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Abstract. Rainfall is intrinsically connectedlinked to the incidenceoccurrence of landslide catastrophes. 

ExploringIdentifying the idealmost suitable rainfall threshold model (RTM) for an area in order to determine the rainfall 

warning level (RWL)is crucial for the regionestablishing effective daily landslide hazard warnings, which are essential for 

daily landslide hazard warning (LHW) is critical forthe precise prevention and management of local landslides. In this paper, 

a method for calculating rainfall thresholds using This study introduces a novel approach that utilizes multilayer perceptron 10 

(MLP) regression is proposed to calculate rainfall thresholds for 453 rainfall-induced landslides. First, the study area was 

divided into subareas based on topography and climate conditions. Then, two methods,This research represents the first 

attempt to integrate MLP and ordinary least squares (OLS), were utilized to exploremethods for determining the optimal 

RTM for each subregion. Subsequently, 11 factors along with three models were selected to predict landslide susceptibility 

(LS). Finally, to obtain daily LHW result for the study area, a superposition matrix was employed to overlay the daily RWL 15 

with the ideal LS prediction results. The following are the study's findings: (1) The optimal RTMs and calculation methods 

are different for differentrainfall threshold model tailored to distinct subregions. (2) The Three, categorized by topographical 

and climatic conditions. Additionally, an innovative application of a three-dimensional convolutional neural network model 

produces more accurate LS prediction results.(CNN-3D) model is introduced to enhance the accuracy of landslide 

susceptibility predictions. Finally, a comprehensive methodology is developed to integrate daily rainfall warning levels with 20 

landslide susceptibility predictions using a superposition matrix, thus offering daily landslide hazard warning results for the 

study area. The key findings of this study are as follows: (1) The optimal rainfall threshold models and calculation methods 

vary across different subregions, underscoring the necessity for tailored approaches. (2) The CNN-3D model substantially 

improves the accuracy of landslide susceptibility predictions. (3) The daily LHW was landslide hazard warnings were 

validated using anticipated rainfall data forfrom July 19, 2020, thereby demonstrating the reliability of both the landslide 25 

hazard warning results and the validation results proved the correctness of rainfall threshold model. This study presents a 

substantial advancement in the LHW results precise prediction and RTMmanagement of landslide hazards by employing 

innovative modeling techniques. 
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1 Introduction 

Landslide catastrophesAccording to the China Statistical Yearbook, landslides accounted for 71.55% of geological disasters 30 

in China frombetween 2005 toand 2021, according to the China Statistical Yearbook (http://www.stats.gov.cn/sj/ndsj/). 

Frequent landslide catastrophes endanger people'slandslides pose significant risks to both lives and property (Xing et al., 

2021). Rainfall will lead to landslide disasterstriggers landslides by changing thealtering pore pressure in the soil body (Zhao 

et al., 2022) and weakeningreducing the shear strength of the geotechnical bodymaterials (Chan et al., 2018). According to 

research (Marin et al., 2020; Yuniawan et al., 2022):Research indicates that rainfall is intrinsically connectedlinked to the 35 

great majority of landslide deformation and instability.deformations and instabilities(Marin et al., 2020; Yuniawan et al., 

2022). Therefore, it is significantcrucial to delineate the rainfall thresholds for different rainfallvarious conditions and areas 

through the study for the fine development ofregions to improve landslide hazard warning (LHW)warnings and disaster 

prevention and control. LHW efforts. Landslide hazard warning is described as the conditional prediction of probable 

landslide the temporal and spatial probability under the limitations ofprobabilities of landslide occurrence based on 40 

triggering and inducing variablesfactors (Budimir et al., 2015). The In this study, the rainfall warning level (RWL) (i.e., the 

temporal probability of landslide occurrence) calculated byderived from the rainfall threshold model (RTM) isserves as the 

triggering factor in this study, and, while the landslide susceptibility predictions (i.e., the spatial probability of occurrence) 

act as the inducing factor is the prediction result of landslide. 

Landslide susceptibility (LS) (i.e.,reflects the spatial probability of landslide occurrence) calculated by the susceptibility 45 

model.The spatial probability of landslide occurrence can be reflected by LS (Huang et al., 2022b). GeneralMethods for 

predicting landslide susceptibility include general linear models (Aksha et al., 2020), information value models (Yu et al., 

2022), and various machine learning models, and others are among the methods used to predict LS.. Machine learning 

models can fitare more effective than other types in capturing and predictpredicting the nonlinear relationshiprelationships 

between LS and landslide susceptibility and predisposing factors more effectively than other kinds of models (Guo et al., 50 

2021). Commonly used machine learning models include logistic regression (Baharvand et al., 2020), artificial neural 

networks (Jiang et al., 2014), support vector machines (SVM) (Chang et al., 2023; Zhu and Hu, 2012), random forests (RF) 

(Chen et al., 2014; Huang et al., 2024), Bayesian algorithms (He et al., 2019), and deep learning algorithms (Huang et al., 

2020). However, determining whichselecting the most suitable model is best suited for LSlandslide susceptibility prediction 

isremains challenging, and there is greatsignificant uncertainty exists in the LS prediction results of variousobtained from 55 

different machine learning models (Xia et al., 2020). Even littlesmall improvements in LS prediction accuracy might have a 

significant influence on LS can significantly impact landslide susceptibility zoning (Chen et al., 2018). Therefore, to 

decrease thereduce uncertainty of LSin landslide susceptibility results, differentmultiple susceptibility models are frequently 

employed to predict LS in the study areaoften applied, and the model with the greatesthighest accuracy is chosenselected for 

the study area. 60 
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RTMRainfall threshold modeling approaches primarily include of deterministic methods based on physical and hydrological 

models, as well as empirical methods based on landslide cataloguing and rainfall event statistics (Chung et al., 2017; Wu et 

al., 2015). The former establishesDeterministic methods establish the relationship between rainfall and landslide stability 

through dynamic hydrological models and determinesdetermine the critical rainfall threshold for landslide instability in the 

physical model (Ciurleo et al., 2019). However, due to the difficulty inchallenges of accurately obtaining hydrological 65 

parameters and geotechnical parameters on a large scale, this method is onlyprimarily applicable to smaller study areaareas 

(Wu and Yeh, 2020). The latter isEmpirical methods are mainly derived by calculating the relationship between historical 

landslide and rainfall data (Abraham et al., 2020a; Pradhan et al., 2019). This methodapproach is widely used because ofdue 

to its advantages of convenience in data acquisition, strong convenience, applicability, and excellent resultseffectiveness 

(Martinovic et al., 2018). Currently, commonlyCommonly used RTMrainfall threshold models include the intensity of 70 

rainfall - -duration of rainfall (I-D) threshold model (Abraham et al., 2019; Lee et al., 2014) and the effective rainfall - -

duration of rainfall (E-D) threshold model (Abraham et al., 2020b; Peruccacci et al., 2017). The regressionRegression 

methods used to calculate the RTMrainfall threshold model include logistic regression (Mathew et al., 2014), ordinary least 

squares (OLS) regression (Rossi et al., 2017) and quantile regression (Salee et al., 2022). There are differences in theThe 

applicability of different RTMvarious rainfall threshold models and different regression methods in differentdiffers across 75 

regions (Marin, 2020; Segoni et al., 2018). Therefore, to decreasereduce uncertainty in LHW, severallandslide hazard 

warnings, multiple regression methods and RTM mustrainfall threshold models should be usedemployed to 

establishdetermine the bestmost appropriate rainfall threshold for a certainspecific location. 

Given that many researchers have employed the log-log coordinatescoordinate system for RTM regression analysis of 

rainfall threshold models (He et al., 2020), this study proposes to use of the multilayer perceptron (MLP) regression method 80 

to study theexamine rainfall thresholds under various rainfall durations. SimultaneouslyAdditionally, the third -dimension 

indicator ", "daily rainfall for the day" (R) was introducedincorporated to createdevelop the E-D-R RTM based onrainfall 

threshold model, extending the E-D RTMrainfall threshold model (Liu et al., 2022). 

