoffers superior predictive accuracy infor landslide susceptibility within the study area.
In-additionfurther-analysis-Further examination of the CNN-3D model's LS-results show that the veryregions with high LS
zone—is—primarty—distributedlandslide susceptibility are predominantly located in areas with sparse vegetation, fragile

stratigraphic lithology, close to rivers, and active human engineering activities, which is similar with the results efreported

by Wang et al (Wang-etal-2022a).

Inr-terms-ofRegarding daily EHMW,—RW.L—are-landslide hazard warnings, rainfall warning levels were calculated using the
optimal RFMrainfall threshold model for each sub-district based on forecast rainfall data from rainfall stations. Subseguenthy;

the-The daily EHWlandslide hazard warning results were derived-then generated by wtitizingemploying a superposition
matrix to eembineintegrate the rainfall warning levels with the R\M/and-LSlandslide susceptibility results. On July 19, 2020,

all seven identified landslide hazards arewere confirmed to be inwithin the priority preventien-and secondary prevention
zones. H-can-be-observedThis indicates that the EH\WIandslide hazard warning results ebtained-through-the RTM-have-very
high—aceuracy—and—are—of greatsignificance—in—thederived from the rainfall threshold model are highly accurate and
significantly contribute to effective landslide disaster prevention and control-ef-landslide-disasters—-addition. Moreover,
the process of transferming-the-LStranslating landslide susceptibility results into EHA/resultshazard warnings through the

RWhirainfall warning levels and superposition matrix is—essentiatyserves as a refinement mechanism. This correction

pmees&ef—the%wsm{s—ﬁrﬁemh&eeﬁeeneﬂreduces the areas that-need-to-berequiring focused en-prevention and attention
ial-, thereby optimizing the allocation of

resources infor landslide preventionmanagement.

It is also important to note that the spatial probability of landslide occurrence may vary between dry and rainy seasons, and

the influence of different landslide-inducing factors may change under varying climatic conditions. This study primarily
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focused on the differences in rainfall thresholds across various climatic and eentreltopographic conditions, while the

variations in spatial probability of landslide occurrence were not extensively explored. Additionally, changes in reservoir

water levels and groundwater fluctuations in the Three Gorges Reservoir Area are significant factors influencing landslide

occurrence; however, these factors were not included in this study due to data limitations.

5.3 Practical Application of the Rainfall Threshold Model and Daily Landslide Hazard Warning

In the actualpractical prevention and control of landslide hazards, it-is-cost considerations are inevitable to-censider—the
factor-ofcost-(Wang et al., 2023a). To safeguard-as-many-people’'smaximize the protection of lives and property as-pessible
within the-limited-cost-rangea constrained budget, it is necessaryessential to rarrowprioritize and refine the regionsareas that
must-be—prioritizedrequire focused attention, while guaranteeingmaintaining the accuracy of the—EHW-landslide hazard
warning results.

The E-D-R RTM-while-considering-the-advantagesrainfall threshold model, by incorporating the benefits of the E-D RTM;
increases-themodel, enhances sensitivity to landslides induced by heavy rainfall on the same day; and hasachieves higher
landslide-warning accuracy. MeanwhileConcurrently, the CNN-3D model-fully-considers-the-, which effectively integrates
spatial information around each raster point, and-its—predicted-LSresults-have-higherprediction-acecuracy-than-these—of
provides more accurate landslide susceptibility predictions compared to the RF and SVM models. Fherefore; Thus, both the
E-D-R RFMrainfall threshold model and the CNN-3D model have-a-bread-hold significant potential for application space
and development prespeet-in thelandslide warning and prevention-eftandshde-disasters.. The EHWcombination of these
models' results ebtained-bythrough superposition of-the-resulis-of the-two-medels-can ensure high accuracy and-at-the-same

landslide hazard warnings while also narrowing the focus areas using the rainfall warning levels derived from the rainfall

threshold model. This approach helps meet the reguirementsdemands of effective landslide disaster prevention and control
work.