In this study, the Three Gorges Reservoir Area (TGRA) was usedselected as the study area, and the landslides. Landslides 

were first catalogued to getobtain the E and D data duringfor the five days before the landslidespreceding each landslide, as 85 

well as the R data at the time of the landslides. Following thatSubsequently, the rainfall thresholds corresponding to the E-D 

and E-D-R models for distinctvarying landslide occurrence probabilities were calculated using both OLS and MLP 

regression methods, respectively. To . The study aims to explore the optimal RTMrainfall threshold model for the study area 

and, assess the feasibility of neural network for RTM research, as well as to networks in rainfall threshold modeling, and 

categorize RWLrainfall warning levels based on the optimal RTM. Then, select themodel. Landslide-inducing factors that 90 

induce were selected, and landslide occurrence and predict the LS resultssusceptibility was predicted using RF, SVM, and 

3D convolutional neural network (CNN-3D) models, and utilize the LS. The most accurate susceptibility results with the 

best accuracywere used as the spatial probability of landslide occurrence in the study area. Finally, the daily RWL is rainfall 
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warning level was combined with the LS result landslide susceptibility results using thea superposition matrix to achieve 

thegenerate daily LHW, which serves aslandslide hazard warnings, providing a reference for precisionthe precise prevention 95 

and management of local landslide disasters. The study flowchart is shown in Fig. 1. 

 

Figure 1. Flowchart of this study. 

2. Methods 

2.1 Rainfall Threshold Model 100 

2.1.1 OLS Regression 

OLS regression is a commonlywidely used linear regression method that can be used to establishtechnique for establishing a 

linear relationship between thean independent variable (𝑥) and thea dependent variable (𝑦). It minimizes the errordifference 

between the predicted value and the actual observed value by seekingfinding the slope and intercept that best fits the data 

(Lim et al., 2023). 105 

The basic form of itsthe OLS regression model can beis expressed as: 

𝑦 = 𝛽0 +∑ 𝛽𝑖
𝑛
𝑖=1 𝑥𝑖 ,           (1) 

where 𝑦 denotes the dependent variable, 𝑥𝑖 denotes the independent variable, 𝑛 denotes the number of independent variables, 

𝛽𝑖 denotes the coefficients of the independent variables, and 𝛽0 denotes the constant intercept. 
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2.1.2 MLP Regression 110 

MLP is a common commonly used neural network with the abilitycapable of nonlinear mapping, which canenabling it to 

learn complex nonlinear functional relationships through multiple layers of nodes. Currently, it It has been widely 

usedapplied in manyvarious fields such as, including geospatial analysis (Hasan et al., 2023; Wang et al., 2023b), 

aerodynamics (Barcenas et al., 2023), atmospheric science (Hoffman and Jasinski, 2023), rainfall prediction (Narimani et al., 

2023), and image fusion (Mei et al., 2023). In the regression analysis of scatter data, a scatter data set can be regardedis 115 

treated as composeda collection of multiple input-output data pairs, and the. The model adjusts theits weights of the model 

by minimizing the error between the predicted value and the actual data, and finally realizes theultimately achieving accurate 

regression of scatter data. In this study, we built an MLP model with two hidden layers (Fig. 1).. 

 

Figure 1: Schematic diagram of the MLP model. 120 

2.1.3 E-D-R Rainfall Threshold Model 

The E-D-R RTM is based onrainfall threshold model builds upon the E-D RTM, with the introduction ofrainfall threshold 

model by introducing the R metrics at the metric as a third latitudedimension to optimize the original RTMmodel. To 

investigateanalyze the E-D-R RTM,rainfall threshold model, it is essential first to establish the E-D RTM must first be 

determinedrainfall threshold model. 125 

The E-D RTM aims to investigate therainfall threshold model examines the relationship between effective rainfall as a 

function ofand the duration of rainfall (Teja et al., 2019). The scatter plot is generallytypically analyzed byusing regression 
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in a log-log coordinatescoordinate system, and thenwith the resulting fitted straight line isthen transformed into a result in a 

Cartesian coordinate system. The expression for this is: 

𝐸 = 𝛼 × 𝐷𝛽 ,            (2) 130 

Assume that the linear equation obtained by fittingfitted in the log-log coordinatescoordinate system has an intercept of 𝑏 

and a slope of 𝑎. Then, in the above equationthis context, 𝛼 = 10𝑏, 𝛽 = 𝑎, andwhere 𝐷 denotes the duration of rainfall (d). 

in days), and E is the effective rainfall (in mm), which refers todefined as the total amount of rainfall that actually infiltrates 

and acts onimpacts the landslide body in addition to the, excluding slope runoff and evaporation (Huang et al., 2022a). The 

effective rainfall formula usedapplied in this study is as follows: 135 

𝐸 = ∑ 𝑘𝑖−1𝑛
𝑖=1 𝐸𝑖  ,           (3) 

where 𝐸 denotes the effective rainfall, 𝐸𝑖 is the rainfall on the previous 𝑖 days, and 𝑘 is the effective rainfall coefficient. The 

value of k is usually, typically set to 0.8 (Huang et al., 2022a). FurthermoreAdditionally, it has been showndemonstrated that 

the effective rainfall inwithin the first 5 days of the TGRA has a strong linkin the Three Gorges Reservoir Area is strongly 

correlated with landslide events (Zhou et al., 2022). Therefore, the number of days of𝑛 considered for rainfall statistics 𝑛 in 140 

this workstudy is set to 5. 

The indicator 𝑅 is introduced as a third dimension of the indicator R is added based onto extend the E-D RTM to expand 

therainfall threshold model from two to three dimensions, and the RTL meetresulting in a model that satisfies the following 

relational equation: 

𝑇 = max{𝐺𝐸 , 𝐺𝑅} ,           (4) 145 

where 𝑇 denotes the final RWLrainfall warning level, while 𝐺𝐸 and 𝐺𝑅 denote the RWLrainfall warning levels for the E-D 

model and R𝑅 dimension, respectively. 

2.2 CNN-3D Model 

A Convolutional Neural Network (CNN) is a deep learning algorithm, widely used extensively utilized in image recognition 

(Fan et al., 2022; Gill et al., 2022), natural language processing (Jin et al., 2023; Kaliyar et al., 2021) and various other 150 

domains. Its primary concept is to extractThe core principle of CNN involves extracting features from input data using 

athrough convolution operationoperations (Youssef et al., 2022). However, forin one- and two-dimensional CNNs, feature 

extraction for induced factor data is onlytypically performed at a single raster point. Both methods ignoreoverlook the spatial 

information aroundsurrounding the raster points (Yang et al., 2022). As a resultConsequently, this study presentsintroduces 

CNN-3D in order to fully useleverage the rich spatial information around thesurrounding raster points in order to increase, 155 

thereby enhancing the prediction accuracy of LS.landslide susceptibility. The structure of CNN-3D is similar tomirrors that 
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of traditional CNN, but since the inputdue to the inclusion of additional spatial data contains more information, CNN-3D can 

provideyield more accurate results (Liu et al., 2023). 

We picked aA three-dimensional structure was selected to creategenerate samples in this experiment. Before producing the 

samplesPrior to sample generation, an n-channel pictureimage is formedcreated by superimposing n𝑛 components. Each 160 

pixel is then extended outwardsoutward by 7 pixels to generate , resulting in a 15 × 15 × n𝑛  image used as input. 

Subsequently, through operations such as convolution and pooling in the hidden layer, the map high-level features are 

mapped to thea low-dimensional space and, which are then stored in the neural units of the fully connected layer, and finally 

classified. Finally, classification is performed using the Softmax function to obtain the results of landslidesdetermine 

landslide and non-slides (Fig. 2). 165 

 

Figure 2: Schematic diagram of CNN-3D structurelandslide outcomes. 