r-addition—although-the-Nevertheless, despite the high accuracy of the E-D-R RFM-as-wel-as-rainfall threshold model and
the CNN-3D model-have-high-acecuracy;—there-are-, certain uncertainties_persist. For the RFMrainfall threshold model: (1)
Fhe—rainfall-station-can-only-accuratelyreflect-therainfall-situation-of-the-siteRainfall stations provide localized data, and
there willmay be inaccuracies and-uncertainties-whether-therainfallwhen extending this data are-extended-to the wheleentire
study area byusing interpolation or Thiessen polygon methedmethods. (2) Historical landslide data play—a
deeisivesignificantly influence en-the results of the rainfall threshold model—Eitherless-histerical-tandshide; insufficient data
or the-existence—of-more—extreme rainfall conditions willcan lead to uneertaintyuncertainties in the final RWirainfall
warning levels. (3) Although this study dividedanalyzed 10 regions as-weH-asacross both dry and rainy seasons—fer—the
rainfall-threshold-study-the-overall-, the broad regional scope is-stil-arge—Fhere-witl-be-semeintroduces uncertainty in the
rainfall thresholds for-different-topographydue to varying topographic and geemerphelogy-in-theregiongeomorphological
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conditions. For the CNN-3D model, uncertainties may arise from the selection of landslide-inducing factors, the size of the

evaluation unit, and the division ratio of the training setand test set-and-se-en-will-preduce-uncertainty.

Therefore, in practical-application-of landslide prevention and control applications, it is necessarycrucial to eembinetailor the
actual-situation-of-the-local-area-and-select-appropriate predisposing factors as-well-asand evaluation units to the specific

local context to ensure the accuracy of the LSlandslide susceptibility results (Zhang et al., 2023). Simultaneously,

aconstructing a comprehensive historical landslide database eanis recommended. This database should be eonstructed\When
aupdated with new landslide eceurs—theevents and corresponding rainfall data wit-be-summarized-inteto recalibrate the
database-and-thearea's rainfall threshold efand refine the rainfall warning levels. As the historical landslide data accumulate,

the area-will-be-recalculated-for-thesubsequent-RWL—The-uncertainty efin the RTMrainfall threshold model is expected to

reduce-as-the-quantity-of-historical-landslide-data-grows—and-thedecrease, leading to more precise rainfall thresholds-will

With a sufficiently rich,-the-region-may-be-sphit historical dataset, further to-censtanthy-regional subdivision may enhance
rainfall warning accuracy. Ultimately, this approach will improve the aceuracy-of the-rainfall-warning-level-Ultimatelythe
aceuracy-of EHW will be-inereased-to-giveprecision of landslide hazard warnings and provide valuable technical assistanee
for-subsequent-assessment-ef-support for vulnerability aswell-asassessment and disaster preventive and mitigation efforts.

6. Conclusion

Landslide disaster warning is an—essentiala critical tool infor the prevention and management of landslides. To
improveenhance the accuracy of landslide warning, this paperfirst-chosestudy employed two regression methods,—MLP
and OLS—and two RTM-rainfall threshold models—E-D and E-D-R-and-. The study area was divided the FTGRA-into two
seasons, dry and rainy-seasens, as well as several sub-districts based on topography and rainfall_patterns, to explereidentify
the optimal RTFMrainfall threshold model for the study-arearegion and ebtaindetermine the daily RWA-Subseguenthyrainfall
warning levels. Additionally, 11 inducing factors were selected to investigate-the-LS-in-assess landslide susceptibility in the
study area utihzingusing three models: RF, SVM, and CNN-3D. Finaly—The final step involved integrating the rainfall
warning levels with the landslide susceptibility results using a superposition matrix;-the-RW.iwas-overlaid-on-the-LS-results
to achieveproduce daily EHW-in-the FTGRAlandslide hazard warnings for the Three Gorges Reservoir Area.