3. Overview of the Study Area 

3.1 Physical and Geographical Characteristics 

The study area is located in the upper reaches of the Yangtze River between , extending from Sandouping in Yichang City 170 

andto Jiangjin District in Chongqing, which is situated at longitude. It lies between longitudes 105°50′-E and 111°42′ E and 

latitudelatitudes 28°30′-N and 31°45′ N (Cheng et al., 2022), encompassing a total of . This area encompasses 29 

administrative districts and counties, including 7 in Hubei Province and 22 in Chongqing Municipality (7 districts and 

counties in Hubei, and 22 districts and counties in Chongqing), and, covering a total area of 5.67×104km2 (Fig. 32).The 

climate of the region isexperiences a subtropical monsoon climate, with an average annual precipitation ofranging from 445- 175 

to 1813 mm (Long et al., 2021). And theThe abundant rainfall in the arearegion is a majorsignificant factor inducing 

landslidescontributing to landslide occurrences (Guo et al., 2022). 
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Figure 32: Geographic location of the study area and Thiessen polygon results for rainfall stations. 180 
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3.2 Landslide Data CataloguingGeomorphology, geology, and Study Area Subdivision 

Cataloging landslide data is crucial for studying rainfall thresholds (Gariano et al., 2021). This process involves recording 

essential information, including the time of occurrence, geographic location, and associated rainfall stations for each 

landslide event. The historical landslide data used in this study were provided by the Wuhan Geological Survey Center 

(http://www.wuhan.cgs.gov.cn/). To identify the corresponding rainfall stations for each historical landslide, the Thiessen 185 

polygon method was employed to match each landslide point with the nearest rainfall station (Zhao et al., 2019), thereby 

obtaining the pre-landslide rainfall data (see Fig. 2, Thiessen polygons). 

After filtering and cleaning, a total of 453 historical landslides with accurate rainfall information, dates, and locations were 

identified (see Fig. 2, Landslides). Historical rainfall data indicate that precipitation in the study area is primarily 

concentrated between May and October. The differing climatic conditions between the dry and rainy seasons may lead to 190 

varying impacts of rainfall on landslide movements (Soralump et al., 2021). climate play the most important role in 

preparatory process of landslide initiation in any regionBased on this information, the historical landslides were classified 

into rainy season and dry season landslides according to their occurrence times (Fig. 3(b)). 

 

Figure 3: Zoning map of the study area. (a) Schematic diagram of the sub-region merger; (b) Number of historical landslide 195 
hazard sites in each sub-region. 

Given the substantial influence of geomorphological, geological, and climatic conditions on landslide triggers during the 

rainy season (Dahal and Hasegawa, 2008), and the differences between them lead to different rainfall thresholds in various 
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can vary across different regions. Therefore, in Accordingly, this study, further subdivided the landslide data from the 

wholerainy season. The study area was divided into 10 zones (Fig. 4) by considering the topographyseveral sub-regions 200 

based on terrain and climatic conditions of the study area, and the optimal RTM was , with rainfall thresholds calculated for 

each zone separately. Among them, Z11, Z12 and Z13 are the moderate rainfall zone, low rainfall zone and high rainfall zone 

in the folded region;. However, due to the limited historical landslide data in regions Z21, Z22, Z23, Z24Z3 and Z4, adjacent 

regions were merged to mitigate potential inaccuracies in rainfall threshold calculations caused by insufficient data. 

Specifically, Z21 and Z22 were combined; Z23, Z24, and Z3 were combined; and Z25 are the low rainfall zone,and Z4 were 205 

combined. The final regional subdivision is illustrated in Fig. 3(a). For dry season landslides, due to relatively highuniform 

rainfall zone, high rainfall zone, moderate rainfall zone and high rainfall zone in the low and medium mountain region, 

respectively; Z3 is the high rainfall zone in the medium and high mountain region; and Z4 is the high rainfall zone in the hilly 

and plain zonethe small number of events, no further subdivision was performed, and the rainfall threshold was calculated 

for the entire study area. 210 

 

Figure 4: Zoning map of the study area. 

Before landslide data cataloguing, the corresponding rainfall dataset needs to be acquired. Based on the abundance of rainfall 

stations in the study area (refer to Fig. 3, Rainfall Station), Thiessen polygon method were used for the delineation (Zhao et 

al., 2019), which facilitates the finding of rainfall stations corresponding to landslides. The Thiessen polygon method results 215 

satisfy the following conditions: (1) each polygon contains one and only one rainfall station; (2) any point within each 



 

11 

 

polygon is the closest to the rainfall station within the unit; (3) the points on the boundary are the same distance to the two 

neighboring rainfall stations. The result of its division is shown in Fig. 5. 

 

Figure 5: Thiessen polygon method results map. 220 

Landslide data cataloguing is the basis for the study of rainfall thresholds (Gariano et al., 2021), and its main contents 

include basic information such as the time of occurrence of landslides, geographic location, associated rainfall stations, and 

so on. The landslide cataloguing data in this study were obtained from the historical landslide hazard data provided by 

Wuhan Geological Survey Centre (http://www.wuhan.cgs.gov.cn/). 

A total of 453 historical landslides with precise rainfall information, particular dates, and places were acquired by 225 

aggregating historical landslide data, removing landslides with no rainfall and missing rainfall data (refer to Fig. 3, 

Landslide). 

The rainfall in the study area is mainly concentrated from May to October, and the differences in climatic conditions 

between the dry and wet seasons might result in various impacts of rainfall on landslide movement (Soralump et al., 2021). 

Therefore, in this study, according to the time of occurrence of historical landslides, landslides occurring from May to 230 

October are classified as rainy season landslides, while landslides occurring from November to April are classified as dry 

season landslides. According to the records, there were 412 rainy season landslides and 41 dry season landslides (Fig. 6). 

Among them, rainfall thresholds for rainy season landslides were calculated separately according to the sub-districts; 



 

12 

 

whereas the number of dry season landslides is small and further subdivision is not conducive to the calculation of rainfall 

thresholds, so only rainfall thresholds for dry season landslides were calculated for the entire study area. 235 

 

Figure 6: Number of landslides in each sub-district in the rainy season and the whole region in the dry season. 

Figure 6 shows that the five zones Z21, Z22, Z23, Z3 and Z4 have less catastrophe spots. To avoid insufficient data affecting 

rainfall threshold accuracy, this study merged some neighboring regions (Z21 and Z22 merged; Z23, Z24, and Z3 merged; and 

Z25 and Z4 merged) based on the geographic location of each region for rainfall threshold calculation. 240 

4. Results 

4.1 Rainfall Threshold Model Results 

4.1.1 E-D Rainfall Threshold Model 

Rainfall-triggered landslide is a randomlandslides are rare and small probability event, and if onlyprobabilistic events. 

Relying solely on the minimum threshold is used to warn offor geological hazards, it will produce many warnings can result 245 

in numerous ineffective warnings (i.e., False Positive Error) (Sarkar et al., 2023). While decreasing the public'sThis not only 

diminishes public trust in disaster warning, it will result in a waste ofbut also leads to wasted resources foron preventive and 

control activities, which is not favorable to the advancement of impeding progress in disaster prevention and mitigation. 

ThereforeConsequently, most of the current studies on RTM use a variety ofrainfall threshold models utilize various 

threshold curves with different landslide probabilities (Sheng et al., 2022), in order to improveenhance the 250 

reasonablenessreliability and accuracy of rainfall warning. Generally, thewarnings. Typically, landslide probability 
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indicatesrefers to the proportion of the number of landslides triggered by rainfall exceeding a certainspecified threshold 

among all occurringrelative to the total number of landslides (Yang et al., 2020). 

In the calculation ofFor OLS regression calculation, the E and D scatters ofdata from historical landslide hazard locations in 

each area were firstinitially plotted intoin the E-D log-log coordinatescoordinate system, and the. The 50% landslide 255 

probability rainfall threshold curve was then derived by fitting this data using OLS regression. The fitted curves were then 

usedsubsequently employed to runperform OLS regression analysis on the historical landslide hazard points above and 

below thethese curves to get, resulting in the 75% landslide probability rainfall threshold curve and theand 25% landslide 

probability rainfall threshold curvecurves (Fig. 74). Finally, the straight lines from the log-log coordinatescoordinate system 

straight lines were transformed to converted into curves in the Cartesian coordinate system curves (Table 1). 260 

 

Figure 7: Plot of4: E-D rainfall threshold model results plotted in the log-log coordinatescoordinate system (using OLS regression).. 

In the figure, regions are labelled as follows: a isrepresents the Z11 region, b isrepresents the Z12 region, c isrepresents the Z13 

region, d isrepresents the Z21Z22 region, e isrepresents the Z23Z24Z3 region, f isrepresents the Z25Z4 region, and g isrepresents the 

Dry Season. 265 

Table 1: E-D rainfall threshold equation (derived from OLS regression).. 
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Region 
Landslide 

probability 

Equations 

(Log-log coordinates system) 
E-D equation 

Z11 

75% y=0.4383x+1.4679 E=29.3697×D0.4383 

50% y=1.2420x+0.7552 E=5.6912×D1.2420 

25% y=2.6894x-0.4164 E=0.3834×D2.6894 

Z12 

75% y=0.6981x+1.3464 E=22.2024×D0.6981 

50% y=0.9113x+0.8721 E=7.4490×D0.9113 

25% y=1.8193x+0.0102 E=1.0238×D1.8193 

Z13 

75% y=1.0019x+1.1887 E=15.4419×D1.0019 

50% y=1.4792x+0.6246 E=4.2131×D1.4792 

25% y=1.8201x+0.0759 E=1.1910×D1.8201 

Z21Z22 

75% y=0.9977x+1.2307 E=17.0098×D0.9977 

50% y=1.6825x+0.4075 E=2.5556×D1.6825 

25% y=1.7100x-0.0969 E=0.8000×D1.7100 

Z23Z24Z3 

75% y=0.5633x+1.3125 E=20.5353×D0.5633 

50% y=1.7673x+0.2014 E=1.5900×D1.7673 

25% y=2.8230x-0.7986 E=0.1590×D2.8230 

Z25Z4 

75% y=1.1974x+1.0675 E=11.6815×D1.1974 

50% y=1.4525x+0.6027 E=4.0059×D1.4525 

25% y=2.4652x-0.2305 E=0.5882×D2.4652 

Dry Season 

75% y=0.7295x+0.9706 E=9.3454×D0.7295 

50% y=2.1754x-0.1679 E=0.6794×D2.1754 

25% y=2.7079x-0.7646 E=0.1719×D2.7079 

In the calculation of MLP regression analysis, the rainfall thresholds corresponding tofor a 50% landslide probability were 

initially fitted separately for each duration of rainfall (D) were first fitted separately. The). MLP regression was then 

performed on the applied to historical landslide data above and below thethese thresholds, respectively, to obtain the 75% 

landslide probability and 25% landslide probability determine the rainfall thresholds corresponding tofor 75% and 25% 270 

landslide probabilities for each D. Due to the lack ofLimited historical landslide hazard data atfor a D of 1 in some regions 

(e.g., region Z12) and the small amount of historical landslide hazardinsufficient data atfor a D of 5 in someother regions (e.g., 

region Z11), these can) may lead to irrational results ofinaccuracies in the fitted rainfall thresholds. InTo address this regard, 

this study usedissue, Gaussian regression (Kumar and Kavitha, 2021) and GM(1,1) grey prediction model (Chen and Huang, 

2013) were employed to correct the rainfall threshold results obtainedthresholds derived from MLP regression. The corrected 275 

results are shown in Fig. 85 and Table 2. 
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Figure 8: Plot of5: E-D rainfall threshold model results (plotted using MLP regression).. In the figure, regions are labelled as 

follows: a isrepresents the Z11 region, b isrepresents the Z12 region, c isrepresents the Z13 region, d isrepresents the Z21Z22 region, e 

isrepresents the Z23Z24Z3 region, f isrepresents the Z25Z4 region, and g isrepresents the Dry Season. The red, blue, and purple 280 
points in Fig. 8 are thedenote rainfall threshold points obtained from the fitvalues fitted for differentvarious landslide probabilities. 

The lineLine segments are justincluded solely for connecting the individual threshold points for viewing purposesvisual clarity and 

have no do not convey any practical information. 

Table 2: E-D rainfall threshold (derived from MLP regression).. 

Region Duration of rainfall (D) 75% threshold (mm) 50% threshold (mm) 25% threshold (mm) 

Z11 

1 14.2305 10.1800 1.9625 

2 36.4914 23.3267 8.7024 

3 63.5907 37.0893 18.6210 

4 76.6291 41.7210 22.9260 

5 103.0000 53.8090 32.6260 

Z12 

1 57.9690 2.4749 0.1550 

2 59.6126 20.0312 6.8458 

3 62.3002 38.0666 17.3107 

4 61.0451 34.2639 14.1966 
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5 63.2107 36.7170 19.0748 

Z13 

1 10.8122 6.3897 1.9677 

2 42.1870 26.1761 10.1656 

3 66.7259 29.0723 11.5028 

4 73.7542 48.4590 24.8502 

5 87.3909 55.1944 31.0476 

Z21Z22 

1 24.2575 7.4117 1.1585 

2 42.5658 15.8642 2.5160 

3 67.0825 35.8785 9.5152 

4 84.8807 47.0166 20.3769 

5 102.6789 58.1546 18.9942 

Z23Z24Z3 

1 5.5210 1.0893 0.5702 

2 33.3538 10.1252 3.7901 

3 59.1386 25.2715 7.0353 

4 57.8357 27.9044 10.4444 

5 162.7467 87.5204 37.3694 

Z25Z4 

1 15.9482 8.6114 1.2742 

2 29.2418 21.1900 10.4545 

3 64.6284 29.0526 14.8209 

4 73.3920 52.0651 20.0756 

5 104.1990 70.4430 25.8100 

Dry Season 

1 5.0503 0.6647 0.5818 

2 15.7035 5.1495 1.6332 

3 22.2420 10.8428 3.2452 

4 30.0733 18.1523 10.2084 

5 47.1948 33.3588 26.4428 

The threshold curves generatedderived from OLS regression in the log-log coordinatescoordinate system often 285 

exhibittypically display an upward trend, as shownillustrated in Fig. 7, and4, with the slopes of the rainfall threshold curves 

for 25%, 50%, and 75% landslide probability gradually decrease. From Fig. 8probabilities decreasing progressively. As 

shown in Fig. 5, the rainfall thresholds obtained from MLP regression for differentvarious landslide probabilities also show a 

generally exhibit an increasing trend, but. However, the relatively small amount oflimited historical landslide data in some 

subregions results in relatively unreasonableleads to less accurate rainfall thresholds (e.g., the rainfall threshold for the 290 

Z23Z24Z3 region shows a large increase when D is 5). 

4.1.2 E-D-R Rainfall Threshold Model 

BasedBuilding on the above E-D rainfall threshold model, the third dimension indicator R was introducedincorporated to 

constructdevelop the E-D-R rainfall threshold model. In this model, the value of R is taken equalset to the rainfall threshold 

corresponding to when a duration of D isequal to 1 in the E-D RTM.rainfall threshold model. These three indicators 295 
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visuallycollectively form a closed "box" (Fig. 9), with6), demonstrating "nested" relationships between theamong different 

landslide probability levels. 

 

Figure 96: Schematic diagram of the E-D-R rainfall threshold model obtained fromillustrated using the OLS regression (results 

from the Z13).In Fig. 9, the  region as an example. The green, yellow, and red boxes indicatein the figure represent landslide 300 
probabilities corresponding to rainfall thresholds of <25%, 25-50%, and 50-75%, respectively. 

4.1.3 Model Accuracy Verification 

The accuracy of the model was tested in this research utilizingevaluated using 82 landslide hazardshazard events from 2019 

and 2020 that were not involvedincluded in the RTM rainfall threshold model calculations in 2019 and 2020.. Figure 10 

depicts7 shows the numberdistribution of landslide hazardshazard events in each regionacross different regions. 305 
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Figure 10: The number7: Number of landslide hazard events in each region of the validation set. 

In the actualpractical landslide control work, it is impossible to obtain theprevention, real rainfall on a certain day in the -

time future, so it can only be replaced by the forecast  rainfall. In order to make the  data is unavailable and must be 

substituted with forecasted rainfall. To enhance the realism of the validation data source offor the rainfall threshold model 310 

more realistic, this study relies on the abundantused numerous rainfall forecastingforecast stations inwithin the study area 

(Fig. 11) and counts the forecastto gather forecasted rainfall amounts for the 82 landslide events on the day of the occurrence 

of these 82 landslide hazards as well as the previous 5and for the five days forprior. Notably, the validation of the model. 