Interms-of rainfal-threshold-models;the-study'sThe results suggestindicate that the E-D-R RFM-hasrainfall threshold model
exhibits superior sensitivity in-terms—eofto landslides inducedtriggered by heavy rainfall, therefore-the-resulting in higher
rainfall warning accuracy produced-bycompared to the E-D model when either regression method is higherthan-that-of-the
E-D-modeltn-additionfor-each-applied. Specifically, for sub-district-the-eptimalRTM-forthe fourzones Z11, Z12, ZnZ2,
Zy5Z4, and Dry Season, the optimal rainfall threshold model is the E-D-R RFM-caleulated-by-model derived from OLS

regression;-whereas-the-optimal-RTM-for-the-two-zenes. Conversely, for sub-districts Z13 and Z»3Z2473, the optimal model is
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the E-D-R RTMthreshold obtained bythrough MLP regression. ta-terms-ef-LSRegarding landslide susceptibility, the CNN-

3D models-AUC-and-Aceuracymodel achieved an AUC of 0.96 and an accuracy of 0.9003, respectively—and-its-prediction
aceuracy-outperformed the RF and SVM models_in prediction accuracy.

The-daty-EHW-is-Daily landslide hazard warnings were calculated by combining the daily R\W.\—and-rainfall warning levels
with the landslide susceptibility results. Bata-from-the-19-The accuracy of these warnings was validated using data from the
landslide event on July 19, 2020-hazard-event-were-utitized-to-verify-the LHW resultsin-this-research. Of the seven landslide
hazardslandslides on that date, five feHoccurred in the priority prevention zone and two in the secondary prevention zone,
proving—the—aceuracyconfirming the reliability of the landslide hazard warning results and the effectiveness of the
EHWrainfall threshold model.

The integration of rainfall warning levels with landslide susceptibility results provides actionable guidance and-reference-for
local landslide disaster prevention and control eperations—tn-additienefforts. Moreover, the introduction of MLP teinto the
regression analysis of rainfall thresholdthresholds in this study alse—further—enrichescontributes to the ealeulation

metheddevelopment of RFM—which-is—ef-seme-significancerainfall threshold models and offers a valuable approach for
prometienbroader application.

Code and data availability

The data and code can be accessed at https://doi.org/10.5281/zenodo0.11311851 (Peng, 2024).

Author contributions

Bo Peng: Writing - original draft, Writing - review & editing, Data curation, Formal analysis, Validation.

Xueling Wu: Writing - review & editing, Funding acquisition, Conceptualization, Methodology.

Competing interests

The authors declare that they have no conflict of interest.

Disclaimer

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes

every effort to include appropriate place names, the final responsibility lies with the authors.

39



625

630

635

640

645

650

655

660

665

Acknowledgements

This study was supported by the National Natural Science Foundation of China (42071429).

Reference

Abraham, M.T., Pothuraju, D., Satyam, N., 2019. Rainfall Thresholds for Prediction of Landslides in Idukki, India: An
Empirical Approach. Water 11, 16.

Abraham, M.T., Satyam, N., Kushal, S., Rosi, A., Pradhan, B., Segoni, S., 2020a. Rainfall Threshold Estimation and
Landslide Forecasting for Kalimpong, India Using SIGMA Model. Water 12, 13.

Abraham, M.T., Satyam, N., Pradhan, B., Alamri, A.M., 2020b. Forecasting of Landslides Using Rainfall Severity and
Soil Wetness: A Probabilistic Approach for Darjeeling Himalayas. Water 12, 19.

Aksha, S.K., Resler, L.M., Juran, L., Carstensen, L.W., 2020. A geospatial analysis of multi-hazard risk in Dharan,
Nepal. Geomat. Nat. Hazards Risk 11, 88-111.

Baharvand, S., Rahnamarad, J., Soori, S., Saadatkhah, N., 2020. Landslide susceptibility zoning in a catchment of
Zagros Mountains using fuzzy logic and GIS. Environ. Earth Sci. 79, 10.

Barcenas, O.U.E., Pioquinto, J.G.Q., Kurkina, E., Lukyanov, O., 2023. Surrogate Aerodynamic Wing Modeling Based
on a Multilayer Perceptron. Aerospace 10, 19.

Budimir, M.E.A., Atkinson, P.M., Lewis, H.G., 2015. A systematic review of landslide probability mapping using
logistic regression. Landslides 12, 419-436.

Cao, J.S., Qin, S.W., Yao, J.Y., Zhang, C.B., Liu, G.D., Zhao, Y.Y., Zhang, R.C., 2023. Debris flow susceptibility
assessment based on information value and machine learning coupling method: from the perspective of sustainable
development. Environ. Sci. Pollut. Res., 17.