The rainfall forecast stations in Fig. 11 are distributedused here were established later and differ from the rainfall stations 

used in the landslide cataloguing (Fig. 2, Rainfall Station). These forecast stations, covering the entire study area at 0.05° 315 

intervals, and the forecast rainfall data were provided by the Wuhan Geological Survey Centre. The data are updated 

inprovide real time according to meteorological changes, and the data used in the study are adopted from the latest update of 

the forecast data to ensure the accuracy of the data-time updates on forecasted rainfall. 
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 320 

Figure 11: Map of rainfall forecasting stations. 

The research regionstudy area was classified into four warning categories based on the rainfall threshold classification results: 

attentionAttention (<25%), special attentionSpecial Attention (25-50%), warningWarning (50%--75%), and severe 

warningSevere Warning (≥75%). Figure 12 displays8 presents the ultimate outcomesresults of the validation process for 

each region's four RTMrainfall threshold model categories. FurthermoreAdditionally, Table 3 displaysshows the proportion 325 

of hazardous circumstancessituations corresponding to the two warning“Severe Warning” and “Warning” levels of “severe 

warning” and “warning” in the E-D-R RTMrainfall threshold model validation results. 
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Figure 12: The distribution8: Distribution of warning levels in the validation set for each partitioned region. In the figure, a 

isRegions are labelled as follows: a represents the Z11 region, b isrepresents the Z12 region, c isrepresents the Z13 region, d 330 
isrepresents the Z21Z22 region, e isrepresents the Z23Z24Z3 region, f isrepresents the Z25Z4 region, and g isrepresents the Dry Season. 

Table 3: Proportion of hazard events corresponding to the “Severe Warning” and “Warning” levels in the E-D-R RTMrainfall 

threshold model for each partitioned region. 

Region Regression approach Level Percentage (%) 

Z11 

MLP 
Severe Warning 46.88 

Warning 12.50 

OLS 
Severe Warning 40.63 

Warning 40.63 

Z12 

MLP 
Severe Warning 7.69 

Warning 92.31 

OLS 
Severe Warning 53.85 

Warning 46.15 

Z13 
MLP 

Severe Warning 80.00 

Warning 20.00 

OLS Severe Warning 60.00 
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Warning 40.00 

Z21Z22 

MLP 
Severe Warning 44.44 

Warning 33.33 

OLS 
Severe Warning 44.44 

Warning 55.56 

Z23Z24Z3 

MLP 
Severe Warning 33.33 

Warning 66.67 

OLS 
Severe Warning 0.00 

Warning 100.00 

Z25Z4 

MLP 
Severe Warning 50.00 

Warning 20.00 

OLS 
Severe Warning 70.00 

Warning 30.00 

Dry Season 

MLP 
Severe Warning 40.00 

Warning 50.00 

OLS 
Severe Warning 60.00 

Warning 30.00 

The following conclusions maycan be drawn from an analysis ofanalyzing the prediction accuracy of the four categories of 

RTM: rainfall threshold models: 335 

(1) The accuraciesaccuracy of the E-D-R RTM rainfall threshold model, as computed using both MLP regression and OLS 

regression are much better than , significantly surpasses that of the comparable E-D RTM. The E-D-R RTM predict 

outputsrainfall threshold model. With the inclusion of the R indicator in the third dimension, the E-D-R rainfall threshold 

model's predictions no longer include the "Attention" warning level for all areas (except Z11 excepted) when the R indicator 

was included in the third dimension. Furthermore). Moreover, there has been a risean increase in the percentage of hazard 340 

incidents categorized asclassified under the "Warning" and "Severe Warning" categories across all regions. Compared withto 

the E-D model, the proportion of hazardous conditions categorized as "Warning" and "Severe Warning" in the "Warning" 

and "Severe Warning" warning levels of the E-D-R RTM increasesE-D-R rainfall threshold model increased from 41.46% to 

76.82%, andwhile the result ofproportion for OLS regression increasesrose from 69.51% to 91.46%. 

(2) TheAlthough the prediction accuracies of the E-D-R RTM for each region arerainfall threshold model vary slightly 345 

different between the MLP regression and the OLS regression, but in general for each region, the totaloverall proportion of 

hazardous conditions atin the warning levels of "Warning" and "Severe Warning" islevels remains similar. 

(3) The optimal RTM for each region is shown in Table 4. 



 

22 

 

(3) Table 4 presents the optimal rainfall threshold model for each region. The E-D-R models obtained from MLP regression 

are identified as the optimal models for the Z13 and Z23Z24Z3 regions, demonstrating the feasibility of utilizing neural 350 

networks (MLP) for rainfall threshold model research. 

Table 4: Optimal RTMrainfall threshold model for each partitioned region. 

Region Optimal rainfall threshold modelling (regression approach) 

Z11 E-D-R (OLS) 

Z12 E-D-R (OLS) 

Z13 E-D-R (MLP) 

Z21Z22 E-D-R (OLS) 

Z23Z24Z3 E-D-R (MLP) 

Z25Z4 E-D-R (OLS) 

Dry Season E-D-R (OLS) 

The optimal RTM for Z13 and Z23Z24Z3 regions are the E-D-R models obtained from the MLP regression, proving the 

feasibility of using neural networks (MLP) for RTM research. 

4.2 Landslide Susceptibility Results 355 

4.2.1 Landslide Inducing Factor Selection 

Combined withBased on the research resultsfindings of previous scholars (Chen et al., 2021; Chen et al., 2020; 

Habumugisha et al., 2022; Li et al., 2022; Li et al., 2020; Rohan et al., 2023) and considering the actual situationspecific 

conditions of the study area, this study selected a total of 11 landslide inducing factors, including that potentially induce 

landslides. These factors include elevation, Normalized Difference Vegetation Index (NDVI), Topographic Wetness Index 360 

(TWI), road density, stratigraphic lithology, tectonic density, river distance, slope, curvature, land cover, and slope structure, 

were selected in this study. (Table 5). 

Table 5: Sources of data for landslide-inducing factors. 

Factor Category Data Source Inducing Factor 

Topography and Geomorphology 
Geological Map 

STRM DEM (30m) 

Elevation 

Slope 

Curvature 

Slope Structure 

Geological Lithology Geological Map 
Stratigraphic Lithology 

Tectonic Density 

Hydrological Factor 
National Basic Geographic Database 

STRM DEM (30m) 

TWI 

River Distance 

Land Use Landsat Remote Sensing Image (30m) NDVI 
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Land Cover Type 

Human Engineering Activities OpenStreetMap Road Density 

Among them, thethese factors, slope structure considersrefers to the relationship between the slope aspect of the slope and 

the inclination of the rock formation (Niu et al., 2014), and different. Different types of slope structures can lead to 365 

differencesresult in variations in landslide size and intensity. Based on differentthe slope gradient (σ), slope direction (γ), and 

inclination (α) and tendency (β) of the rock formation, the following eight types of slope structures are classified into the 

following eight types (Table 6). 

Table 6: Classification of slope structure types and percentage of each type intheir respective percentages within the study area. 

CodeClass Relationship between α, β, γ and σ Area (%) 

ANearly horizontal slope α≤5° 1.720 

BOver-dip slope α>5°, |γ-β|∈[0°, 30°) or |γ-β|∈[330°, 360°), σ>α 5.127 

CFlat-dip slope α>5°, |γ-β|∈[0°, 30°) or |γ-β|∈[330°, 360°), σ=α 0.000 

DUnder-dip slope α>5°, |γ-β|∈[0°, 30°) or |γ-β|∈[330°, 360°), σ<α 13.581 

EDip-oblique slope α>5°, |γ-β|∈[30°, 60°) or |γ-β|∈[300°, 330°) 17.559 

FTransverse slope α>5°, |γ-β|∈60°, 120°) or |γ-β|∈[240°, 300°) 32.066 

GAnticlinal-oblique slope α>5°, |γ-β|∈[120°, 150°) or |γ-β|∈[210°, 240°) 15.089 

HAnticlinal slope α>5°, |γ-β|∈[150°, 210°) 14.857 

Stratigraphic lithology data was obtained by vectorizing and classifying geological maps (scaleat a 1:200,000). scale. Each 370 

lithology has a differentis associated with distinct pedogenic environment and will varyenvironments, leading to variations in 

composition and stability, which affects the in turn influence landslide occurrence of landslides (Cobos-Mora et al., 2023). In 

this paper, the study, the area iswas classified into four lithological categories: carbonate, clastic, carbonate and clastic, as 

well as Igneousigneous and metamorphic rocks. In addition, when the research area is Furthermore, in large and most of the 

tectonics are study areas where tectonic features are highly intertwined with each other, the distance from tectonics is no 375 

longer suitableto tectonic structures becomes less relevant as a correlationcorrelating factor, and; instead, tectonic density 

should be used insteadconsidered (Wang et al., 2014). Also, since the road data also show interlocking status, this paper uses 

tectonic density and road density as evaluation factors. When using ArcGIS to calculate the density, the search radius is kept 

as default, and the area unit is square kilometers. 

To ensure the reasonableness of the rational selection of landslide -inducing factors, this study used Pearson correlation 380 

analysis was employed to exploreexamine the degree of correlation among the selected inducing factors (Zhang et al., 2022) 

(Fig. 139). The value of correlation coefficient ranges from -1 to 1. The, where values closer the value is to 1 or -1, the 

indicate a stronger the correlation between the two variables, and thevalues closer the value is to 0, the indicate a weaker the 

correlation between the two variables (Cao et al., 2023). 
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TheAs shown in Fig. 9, the correlation coefficients between themost inducing factors are low, as shown in Fig. 13, with the 385 

exception of thea somewhat higher correlation value between elevation and river distance (0.53). Given that elevation 

Elevation and river distance are two importantboth critical factors for causing landslides (in landslide occurrence—elevation 

is inherent in thefundamental to landslide susceptibility assessment of LS (Wang et al., 2022b), which affectsaffecting the 

distribution of submerged layers as well asand the intensity of human activities; and the erosive effect of thewhile river on 

the shorelineerosion can damagedestabilize slopes by undercutting the foot of the slopebase and soften thesoftening rock and 390 

soil massmasses (Selamat et al., 2022)), they are all ). Therefore, both factors were retained in this study. TheseUltimately, 

11 inducing factors were finally determined to be used in the TGRA's LSselected for landslide susceptibility assessment 

researchin the study area. 

 

Figure 9: Pearson correlation analysis results for landslide-inducing factors. 395 

4.2.2 Grading of Landslide Susceptibility Factors 

Combined withConsidering the actual situationspecific conditions of the study area and the results ofinsights from previous 

studiesresearch, the class classification of each landslide predisposing factor and, along with the corresponding result map of 

this study are shown, is presented in Table 7 and Fig. 1410. The landslide susceptibility evaluation was carried out 

inconducted using raster cells with a sizedimensions of 30m × 30m. It's also worth notingIt is important to emphasize that 400 

the historical landslide data utilizedused for LSsusceptibility prediction includesencompasses all 6,888 recorded 

landslideslandslide events, not just the 453 events filtered for inclusion in the RTMrainfall threshold model calculations. 
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Table 7: Classification of landslide -inducing factors used in this study. 

Predisposing Factor Classification Criteria Code 

Elevation (m) 

≤300 

a 

(300,600] 

(600,900] 

(900,1200] 

(1200,1500] 

>1500 

NDVI 

[-1,0] 

b 

(0,0.2] 

(0.2,0.4] 

(0.4,0.6] 

(0.6,0.8] 

(0.8,1] 

TWI 

≤6 

c 

(6,8] 

(8,10] 

(10,14] 

>14 

Road Density (km/km2) 

[0,0.5] 

d 

(0.5,1.2] 

(1.2,2.5] 

(2.5,5.0] 

>5.0 

Stratigraphic Lithology 

Carbonates 

e 
Clastic rocks 

Carbonates and clastic rocks 

Igneous and metamorphic rocks 

Tectonic Density (km/km2) 

[0,0.03] 

f 

(0.03,0.12] 

(0.12,0.24] 

(0.24,0.38] 

>0.38 

River Distance (m) 

≤500 

g 
(500,1000] 

(1000,1500] 

>1500 

Slope (°) 

[0,10] 

h (10,20] 

(20,30] 
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(30,40] 

(40,50] 

>50 

Curvature (m-1) 

≤-3 

i 

(-3,-1] 

(-1,0] 

(0,1] 

>1 

Land Cover 

Urban land 

j 

Agricultural land 

Forest land 

Grassland 

Water 

Other Land 

Slope Structure 

ANearly horizontal slope 

k 

BOver-dip slope 

DUnder-dip slope 

EDip-oblique slope 

FTransverse slope 

GAnticlinal-oblique slope 

HAnticlinal slope 
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 405 

Figure 14: Landslide 10-1: Grading results for landslide-inducing factors grading results map. (a) Elevation; (b) NDVI; (c) TWI; 

(d) Road density; (e) Stratigraphic lithology; (f) Tectonic density. 
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Figure 10-2: Grading results for landslide-inducing factors (continued). (g) River distance; (h) Slope; (i) Curvature; (j) Land cover; 

(k) Slope structure. 410 

4.2.3 Landslide Susceptibility Evaluation Results 

In this study, three models, CNN-3D, RF and SVM, were usedemployed to evaluate the LSlandslide susceptibility of the 

study area, and the. The optimal LS result was chosenlandslide susceptibility results obtained from these models were then 

selected for subsequent daily LHW.landslide hazard warnings. The relevant indicators obtainedperformance metrics from the 

training of the three models are shownpresented in Table 8. 415 

Table 8 indicates that the AUC values for the CNN-3D, RF, and SVM models are 0.96, 0.82, and 0.83, respectively. These 

AUC values demonstrate that all three models effectively predict the probability of landslide occurrence in the study area, 

with the CNN-3D model exhibiting superior predictive accuracy compared to the RF and SVM models. Furthermore, the 

CNN-3D model outperforms the RF and SVM models across the other four metrics. Consequently, the landslide 
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susceptibility results from the CNN-3D model were classified into five categories using the natural breaks method (Fig. 11) 420 

and were subsequently utilized for daily landslide hazard warnings. 

Table 8: Results offrom the training of the susceptibility evaluation modelmodels. 

Model 
Model Evaluation Indicators 

AUC Accuracy Precision Recall F1_score 

CNN-3D 0.96 0.9003 0.8663 0.9295 0.8968 

RF 0.82 0.7500 0.7656 0.7416 0.7534 

SVM 0.83 0.7630 0.7625 0.7623 0.7624 

Table 8 shows that the AUC values for CNN-3D, RF, and SVM models are 0.96, 0.82, and 0.83, respectively. The AUC 

values indicate that all three models can better predict the probability of landslide occurrence in the study area, but the CNN-

3D model has a greater prediction accuracy than the RF and SVM models. In addition, for the other four metrics, the CNN-425 

3D model outperforms the RF and SVM models. As a consequence, in this study, the CNN-3D model's LS result was 

divided into five classes using the natural breaks approach (Fig. 15) and was used for subsequent daily LHW. 

 

Figure 15: CNN-3D model landslide11: Landslide susceptibility results from the CNN-3D model. 

As a whole, the Overall, areas of high landslide disaster high susceptibility areas in the study arearegion are mainly 430 

concentratedpredominantly located along the riverbanks and in the central and eastern regions. In terms of sections. Within 

the district and county scopes, the landslide disasterboundaries, high susceptibility areas are mainlyprimarily concentrated 
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atin Zigui, the northern part of Badong, the southern part of Xingshan, the central part of Fengjie, the central part of 

Wanzhou, and the southeastern part of Zhongxian. 

4.3 Landslide Hazard Warning 435 

4.3.1 Landslide Hazard Results for Each Rainfall Warning Level 

In this study, a superposition matrix (Table 9) was created to couple the daily RWL with the LS result to generate the daily 

LHW result. Based on the superimposed matrix, four categories of landslide hazard levels will be obtained, where 1 

indicates relatively stable zone, 2 indicates general prevention zone, 3 indicates secondary prevention zone, and 4 indicates 

priority prevention zoneintegrate the daily rainfall warning level with the landslide susceptibility results, thereby generating 440 

daily landslide hazard warnings. 