Chan, H.C., Chen, P.A., Lee, J.T., 2018. Rainfall-Induced Landslide Susceptibility Using a Rainfall-Runoff Model and
Logistic Regression. Water 10, 18.

Chang, Z.L., Huang, F.M., Huang, J.S., Jiang, S.H., Liu, Y.T., Meena, S.R., Catani, F., 2023. An updating of landslide
susceptibility prediction from the perspective of space and time. Geosci. Front. 14, 13.

Chen, C.I., Huang, S.J., 2013. The necessary and sufficient condition for GM(1,1) grey prediction model. Appl. Math.
Comput. 219, 6152-6162.

Chen, L.F., Guo, H.X., Gong, P.S., Yang, Y.Y., Zuo, Z.L., Gu, M.Y., 2021. Landslide susceptibility assessment using
weights-of-evidence model and cluster analysis along the highways in the Hubei section of the Three Gorges Reservoir Area.
Comput. Geosci. 156, 13.

Chen, T., Zhu, L., Niu, R.Q., Trinder, C.J., Peng, L., Lei, T., 2020. Mapping landslide susceptibility at the Three Gorges
Reservoir, China, using gradient boosting decision tree, random forest and information value models. J Mt. Sci. 17, 670-685.

Chen, W., Peng, J.B., Hong, H.Y., Shahabi, H., Pradhan, B., Liu, J.Z., Zhu, A.X., Pei, X.J., Duan, Z., 2018. Landslide
susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci.
Total Environ. 626, 1121-1135.

Chen, W.T., Li, X.J., Wang, Y.X., Chen, G., Liu, S.W., 2014. Forested landslide detection using LiDAR data and the
random forest algorithm: A case study of the Three Gorges, China. Remote Sens. Environ. 152, 291-301.

Cheng, J.Y., Dai, X.A., Wang, Z.K., Li, J.Z., Qu, G., Li, W.L., She, J.X., Wang, Y.L., 2022. Landslide Susceptibility
Assessment Model Construction Using Typical Machine Learning for the Three Gorges Reservoir Area in China. Remote
Sens. 14, 28.

Chung, M.C., Tan, C.H., Chen, C.H., 2017. Local rainfall thresholds for forecasting landslide occurrence: Taipingshan
landslide triggered by Typhoon Saola. Landslides 14, 19-33.

Ciurleo, M., Mandaglio, M.C., Moraci, N., 2019. Landslide susceptibility assessment by TRIGRS in a frequently
affected shallow instability area. Landslides 16, 175-188.

Cobos-Mora, S.L., Rodriguez-Galiano, V., Lima, A., 2023. Analysis of landslide explicative factors and susceptibility
mapping in an andean context: The case of Azuay province (Ecuador). Heliyon 9, 17.

Dahal, R.K., Hasegawa, S., 2008. Representative rainfall thresholds for landslides in the Nepal Himalaya.

40



670

675

680

685

690

695

700

705

710

715

Geomorphology 100, 429-443.

Fan, X.L., Feng, X.F., Dong, Y.Y., Hou, H.C., 2022. COVID-19 CT image recognition algorithm based on transformer
and CNN. Displays 72, 9.

Gariano, S.L., Supplizi, G.V., Ardizzone, F., Salvati, P., Bianchi, C., Morbidelli, R., Saltalippi, C., 2021. Long-term
analysis of rainfall-induced landslides in Umbria, central Italy. Nat. Hazards 106, 2207-2225.

Gill, H.S., Khalaf, O.1., Alotaibi, Y., Alghamdi, S., Alassery, F., 2022. Multi-Model CNN-RNN-LSTM Based Fruit
Recognition and Classification. Intell. Autom. Soft Comput. 33, 637-650.

Guo, B., Pei, X.J., Xu, M., Li, T.T., 2022. Analyzing Rainfall Threshold for Shallow Landslides Using Physically Based
Modeling in Rasuwa District, Nepal. Water 14, 12.

Guo, Z.Z., Shi, Y., Huang, F.M., Fan, X.M., Huang, J.S., 2021. Landslide susceptibility zonation method based on C5.0
decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geosci. Front. 12, 19.

Habumugisha, J.M., Chen, N.S., Rahman, M., Islam, M.M., Ahmad, H., Elbeltagi, A., Sharma, G., Liza, S.N., Dewan,
A., 2022. Landslide Susceptibility Mapping with Deep Learning Algorithms. Sustainability 14, 22.

Hasan, M.M., Nilay, M.S.M., Jibon, N.H., Rahman, R.M., 2023. LULC changes to riverine flooding: A case study on
the Jamuna River, Bangladesh using the multilayer perceptron model. Results Eng. 18, 19.

He, Q.F., Shahabi, H., Shirzadi, A., Li, S.J., Chen, W., Wang, N.Q., Chai, H.C., Bian, H.Y., Ma, J.Q., Chen, Y.T., Wang,
X.J., Chapi, K., Bin Ahmad, B., 2019. Landslide spatial modelling using novel bivariate statistical based Naive Bayes, RBF
Classifier, and RBF Network machine learning algorithms. Sci. Total Environ. 663, 1-15.

He, S.S., Wang, J., Liu, S.N., 2020. Rainfall Event-Duration Thresholds for Landslide Occurrences in China. Water 12,
17.

Hoffman, S., Jasinski, R., 2023. The Use of Multilayer Perceptrons to Model PM2.5 Concentrations at Air Monitoring
Stations in Poland. Atmosphere 14, 19.

Huang, F.M., Cao, Z.S., Jiang, S.H., Zhou, C.B., Huang, J.S., Guo, Z.Z., 2020. Landslide susceptibility prediction based
on a semi-supervised multiple-layer perceptron model. Landslides 17, 2919-2930.

Huang, F.M., Chen, J.W., Liu, W.P., Huang, J.S., Hong, H.Y., Chen, W., 2022a. Regional rainfall-induced landslide
hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 408, 16.

Huang, F.M., Teng, Z.K., Yao, C., Jiang, S.H., Catani, F., Chen, W., Huang, J.S., 2024. Uncertainties of landslide
susceptibility prediction: Influences of random errors in landslide conditioning factors and errors reduction by low pass filter
method. J. Rock Mech. Geotech. Eng. 16, 213-230.

Huang, F.M., Yan, J., Fan, X.M., Yao, C., Huang, J.S., Chen, W., Hong, H.Y., 2022b. Uncertainty pattern in landslide
susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions. Geosci. Front.
13, 16.

Jiang, P., Zeng, Z.G., Chen, J.J., Tang, H.M., Ieee, 2014. A PSOGSA method to optimize the T-S fuzzy neural network
for displacement prediction of landslide, IEEE International Conference on Systems, Man, and Cybernetics (SMC). Ieee, San
Diego, CA, pp. 1216-1221.

Jin, L., Li, Z.C., Tang, J.H., 2023. Deep Semantic Multimodal Hashing Network for Scalable Image-Text and Video-
Text Retrievals. IEEE Trans. Neural Netw. Learn. Syst. 34, 1838-1851.

Kaliyar, R.K., Goswami, A., Narang, P., 2021. FakeBERT: Fake news detection in social media with a BERT-based
deep learning approach. Multimed. Tools Appl. 80, 11765-11788.

Kumar, P.C.M., Kavitha, R., 2021. Prediction of nanofluid viscosity using multilayer perceptron and Gaussian process
regression. J. Therm. Anal. Calorim. 144, 1151-1160.

Lee, M.L., Ng, K.Y., Huang, Y.F., Li, W.C., 2014. Rainfall-induced landslides in Hulu Kelang area, Malaysia. Nat.
Hazards 70, 353-375.

Li, W.J., Fang, Z.C., Wang, Y., 2022. Stacking ensemble of deep learning methods for landslide susceptibility mapping
in the Three Gorges Reservoir area, China. Stoch. Environ. Res. Risk Assess. 36, 2207-2228.

Li, YW., Wang, X.M., Mao, H., 2020. Influence of human activity on landslide susceptibility development in the Three
Gorges area. Nat. Hazards 104, 2115-2151.