Table 9: LandslideSuperposition matrix of landslide susceptibility and rainfall warning level superposition matrixlevels. In the 

table, the numerical codes represent the following zones: 1 – Relatively stable zone, 2 – General prevention zone, 3 – Secondary 

prevention zone, and 4 – Priority prevention zone. 

Susceptibility 

Rainfall Threshold Level 
Very Low Low Moderate High Very High 

Caution 1 1 1 1 2 

Special Caution 1 1 1 2 3 

Warning 1 1 2 3 4 

Severe Warning 1 2 3 4 4 

Based on the LSlandslide susceptibility results showndepicted in Fig. 15, combined with 11 and utilizing the superposition 445 

matrix from Table 9, the LHW resultslandslide hazard warning outcomes corresponding to each rainfall level were 

obtaineddetermined (Fig. 1612). 
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Figure 1612: Landslide hazard maps for each rainfall warning level. (a. attention) Attention level hazard; (b. special) Special 

attention level hazard; (c. warning) Warning level hazard; (d. severe) Severe warning level hazard).. 450 

4.3.2 Daily Landslide Hazard Warning 

In 2020, the Yangtze River experienced its worst basin-wide flood since 1998. onOn July 19, the "Yangtze River Flood No. 

2 of 2020" was progressingadvancing through the TGRA to study area toward the middle and lower reaches of the Yangtze 

River, and the river, leading to persistent rainfall induced manyand numerous landslides. Therefore, in this studyThus, 19 

July, 2020 was usedselected as an examplea case study for LHW landslide hazard warning and validation. Based on the 455 

anticipated rainfall data at (Fig. 13). Using the superposition matrix in Table 9, Fig. 13.d was overlaid on Fig. 12 to derive 

the time, E and Dlandslide hazard warning results for the rainfall forecast stations from 1419 July, 2020 to 18 July 2020, and 

R for 19 July 2020, were calculated. Kriging interpolation was used to generate E (Fig. 17.a) and R (Fig. 17.b) for the whole 

research region. Since D is an integer ranging from 0 to 5, interpolation cannot be used to acquire D for the whole research 

region; thus, this study uses the Thiessen polygon method and feature to raster method to obtain D for the entire study area 460 

(Fig. 17.c).The RWL for 19 July 2020 was calculated per sub-region (Fig. 17.d) using the optimum RTM for each sub-region 

obtained above (Table 414). 
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Figure 1713: Various rainfall parameters and rainfall warning levels for 19 July 2020July 19, 2020. (a) Effective rainfall 

interpolated by Kriging; (b) Daily rainfall interpolated by Kriging; (c) Duration of rainfall estimated using Thiessen polygons; (d) 465 
Rainfall warning levels calculated using the optimal rainfall threshold model. 

 

Figure Figure 1814: Landslide hazard warning results for 19 July, 2020. 
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On July 19, 2020, there were seven landslide hazards were identified, as showndepicted in Fig. 18. Five of them fell in14. Of 

these, five were classified within the priority prevention zone, and two inwithin the secondary prevention zone, 470 

demonstratingwhich confirms the accuracy of both the LHWlandslide hazard warning results and the rainfall threshold 

model. 

5. Discussion 

5.1 Discussion of Rainfall Threshold Model 

To investigateidentify the bestmost effective rainfall thresholds in the TGRA,study area, this study employs two regression 475 

methods, OLS and MLP, andalongside two RTMrainfall threshold models, E-D and E-D-R, are used in this study.. 

Regardless of the regression approachmethod used, the results reveal that the E-D-R model has greaterexhibits superior 

warning accuracy thancompared to the E-D model. In additionAdditionally, the optimal RTMrainfall threshold models for 

two areas,the Z13 and Z23Z24Z3, areas are the E-D-R models obtainedderived from the MLP regression, 

indicatingdemonstrating the feasibilityviability of using neural networks (MLP) for the study of RTM. in rainfall threshold 480 

modeling. However, sincegiven that the dataset ofin this study is not large (relatively small (comprising only 453 landslides) 

nor complex (and simple (involving only 3 variables), it may not be able to clearly demonstratefully capture the advantages 

of neural networks for rainfall threshold modeling. ButNevertheless, we believe thatconsider this is a valuable attempt, and 

moreeffort. Future studies could incorporate additional variables, such as peak rainfall and rainfall intensity can be added in 

subsequent studies, and the application of , and applying neural networks will certainly improveis likely to enhance the 485 

accuracy of RWMrainfall warning models. 

To explore the reasons for the E-D-R model's highersuperior warning accuracy, this study usesexamines area Z12 as an 

example,a case study and shows some of theillustrates points where the RWL rainfall warning level has been 

changedmodified (i.e. landslides where the RWL has beenwith increased warning levels) in the R-E plane view (Fig. 19), 

where the colors of the landslides indicate the different RWL,15). 490 
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Figure 15: Transition process of rainfall warning levels in the Z12 region. The green line indicates the boundary between the 

Special Attention and Attention levels, the yellow line denotes the boundary between the Warning and the meaning is the same as 

in Fig. 12Special Attention levels, and the orange line marks the boundary between the Severe Warning and Warning levels. 

 495 

Figure 1916: Rainfall warning levelprocesses at the transition process (Z12 region).points of rainfall warning levels. 

The chart showsillustrates that after the inclusion of the R indication was added, the RWL of the four landslides rose 

dramatically. Thesignificantly elevated the rainfall warning level of P1 in for the four landslides. In the E-D model, P1 was 

onlyclassified as “Caution”, andwhile the warning levels of the remainingother three landslides were onlycategorized as 

“Special Caution”, whereas. However, in the E-D-R model usingwith OLS regression, the warning level of P2 was 500 

raisedupgraded to “Warning”, and the warning levels of the remaining three landslides were raisedelevated to “Severe 

Warning”. Similarly, the alert levels of all four landslip pointslandslides were raisedclassified to “Warning” in the E-D-R 

model using the MLP regression method. These. The transitions in rainfall warning levels for these landslides with RWL 
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transition weredirectly contributed to the direct reason of the E-D-R model's improved accuracy of the E-D-R model in the 

Z12 region. 505 

Further explorationAn in-depth analysis of the rainfall process ofprocesses for these four landslides before the landslide 

occurredprior to their occurrence (Fig. 2016) reveals that these four landslides received lessthey experienced relatively low 

rainfall in the four days beforeleading up to the landslide, resulting in a lower E value, but moresubstantial rainfall on the 

day of the landslide. The aboveThese characteristics make these four landslides have resulted in higher warning accuracy 

infor these four landslides within the E-D-R RTM, indicatingrainfall threshold model, suggesting that the R indicator R has 510 

somenotable sensitivity in terms ofto landslides causedtriggered by heavy rain.rainfall. 

5.2 Discussion of Daily Landslide Hazard Warning 

In this study, RF, SVM, and CNN-3D models were used to predict LSlandslide susceptibility in the TGRA, and a 

comparison of the three models' results showedThree Gorges Reservoir Area. A comparative analysis revealed that the 

CNN-3D model predicts LS with moreoffers superior predictive accuracy infor landslide susceptibility within the study area. 515 

In addition, further analysis Further examination of the CNN-3D model's LS results show that the veryregions with high LS 

zone is primarily distributedlandslide susceptibility are predominantly located in areas with sparse vegetation, fragile 

stratigraphic lithology, close to rivers, and active human engineering activities, which is similar with the results ofreported 

by Wang et al (Wang et al., 2022a). 

In terms ofRegarding daily LHW, RWL are landslide hazard warnings, rainfall warning levels were calculated using the 520 

optimal RTMrainfall threshold model for each sub-district based on forecast rainfall data from rainfall stations. Subsequently, 

the The daily LHWlandslide hazard warning results were derived then generated by utilizingemploying a superposition 

matrix to combineintegrate the rainfall warning levels with the RWL and LSlandslide susceptibility results. On July 19, 2020, 

all seven identified landslide hazards arewere confirmed to be inwithin the priority prevention and secondary prevention 

zones. It can be observedThis indicates that the LHWlandslide hazard warning results obtained through the RTM have very 525 

high accuracy and are of great significance in thederived from the rainfall threshold model are highly accurate and 

significantly contribute to effective landslide disaster prevention and control of landslide disasters. In addition. Moreover, 

the process of transforming the LStranslating landslide susceptibility results into LHW resultshazard warnings through the 

RWLrainfall warning levels and superposition matrix is essentiallyserves as a refinement mechanism. This correction 

process of the LS results. After the correction,reduces the areas that need to berequiring focused on prevention and attention 530 

can be reduced to a certain extent, which saves the cost of manpower and material , thereby optimizing the allocation of 

resources infor landslide preventionmanagement. 