Lim, D.H., Na, W.J., Hong, W.H., Bae, Y.H., 2023. Development of a fire prediction model at the urban planning stage:
Ordinary least squares regression analysis of the area of urban land use and fire damage data in South Korea. Fire Saf. J. 136,
8.

41



720

725

730

735

740

745

750

755

760

765

Liu, M.M,, Liu, J.P,, Xu, S.H., Chen, C., Bao, S., Wang, Z.L.., Du, J., 2023. 3DCNN landslide susceptibility considering
spatial-factor features. Front. Environ. Sci. 11, 12.

Liu, X., Yin, K., Xiao, C., Chen, L., Zeng, T., Li, Y., Liu, Z., Gong, Q., Chen, W., 2022. Meteorological early warning
of landslide based on I-D-R threshold model. Earth Science, 1-15. (in Chinese).

Long, J.J.,, Liu, Y., Li, C.D., Fu, Z.Y., Zhang, H.K., 2021. A novel model for regional susceptibility mapping of rainfall-
reservoir induced landslides in Jurassic slide-prone strata of western Hubei Province, Three Gorges Reservoir area. Stoch.
Environ. Res. Risk Assess. 35, 1403-1426.

Marin, R.J., 2020. Physically based and distributed rainfall intensity and duration thresholds for shallow landslides.
Landslides 17, 2907-2917.

Marin, R.J., Garcia, E.F.,; Aristizabal, E., 2020. Effect of basin morphometric parameters on physically-based rainfall
thresholds for shallow landslides. Eng. Geol. 278, 16.

Martinovic, K., Gavin, K., Reale, C., Mangan, C., 2018. Rainfall thresholds as a landslide indicator for engineered
slopes on the Irish Rail network. Geomorphology 306, 40-50.

Mathew, J., Babu, D.G., Kundu, S., Kumar, K.V., Pant, C.C., 2014. Integrating intensity-duration-based rainfall
threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides
in parts of the Garhwal Himalaya, India. Landslides 11, 575-588.

Mei, J.Q., Chen, W.Y., Li, B.Y,, Li, S.X., Zhang, J., Yan, J., 2023. Adaptive fusion of multi-exposure images based on
perceptron model. Appl. Math. Nonlinear Sci., 14.

Narimani, R., Jun, C.H.Y., De Michele, C., Gan, T.Y., Nezhad, S.M., Byun, J., 2023. Multilayer perceptron-based
predictive model using wavelet transform for the reconstruction of missing rainfall data. Stoch. Environ. Res. Risk Assess.
37,2791-2802.

Niu, R.Q., Wu, X.L., Yao, D.K., Peng, L., Ai, L., Peng, J.H., 2014. Susceptibility Assessment of Landslides Triggered
by the Lushan Earthquake, April 20, 2013, China. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 3979-3992.

Peruccacci, S., Brunetti, M.T., Gariano, S.L., Melillo, M., Rossi, M., Guzzetti, F., 2017. Rainfall thresholds for possible
landslide occurrence in Italy. Geomorphology 290, 39-57.

Pradhan, A.M.S., Kang, H.S., Lee, J.S., Kim, Y.T., 2019. An ensemble landslide hazard model incorporating rainfall
threshold for Mt. Umyeon, South Korea. Bull. Eng. Geol. Environ. 78, 131-146.

Rohan, T., Shelef, E., Mirus, B., Coleman, T., 2023. Prolonged influence of urbanization on landslide susceptibility.
Landslides 20, 1433-1447.

Rossi, M., Luciani, S., Valigi, D., Kirschbaum, D., Brunetti, M.T., Peruccacci, S., Guzzetti, F., 2017. Statistical
approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data.
Geomorphology 285, 16-27.

Salee, R., Chinkulkijniwat, A., Yubonchit, S., Horpibulsuk, S., Wangfaoklang, C., Soisompong, S., 2022. New threshold
for landslide warning in the southern part of Thailand integrates cumulative rainfall with event rainfall depth-duration. Nat.
Hazards 113, 125-141.

Sarkar, S., Chandna, P., Pandit, K., Dahiya, N., 2023. An event-duration based rainfall threshold model for landslide
prediction in Uttarkashi region, North-West Himalayas, India. Int. J. Earth Sci., 17.

Segoni, S., Tofani, V., Rosi, A., Catani, F., Casagli, N., 2018. Combination of Rainfall Thresholds and Susceptibility
Maps for Dynamic Landslide Hazard Assessment at Regional Scale. Front. Earth Sci. 6, 11.

Selamat, S.N., Abd Majid, N., Taha, M.R., Osman, A., 2022. Landslide Susceptibility Model Using Artificial Neural
Network (ANN) Approach in Langat River Basin, Selangor, Malaysia. Land 11, 21.

Sheng, Y.F., Li, Y.Y., Xu, G.L., Li, Z.G., 2022. Threshold assessment of rainfall-induced landslides in Sangzhi County:
statistical analysis and physical model. Bull. Eng. Geol. Environ. 81, 15.

Soralump, S., Shrestha, A., Thowiwat, W., Sukjaroen, R., Chaithong, T., Yangsanphu, S., Koirala, A., Jotisankasa, A .,
2021. Assessment of landslide behaviour in colluvium deposit at Doi Chang, Thailand. Sci Rep 11, 12.

Teja, T.S., Dikshit, A., Satyam, N., 2019. Determination of Rainfall Thresholds for Landslide Prediction Using an
Algorithm-Based Approach: Case Study in the Darjeeling Himalayas, India. Geosciences 9, 9.

Wang, C., Wang, X.D., Zhang, H.Y., Meng, F.Q., Li, X.L., 2023a. Assessment of environmental geological disaster
susceptibility under a multimodel comparison to aid in the sustainable development of the regional economy. Environ. Sci.
Pollut. Res. 30, 6573-6591.

42



770

775

780

785

790

795

800

805

810

Wang, X.B., Zhao, Y.Q., Li, W.F., 2023b. Recognition of Commercial Vehicle Driving Cycles Based on Multilayer
Perceptron Model. Sustainability 15, 21.

Wang, X.L., Zhang, L.Q., Wang, S.J., Lari, S., 2014. Regional landslide susceptibility zoning with considering the
aggregation of landslide points and the weights of factors. Landslides 11, 399-409.

Wang, X.N., Zhang, X.L., Bi, J., Zhang, X.D., Deng, S.Q., Liu, Z.W., Wang, L.Z., Guo, H.X., 2022a. Landslide
Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning. Int. J. Environ. Res. Public
Health 19, 26.

Wang, Z.Y., Ma, C.M., Qiu, Y., Xiong, H.X., Li, M.H., 2022b. Refined Zoning of Landslide Susceptibility: A Case
Study in Enshi County, Hubei, China. Int. J. Environ. Res. Public Health 19, 22.

Wu, C.Y., Yeh, Y.C, 2020. A Landslide Probability Model Based on a Long-Term Landslide Inventory and Rainfall
Factors. Water 12, 17.

Wu, Y.M,, Lan, H.X., Gao, X., Li, L.P,, Yang, Z.H., 2015. A simplified physically based coupled rainfall threshold
model for triggering landslides. Eng. Geol. 195, 63-69.

Xia, P, Hu, X.L., Wu, S.S., Ying, C.Y., Liu, C., 2020. Slope Stability Analysis Based on Group Decision Theory and
Fuzzy Comprehensive Evaluation. J. Earth Sci. 31, 1121-1132.

Xing, X.F., Wu, C.L., Li, J.H., Li, X.Y., Zhang, L.M., He, R.J., 2021. Susceptibility assessment for rainfall-induced
landslides using a revised logistic regression method. Nat. Hazards 106, 97-117.

Yang, H.J., Wei, F.Q., Ma, Z.F., Guo, H.Y., Su, P.C., Zhang, S.J., 2020. Rainfall threshold for landslide activity in
Dazhou, southwest China. Landslides 17, 61-77.

Yang, Z.Q., Xu, C., Shao, X.Y., Ma, S.Y,, Li, L., 2022. Landslide susceptibility mapping based on CNN-3D algorithm
with attention module embedded. Bull. Eng. Geol. Environ. 81, 21.