It is also important to note that the spatial probability of landslide occurrence may vary between dry and rainy seasons, and 

the influence of different landslide-inducing factors may change under varying climatic conditions. This study primarily 
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focused on the differences in rainfall thresholds across various climatic and controltopographic conditions, while the 535 

variations in spatial probability of landslide occurrence were not extensively explored. Additionally, changes in reservoir 

water levels and groundwater fluctuations in the Three Gorges Reservoir Area are significant factors influencing landslide 

occurrence; however, these factors were not included in this study due to data limitations. 

5.3 Practical Application of the Rainfall Threshold Model and Daily Landslide Hazard Warning 

In the actualpractical prevention and control of landslide hazards, it is cost considerations are inevitable to consider the 540 

factor of cost (Wang et al., 2023a). To safeguard as many people'smaximize the protection of lives and property as possible 

within the limited cost rangea constrained budget, it is necessaryessential to narrowprioritize and refine the regionsareas that 

must be prioritizedrequire focused attention, while guaranteeingmaintaining the accuracy of the LHW landslide hazard 

warning results. 

The E-D-R RTM, while considering the advantagesrainfall threshold model, by incorporating the benefits of the E-D RTM, 545 

increases themodel, enhances sensitivity to landslides induced by heavy rainfall on the same day, and hasachieves higher 

landslide warning accuracy. MeanwhileConcurrently, the CNN-3D model fully considers the , which effectively integrates 

spatial information around each raster point, and its predicted LS results have higher prediction accuracy than those of 

provides more accurate landslide susceptibility predictions compared to the RF and SVM models. Therefore,Thus, both the 

E-D-R RTMrainfall threshold model and the CNN-3D model have a broad hold significant potential for application space 550 

and development prospect in thelandslide warning and prevention of landslide disasters.. The LHWcombination of these 

models' results obtained bythrough superposition of the results of the two models can ensure high accuracy and at the same 

time narrow down the areas that need to be focused on by virtue of the RWL results obtained by the RTM, so as toin 

landslide hazard warnings while also narrowing the focus areas using the rainfall warning levels derived from the rainfall 

threshold model. This approach helps meet the requirementsdemands of effective landslide disaster prevention and control 555 

work. 

In addition, although the Nevertheless, despite the high accuracy of the E-D-R RTM as well as rainfall threshold model and 

the CNN-3D model have high accuracy, there are , certain uncertainties persist. For the RTMrainfall threshold model: (1) 

The rainfall station can only accurately reflect the rainfall situation of the siteRainfall stations provide localized data, and 

there willmay be inaccuracies and uncertainties whether the rainfallwhen extending this data are extended to the wholeentire 560 

study area byusing interpolation or Thiessen polygon methodmethods. (2) Historical landslide data play a 

decisivesignificantly influence on the results of the rainfall threshold model. Either less historical landslide; insufficient data 

or the existence of more extreme rainfall conditions willcan lead to uncertaintyuncertainties in the final RWL.rainfall 

warning levels. (3) Although this study dividedanalyzed 10 regions as well asacross both dry and rainy seasons for the 

rainfall threshold study, the overall , the broad regional scope is still large. There will be someintroduces uncertainty in the 565 

rainfall thresholds for different topographydue to varying topographic and geomorphology in the regiongeomorphological 
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conditions. For the CNN-3D model, uncertainties may arise from the selection of landslide-inducing factors, the size of the 

evaluation unit, and the division ratio of the training setand test set, and so on, will produce uncertainty. 

Therefore, in practical application of landslide prevention and control applications, it is necessarycrucial to combinetailor the 

actual situation of the local area and select appropriate predisposing factors as well asand evaluation units to the specific 570 

local context to ensure the accuracy of the LSlandslide susceptibility results (Zhang et al., 2023). Simultaneously, 

aconstructing a comprehensive historical landslide database canis recommended. This database should be constructed. When 

aupdated with new landslide occurs, theevents and corresponding rainfall data will be summarized intoto recalibrate the 

database and thearea's rainfall threshold ofand refine the rainfall warning levels. As the historical landslide data accumulate, 

the area will be recalculated for the subsequent RWL. The uncertainty ofin the RTMrainfall threshold model is expected to 575 

reduce as the quantity of historical landslide data grows, and thedecrease, leading to more precise rainfall thresholds will 

continue to converge to the ultimate rainfall thresholds for the region. Furthermore, when the historical landslide data are . 

With a sufficiently rich, the region may be split historical dataset, further to constantly regional subdivision may enhance 

rainfall warning accuracy. Ultimately, this approach will improve the accuracy of the rainfall warning level. Ultimately, the 

accuracy of LHW will be increased to giveprecision of landslide hazard warnings and provide valuable technical assistance 580 

for subsequent assessment of support for vulnerability as well asassessment and disaster preventive and mitigation efforts. 

6. Conclusion 

Landslide disaster warning is an essentiala critical tool infor the prevention and management of landslides. To 

improveenhance the accuracy of landslide warning, this paper first chosestudy employed two regression methods, —MLP 

and OLS, —and two RTM, rainfall threshold models—E-D and E-D-R, and . The study area was divided the TGRA into two 585 

seasons, dry and rainy seasons, as well as several sub-districts based on topography and rainfall patterns, to exploreidentify 

the optimal RTMrainfall threshold model for the study arearegion and obtaindetermine the daily RWL. Subsequentlyrainfall 

warning levels. Additionally, 11 inducing factors were selected to investigate the LS in assess landslide susceptibility in the 

study area utilizingusing three models: RF, SVM, and CNN-3D. Finally, The final step involved integrating the rainfall 

warning levels with the landslide susceptibility results using a superposition matrix, the RWL was overlaid on the LS results  590 

to achieveproduce daily LHW in the TGRAlandslide hazard warnings for the Three Gorges Reservoir Area. 

In terms of rainfall threshold models, the study'sThe results suggestindicate that the E-D-R RTM hasrainfall threshold model 

exhibits superior sensitivity in terms ofto landslides inducedtriggered by heavy rainfall, therefore the resulting in higher 

rainfall warning accuracy produced bycompared to the E-D model when either regression method is higher than that of the 

E-D model. In addition, for each applied. Specifically, for sub-district, the optimal RTM for the four zones Z11, Z12, Z21Z22, 595 

Z25Z4, and Dry Season, the optimal rainfall threshold model is the E-D-R RTM calculated by model derived from OLS 

regression; whereas the optimal RTM for the two zones. Conversely, for sub-districts Z13 and Z23Z24Z3, the optimal model is 
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the E-D-R RTMthreshold obtained bythrough MLP regression. In terms of LSRegarding landslide susceptibility, the CNN-

3D model's AUC and Accuracymodel achieved an AUC of 0.96 and an accuracy of 0.9003, respectively, and its prediction 

accuracy outperformed the RF and SVM models in prediction accuracy. 600 

The daily LHW is Daily landslide hazard warnings were calculated by combining the daily RWL and rainfall warning levels 

with the landslide susceptibility results. Data from the 19 The accuracy of these warnings was validated using data from the 

landslide event on July 19, 2020 hazard event were utilized to verify the LHW results in this research. Of the seven landslide 

hazardslandslides on that date, five felloccurred in the priority prevention zone and two in the secondary prevention zone, 

proving the accuracyconfirming the reliability of the landslide hazard warning results and the effectiveness of the 605 

LHWrainfall threshold model. 

The integration of rainfall warning levels with landslide susceptibility results provides actionable guidance and reference for 

local landslide disaster prevention and control operations. In additionefforts. Moreover, the introduction of MLP tointo the 

regression analysis of rainfall thresholdthresholds in this study also further enrichescontributes to the calculation 

methoddevelopment of RTM, which is of some significancerainfall threshold models and offers a valuable approach for 610 

promotionbroader application. 
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