Youssef, A.M., Pradhan, B., Dikshit, A., Al-Katheri, M.M., Matar, S.S., Mahdi, A.M., 2022. Landslide susceptibility
mapping using CNN-1D and 2D deep learning algorithms: comparison of their performance at Asir Region, KSA. Bull. Eng.
Geol. Environ. 81, 22.

Yu, L.B., Zhou, C., Wang, Y., Cao, Y., Peres, D.J., 2022. Coupling Data- and Knowledge-Driven Methods for Landslide
Susceptibility Mapping in Human-Modified Environments: A Case Study from Wanzhou County, Three Gorges Reservoir
Area, China. Remote Sens. 14, 21.

Yuniawan, R.A., Rifa'i, A., Faris, F., Subiyantoro, A., Satyaningsih, R., Hidayah, A.N., Hidayat, R., Mushthofa, A.,
Ridwan, B.W., Priangga, E., Muntohar, A.S., Jetten, V.G., van Westen, C.J., den Bout, B.V., Sutanto, S.J., 2022. Revised
Rainfall Threshold in the Indonesian Landslide Early Warning System. Geosciences 12, 17.

Zhang, H., Yin, C., Wang, S.P., Guo, B., 2022. Landslide susceptibility mapping based on landslide classification and
improved convolutional neural networks. Nat. Hazards, 41.

Zhang, J.Y., Ma, X.L., Zhang, J.L., Sun, D.L., Zhou, X.Z., Mi, C.L., Wen, H.J., 2023. Insights into geospatial
heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J. Environ. Manage. 332, 20.

Zhao, B.R., Dai, Q., Han, D.W., Dai, H.C., Mao, J.Q., Zhuo, L., 2019. Probabilistic thresholds for landslides warning by
integrating soil moisture conditions with rainfall thresholds. J. Hydrol. 574, 276-287.

Zhao, L.H., Liu, M., Song, Z.C., Wang, S.G., Zhao, Z.G., Zuo, S., 2022. Regional-scale modeling of rainfall-induced
landslides under random rainfall patterns. Environ. Modell. Softw. 155, 14.

Zhou, C., Cao, Y., Hu, X., Yin, K.L., Wang, Y., Catani, F., 2022. Enhanced dynamic landslide hazard mapping using
MT-InSAR method in the Three Gorges Reservoir Area. Landslides 19, 1585-1597.

Zhu, C.H., Hu, G.D., 2012. Time Series Prediction of Landslide Displacement Using SVM Model: Application to
Baishuihe Landslide in Three Gorges Reservoir Area, China, International Conference on Measurement, Instrumentation and
Automation (ICMIA 2012). Trans Tech Publications Ltd, Guangzhou, PEOPLES R CHINA, pp. 1413-+.

43



	1 Introduction
	2. Methods
	2.1 Rainfall Threshold Model
	2.1.1 OLS Regression
	2.1.2 MLP Regression
	2.1.3 E-D-R Rainfall Threshold Model

	2.2 CNN-3D Model

	3. Overview of the Study Area
	3.1 Physical and Geographical Characteristics
	3.2 Landslide Data CataloguingGeomorphology, geology, and Study Area Subdivision

	4. Results
	4.1 Rainfall Threshold Model Results
	4.1.1 E-D Rainfall Threshold Model
	4.1.2 E-D-R Rainfall Threshold Model
	4.1.3 Model Accuracy Verification

	4.2 Landslide Susceptibility Results
	4.2.1 Landslide Inducing Factor Selection
	4.2.2 Grading of Landslide Susceptibility Factors
	4.2.3 Landslide Susceptibility Evaluation Results

	4.3 Landslide Hazard Warning
	4.3.1 Landslide Hazard Results for Each Rainfall Warning Level
	4.3.2 Daily Landslide Hazard Warning


	5. Discussion
	5.1 Discussion of Rainfall Threshold Model
	5.2 Discussion of Daily Landslide Hazard Warning
	5.3 Practical Application of the Rainfall Threshold Model and Daily Landslide Hazard Warning

	6. Conclusion
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Reference

